
SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

The Surface Accelerations Reference — A
Large-scale, Interactive Catalog of Passenger

Vehicle Accelerations
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Abstract—There is a need for a large-scale, real world,
diverse, and context rich vehicle acceleration catalog that can
be used to design, analyze, and compare various intelligent
transportation systems. This paper fulfills three primary
objectives. First, it provides such a catalog through the Sur-
face Accelerations Reference, which is openly available as an
interactive analytics tool as well as an open and downloadable
dataset. The Surface Accelerations Reference statistically
describes the driving profiles of about 3,500 individuals
contributing 34 million miles of continuous driving data
collected in the Second Strategic Highway Research Program
Naturalistic Driving Study (SHRP 2 NDS). These profiles
were created by summarizing billions of longitudinal and
lateral acceleration epochs experienced by the participants.
Second, this paper introduces a standardized methodology for
creating such a catalog so that similar acceleration profiles
can be produced for other human cohorts or automated
driving systems. Finally, the data are used to analyze the
effect of roadway speed category on the rates of lateral and
longitudinal acceleration epochs at various thresholds. It is
observed that, for the median driver, the rates of epochs are
upto 3 orders of magnitude higher on low-speed roads as
compared to high-speed roads. This catalog will facilitate
intelligent vehicle system designers to compare and tune
their systems for safer driving experiences. It will also allow
agencies with similar data to create comparable catalogs
facilitating safety and behavioral comparisons between pop-
ulations.

Index Terms—vehicle accelerations, driving style, driving
comfort, big data analytics, autonomous vehicle driving style

Nomenclature

λz The rate of epochs corresponding to the Zth

percentile value

DT Total distance traveled by a participant

NT Total number of epochs experienced by a driver

NX Number of epochs stronger than X(g) experi-
enced by a driver

RX Rate of epochs stronger than X(g) per mile
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I. Introduction
The purpose of this project was to catalog longitudinal
and lateral accelerations experienced in passenger ve-
hicles and create an easily accessible dataset for users
from a variety of fields. The Second Strategic Highway
Research Program Naturalistic Driving Study (SHRP
2 NDS), the largest collection of naturalistic driving
data to date, is an ideal data set to create such a
catalog, with more than 34 million miles of data collected
from a diverse set of participants [1]. The SHRP 2
NDS dataset was analyzed to create the Surface Ac-
celerations Reference, which describes the acceleration
norms and distributions of the 3,500 participants in the
study.

This catalog of accelerations experienced in passenger
vehicles will be valuable for users in a number of fields
[2]–[4]. For example, considerable work has been done
to model behavior, determine driving style and detect
anomalous driving events using vehicle accelerations
and other driving parameters [martinez_driving_2018,
5]–[17]. However, such research has mostly relied on
small studies, nonrepresentative experiments, or test
track data. The surface accelerations reference provides
a dataset that is sufficient to describe thousands of
individuals, support exploration of numerous groupings
of individual styles, and quantify the effect of a broad
range of roadway environments, traffic conditions, and
vehicle classes.

Advanced driver assistance systems and automated
driving systems will need to operate within the ex-
pectations of passengers as well as surrounding road
users. Automated systems that assist drivers or fully
autonomous vehicles will likely benefit from control that
feels comfortable and natural [18]. These systems also
rely on predicting the behavior of other road users
to keep occupants safe. Both developers and policy
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makers will benefit from objective understanding of the
probability of acceleration behavior in a given context
and the driving behavior of different road users.

In addition, roadway engineers consider vehicle kine-
matic parameters, such as longitudinal and lateral ac-
celerations, speed, etc. to design roadways [19]. Often,
such parameters come from models that were developed
decades ago, in constrained experimental conditions, and
which do not reflect current vehicle specifications [20].
Sometimes, such models are purely based on vehicle
characteristics and do not reflect driver preferences or
usage patterns [21]. The Surface Acceleration Reference,
which represents the driving patterns of a diverse driver
demographics and vehicle classes in a broad range of
conditions, will therefore also be beneficial to roadway
planners and departments of transportation.

Driver behavior research, which has traditionally relied
on using adverse driving events to identify and evaluate
risky driving behavior [22]–[24], can also benefit from
establishing kinematics-based surrogate measures to
classify risky driving[17], [25], [26]. Doing so would allow
the prevention of safety critical events by identifying
at-risk drivers and providing adequate driver training
[27], [28]. Driver behavior researchers are also interested
in categorizing various driving styles, such as sporty,
aggressive, conservative, etc., and determining their
relationship with risky driving. The Surface Acceleration
Reference, based on SHRP 2 data, which also includes
driver crash involvement, would greatly benefit such
researchers, as a driver’s kinematic profile could be easily
linked to their crash rates.

Many insurance companies have started pay-as-you-
drive programs that incentivize good driving through
better insurance rates [29]–[32]. The Surface Accelera-
tion Reference will also be useful to companies behind
such programs, as it would let them compare the
kinematic profiles of their customers with a dataset that
includes data from a broader sensor suite as well as a
range of demographic measures and risk analyses. This
catalog also has the potential to serve as a standard
within the industry, making the process transparent and
comprehensible for customers. Practitioners from other
fields, such as traffic modeling, crash reconstruction, ISO
standard development, etc., can also greatly benefit from
this comprehensive acceleration catalog [33]–[35].

