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Antenna Combiner for Periodic Broadcast V2V
Communication Under Relaxed Worst-Case

Propagation
Chouaib Bencheikh Lehocine, Erik G. Ström, Fellow, IEEE, and Fredrik Brännström

Abstract—The performance of a previously developed ana-
log combining network (ACN) of phase shifters for periodic
broadcast vehicle-to-vehicle (V2V) communication is investi-
gated. The original ACN was designed to maximize the sum
of signal-to-noise ratios (SNRs) for K consecutive cooperative
awareness messages (CAMs). The design was based on the
assumption of a dominant propagation path with an angle of
arrival (AOA) that is constant for K messages. In this work,
we relax this assumption by allowing the AOA and path-
loss (PL) of the dominant path to be time-variant. Assuming
a highway scenario with a line of sight (LOS) propagation
between vehicles, we use affine approximations to model the
time variation of different path quantities, including the PL,
the relative distance-dependent phase shift between antennas,
and the AOA-dependent far-field function of the antennas.
By leveraging these approximations, we analytically derive
the ACN sum-SNR as each one of these quantities varies over
K CAMs. Moreover, we suggest a design rule for a phase
slope that is robust against time variation of the dominant
path and optimal under time-invariant conditions. Finally, we
validate this design rule using numerical computations and
an example of vehicular communication antenna elements.

I. INTRODUCTION

COOPERATIVE intelligent transportation systems (C-
ITS) rely on the exchange of cooperative awareness

messages (CAMs) to increase traffic safety and traffic ef-
ficiency on roads. CAMs are all-to-all broadcast, periodic
packets carrying status information about the dynamics of
the disseminating vehicles. Due to the broadcast nature of
these messages, vehicles need to have an antenna system
with good gain in all directions. This is challenged by the
fact that antenna patterns are distorted by factors such as
the shape of vehicles, mounting positions, and housing
of antennas. These factors cause antennas to have low
gains or even blind spots in certain directions [1]–[3].
To alleviate this issue, multiple antennas with contrast-
ing patterns can be processed to enable omnidirectional
coverage [1], [3]. The use of multiple antennas in the
context of vehicular communication has been investigated
in several works in the literature. In particular, the classical
digital combining schemes, selection combining (SC) and
maximal ratio combining (MRC), have been used in [4]
to combine antennas mounted on different positions on a
vehicle. The schemes were shown to improve the coverage
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and diversity gain of the antenna system compared to using
a single antenna. Similarly, field tests in [5] have shown
that MRC and an ideal beam selection receive beamform-
ing yield improved received signal strength compared to
a single antenna system.

Besides the aforementioned digital techniques, low-cost
analog multiple antenna systems have also been considered
for vehicle-to-vehicle (V2V) communication in works,
such as [6] and [7]. In [6], a reconfigurable electronically
switched parasitic array radiator (ESPAR) antenna system
has been proposed. This system can be configured to
have an omnidirectional, backward, or forward-directional
pattern using a single radio frequency (RF) chain and a
control signal. The analog ESPAR system combined with
digital MRC was shown in [6] to yield an improved signal-
to-noise ratio (SNR) with respect to using MRC alone.
In [7], on the other hand, an analog combining network
(ACN) of phase shifters has been proposed to mitigate
the vehicle-body distortions and enable omnidirectional
coverage at the receive side. ACN is a low-cost, low-
complexity solution that does not rely on channel state
information (CSI) or any control signal from the receiver.
In [8], the fully analog ACN combining was enhanced
using an MRC-based digital stage to form a hybrid com-
biner. Then, two transmit-side schemes that are compatible
with ACN have been proposed in [9]. The two schemes
are an analog beamforming network (ABN) of phase
shifters and an antenna switching network (ASN), which
periodically alternates between the transmit antennas. Just
as for ACN, ABN and ASN do not require CSI and
are fully analog. Hence, they have lower complexity than
digital schemes, such as cyclic delay diversity (CDD) [10]
and Alamouti [11].

