
© 2023 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. 
 

 

K. Guo, M. Wu, X. Li, H. Song and N. Kumar, "Deep Reinforcement Learning and NOMA-
Based Multi-Objective RIS-Assisted IS-UAV-TNs: Trajectory Optimization and Beamforming 
Design," in IEEE Transactions on Intelligent Transportation Systems, doi: 
10.1109/TITS.2023.3267607. 
 

 

 

https://doi.org/10.1109/TITS.2023.3267607 

 

 

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) 
platform.  

Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s 
important to you. Thank you.  

 

https://doi.org/10.1109/TITS.2023.3267607
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Deep Reinforcement Learning and NOMA-Based
Multi-Objective RIS-Assisted IS-UAV-TNs:

Trajectory Optimization and
Beamforming Design

Kefeng Guo , Min Wu , Xingwang Li , Senior Member, IEEE, Houbing Song , Fellow, IEEE,
and Neeraj Kumar , Senior Member, IEEE

Abstract— In this paper, we discuss the co-optimized perfor-
mance of multi-reconfigurable intelligent surface (RIS)-assisted
integrated satellite-unmanned aerial vehicle-terrestrial network
(IS-UAV-TN), where the multiple vehicle users are applied to
the network under consideration. The performance optimization
of IS-UAV-TNs faces two major challenges: one is the obstacles
in the transmission path and the other is the highly dynamic
communication environment caused by the UAV movement for
the multiple ground vehicle users. To tackle these above issues
efficiently, we will install RIS on the UAV for the purpose
of reshaping the wireless transmission path. In addition, non-
orthogonal multiple access (NOMA) protocols are considered
as a new paradigm to address spectrum shortage and enhance
connection quality. Considering the UAV energy consumption,
the satellite transmission beamforming matrix and RIS phase
shift configuration, a multi-objective optimization problem is
proposed to maximize the system achievable rate and mini-
mize the UAV energy consumption during a specific mission.
On this foundation, to facilitate the online decision problem,
the deep reinforcement learning (DRL) algorithm is utilized
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to achieve real-time interaction with the communication envi-
ronment. A multi-objective deep deterministic policy gradient
(MO-DDPG) algorithm is proposed to search for sub-optimal
solutions about the learning problem of multi-objective control
policies in IS-UAV-TNs. Experimental results show that the
method can simultaneously consider three optimization objectives
and effectively adjust the optimal update policy according to the
settings of different weight parameters.

Index Terms— Deep reinforcement learning (DRL), reconfig-
urable intelligent surface (RIS), integrated satellite-unmanned
aerial vehicle-terrestrial networks (IS-UAV-TNs), non-orthogonal
multiple access (NOMA), multi-objective DDPG.

I. INTRODUCTION

OWING to the rapid development of the Internet of Things
(IoT) and the Internet of vehicles (IoV), the integrated

satellite-terrestrial networks (ISTNs), which can provide het-
erogeneous services, seamless coverage and high data through-
put for anyone and anything, have attracted widespread and
significant attention as a reliable emerging candidate network
architecture [1], [2], [3], [4].

Although integrating satellite networks into terrestrial net-
works has been proven to improve significantly, the severe
path loss between terrestrial user equipment and Geostation-
ary Orbit (GEO) satellites poses a major challenge due to
transmission distances [5]. Thus, a communication relay is
needed to amplify and forward the signal. The unmanned-
aerial vehicle (UAV)-based relay communication is expected
to be key technology due to its flexible capability and highly
profitable benefits in ISTNs to achieve sustainable manage-
ment, supervision and control of physical infrastructure.

Despite the evident merits of IS-UAV-TNs communications,
this also causes serious concern about the limited spectrum
resources and rapidly increased energy consumption [6], [7].
On this foundation, the power-domain non-orthogonal multi-
ple access (NOMA) scheme can support a large number of
multi-user access, especially, the application of NOMA to
ambient backscatter communication technology is proposed
in [8] and [9] as a reliable alternative to support large-scale
heterogeneous services for 6G IoV networks. Based on the
above analysis, the utilize of NOMA as a very promising
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access technology in IS-UAV-TNs, which has the potential
to mitigate multipath and shadow fading [10], [11]. Among
them, the problem of residual transceiver hardware defects
in collaborative NOMA networks is very comprehensively
explained in [12] and [13], while the outage probability (OP)
and ergodic capacity (EC) are derived for cooperative and non-
cooperative NOMA networks.

Apart from the limited spectrum resources, another chal-
lenge affecting the communications quality in IS-UAV-TNs is
the instability of the transmission link, especially over cities
with high density at low altitudes, and may encounter potential
obstacles during UAV flight. To address this issue, reconfig-
urable intelligent surfaces (RISs) have been put forward as a
new paradigm for intelligently changing wireless propagation
environment [14]. RIS has numerous low-cost nearly passive
reflective elements, every element regulated by pin-diodes or
varactors, that is capable of constructively boosting the power
of the received signal or destructively suppressing redundant
interference by adjusting the phase shifts and/or amplitudes
desired by intended ground vehicle users [15].

Since, the signal transmission process involves multiple
optimization objectives, including the transmit beamforming
weight vectors for the satellite, the design of phase shift for
RIS, and the constraint of high-quality trajectory for UAV [16],
[17]. As a result, the IS-UAV-TNs faces high-dimensional
optimization problems that are challenging to solve using
traditional methods, particularly when aiming to ensure the
UAV’s high-quality path planning to effectively avoid obsta-
cles [18]. Traditional efficient solutions always require huge
training overhead and need to meet the following requirements,
such as a large amount of heterogeneous data generation,
efficient data sensing, real-time data processing capabilities,
and greater communication request arrival rates. Considering
the ultimate goal of achieving harmonic co-existence among
all heterogeneous wireless systems, the goal of developing new
optimized intelligent algorithms was set.

Driven by the development of model-free artificial intelli-
gence (AI) algorithm framework, such as the reinforcement
learning (RL), deep learning (DL) and deep reinforcement
learning (DRL), extensive industrial activities and operations
are moving towards real-time automation and improvement.
Among the existing AI approaches, DRL has emerged as an
effective technique for handling explosive massive amounts of
communication data, management of systems and resources
mathematically, intractable nonlinear non-convex problems,
even though the highly computational problem of studying
and building knowledge networks about wireless channels
without knowledge of channel models and the multiple ter-
restrial/vehicle users movement patterns [19]. And, we also
finding optimal solutions to complex optimization problems
by observing the reward after interacting with the wireless
environment, thus enabling efficient algorithm design [20].