A number of studies have been conducted on under-
standing the acceleration preferences of drivers and pas-
sengers [36]–[41]. These studies provide valuable insights
but have not been adopted as a cross-discipline reference
on accelerations for various reasons, such as subjec-
tive interpretation of surveys; datasets being small,
non-representative, or outdated; or lack of standard
methods. These shortcomings had to be taken into
consideration when developing the Surface Acceleration

Reference.

To create a comprehensive acceleration catalog that
can serve as an industry standard across various re-
search fields, five major challenges need to be over-
come. These challenges can be characterized into data
scale, algorithm standardization, data correction, result
interpretability, and output accessibility. The Surface
Accelerations Reference addresses all these challenges
and therefore is an ideal candidate to be used as a
standard of comparison across various fields.

First, the underlying dataset needed to generate such a
catalog must be diverse, large, and contain high quality
data. The SHRP 2 dataset was designed to be such
a dataset. More than 3,500 participants were chosen
from six locations across the country and were repre-
sentative of all ages, genders, ethnicities, races, levels of
education, and socioeconomic statuses [1]. Though there
are differences between the SHRP 2 sample population
and U.S. national statistics, SHRP 2 data are fairly
representative of the nation’s population [42]. The SHRP
2 dataset is also the largest collection of naturalistic
driving data, with more than 34 million miles of recorded
data, including recordings from four video feeds (front,
rear, and two in cabin views); various vehicle network
variables such as speed, gas pedal input, brake state,
etc.; location data in the form of GPS coordinates; and
kinematic measures from an inertial measurement unit
(IMU). A major advantage of such a dataset is that
video feeds often provide additional context that helps
validate outliers and detect malfunctioning sensors. The
SHRP 2 dataset also has the advantage of containing
recordings of more natural behaviors than datasets from
studies where participants self-reported, drove with a
researcher, or were enrolled for a shorter period of time.
The lack of a standard acceleration catalog to date was
in part due to the lack of a dataset that fulfilled all the
requirements.

Second, for an acceleration catalog to be used across
disciplines, there is a need for standardization of event
definitions as well as the definition of rates. As various
fields use different measures to compare event rarity, it
is important to develop standard measures that can be
used against other existing measures. For this purpose,
an epoch definition, explained in the methodology sec-
tion, was created and documented for a standardized
acceleration epoch.

Third, collection over a long period of time is necessary
to answer questions of interest related to accelerations,
but IMU data are prone to noise and sources of error
such as bias and drift. The process used to generate
an acceleration catalog should recognize such errors and
incorporate processes to isolate problematic data. On
a related note, the scale of data processing requires
considerable computing resources as well as efficient
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algorithms.

Fourth, the output of such a catalog should be usable
by practitioners from various fields. This poses multiple
challenges as various disciplines are inclined to using dif-
ferent tools and rating scales in their analyses. To further
ensure the Surface Acceleration Reference’s broad util-
ity, the acceleration epoch identification, summarization
algorithms, and methods for aggregating accelerations
and generating participant driving profiles are well doc-
umented in this paper to ensure reproducibility. Finally,
a consolidated acceleration profile table is available to
practitioners from various fields through a download-
able CSV file as well as an interactive visualization.
The interactive visualization can be accessed through
any web browser and allows users to compare various
participant groups based on age, location, gender, and
vehicle class.

II. Methodology
The Surface Accelerations Reference consists of an accel-
eration profile for each driver (or driver-vehicle combina-
tion if a participant drove more than one vehicle) created
by analyzing their entire driving history in the SHRP
2 dataset. Figure 1 shows the data flow for creation of
the Surface Accelerations Reference.

The acceleration data was collected from the partic-
ipants’ vehicles from 2010 to 2013, using a triaxial
accelerometer (LIS3LV02DQ1) and in-house data acqui-
sition system (DAS)[43]. The data is sampled at 500
Hz but decimated down to 10 Hz in post-processing
on the DAS itself. The decimated data, which is used
for the analysis presented in this study, consists of the
average of consecutive 50-point windows. Each average
represents one data point for the decimated data. The
averaging process behaves much like a low-pass filter, in
which the high-frequency dynamics are de-emphasized
in favor of the low-frequency or general trends in the
data.

The original sensor-based time series data was read
from the db2 database and analyzed by an algorithm
that identified acceleration epochs. Each acceleration
epoch was summarized as a multi feature data point
and written to a database table. After the acceleration
analysis algorithm was run on the entire SHRP 2
dataset, a profile generation algorithm aggregated all
summarized accelerations in a participant’s history and
created an acceleration profile. The acceleration profile
contains about 400 data points for each of the 3,670
driver-vehicle combinations and can be stored in either a
database or a downloadable CSV file. These acceleration
profiles are made available as a downloadable CSV file
as well as an interactive visualization through a web
interface that lets users from a wide variety of fields
parse data to answer questions relevant to their area of
interest.
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Figure 1: Data flow for creation of the Surface Acceler-
ations Reference.