To assess the performance of the multiple antenna
schemes in [7]–[9], burst error probability (BrEP) was
used. BrEP reflects the reliability at the level of C-ITS
applications, where an outage occurs if the information
about a certain vehicle at a receiving end becomes outdated
after the loss of K consecutive CAMs. Using certain
assumptions, minimizing BrEP is found in [7]–[9] to be
equivalent to maximizing the sum-SNR of K consecutive
packets. While ASN does not have any tunable design
parameters, to ensure robust V2V communication, phase
slopes for ACN and ABN were derived assuming a worst-
case propagation environment. This corresponds to a sin-
gle dominant path with an angle of arrival (AOA) and an
angle of departure (AOD) that are assumed to be negligibly
varying over K consecutive packets. Additionally, the
distance-dependent relative phase shifts between antennas



and the path-loss (PL) were also assumed to be negligibly
varying over the same duration. A set of optimal phase
slopes that maximize the sum-SNR of K consecutive
CAMs when the dominant path direction coincides with
the worst-case AOA and AOD of the antenna systems were
derived in [7], [9].

The negligibly varying single dominant path assumption
holds under certain positions and speeds of the transmitter
(Tx) and the receiver (Rx), as well as potential reflecting
objects. Therefore, we aim to investigate the performance
of the optimal phase slopes when the geometries between
the Tx and the Rx and their mobility result in a time-
varying single dominant path instead of a constant one.
Our objective is to assess the sum-SNR of the designed
multiple antenna systems when the AOA, AOD, relative
phase shifts between the antennas, and PL are time-
varying over K packets. This allows us to understand
the performance of the derived phase slopes when the
worst-case propagation assumption does not fully hold.
Furthermore, it guides us to derive design rules to pick
phase slopes that are performing well under dynamic
scenarios.

The optimal phase slopes under worst-case propagation
assumption [7], [9] are available for a generic Ls × Lr

where an ABN or an ASN is used at the Tx with Ls

transmit antennas, and an ACN is used at the Rx with
Lr receive antennas. However, for such a system, it is
difficult to model, analytically study, and understand the
effects of time variation of the AOA, AOD, relative phase
shift between antennas, and PL. Therefore, we study the
effects of these quantities for a 1× 2 ACN system, which
is equivalent to studying a 2 × 1 ABN system. Since an
ASN does not rely on phase shifters, it is not affected
by the time variation of the dominant path when used in
combination with a single receive antenna. Therefore, we
do not include ASN in the analysis below.

To study the 1 × 2 ACN, we first use affine functions
to approximate the time variation of the dominant path
quantities at medium and large distances between the Tx
and the Rx. We base this approximation on a reference
highway scenario with a line of sight (LOS) propagation,
taking into account antenna separation, speeds, as well as
distances. Note that a dominant path is not necessarily
a LOS, it can be a reflected path too. However, for
simplicity, we assume a LOS propagation. Second, we
derive an analytical expression for the loss in sum-SNR
incurred on the ACN system when the dominant path
quantities are time-varying. Third, we derive a design
rule to choose a robust phase slope that sustains good
performance when the AOA, phase shifts, and PL vary
over K CAMs. Finally, using numerical computation, we
visualize the performance of the ACN and validate the
design rule.

A summary of the contributions of this paper follows.
• Based on a reference highway scenario, where dis-

tance, speed, and antenna separation are taken into
account, we model the time variation of phase shifts
between antennas, PL, and AOA-dependent antenna
responses using affine functions.

• We analytically derive the loss function in ACN sum-
SNR when the three quantities vary separately.

• We establish a design rule to choose a robust phase
slope against the effects of the time variation of the
single dominant component quantities.

• Using numerical computation, we validate the design
rule and illustrate the performance of ACN under
time-varying AOA, phase shifts, and PL.