A. Related Works

Now, according to the above mentioned technologies,
the related works can be discussed from the following
aspects:

1) For the NOMA in IS-UAV-TNs Aspect: In the existing
literature, a flurry of research works have been extensively
studied on NOMA-based IS-UAV-TNs to harvest their benefits.
In [21], the authors investigated the multi-objective optimiza-
tion of uplink communication utilizing NOMA scheme in
multiple UAV communication scenarios. Besides, the authors
in [22] considered the UAV as an aerial relay to support two
groups of ground users. Hence, with the explosion of demand
for IoT and satellite communication services, the integration
of NOMA into IS-UAV-TNs can significantly improve the
utilization of frequency resource and has been proved to
be a promising and effective method to achieve significant
performance improvement of future wireless mode. In [23],
the performance of NOMA-based IS-UAV-TNs with multi-
objective optimization problem was discussed. A two-step
solution was exploited to measure a max-min problem in terms
of UAV’s energy efficiency. The impacts of UAV as aerial base
stations based on wireless powered communication (WPC)
technology in NOMA-based IS-UAV-TNs were investigated
in [24].

2) For the RIS-Assisted Transmission Aspect: Currently,
a significant amount of work has been conducted to analyze
the performance of networks assisted by RIS. The design of
phase shifts, also known as passive beamforming, is crucial
in fully utilizing the potential of RIS. For this reason, the
issue of phase shift design has been extensively studied under
different communication environment settings. The authors
of [25] developed a covert communication scheme that utilizes
an UAV equipped with an RIS to achieve maximum covert
transmission rates. In [26], the authors proposed that the RIS-
assisted air-ground networks was considered in two commu-
nication scenarios. In the first one, the RIS was mounted on a
UAV to increase mobility and enable the creation of a direct
line-of-sight link between the transmitter and receiver. The
second scenario involved the use of an RIS to amplify the sig-
nal of the intended user while simultaneously suppressing sig-
nals from eavesdropping users. In [27], the authors investigated
the OP and system average sum-rate in multi-RIS assisted
communication system, and the closed-form expression of
the asymptotic sum-rate are derived relying on the theory
of extreme values. In [28], the authors investigated a four-
stage optimization algorithm in multi-RIS-assisted multi-UAV
mobile edge computing system. This algorithm simultaneously
optimizes both UAV trajectories and RIS phase shifts. Besides,
the authors in [29] proposed a model of a RIS-assisted vehicle
communication system the performance under different signal-
to-noise and interference scenarios was discussed. In [30], the
authors proposed the secrecy issues in RIS-assisted satellite-
ground relay networks with multiple UAV eavesdroppers,
examining in detail the secrecy outage probability (SOP)
through theoretical derivation and simulation experiments.

However, the above literatures have not taken into account
the situation of the RIS-assisted wireless communications in
IS-UAV-TNs, which will become an indispensable component
of auxiliary communication due to the large coverage area and
changing signal propagation paths. Hence, the consideration
of RIS-assisted IS-UAV-TNs will be meaningful and have the
ability to further improve communication efficiency.
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3) For the RIS-Assisted NOMA Aspect: Recent studies
have examined the potential profits of RIS-assisted NOMA
networks [31], [32]. In [33], the authors investigated the
performance of RIS-assisted NOMA networks under the
circumstances of imperfect successive interference cancella-
tion (ipSIC) and perfect successive interference cancellation
(pSIC), and discussed the network throughput and energy
efficiency of RIS-NOMA network under the mode of delayed
limited and tolerated transmission. In a similar context, [34]
identified that RIS is used to change the wireless communi-
cation environment of cell-edge users in a dual-cell NOMA
network by adjusting the phase, and a method is given for
minimizing the total transmit power while satisfying the signal
to interference plus noise ratio (SINR) requirements. The RIS-
NOMA scheme mentioned in the above the references did not
take into account the division of users requirements, which
is crucial for the implementation of RIS-NOMA scheme,
as the computational complexity of the RIS-NOMA scheme
increases with the number of service users [35].

4) For the DRL in Communication Aspect: Due to the
successful application of the latest AI algorithms in numerous
fields, more and more DRL algorithms are being used to tackle
with communication network tasks such as wireless communi-
cation resource allocation, management of networked systems
and resources [36], transmit power control, users requirement
prediction, signal anomaly detection [37] and multi-objective
optimization problems [38]. In [39], the authors considered
using DDPG framework to jointly optimize the transmit power
of the secondary transmitter and the RIS reflect beamforming
in RIS-assisted cognitive radio system and compared results
with traditional algorithm. The authors in [40] proposed an
optimization objective to minimize UAV energy consump-
tion through jointly the movement of the UAV, the RIS
phase shift, the UAV’s power allocation policy and dynamic
decoding order in NOMA-based UAV systems. Additionally,
the phase shift of the RIS can be aligned by adjusting the
three-dimensional motion trajectory of the UAV and the real-
time positioning of the ground terminal to achieve maximum
system data transmission rate. In [41], the authors investigated
the optimization of energy efficiency in RIS-assisted cellular
networks driven by energy harvesting techniques. To solve this
problem, a original framework on the basis of DRL algorithm
was considered in which the base station received the state
information, including user CSI feedback and the available
energy disclosed by the RIS. From the above analysis, DRL
is able to study and construct wireless channels by observing
the feedback rewards from the surrounding communication
environment, which leads to efficient algorithm framework
design.

B. Motivation and Contributions

Considering that NOMA-based system performance
depends on the difference between channel correlation and
channel gain, the traditional channel model is determined
by the propagation environment [42]. Thus, the channel
interference environment becomes more random and complex,

and the decoding sequence needs to be designed under various
wireless channel conditions. The aforementioned factors lead
to a highly coupled problem of optimizing the performance of
UAV mobility, RIS configuration, and downlink beamforming,
making it challenging to obtain the optimal solution using
traditional iterative approaches [43].

To tackle with the above issues, we study a RIS-assisted
IS-UAV-TNs NOMA-based downlink system, in which we
install the RIS on the side of UAV to receive signals from
satellite and then reflect them to ground vehicle users [44].
More specifically, with the assistance of a RIS-equipped UAV,
the satellite simultaneously transmits signals to the VUs via
the NOMA protocol to provide an aggregated virtual line-
of-sight (LoS) link. This proposed framework introduces a
new flexible paradigm in efficient spectrum sharing between
satellite and ground multi-vehicle users. Our major efforts can
be concluded below.
• Firstly, we propose a novel framework for RIS-assisted

IS-UAV-TNs communication architecture, which adopts
the NOMA technology for promoting a flexible multiple
access. On this foundation, through joint improvement of
UAV trajectory, RIS configuration and downlink emis-
sion beam formation, the energy efficiency maximization
problem of the system is formulated to ensure the full
capability and minimum energy requirements of UAV and
terrestrial vehicle users (VUs).