The creation of the Surface Acceleration Reference
consisted of different processes that can be categorized
into three stages: (1) identifying and summarizing ac-
celeration epochs from time series data, (2) creating
acceleration profiles from summarized epochs, and (3)
generating an interactive visualization comparing these
acceleration profiles.

A. Identifying and Summarizing Acceleration
Epochs
An algorithm was developed to read time series data
from the database, identify epochs of longitudinal and
lateral acceleration, summarize them, and write the sum-
mary to a table. The algorithm analyzed 10 variables,
described in Table I, for every trip in the SHRP 2
dataset. The summarized epochs were linked to the
original file and its associated metadata using a unique
identifier and timestamps. Metadata associated with
each trip included in the Surface Accelerations Reference
is listed in Table II.

To efficiently process the vast amount of data, a Db2
database cluster and a computing cluster were used
to run 384 instances of the algorithm in parallel. The
algorithm first ingested all the variables from the Db2
database cluster. The signals were then cleaned and pre-
processed by removing invalid values, deleting repeating
timestamps, and clearing artifacts. As Table I shows,
the original variables had different sampling rates. To
make the algorithm more efficient, all variables were
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Figure 2: Identifying acceleration and deceleration
epochs in longitudinal acceleration and speed time series
data.

interpolated to align on a common timestamp series.
After the variables were standardized as described above,
longitudinal acceleration, lateral acceleration, and yaw
rate were analyzed to find epochs. Having a standardized
method to identify epochs that could be replicated on
other studies was vital to the success of this project. An
acceleration event or epoch is the duration for which
the absolute value of a signal is continuously greater
than a threshold value. For longitudinal and lateral
accelerations, this value is ± 0.01(g) and for yaw rate the
threshold value is ± 1 deg/sec. The threshold values were
chosen to ensure that fluctuations around the noise floor
were not considered events, while still including cases
that were quite low in amplitude [44]. Figure 2 shows the
longitudinal acceleration and speed signals and illustrate
the selection of acceleration and deceleration epochs and
their peaks.

One of the challenges of analyzing acceleration signals
is that when a vehicle is stopped on a slope, the
accelerometer output shows a constant non zero value.
According to the epoch defintion, this would constitute
an acceleration or decelration epoch. To avoid these false
positives, a method was developed where the accelera-
tion signal was made equal to zero if the speed of the
vehicle was zero and if the moving standard deviation of
the acceleration signal was below 0.01. This ensured that
these potential false positives would not be identified as
epochs and at the same time that the start and end of
the acceleration epochs would be set appropriately given
the speed signal lag relative to the acceleration signal.
A comparison between the orignal and the modified
acceleration signals is shown in Figure 4. The effect of
road grade on the absolute value of acceleration was not
taken into account as it was assumed the the vehicle
would be going up and down grades an equal number of

times, causing the change in absolute acceleration values
to cancel each other out.

155 160 165 170
Time (sec)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

L
on

gi
tu

di
na

l a
cc

el
er

at
io

n 
(g

)

0

5

10

15

20

25

30

Sp
ee

d 
(m

ph
)

Acceleration signal 
original
Acceleration signal 
corrected with speed
Acceleration signal 
corrected with speed and movstd
Speed

Figure 3: Comparing acceleration signal correction using
speed and moving standard deviation.

A similar approach was used to identify epochs of lateral
acceleration and yaw rate. Once the epochs were identi-
fied, the algorithm summarized each acceleration epoch
and generated statistical measures described in Table
III. These measures fall into three categories,

1) Trip properties, such as unique trip ID and times-
tamp within trip. These variables are useful to
link each epoch to other metadata, such as driver,
vehicle, road type on which the epoch happened,
etc., associated with the trip.

2) Epoch properties, such as maximum value of signal
in epoch, average value, distance traveled, etc.
These summary variables provide addition details
about the data as well as a means of qualifying
epochs.

3) Variables describing driver inputs, such as the
duration of brake pedal being pressed. These are
useful for filtering and qualifying epochs based on
driver inputs.

4) Variables describing roadway characteristics, such
as road functional class and speed category [45]–
[47]. These are valuable for contextualizing each
event based on the road type.

Similar tables were created for lateral acceleration and
yaw rates. A total of 1.7 billion summarized points were
created and stored in a relational database. The table
structure not only facilitates the creation of driver accel-
eration profiles but can also be used for contextualizing
driving data in the SHRP 2 database using machine
learning algorithms.
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Table I: A description of the variables used to create the Surface Accelerations Reference.
Variable Variable description Source Frequency
accel_x Longitudinal

acceleration
DAS IMU 10 Hz

accel_y Lateral acceleration DAS IMU 10 Hz
accel_z Vertical acceleration DAS IMU 10 Hz
gyro_x Roll rate DAS IMU 10 Hz
gyro_y Pitch rate DAS IMU 10 Hz
gyro_z Yaw rate DAS IMU 10 Hz

speed_network Vehicle speed Vehicle CAN Variable (1-100 Hz)
speed_gps Vehicle speed DAS GPS 1 Hz

pedal_brake_state Brake pedal state Vehicle CAN State change
timestamps

pedal_gas_position Gas pedal position Vehicle CAN Variable (1-100 Hz)