The investigation of the 1 × 2 ACN system is crucial
for understanding the effect of time variations. It can be
applied to an Ls×2 system where an ASN is used at the Tx
and ACN at the Rx. By viewing this system as Ls parallel
1 × 2 subsystems, we can use the 1 × 2 ACN analysis
(with slight modifications) to gain insights about robust
phase slopes for this setup. Moreover, the study performed
in this work serves as a guideline for investigating the
performance of general Ls×Lr systems. For these systems,
the loss functions in sum-SNR, which seem analytically
intractable, can be numerically evaluated and a design rule
for robust phase slopes can be devised.

The rest of the paper is organized as follows. In
Section II, we give a brief overview of the ACN and
ABN, present the system model, and review the main
analytical results in [7], [9] needed for the analysis in this
paper. In Section III, we present the reference highway
scenario along with the different parameters used when
modeling the time-varying dominant path. The analysis is
then conducted in three successive sections. We investigate
the time variation effects of the phase shift between
antennas, PL, and AOA on the ACN/ABN1 in Section IV,
Section V, and Section VI, respectively. Numerical results
are subsequently presented in Section VII. Finally, we
conclude the paper in Section VIII.

II. PRELIMINARIES

In this section, we briefly reintroduce the ACN and
ABN and restate the worst-case propagation assumptions
used to design them alongside the obtained optimal phase
slopes in [7], [9].

A. Multiple Antenna Scheme

Consider the multiple antenna scheme shown in Fig. 1
with analog time-varying phase shifters that are modeled
following

eȷ(αlt+βl), 0 ≤ l ≤ L− 1, (1)

where αl ∈ R, and βl ∈ [0, 2π) denote the phase slope
and the initial unknown phase offset, respectively, and L
is the number of antennas. The scheme is referred to as
ACN when used at the Rx and ABN when used at the
Tx. A multiplier of 1/

√
L is introduced in (1) to ensure

equal transmitted power with respect to a single transmit
antenna case when the scheme is used at the transmitter.

B. Data Traffic Model and Performance Metric

Consider a periodic traffic of CAMs broadcasted by ve-
hicular users (VUs) every T s, where 0.1 ≤ T ≤ 1 s [12].

1ACN/ABN is used throughout the paper to denote the interchange-
ability and equivalence between studying ACN at the Rx and ABN at the
Tx, when used in combination with a single antenna at the other side.
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Fig. 1. ACN with L receive antennas.

CAMs carry status information like position, speed, head-
ing, etc. Their repetition interval, T , depends on how
fast the dynamics of a vehicle are changing, the channel
load, and the requirements of C-ITS applications [12].
CAMs are short packets with sizes ranging from 100
to 500 bytes [13]. Assuming IEEE802.11p as an access
technology and 6 Mbit/s data rate, their duration satisfies
Tm < 0.7 ms. (For LTE-V2X technology, the CAM dura-
tion corresponds to a subframe duration Tm = 1 ms [14].)
Observe that the CAM duration is much smaller than the
repetition interval T , Tm ≪ T , and this will be used to
assert certain assumptions in the sections to come.

Consider that age-of-information (AoI) [15] is used to
assess the reliability of a C-ITS application that relies on
the information carried by CAMs. At a receiving VU,
if the available information about a certain neighboring
vehicle has not been updated within a maximum tolerable
AoI, Amax, then the C-ITS application running at the
receiving VU experiences an outage. If latency between
the transmission and reception of packets is neglected, an
outage occurs if a burst of K consecutive CAMs is lost,
implying that Amax = KT . The loss of K consecutive
packets was defined as the BrEP in [7], and used in [7],
[9] as a design metric for ACN and ABN. In particular, the
multiple antenna schemes were designed to minimize the
BrEP. Under the assumption2 that packet error probability
follows an exponential function of SNR and that packet
errors are statistically independent, minimizing the BrEP
is found to be equivalent to maximizing the sum of
SNR of the K consecutive packets [7, Section III], [8,
Section III.B]. Therefore, the sum-SNR is the metric used
in assessing the ACN/ABN performance in this paper.