• Secondly, the classical DDPG algorithm framework of
one-dimensional reward is extended to multi-dimensional
reward and put forward a distributed robust DRL algo-
rithm on the basis of the multi-objective DDPG structure.
The RIS passive phase shift and transmit beamforming
are aligned through an online UAV trajectory learning to
achieve the alignment of various signals for the highest
data transfer rates. Thus, by adjusting the RIS passive
phase shift, the transmission path can be changed to
achieve more efficient signal redirection, thus achieving
better propagation conditions in IS-UAV-TNs.

• Finally, the effectiveness of the proposed scheme is
verified by simulation experiments, and the flexibility of
MO-DDPG algorithm in optimization strategy is proved
to be better than that of traditional rule-based strategy.
By updating the network weight parameters through a soft
update policy, the optimal policy can be modified which
optimized the multiple objectives problem collaboratively
under different priority levels.

The remaining of this paper is arranged as follows.
In Section II, we describe the proposed system model and
mathmatize our system transmission sum rate maximization
problem. In Section III, we focus on the DRL-based algorithm
for the jointly optimization problem, variables to be optimized
include UAV trajectory, the RIS phase shift and transmit
beamformingn. Finally, simulation results and analysis are
elaborated in Section IV to verify the performance from
different performance indicators of the proposed MO-DDPG
algorithms framework, whereas Section V give conclusions
about this paper. In addition, the main notations mentioned in
this paper are shown in Table I.
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Fig. 1. Illustration of NOMA in multi-UAV-RIS-assisted satellite-vehicle networks.

TABLE I
LIST OF NOTATIONS

Other Notations: In this paper, for general channel repre-
sentation G, G (i, j) is the entry at the i-th row and the j-th
column. And, (�)H and (�)T denote the conjugate and transpose
operation of channel matrix. Moreover, CM×N denotes the
set of M × N complex vectors, E [�] denotes the expectation
operation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model Description

As can be seen from Fig. 1, we consider the downlink RIS-
assisted IS-UAV-TNs communications system model, which
consists of a satellite, N UAVs equipped with N RISs (each
UAV is equipped with one RIS) and multiple terrestrial vehicle

users (VUs) to be served. It is supposed that the satellite
configured with a single omni-directional antenna is applied
to provide communication service for a total K single antenna
terrestrial vehicle users. Moreover, we consider that all VUs
are roaming randomly in a fixed area. In an effort to create a
tandem virtual LoS propagation path using the UAV flexibility
between the satellite and the vehicle users by passively recon-
figuring the incident signal at the receiver using RIS, so we
can install the RIS on the side of the UAV, and each RIS is
made up of M reflective elements, thus enhancing the service
quality of wireless communcation.

The whole communication includes two links, the signal
transmission direct link and the signal transmission reflected
link. The direct link is the satellite that transmits signals
directly to VUs without being relayed or reflected. The
reflected link is the signal that first transmitted to the reflecting
RIS in UAV and then reflected by the RIS to VUs. The
UAV is only used as an airborne RIS-mounted mobile plat-
form in our paper and is not involved in communications.
By introducing the UAV, the RIS deployment scheme is
more flexible, thus improving signal transmission efficiency.
To distinguish different channel representations, we simply
define the channel model vector coefficients from the satellite
to the k-th terrestrial VUs, the RIS to the k-th terrestrial VUs,
the satellite to the RIS as GH

S,K ∈ C1×M , hH
R,K ∈ C1×M , and

GS R ∈ C1×1, respectively.
The diagonal phase shift matrix of the i-th RIS is denoted

by 2i = diag
(

e jθ1
i , e jθ2

i , . . . , e jθ M
i

)
, where θm

i ∈ [0, 2π)

represents the phase shift of the m-th reflecting element at
the i-th RIS with M = MR × NR . And, the actual discrete
phase-shift values are need to be considered, i.e. θm

n ∈

{1, 1θ, . . . , (L − 1) 1θ}, where 1θm
i = 2π/L i indicates the

number of i-th RIS discrete phase shift levels. Thus, a joint
optimization study on RIS passive beamforming and satellite
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active transmission beamforming is carried out on the basis of
considering UAV motion trajectory. The key point is to inves-
tigate the performance of RIS-assisted IS-UAV-TNs under
the NOMA access scheme using DRL framework. Hence,
we assume that channel that channel large-scale fading has
been compensated and the perfect CSI is available. This can
be achieved by utilizing response and training data feedback
from signal transmitters, as has already been implemented in
DVB-S2 [45]. In addition, through the feedback and training
from terrestrial VUs, the assumed perfect CSI is shared during
transmission.

B. Overview of Channel Model

As far as the downlink channel model between the satellite
and terrestrial VUs is concerned, we should take into account
the free space transmission loss, the rain attenuation and the
beam gains. Thus, it can be expressed as

G =
√

Gs,t Gs,r Cs ⊙ ξ−
1
2 ⊙ b

1
2 ⊙ e− jφ, (1)

where, Gs,t is the satellite launch gain, Gs,r is the parabolic
antenna gain for the satellite service user. Referring to the ITU
recommendations, Gs,r can expressed as

Gs,r =



Gs,r,max − 2.5× 10−3
(

dr
s θs

λ

)2

, 0◦ < θs < θa

2+ 15 log
dr

s

λ
, θa < θs < θb

32− 25 log θs, θb < θs < 48◦

−10, 48◦<θs <180◦,

(2)

where Gs,r,max denotes the maximum receive gain in the
axial direction of the parabolic antenna, θs is the off-axis
angle of the user relative to the satellite [46], dr

s is the

antenna diameter, and θa =
20λ
dr

s

√
Gmax

s,r −
(

2+ 15 log dr
s
λ

)
and

θb = 15.85
(

dr
s
λ

)−0.6
represent the angular value, respectively.

Cs = (λ/4πds)
2 denotes the free space loss, where λ is the

carrier wavelength and ds represents the distance between the
satellite and the intended signal receiver, ξ denotes the rain
attenuation coefficient which satisfies ln

(
ξdB

k
)
∼ CN

(
µk, σ

2
k
)

with µk and σk being mean value and variance which are
related to the satellite communication frequency, polarization
mode and the location of the served user, respectively. And, the
k denotes the number of satellite array antennas, b represents
the beam gain matrix, by taking into account the far-field
characteristic of satellite communication, every column vector
of b can be found in Eq.(3) of [47].