Table II: Metadata associated with each trip in the SHRP 2 dataset used in Surface Accelerations Reference.
Metadata type Metadata description Categories

Location The state in which the vehicle
was instrumented

New York
Florida

Washington
North Carolina
Pennsylvania

Indiana

Age group The age group of the
participant

16-19
20-24
25-29

...
95-99

Gender The gender of the participant
Male

Female
Did not specify

Vehicle class The type of the vehicle used
by the participant

Car
Pickup

SUV/Crossover
Minivan

Table III: List of summary variables calculated for each acceleration epoch identified within a trip.
Summary Variable Description

FILE_ID Trip ID that uniquely identifies each trip in SHRP 2 dataset
TIME_START Within trip start time of acceleration epoch

TIME_END Within trip end time of acceleration epoch
ACCELERATION_X_MAX Maximum acceleration value in epoch

ACCELERATION_X_MEAN Mean acceleration value in epoch
ACCELERATION_X_MEDIAN Median acceleration value in epoch

SPEED_START Speed at start of epoch
SPEED_END Speed at end of epoch

DISTANCE Distance travelled in epoch
DURATION Duration of epoch

SPEED_CHANGE Difference in speed between end and start of epoch
ACCELERATION_SPEED_MEAN Mean acceleration calculated from change in speed and duration
TIME_PEAK_ACCELERATION Timestamp of peak acceleration during epoch

ACCELERATION_TO_PEAK_MEAN Mean acceleration from start to peak of epoch
ACCELERATION_FROM_PEAK_MEAN Mean acceleration from peak to end of epoch

SPEED_AT_PEAK_ACCEL Speed at peak acceleration
SPEED_MAX Maximum speed during the epoch

GAS_PEDAL_MEAN Mean of gas pedal signal during the epoch
GAS_PEDAL_MEDIAN Median of gas pedal signal during the epoch

GAS_PEDAL_MAX Maximum of gas pedal signal during the epoch
GAS_PEDAL_MIN Minimum of gas pedal signal during the epoch

GAS_PEDAL_STDEV Standard deviation of gas pedal signal during the epoch
BRAKE Whether brake was used during epoch

BRAKE_DURATION Duration for which brake was used in epoch
FUNCTIONAL_CLASS Functional class of the roadway at the time of peak acceleration

SPEED_CAT Speed category of the roadway at the time of peak acceleration
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B. Creating Driver Acceleration Profiles from Summa-
rized Epochs
Once all the acceleration epochs were identified, summa-
rized, and recorded in the acceleration summary tables,
a profile generation algorithm aggregated all epochs
belonging to a driver-vehicle combination, creating a
statistical profile. Such a profile was created for each
of the following categories:

• Acceleration epochs
• Deceleration epochs
• Positive lateral acceleration epochs (vehicle moving

towards right)
• Negative lateral acceleration epochs (vehicle moving

towards left)

Three methods were used to compute statistical mea-
sures for each category to allow comparisons of various
participants. Even though all three methods used the
ACCELERATION_X_MAX (or equivalent measures
for lateral acceleration), other measures mentioned in
Table III, such as ACCELERATION_X_MEAN, could
also be used. These methods are described in further
detail in the following sections.
1) Comparing Percentiles: Using the percentile method,
measures were computed at the 50th, 60th, 70th, 75th,
80th, 90th, 95th, 99th, and the 99.9th percentile. All
epochs linked to a driver-vehicle combination were
queried and the percentile values listed above were cal-
culated for the maximum acceleration within the epoch.
The percentiles allow users to compare frequent as well
as rare epochs. For example, frequent epochs, such as
50th percentile (the stronger of two random epochs) to
90th percentile (the strongest of 10 random epochs), may
indicate driving style, whereas rare epochs, such as 99th
or 99.9th percentile, would indicate an atypical situation,
either for the involved driver or nearby roadway users.
This latter category may be indicative of potential safety
critical events. In other words, the percentile measure
relates the magnitude of the epoch and its rarity for
each participant. Therefore, comparing drivers on the
same percentile shows the difference in magnitude for
equally rare epochs. An example finding would be that
for one driver or group of drivers, an 80th percentile
epoch would be 0.2 g deceleration whereas for another
driver or group of drivers, the 80th percentile epoch
would be 0.3 g deceleration. The latter driver/group
of drivers would execute hard decelerations much more
often, though this metric cannot reveal how often per
mile the behavior occurred.
2) Comparing Rate of Epochs Stronger Than a Thresh-
old Magnitude: This method measured the rate of
epochs stronger than a certain threshold per mile. The
following rates were calculated:

• Number of epochs stronger than 0.1g per
mile/kilometer

• Number of epochs stronger than 0.2g per
mile/kilometer

• Number of epochs stronger than 0.3g per
mile/kilometer

• Number of epochs stronger than 0.4g per
mile/kilometer

• Number of epochs stronger than 0.5g per
mile/kilometer

• Number of epochs stronger than 0.6g per
mile/kilometer

• Number of epochs stronger than 0.7g per
mile/kilometer

• Number of epochs stronger than 0.8g per
mile/kilometer

• Number of epochs stronger than 0.9g per
mile/kilometer

These metrics were calculated using Equation 1

RX =
NX

DT
(1)

where Rx is the rate of epochs stronger than X(g) per
mile, NX is the number of epochs stronger than X(g),
and DT is the total distance traveled by the participant.
The different thresholds used to calculate these metrics
differentiate epochs based on their severity. This mea-
sure compares the frequency of epochs stronger than a
particular threshold among various drivers. The rates
for different thresholds can have different implications.
For example, for lower thresholds, the rates would imply
a higher number of epochs per mile that can be caused
by numerous factors, such as traffic, road type, and
driving style. Higher thresholds could imply a stronger
correlation to safety critical events. Through this metric
it is possible to understand the range of amplitudes
and frequency of acceleration epochs per unit distance
traveled.
3) Comparing the Strongest Epoch in a Threshold
Distance: This method compared participants based on
the strongest epoch they experienced within a certain
driving distance. The following measures were calculated
using this method:

• Strongest epoch experienced in 1 mile/kilometer
• Strongest epoch experienced in 5 miles/kilometers
• Strongest epoch experienced in 10 miles/kilometers
• Strongest epoch experienced in 50 miles/kilometers
• Strongest epoch experienced in 100

miles/kilometers
• Strongest epoch experienced in 1000

miles/kilometers.

To calculate the strongest epoch experienced in a certain
distance, the percentile equivalent of that distance was
first calculated. Equation 2,

λz =

(
1− z

100

)
×NT

DT
(2)
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shows the rate of epochs, λZ , above the Zth percentile,
with NT being the total number of epochs experienced
and DT being the total distance travelled. The distance
travelled per Zth percentile epoch is therefore given by
inverting the equation as follows in Equation 3:

ζ =
1

λZ
=

DT(
1− Z

100

)
×N

(3)

Therefore, on average, the Zth percentile epoch is the
strongest epoch in ζ miles. To calculate the strongest
epoch in a certain distance, say ζ = Y miles, the
corresponding percentile can be found using Equation
4:

Z = 100×
(
1− DT

Y ×NT

)
(4)

Since the epoch rate, NT /DT , is different for different
drivers, equation 4 allows a comparison of drivers based
on unequal percentiles that correspond to an equal
amount of driving.

Like the other statistical measures used to create the
profile, these measures also allow driver comparison
for frequent (strongest epoch experienced in 1 mile)
as well as rare epochs (strongest epoch in 100 miles).
This approach enables users of the Surface Acceleration
Reference to identify what extreme epoch might be
expected within a certain distance of travel, and is
important for understanding the differences in epochs
that are due to driving style versus those that are due
to adverse events. The three categories of measures
together provide a comprehensive driving profile for
each participant in the SHRP 2 dataset and return
units of analysis that are useful for users from multiple
domains. All three types of measures were contextualized
by roadway functional class and speed category on which
they occurred. These measures have been made available
for download in the form of a CSV file here.

C. Creating Interactive Visualization from Driver Ac-
celeration Profiles
To achieve the project’s purpose of creating an easily
accessible dataset for a wide variety of users from
various fields and backgrounds, it was important to
have a low-effort threshold for data analysis. Even
though the statistical driving profile for each participant
is available via a downloadable CSV file, considerable
effort is still required to ingest the data, understand
its structure, and make meaningful inferences. To lower
this threshold, a web app based on the same dataset was
developed using R, ggplot2, and Shiny [48]–[50]. This
web app can be accessed through any web browser at
dataviz.vtti.vt.edu/Surface_Accelerations_Reference/.
This interface allows researchers to compare SHRP
2 participants on any and all of the aforementioned
measures with the ability to interrogate data by age,

gender, location, and vehicle type. Figure 4 shows an
example comparison for rate of epochs greater than 0.3
g where the data has been parsed by gender (category
shown on right side of charts) along the vertical axis
and age along the horizontal axis (category shown on
top of charts).

Figure 4 provides an example of one combination of
conditions that can be created using the visualization
tool. Across all plots that might be created using the
visualization tool, each mark in a plot represents one
participant. The mark’s position along the y-axis repre-
sents the measures described previously (i.e., percentile
value, epoch rate, etc.) for a specific driver. The position
of a point along the x-axis is randomly generated noise
that aids visualization by reducing overlapping points.
As illustrated in the legend in Figure 5, across plots, the
size of a mark represents the amount of driving in the
study and the shape and color represent the vehicle class.
The various plot tiles or cells represent the categories to
which each driver belongs making it easy to compare
different classes. A box plot is overlaid on the scatter
plot to show the median, quantiles and the outliers
of the distribution. Hovering over a data point reveals
additional information about the driver, including the
exact value of the measure, gender, age, vehicle class,
and total distance in the study. In addition, users are
provided the ability to choose the units of distance, clip
outliers for better resolution, display summary statistics,
and plot the kernel distribution of the group in the form
of a violin plot.