Although considering that the actual flight altitude of UAV
in the communication environment is higher than most build-
ings, it is assumed that the channel model between RIS
and terrestrial VUs follows the Rician fading channel model,
which indicates that there is still exists LoS transmission link
between them. Thus, the transmission link from the RIS to

VUs includes the LoS link and the NLoS link, which can be
expressed as

hRE =

√
K RE

K RE + 1
hL O S +

√
1

K RE + 1
hN L O S, (3)

where K RE is the Rician coefficient of the RIS-VUs link,
hL O S and hN L O S are the LoS component and the NLoS
component, respectively. In fact, hL O S depends primarily on
where the UAV is located, which can be modeled as [48]

hL O S =
√

GeCevec (A (θr , ϕr )) (4)

where Ge is the VUs receive gain, Ce denotes the free space
loss between RIS and VUs, and A (θr , ϕr ) is the RIS-VUs
channel matrix which can expressed as

A (θr , ϕr ) = ax (θr , ϕr ) aH
y (θr , ϕr ) , (5)

where θr and ϕr are the signal departure pitch and departure
azimuth of the VUs relative to the RIS, respectively. And,
ax (θr , ϕr ) and aH

y (θr , ϕr ) are the x- and y-axis guidance
vectors of the RIS, respectively.

ax (θr, ϕr) =
[
1, ej 2πdx

λ
sin θr cos ϕr , · · · , ej 2πdx

λ (MR−1) sin θr cos ϕr
]T

,

(6)

ay (θr, ϕr) =

[
1, ej 2πdy

λ
sin θr sin ϕr , · · · , ej 2πdy

λ (NR−1) sin θr sin ϕr

]T

,

(7)

where dx and dy is expressed as the physical spacing of
adjacent reflection elements in the horizontal and vertical
directions of RIS. And, MR and NR denotes the number of
reflecting elements in the vertical and horizontal directions of
the RIS, respectively.

C. Signal Transmission Model for Orthogonal Multiple
Access Scheme

OMA allows each user to completely separate unwanted
signals from the required signals by allocating different blocks
of orthogonal resources to each user. By analyzing the charac-
teristics of the channel model for the above signal transmission
process and considering the linear transmit precoding on the
satellite, the signal transmitted by satellite with the orthogonal
multiple access (OMA) scheme can be expressed as

x =
K∑

k=1

√
pkwksk, (8)

where denotes the signal power transmitted from the satellite
to k-th VUs, wk represents the transmit beamforming vector
applied at the satellite, and sk denotes the transmitted data
symbols for k-th VUs [49]. The signal received at k-th VUs
can be given in the following

yO M A
k =

(
GH

S,k + hH
R,k2GS R

) K∑
j=1

√
pkwksk + nk, (9)

where nk denotes additive white Gaussian noise (AWGN)
at the k-th VUs distributed as nk ∼ CN

(
0, σ 2

k
)
. Based on
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Eq. (8), the received SINR of the k-th VUs can be calculated
as

γ O M A
k =

pk

∣∣∣[GH
S,k + hH

R,k2GS R

]
wk

∣∣∣2
K∑

j ̸=k
p j

∣∣∣[GH
S, j + hH

R, j 2GS R

]
w j

∣∣∣2 + σ 2
k

, (10)

To eliminate mutual interference among multiple VUs,
a linear precoding scheme based on zero-forcing (ZF) was
always used on the satellite to determine transmit beam-
forming design [50]. In a departure from previous work,
we optimize the active transmission precoding matrix using
the DRL algorithm. Thus, the instantaneous downlink system
achievable rate at the k-th VUs with the OMA scheme can be
given by

RO M A
k = log2 (1+ γk) , (11a)

= log2

1+ pk

∣∣∣(GH
S,k + hH

R,k2GS R

)
wk

∣∣∣2
K∑

j ̸=k
p j

∣∣∣(GH
S, j + hH

R, j 2GS R

)
w j

∣∣∣2 + σ 2
k

 .

(11b)

D. Signal Transmission Model for NOMA Scheme

The other side of the signal transmission shield, the tra-
ditional OMA schemes is difficult to realize the trade-off
between network throughput and user fairness, which will
struggle to meet the exploding demand of large-scale terrestrial
VUs. Therefore, the NOMA technology can distribute the
same time/frequency/code to multiple users, which will be
used in future terrestrial vehicle networks to improve spec-
trum efficiency. The NOMA-downlink decoding criterion is to
preferentially decode the vehicle users with the worst channel
quality. To be specific, the downlink NOMA-based system
will allocate more transmission power to vehicle users with
weaker channel quality, while less transmission power to VUs
with stronger channel quality [51]. To simplify the expression,
we set the synthetic channel coefficients experienced by the
i-th VUs given by hk = GH

S,k+hH
R,k2GS R . Thus, the received

signal at the i-th VUs is given by

yN O M A
i = hi

√
pi wi si+

∑
j ̸=i

h j
√

p j w j s j+ni , ∀ j, ∀i,

(12)

where pi means the downlink power assigned to the i-th
VUs, and ni denotes AWGN at the i-th VUs distributed as
ni ∼ CN

(
0, σ 2

i
)
. To alleviate the interference among multiple

VUs, we adopt the successive interference cancellation (SIC)
technique. At this point without loss of optimality, the channel
coefficients of all ground VUs are calculated as |hK | ≤ . . . ≤

|h2| ≤ |h1| [52]. Then, the transmission power of the satellite
is then limited to the following constraints for a successful
SIC implementation:

1i = pi |hi−1|
2
−

i−1∑
j=1

p j |hi−1|
2
≥ ρmin, ∀i ≥ 2, (13)

where ρmin > 0 is used to differentiate the gaps in the decoded
signals. When the above power and channel coefficients
constraints are satisfied, the instantaneous downlink system
achievable rate at the i-th VUs with the NOMA scheme, which
can be obtained by

Ri = Bi log2

1+
|hi wi |

2 pi∣∣h j w j
∣∣2 j ̸=i∑

j=1
p j + σ 2

i

 , ∀ j ̸= i, i ∈ K ,

(14)

where Bi means the bandwidth allocated by the satellite to the
i-th VUs.