III. Findings

The main purpose of this project was to create an acces-
sible catalog of accelerations experienced by road users
in passenger vehicles that would enable users to answer
questions pertinent to their fields. Therefore, most of the
findings will come from the exploration of the Surface
Accelerations Reference dataset and visualization tool.
As an example of its application, differences in rates of
accelerations on roads of various road speed categories
are explored below.

Figure 5 shows the variation of epoch rates at the various
maximum deceleration thresholds for all participants in
SHRP 2 NDS grouped by the road speed category. The
box plots show the distribution of rates at key thresholds
and the dashed line represents the median calculated at
a finer resolution. The threshold magnitudes are scaled
linearly and the epoch rates are scaled logarithmically.
A zero value for the median or the 25th percentile
lies at −∞ on a log scale and therefore, is shown by
keeping the box plot open. Figures 6, 7, and 8 describe
similar information for longitudinal accelerations, lateral
neagtive accelerations (left leaning), and lateral positive
accelerations (right leaning) respectively.

https://github.com/gibran-ali/surface-accelerations-reference
https://dataviz.vtti.vt.edu/Surface_Accelerations_Reference/
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Figure 4: Interactive visualization available via the Surface Acceleration Reference web app comparing data based
on age range and gender.

The relationship between the epoch rates and the
deceleration thresholds is log piecewise linear, i.e., the
rate decreases exponentially as the threshold is increased
linearly. Within the epoch rate distribution at each
threshold, the rates for individual road speed categories
differ by 1 to 2 orders of magnitude. For example, the
deceleration epoch rate for the maximum deceleration
threshold of 0.2 g is 2.8 epochs per mile for < 31 mph
roads and 2.8 epoch per 100 miles for 65-80 mph roads.
Tables IV, V, VII, and VI in the Appendix list the values
of the 25th, 50th, and 75th percentile epoch rates at key
maximum acceleration thresholds.

Within each distribution shown in Figures 5, 6, 7, and 8
the interquartile range is significant and increases with
road speed as well as g-force magnitude. This implies
that kinematic behaviour of the various participants has
a higher variance for stronger thresholds. In other words,
the proportional difference in rate between participants
increases for stronger threshold epoch as well as on
higher speed roads. These differences between various
drivers can be explored using the accelerations reference
and valuable insights can be drawn about driver kine-
matic behaviour.

These inferences will be useful across a number of fields.
For example, designers of advanced driver assistance and
automated driving systems can use Figures 5 to 8 and
Tables IV to VII to compare the accelerations produced
by their systems to a diverse driving population while
controlling for roadway speed. This will enable system
tuning to match certain driving populations such as
the median driver or a driver in the interquartile
range.

Organizations analyzing cohort data such as ride share
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Figure 5: Comparison of driver epoch rates at various
maximum deceleration thresholds.

service providers and taxi companies will be able to
use the Surface Accelerations Reference for comparisons
of their drivers with a national driving population.
Similarly, “pay as you drive” and “pay how you drive”
insurance programs will be able to utilize this data to
compare their customers with a standardized national
distribution allowing more transparency and, therefore,
better adoption.

IV. Conclusions
This study fulfills three major unmet needs in the
study of accelerations based driving characteristics.
First, the Surface Acceleration Reference provides a
representative catalog of lateral and longitudinal
accelerations in the form of a downloadable
dataset and interactive analytics tool available at
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Figure 6: Comparison of driver epoch rates at various
maximum acceleration thresholds.
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Figure 7: Comparison of driver epoch rates at various
maximum negative lateral acceleration (left leaning)
thresholds.
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Figure 8: Comparison of driver epoch rates at various
maximum positive lateral acceleration (right leaning)
thresholds.

dataviz.vtti.vt.edu/Surface_Accelerations_Reference/.
This catalog summarizes the acceleration behavior
of over 3,500 participants in the SHRP2 NDS and
is the largest openly available dataset of its kind. It
can benefit a number of fields. For example, it will
facilitate intelligent vehicle system engineers to design
systems that safer and better representative of driver
preferences. It will also enable behavioral researchers to
understand the effect of various roadway, driver, and
vehicle characteristics on the frequency and magnitude
of accelerations.

Second, this paper introduces a methodology to create
a standardized catalog of accelerations that can be
replicated on similar datasets. A standardized approach
has been missing in the field of acceleration behav-
ior as different studies have used varying methods of
comparing accelerations across populations. An algo-
rithm was developed to summarize all the acceleration
epochs in a driver’s history to create profiles describing
each participants acceleration norms and frequencies
at different levels. This methodology includes signal
processing, epoch definitions, summary extraction and
standardization techniques. The statistical profiles cre-
ated for every driver had three types of measures based
on percentiles, rates, and distance thresholds, which
makes this methodology applicable for a wide array of
fields. This methodology can be used by agencies having
similar datasets such as vehicle fleet operators, ride share
services, government departments of transportation, and
research institutes around the world to compare driving
populations.