E. Energy Dissipation Model for the UAV

Currently, according to different modes of communica-
tion maintenance, there exist two functional types of UAVs:
rotary-wing UAVs and fixed-wing UAVs. In this paper, only
fixed-wing UAVs are considered, and this type of UAV only
performs communication services at the same altitude, without
considering the vertical movement of the UAV. This is because
the main goal of this paper is to develop a framework for UAV
trajectory design and active-passive beamforming design using
the advanced DRL framework. Once the proposed framework
is adequately trained, it can be easily extended network input
parameters to the three-dimensional trajectories, vehicle user
distribution, UAV distribution, and other influencing factors.
To promote the trajectory design, the total flying time TK
is dispersed into time slots with equal time intervals. Next,
the horizontal position of the n-th UAV at time slot t can
be represented by q t

n ∈ Q, where q ≜ {1, 2, .., Q}, t ∈ Tk =

{1, 2, . . . , TK } and TK means the total number of transmission
time slots. It is noted that qS,n and qD,n are defined as the
centers of the initial and finial locations of the UAV’s deter-
mined beforehand in fixed service area. Then, the horizontal
trajectory without considering the vertical height of the UAV
can be approximated as

{
q t

S,n, q t
2, . . . , q t

n, . . . , q t
N−1, q t

D,n

}
within a given deadline Tmax . For vertical dimension, assume
that UAV drones operate at fixed altitude H0 to provide long-
term stable communication services.

Inspired by the rotary-wing UAV propulsion energy loss
model, we define the blade profile power of the considered
UAV as E1 (t) = δ

8ρa f A�3 R3
+ nE (t) in hovering state, f

indicating airframe drag ratio and rotor firmness, ρa denoting
the air density, δ represents cross section drag coefficient, A
implies the total area of the propeller, while � indicates the
blade angular velocity and R is the radius of the whole rotor
blade. Meanwhile, we also consider the slight difference in
service type between the rotary-wing UAV and the considered
UAV, and we set nE (t) as the error term as a supplement to
this model.

The total consumed energy required by the UAV includes
two major parts, namely the energy consumption associated
with communication and propulsion movements. The first part
is mainly used for receiving signals, signal processing, hard-
ware computing equipment power consumption, etc., while the
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other part is mainly used to support the UAV hovering and
power consumption during movement. It is noteworthy that
the energy consumption associated with propulsion movement
accounts for more than 95% of the total energy consumption.
Since the movement of UAV requires much more energy
consumption than that required for communication, so this
paper mainly studies the energy consumption of UAV in
movement or hovering. As a result, the total energy consumed
by the k-th UAV carrying the RIS for communications services
is as follows

Ek = E1Tkv + E2Tk + ε (t) , ∀k, (15)

where E1 and E2 are two constants associated with the
mechanical motion output power and the signal transmission
loss, respectively. Moreover, the ε (t) is a set of errors gen-
erated over the time whose value depends on the exact UAV
movement pattern. The engine can be turned off when the
UAV is in hover, which means that no energy is dissipated in
this status.

F. Problem Formulation

In the NOMA-based RIS-assisted IS-UAV-TNs communica-
tion system, even if the original channel is not aligned, a single
spatial direction can be used to serve multiple VUs, thus
facilitating the implementation of NOMA. Because NOMA
transmits multiple users’ superimposed signals in the same
time/frequency resource block, as well as the multi-antenna
system itself will have serious inter-user interference, it is
particularly important to introduce beamforming technology
which is widely used in the system to reduce interference.

Thus, the purpose of this paper aims to jointly optimize
the active transmit beamforming of the satellite, the passive
reflection beamforming of RIS and the two-dimensional tra-
jectory of the UAV for maximizing the system sum rate in
the case of the UAV’s minimum energy consumption [53].
Denote the w = [w1, w2, .., wK ] denotes the active transmit
beamforming strategy, Q =

[
q1, q2, . . . , qn

]T represents the
UAV served trajectory design scheme. Considering the influ-
ence of factors such as transmission power, RIS phase shifts
and maneuverability of UAV, this paper gives the expression
about the long-term optimal solution

max
2,w,Q

1
Tk

∑Tk

t=1

∑K

k=1

Rt
k

Ek
(16a)

s.t. q t
S,n = q t

1, qTk
N = q t

D,n, ∀k, (16b)

1t
k ≥ ρmin, pt

k > 0, ∀k,∀t, (16c)∑K

k=1
pt

k < Pmax, ∀k,∀t, (16d)

xmin ≤ x t
k ≤ xmax, (16e)

ymin ≤ yt
k ≤ ymax, (16f)∣∣exp

(
jθm

n
)∣∣ = 1, ∀n, ∀m. (16g)

where Eq. (16a) denotes the optimization objective, the max-
imization of the optimization objective depends on maximiz-
ing the system achievable rate while minimizing the energy
consumed by the UAV. This can be easily concluded that so
as to maximize the system achievable rate, the UAV should

be able to access more ground VUs during the mission time,
increasing the number of channel transmissions to increase the
total data transmission rate. Considering that UAV communi-
cation calculations consume less energy, mainly that generated
by movement, hovering over the need for communication
devices is the best option from this perspective. Eq. (16b) indi-
cates the trajectory design of UAV, and specifies the starting
and ending position to determine maximum service distance.
Eq. (16c) and (16d) is to maintain the transmission power of
the satellite and the power allocation constraint. The range
of mission execution activities supported by the UAV energy
is restricted between (16e) and (16f). In addition, Eq. (16g)
indicates the need to satisfy the modulation constraint of the
RIS.

It can be said that the formulated optimization problem
Eq. (16) proposed in this paper to be optimized is a non-
convex problem, mainly for the following reasons [54]. Firstly,
multiple variables to be optimized, (2, w, Q) are recursively
related and tightly coupled in the objective optimization func-
tion. Secondly, owing to the RIS discrete phase shifts and the
location-dependent channel model vector coefficients associ-
ated with the UAV position, the implementable rate Rt

k of the
system is not a continuous function. Thirdly, the simultaneous
movement of multiple UAVs also results in problem (15)
difficult to address, especially in large-scale networks where
even considering only the sub-problem of trajectory design is
not possible. On the contrary, traditional algorithms are usu-
ally formulated to seek suboptimal solutions, maximizing the
objective functions with alternating optimization techniques.
At each training iteration, the sub-optimal w is solved by first
modifying 2 while sub-optimal parameters 2 is derived by
fixing the p and the UAV trajectory design strategy Q until
the converge of algorithms. In this paper, instead of solving
the challenging optimization problems with a mathematical
method directly, we draw up the optimization problems in
the framework of the advanced multi-objective DDPG (MO-
DDPG) algorithm framework to obtain feasible w and 2 for
improving energy efficiency.

III. MO-DDPG FOR UAV TRAJECTORY DESIGN,
TRANSMIT BEAMFORMING CONTROL,

AND RIS CONFIGURATION

In this section, the joint optimization problem of UAV tra-
jectory design, transmit beamforming, and RIS configuration
to maximize system transmission efficiency can be modeled as
a Markov decision process (MDP), which is a common model
for formulating such environment-interactive systems. Then,
we design a highly sampling efficiency MO-DDPG algorithm
framework to achieve the maximum expected long-term gain
in the envisaged wireless environment.

A. MDP Formulation

The optimization multi-objective problem (16) can be mod-
eled as a continuous decision process in the time horizon,
that is, the next single time step is decided on basis of the
current environmental interaction. In this context, the purpose
of MDP is to find the optimal transmit beamforming strategy.
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In this section, the MDP game can be expressed by a transition
tuple with five elements ⟨S, A, R, T, γ ⟩, standing for the state
space, action space, reward function, transition policies and
the discount factor, respectively.

The goal of learning agent is to find the optimal decision-
making policy π∗ (s, a) by maximizing the state-value func-
tion Qπ (s). Formally, the policy is a mapping from the state
to the probability of choosing each possible action. If the
agent follows the policy at t-th time step, then π(a | s) is
the possibility when current state St = s takes action At = a.

The state-value function Qπ (s) is defined as the expected
cumulative discounted reward, which can be expressed as

Qπ (s) = Eπ [G t | St = s]

= Eπ

[
∞∑

k=0

γ k Rt+k+1 | St = s

]
, ∀s ∈ S, (17)

where, Eπ denotes the expectation of the random variable
when the agent follows the transition policy in the t-th time
step, γ ∈ [0, 1] indicates the discount factor, in which γ → 1
indicates that long-term rewards are weighted more heavily
than short-term rewards, γ → 0 represents the opposite aspect.

And, G t =
∞∑

k=0
γ k Rt+k+1 can be expressed as an action

to maximize the sum of discounted reward obtained in the
process.

Similarly, the value of the state s under the policy of taking
actions a to obtain the expected reward is defined, which
denotes as Q-value function Q(s, a) for policy π (s, a), and
satisfies the Bellman equation. It can be shown as

Qπ (s, a) = Eπ [G t | St = s, At = a]

= Eπ

[
∞∑

k=0

γ k Rt+k+1 | St = s, At = a

]
, ∀a ∈ A.

(18)

Meanwhile, we can further obtain the Bellman expectation
equation, which can be expressed as

Vπ (s) = Eπ [G t | St = s]

= Eπ

[
∞∑

k=0

γ k Rt+k+1 | St = s

]

=

∑
a∈A

π(a | s)

(
Ra

s + γ
∑
s′∈S

Pa
ss′Qπ (s′)

)
, (19)

where Ra
s = E

[
Rt+1|St = s, At = a

]
represents the reward

function, and Pa
ss′ denotes the state transition probability

matrix with Pa
ss′ = P

[
St+1 = s′|St = s, At = a

]
. Note that,

we consider the existence of a central controller in the formu-
lated MDP model who is an agent for exploring the unknown
wireless environment.

The expression and construction MDP in proposed DRL
algorithm are described in detail below.

1) State Space: The state space information of DRL rep-
resents the information about the environment that the agent
perceives and the changes brought about by its own actions.
The state space information is the basis for the agent’s

decision making and assessment of its long-term benefits,
and the design of the state directly determines the conver-
gence, speed of convergence and ultimate performance of the
DRL algorithm, a matter of great importance. Active transmit
beamforming and RIS passive beamforming are designing
depends on rewards during frequent state interactions between
the agent and the wireless environment, which can consume
large radio communication resources, significantly reducing
the efficiency of the efficiency of successful system com-
munications. Thus, in the t-th time step, we define that the
state space s(t) consists of four components: the transmission
power, the UAV’s location q t

n , the action from the last time
step and the channel model matrix hk and the Gr . These state
space elements are used to obtain good overall environmental
information by configuring the RIS and transmit beamforming
strategies and thus adjusting the real-time UAV trajectory.
In addition, by randomly initializing the corresponding CSI,
the missing channel information, which is common in IS-UAV-
TNs, is overcome. The state space can be expressed as

s(t)
= {pk, qn [t] , a [t − 1] , hk [t] , Gr [t]} . (20)

Once the UAV location is determined, the active beam-
forming and passive beamforming are optimized based on the
algorithmic reward as well as the current state, thus further
guiding the adjustment of the UAV position. This alternating
optimization algorithm challenges the available service time
for uneven communication between balloons and satellites to
include more target users in their accessible service areas.
Combine the initial position qS,n and final position qD,n of
UAV, avoid UAV flying out of the designated area, resulting
in unnecessary energy consumption.

2) Action Space: The action space must, firstly, provide
the possibility of achieving the desired goals, avoiding “state
space blindness” in the task solution space that is out of
reach and, in particular, ensuring adequate accessibility to
high performance areas. Secondly, the action space should
be as simple and efficient as possible in order to effec-
tively reduce training difficulties and improve algorithm per-
formance. On the one hand, the continuous action space
can be reduced to zero and transformed into a discrete
action space under the premise of satisfying the basic control
accuracy, which can significantly compress the dimension of
the solution space and improve the exploration efficiency;
on the other hand, according to the actual situation, some
basic actions can be organically combined to form macro
actions. The developed MDP’s action space consists of three
main components, specifically the UAV’s forward movement
direction, the each reflecting element, as well as the satellite
active transmission beam formation. Considering that the RIS
passive reflection component includes both real and imaginary
parts, the proposed framework has a mixture action spaces
including discrete and continuous, making the proposed MDP
problem extraordinary [55]. To meet this above challenge, the
UAV maneuver direction and the satellite transmission power
need to be discreted. Furthermore, the transformed action
space converted only three components: 1) the UAV maneuver
movement direction with leftward, forward, rightward, and
backward, respectively. 2) the m-th element phase shift in
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n-th RIS, i.e. θm
n ∈ {1, 1θ, . . . , (L − 1) 1θ}; and 3) the

transmit beamforming matrix for the satellite, i.e, w [t] =[
wt

1, w
t
2, . . . , w

t
K
]T . Thus, the action space can be shown as

a(t)
=
{
q t

n, θm,t
n , w [t]

}
, ∀t, ∀m, ∀n. (21)

3) Reward: The design of the reward function is an
extremely important aspect of DRL applications. By speci-
fying and numerising the task objective, the reward acts as
a special language for efficient communication between the
optimization objective and the algorithm. As shown in the
optimization problem (15), the goal of the joint optimization
issues about UAV trajectory route design, RIS phase shift
design, and active transmit beamforming problem to maximize
the total system achievable rate under the given constraints.
Thus, the reward for guided learning process should be
consistent with the proposed multiple optimization objective.
To achieve the objective of maximizing the total achievable
rate, for constraints Eq. (16b)-(16e), we set a penalty that
terminates the set of constraints if any of these constraints
is not satisfied. Thus, the reward function is defined as

R(t)
=

{
−W, if Sm = N S
R[t], otherwise,

(22)

where N S denotes the negative state, that is, it does not satisfy
any constraints in (15b)-(15g). W is a sufficiently large set of
normal quantities to avoid not satisfying these constraints.