Finally, an analysis was conducted to measure the effect
of road speed category on the distribution of longitudinal
and lateral acceleration rates. It was observed that
lower speed roads (< 31 mph) have 2 to 3 orders
of magnitude higher rates of strong g-force events as
compared to high speed roads (65-80 mph). It was also
observed that the relationship between the rate of epochs
(i.e., accelerations) and the g-force magnitude was log-
piecewise linear. I.e., for a linear increase in g-force mag-
nitude, the rate of occurrence decreases exponentially.
Even when controlling for the road speed category, the
variance for high g-force events was significant and could
indicate differences in driving style and effects of traffic
conditions, driver demographics, etc.

Intelligent driving systems such as ADAS and automated
vehicles interact with drivers, passengers, and other road
users in safety critical ways with very little margin for
error. Therefore, it is essential that such systems are
developed based on data accurately representing the
breadth of human behaviors and driving environments.
The Surface Accelerations Reference provides a large-
scale, real-world, diverse, and context rich catalog of
accelerations. In addition to vehicle system development,
these data will also provide value to many transportation

https://dataviz.vtti.vt.edu/Surface_Accelerations_Reference/
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related fields such as roadway, vehicle and safety systems
design.
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Table IV: The 25th, 50th, and 75th percentile deceleration epoch rates for all drivers at various thresholds grouped
by road speed category.

Road speed
category (mph)

Measure
(%tiles)

Rate of epochs per mile greater than threshold
0.1 (g) 0.2 (g) 0.3 (g) 0.4 (g) 0.5 (g) 0.6 (g)

All 25 2.2E+00 9.3E-01 1.7E-01 1.9E-02 2.7E-03 4.7E-04
All 50 2.9E+00 1.3E+00 2.8E-01 3.4E-02 5.3E-03 1.1E-03
All 75 3.7E+00 1.8E+00 4.6E-01 6.5E-02 1.0E-02 2.4E-03
<31 25 4.6E+00 2.2E+00 3.8E-01 3.3E-02 3.8E-03 0
<31 50 5.5E+00 2.8E+00 6.3E-01 6.7E-02 8.8E-03 1.7E-03
<31 75 6.6E+00 3.5E+00 9.7E-01 1.3E-01 1.8E-02 4.1E-03

31 - 40 25 2.5E+00 1.1E+00 2.1E-01 2.4E-02 3.3E-03 0
31 - 40 50 3.0E+00 1.4E+00 3.2E-01 4.2E-02 6.8E-03 1.3E-03
31 - 40 75 3.5E+00 1.7E+00 4.7E-01 7.3E-02 1.3E-02 3.2E-03
41 - 54 25 1.5E+00 6.3E-01 1.2E-01 1.6E-02 2.3E-03 0
41 - 54 50 1.9E+00 8.8E-01 2.0E-01 2.9E-02 5.3E-03 9.7E-04
41 - 54 75 2.4E+00 1.1E+00 3.1E-01 5.1E-02 1.0E-02 2.6E-03
55 - 64 25 5.2E-01 1.2E-01 2.5E-02 4.2E-03 5.2E-04 0
55 - 64 50 7.3E-01 1.9E-01 4.5E-02 8.3E-03 1.7E-03 2.1E-04
55 - 64 75 1.0E+00 2.9E-01 7.4E-02 1.5E-02 3.8E-03 1.1E-03
65 - 80 25 1.5E-01 1.5E-02 2.3E-03 0 0 0
65 - 80 50 2.5E-01 2.8E-02 5.2E-03 1.0E-03 0 0
65 - 80 75 4.1E-01 4.9E-02 1.1E-02 2.6E-03 6.8E-04 0

Table V: The 25th, 50th, and 75th percentile acceleration epoch rates for all drivers at various thresholds grouped
by road speed category.

Road speed
category (mph)

Measure
(%tiles)

Rate of epochs per mile greater than threshold
0.1 (g) 0.2 (g) 0.3 (g) 0.4 (g) 0.5 (g) 0.6 (g)

All 25 1.9E+00 6.0E-01 6.7E-02 2.0E-03 0 0
All 50 2.6E+00 8.8E-01 1.4E-01 6.8E-03 1.0E-04 0
All 75 3.5E+00 1.3E+00 2.7E-01 2.1E-02 5.6E-04 0

<30 mph 25 4.4E+00 1.4E+00 1.4E-01 4.0E-03 0 0
<30 mph 50 5.5E+00 2.0E+00 3.1E-01 1.4E-02 0 0
<30 mph 75 6.8E+00 2.7E+00 5.9E-01 4.3E-02 1.2E-03 0
31 - 40 25 2.3E+00 7.9E-01 8.5E-02 1.6E-03 0 0
31 - 40 50 2.9E+00 1.1E+00 1.8E-01 7.3E-03 0 0
31 - 40 75 3.6E+00 1.4E+00 3.3E-01 2.4E-02 0 0
41 - 54 25 1.3E+00 4.1E-01 4.1E-02 4.3E-04 0 0
41 - 54 50 1.7E+00 6.3E-01 1.0E-01 3.7E-03 0 0
41 - 54 75 2.2E+00 8.7E-01 2.0E-01 1.4E-02 0 0
55- 64 25 3.8E-01 4.7E-02 3.9E-03 0 0 0
55- 64 50 5.7E-01 9.0E-02 1.2E-02 1.6E-04 0 0
55- 64 75 8.6E-01 1.6E-01 2.9E-02 1.9E-03 0 0
65 - 80 25 8.7E-02 2.6E-03 0 0 0 0
65 - 80 50 1.6E-01 6.6E-03 1.2E-04 0 0 0
65 - 80 75 2.8E-01 1.5E-02 1.6E-03 0 0 0
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Table VI: The 25th, 50th, and 75th percentile lateral positive acceleration epoch rates for all drivers at various
thresholds grouped by road speed category.