The agent does not know the state space transition proba-
bility matrix Pa

ss′ due to the uncertainty of UAV location and
RIS phase shift configuration in this proposed MDP model.
However, DRL algorithm is promising because it enables
agents to control their actions without knowledge of the
wireless environment.

B. MO-DDPG Algorithm Description

In this subsection, a multi-objective DDPG (MO-DDPG)-
based optimization framework is investigated to tackle the
jointly optimization of the UAV trajectory, transmission beam-
forming, and RIS phase shift configuration, which guarantee-
ing that all the system achievable rate and energy consumption
are balanced. As seen in Fig. 2, we investigate the multi-
objective DDPG (MO-DDPG) neural network to address this
optimization issue. As we can be observed, the MO-DDPG
neural network consists of two DNNs: the actor network and
the critic network. The actor target network π

(
θ

(target)
a |s(t)

)
and critic target network Q

(
θ

(target)
c |s(t), a(t)

)
are both con-

structed using the dual network structure and the parameter
update approach based on soft-strategy, which are used as
the corresponding target values for the training network’s
parameter update, respectively. The actor network specifies the
main policy for constructing the mapping from state to actions,
and the critic network estimates the action values, where θa
and θc correspond to the weighting and biasing parameters.

These actions are approximated using the actor network,
so that the next non-convex optimization state is not required
to find the maximum Q-value function. The following is an

Fig. 2. Optimization Framework of MO-DDPG algorithm.

update strategy of the training critic network.

θ (t+1)
c = θ (t)

c − µc∇θ
(train )
c

ℓ
(
θ (train )

c

)
, (23)

ℓ
(
θ (train)

c

)
=

(
r (t)
+ γ Q

(
θ

(target)
c | s(t+1), a′

)
− Q

(
θ (train)

c | s(t), a(t)
))2

, (24)

where µc denotes the learning rate, a′ is the action output and
∇

θ
(train)
c

ℓ
(
θ

(train)
c

)
denotes the update gradient in a specific

time period. The weights of both the actor and critic networks
are initialized by a truncated normal distribution centered at
0 with a normative deviation of

√
2/bi , where bi means the

number of input cells in the weight tensor.
The training actor network is updated using the following

policy gradient

θ (t+1)
a = θ (t)

a − µa∇a Q
(
θ

(target )
c | s(t), a′

)
×∇

θ
(train )
a

π
(
θ (train)

a | s(t)
)

, (25)

where µa is the learning rate, ∇a Q
(
θ

(target )
c | s(t), a′

)
and

∇
θ

(train )
a

π
(
θ

(train)
a | s(t)

)
denote the gradient of target or target

critic network with respect to their parameter θ
(target)
c and

θ
(train)
c , respectively. As can be seen from the above equation,

the parameters update strategy is influenced by the gradien
towards the action, thus ensuring that the next action is
chosen in the direction preferred by the best action strategy,
thus optimizing the Q-value function. Specifically, a target
actor network θ

(target)
a and a target critic network θ

(target)
c

are obtained by copying the parameters of these two training
networks in the initialization phase.

For the multi-objective optimization problem, a novel multi-
objective DRL-based framework is proposed, where instead
of using all the information of the system as the input of the
neural network, a small amount of information closely related
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to the decision is extracted to form the state vector. Since the
value of an action relies on the preference between various
optimization targets, a simple linear weighting approach is
adopted to compute a weighted sum of the reward vector
elements for a given weight r = rwT , where w =

[
wRK ,wEk

]
denotes the UAV energy constraint and the total rate opti-
mization weights achievable by the system. The reward vector
is then converted to scalar type to fit the network input
form. With this design, the MO-DDPG algorithm is appli-
cable to multi-objective optimization (MOO) problems with
an arbitrary number of targets. In the considered algorithmic
framework, all the involved weight coefficients in the interval
[0, 1] is determined by the importance priority of the different
optimization objectives.

The target value yt for the target network is calculated as
follows:

yt = rt wT
+ γ max

a′
Q
(
θ

(target)
a |s(t+1), a′

)
. (26)

The difference between the value of the objective function
and the value of the Q-function given by the main critic
network is also calculated during the optimization of the
main critic network parameter setting. Then, gradient descent
approach is adopted to train the main critic network, so as
to minimize the loss function, i.e., the average square error
of the diversity. To ensure space for sustained action is fully
explored during the training process, exploration strategies are
applied in the policy of actor transfer. In each decision step, the
amount of network operations is chosen in a random process
with expectation and variance εiσ

2, where εi is an adjustable
parameter to attenuate the effect of the randomness of the
actions in the training process. The complete pseudocode
algorithm flow of the proposed multi-objective optimized DRL
framework is given in Algorithm 1.

IV. EXPERIMENTAL SETTINGS AND RESULTS

In this section, we provide experimental results under
different performance indexes to quantify the performance
of the proposed MO-DDPG algorithm for UAV trajectory
design, satellite transmit beamforming design, and RIS passive
phase shift design. In the simulation, the channel matri-
ces hk and Gr randomly generated following the above
analytical channel model based on shadowed-Rician fading
distribution [56].

In the initial phase of each algorithm execution, the UAV
starts the communication task with 2D trajectory at random
locations in the specified area. Table I lists the simulation
system settings for the RIS-assisted IS-UAV-TNs. The envis-
aged UAV has a coverage radius of at least 10 km to serve
the specific area.

In the MO-DDPG, both the proposed actor network and the
critic network adopt the same fully connected neural network
structure, which consists of an input layer for status informa-
tion, an output layer to output the optimal action, two hidden
layers and modular normalization components, like Fig. 3.
We also train the policy network and the Q-network with
AdamOptimizers, and randomly initializing the parameters of
each DNNs according to the zero mean normal distribution.