Road speed
category (mph)

Measure
(%tiles)

Rate of epochs per mile greater than threshold
0.1 (g) 0.2 (g) 0.3 (g) 0.4 (g) 0.5 (g) 0.6 (g)

All 25 1.4E+00 5.7E-01 2.5E-01 5.8E-02 6.4E-03 4.7E-04
All 50 1.8E+00 7.7E-01 3.7E-01 1.2E-01 1.8E-02 2.0E-03
All 75 2.3E+00 1.0E+00 5.2E-01 2.0E-01 4.2E-02 6.2E-03

<30 mph 25 2.7E+00 1.3E+00 6.2E-01 1.4E-01 1.2E-02 4.0E-04
<30 mph 50 3.5E+00 1.7E+00 8.9E-01 2.9E-01 4.0E-02 3.5E-03
<30 mph 75 4.3E+00 2.2E+00 1.2E+00 4.9E-01 1.0E-01 1.2E-02
31 - 40 25 1.3E+00 5.5E-01 2.5E-01 5.8E-02 4.9E-03 0
31 - 40 50 1.7E+00 7.1E-01 3.6E-01 1.1E-01 1.5E-02 1.1E-03
31 - 40 75 2.1E+00 9.1E-01 4.8E-01 1.9E-01 3.9E-02 4.7E-03
41 - 54 25 6.9E-01 2.3E-01 9.7E-02 2.1E-02 1.5E-03 0
41 - 54 50 9.4E-01 3.2E-01 1.5E-01 4.6E-02 6.2E-03 1.9E-04
41 - 54 75 1.3E+00 4.3E-01 2.2E-01 8.4E-02 1.7E-02 2.2E-03
55- 64 25 4.5E-01 4.8E-02 1.1E-02 1.7E-03 0 0
55- 64 50 6.7E-01 7.9E-02 2.1E-02 5.3E-03 4.0E-04 0
55- 64 75 9.2E-01 1.3E-01 4.2E-02 1.3E-02 2.2E-03 0
65 - 80 25 2.4E-01 6.7E-03 0 0 0 0
65 - 80 50 3.8E-01 1.5E-02 1.3E-03 0 0 0
65 - 80 75 5.8E-01 3.2E-02 4.4E-03 7.6E-04 0 0

Table VII: The 25th, 50th, and 75th percentile lateral negative acceleration epoch rates for all drivers at various
thresholds grouped by road speed category.

Road speed
category (mph)

Measure
(%tiles)

Rate of epochs per mile greater than threshold
0.1 (g) 0.2 (g) 0.3 (g) 0.4 (g) 0.5 (g) 0.6 (g)

All 25 1.8E+00 5.8E-01 2.6E-01 6.1E-02 6.0E-03 4.3E-04
All 50 2.4E+00 7.9E-01 3.8E-01 1.2E-01 1.8E-02 1.7E-03
All 75 3.2E+00 1.1E+00 5.5E-01 2.0E-01 4.2E-02 5.9E-03

<30 mph 25 3.9E+00 1.4E+00 6.8E-01 1.5E-01 1.4E-02 4.5E-04
<30 mph 50 5.0E+00 1.9E+00 9.6E-01 3.0E-01 4.4E-02 3.8E-03
<30 mph 75 6.1E+00 2.4E+00 1.3E+00 5.1E-01 1.1E-01 1.4E-02
31 - 40 25 1.9E+00 5.3E-01 2.5E-01 5.9E-02 4.6E-03 0
31 - 40 50 2.5E+00 6.9E-01 3.6E-01 1.2E-01 1.5E-02 1.0E-03
31 - 40 75 3.3E+00 8.9E-01 4.8E-01 2.0E-01 3.9E-02 4.6E-03
41 - 54 25 9.4E-01 2.3E-01 1.1E-01 2.3E-02 1.4E-03 0
41 - 54 50 1.3E+00 3.2E-01 1.6E-01 5.1E-02 6.1E-03 0
41 - 54 75 1.9E+00 4.4E-01 2.4E-01 9.7E-02 1.8E-02 2.1E-03
55- 64 25 4.2E-01 3.4E-02 7.4E-03 1.4E-03 0 0
55- 64 50 6.4E-01 6.2E-02 1.8E-02 4.7E-03 4.1E-04 0
55- 64 75 9.2E-01 1.1E-01 4.1E-02 1.3E-02 2.5E-03 0
65 - 80 25 2.3E-01 5.1E-03 0 0 0 0
65 - 80 50 3.9E-01 1.1E-02 9.9E-04 0 0 0
65 - 80 75 6.2E-01 2.5E-02 3.1E-03 6.0E-04 0 0
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