Algorithm 1: MO-DDPG Algorithm
1: Initialize experience memory D, time slot count T ,

ε = 0.99, σ 2
= 1.0;

2: Initialize the train network and the target network,
separately;

3: Input: p, 8, hk , Gr , qS,n and qD,n ;
4: Output: Optimal action a(t)

opt , Q-value function;
5: for each episode do:
6: Initialize state space as s(0) ∈ S, S← s(0);
7: for t = 0, 1, 2, . . . T do:
8: The central controller choose action a(t)

= π
(

s(t)|θ
(train)
a

)
+ R, where R is the random

function for efficient exploration
of the optimal action;

9: Execute action at and limit UAV in designated area,
observe reward R(t), and s(t) evolves into
next state s(t+1);

10: Save (s(t), a(t), R(t), s(t+1)) into D;
11: Randomly sample ξ transitions form D;
12: Process via DNN;
13: Compute target value for the critic evaluation

network by equation. (19);
14: Update the parameters of the critic network by

minimizing the critic loss
Loss

(
θ

(target)
c

)
=

E
[(

y (t)− Q
(
θ

(train)
c |s(t), a(t)

))2
]

;

15: Update the parameters of actor network with
sampled policy gradients by
∇

θ
(train)
a

J =

1
ζ

ζ∑
i=1
∇a Qπ

(
θ

(train)
c |

(
s(t), a(t)))∣∣∣∣∣

a=π
(

s(t)|θ
(train)
a

)
∇

θ
(train)
a π

(
θ

(train)
a |s(t)

)
;

16: Soft-update the parameters of DDPG target
networks by the following formula
θ

(target)
c ← τcθ

(train)
c + (1− τc) θ

(target)
c

θ
(target)
a ← τaθ

(train)
a + (1− τa) θ

(target)
a

17: Update the state s(t+1);
16: end for;
17: end for

Fig. 3. UAV trajectories design for different optimization purposes.

In addition, to demonstrate the effectiveness of the proposed
framework, we examined whether to use the NOMA protocol
and whether to deploy the performance of the system obtained
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Fig. 4. Proposed DNN structure of the actor network and the critic network.

TABLE II
SIMULATION PARAMETERS SETTING

under the RIS scenario. Specifically, the following three bench-
marks are considered:
• Random phase shift: At each time slot, the RIS phase

shift values are randomly generated for each RIS sub-surface,
which is called the UAV/R scheme.
• Without RIS: RIS is not deployed in the communication

system, which is called UAV/NR scheme.
In our considered system model, we only assume UAV

flying at a fixed altitude, so the Fig. 4 shows the 2D tra-
jectory design for different optimization purposes. Compared
to systems with RIS random phase shift and the UAV/NR
scheme, RIS-assisted methods with optimized phase shift can
usually cover a larger communication area within a limited
energy constraint. Meanwhile, propulsion energy can be saved
at the shortest distance. In the absence of RIS case, the UAV
requires to seek suitable location to establish communication
links to VUs, which obviously leads to low energy-efficient
performance.

Fig. 5. The performance on data rate led by different solutions.

Fig. 6. The performance on energy-efficiency led by different solutions.

Fig. 7. The performance on throughput led by different solutions.

Fig. 8. The performance on propulsion energy led by different solutions.

In Fig. 5 - Fig. 8, the cumulative distribution func-
tions (CDF) of data rate, energy efficiency, throughput, and
propulsion efficiency is further depicted for three different
communication systems. It can be seen that the RIS-assisted
communication with optimized phase shift has a high perfor-
mance in each test wireless scenario due to the random nature
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Fig. 9. Performance impact schematic for NOMA protocol and RIS
deployment.

of the phase shift and the UAV location increases the difficulty
of signal alignment, which increases the performance loss and
reduces communication energy efficiency.

In addition, we examined the performance implemented
under different scenarios using the NOMA protocol and
deploying RIS. Specifically, the following three benchmarks
below are taken into account.
•Without RIS-NOMA: In this scenario, RIS is not carried

on the UAV. Only the direct link from satellite to VUs
maintains communication and is not reflected by the RIS.
Meanwhile, the user access scheme is through the NOMA
protocol.
• Without RIS-OMA: Similar to the preceding communi-

cation scenario, except that the user access scheme is through
the OMA protocol.
• Optimal phase shift-OMA: Optimized design of active

and passive beamforming with MO-DDPG framework, but
user access is OMA protocol.

It is worth our attention that the novel MO-DDPG algorithm
framework proposed in this paper can also perform param-
eter optimization with the other three proposed benchmark
schemes. Specifically, in the without RIS in NOMA-based
scheme, adopting MO-DDPG algorithm to solve the sum-rate
maximization problem by excluding the discrete phase shift of
RIS into continuous action problems. For the random phase
shift-OMA case, the optimization improvement issue can be
settled by speculating that the satellite transmits with full
power scheme or zero force transmitting scheme. With regard
to the without RIS in OMA-based case, the problem can be
settled by simply optimizing designing the UAV trajectory.
According to Fig. 9, the sum rate grows with the number
of RIS reflective elements, which is due to the higher beam-
forming gain caused by a larger meta-surface, the increased
additional reflection links and the growth of spectral efficiency
caused by the NOMA protocol applications.

V. CONCLUSION

In this paper, we proposed a novel RIS-assisted NOMA
downlink IS-UAV-TNs system model to meet the sub-sequent
practical applications requirements of the next generation wire-
less network construction. To maximize the system achievable
data rate while minimizing the UAV energy consumption,
a multi-objective DDPG-based optimization algorithm was
developed to achieve online control of the UAV trajectory.

By designing the reward function of the algorithm frame-
work as a multi-dimensional vector corresponding to the
multi-objective optimization, the powerful fitting capability
of the neural network was exploited for the RIS phase shift
and active transmit beamforming problems in the NOMA-
based downlink system, while the UAV learned to find the
joint optimization solution based on the weight parameters
associated with the objective. It was worth noting that the
multi-optimization objective framework could be extended
to optimize problems with arbitrary number of objectives.
The proposed MO-DDPG algorithm has achieved a balance
between the speed of the training network and convergence to
the local optimal solution. Simulation results show that in the
added signal reflection mode through RIS, the system sum rate
can be significantly improved. Moreover, it was shown that
combining multiple UAVs through co-optimization trajectories
has great advantages in improving the performance of complex
communication tasks in IS-UAV-TNs.
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