C. Channel Model and Worst-Case Propagation Scenario

To ensure robust communication, ACN and ABN were
designed assuming an environment with scarce multipath
propagation. This environment is characterized by a dom-
inant path and a few diffuse components with a small
angular spread. A scenario that is typical on highways
and roads that are not surrounded by buildings [16]. Such a
scenario poses challenges for antenna systems, particularly
when the AOD and AOA of the dominant path coincide
with directions where the antenna systems have low gain.
In these cases, packets can be lost. Additionally, in the
cases when the AOD and the AOA are approximately non-
varying over K consecutive packets, there is a risk of an
outage, i.e., the loss of K consecutive packets. Following

2Motivation and justification can be found in [9, Section III].

this, the baseband channel between the Tx and the Rx was
modeled in [7], [9] based on a single dominant physical
path. Assuming a 1×L ACN system (this is equivalent to
an L× 1 ABN), the channel gain is given by [17, Ch. 6]

hl(t) = a(t)gl(ϕ)e
−ȷΩl(t), l = 0, . . . , L− 1, (2)

where a(t) is the (complex) path amplitude, ϕ is the AOA,
gl is the far-field function of the receive antenna l in the
azimuth plane, and Ωl is the relative phase shift at antenna
l with respect to the reference antenna with index l = 0.
It is given by

Ωl(t) = 2π/λ(dl(t)− d0(t)), (3)

where dl(t) is the propagation distance between the re-
ceive antenna with index l and the transmit antenna, and
λ is the carrier wavelength. Note that Ω0(t) = 0. The
far-field function of the transmit antenna, which can be
accounted for by a(t), is assumed for simplicity to be
isotropic throughout the paper, and thus a(t) models solely
the amplitude of the dominant path.

Since a dominant path with a negligibly varying ϕ
results in a higher risk of an outage, it is assumed in [7],
[9] that the speed and position of the Tx and the Rx,
along with potential interacting objects, are such that ϕ is
approximately constant over the duration of KT s. Conse-
quently, Ωl and PL are also assumed to be approximately
constant over KT s. These are referred to as the worst-
case propagation assumptions, and they were used when
designing ACN/ABN.

D. Sum-SNR Under Worst-Case Propagation

Given the transmission of a CAM, using (1) and (2), the
received signal by a VU after ACN combining (as shown
in Fig. 1) is expressed as

r(t) = a(t)x(t)

L−1∑
l=0

gl(ϕ)e
−ȷ(Ωl−αlt−βl) +

L−1∑
l=0

nl(t),

(4)

where x(t) = x̃(t−τ(t)), x̃(t) is the transmitted baseband
signal, τ(t) = 2πd0(t)/λ is the propagation delay, and
nl(t) is an independent zero-mean additive white Gaussian
noise over the signal bandwidth with variance σ2

n . To
express the SNR, we let Pr = E{|a(t)x(t)|2} denotes
the average received power, which is the same for the K
packets since the PL is assumed to be constant over KT s.
Moreover, we let

ψl(t) ≜ Ωl(t)− gl(ϕ)− βl, (5)

which is non-varying over KT s since Ωl(t) is assumed
to be non-varying over the same duration. Note that the
time variable is dropped for ψl(t) and Ωl(t), as done, for
instance, in (4), whenever Ωl(t) is assumed constant. Then,
using (4) and (5), we express the SNR of the kth packet
as

γk =
Pr

Lσ2
n

∣∣∣∣ L−1∑
l=0

|gl(ϕ)|e−ȷ(ψl−αlkT )

∣∣∣∣2, (6)

where the phase variation is assumed negligible over a
packet duration since Tm ≪ T , and thus the approximation
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Fig. 2. Two-lane highway scenario with two reference vehicles.

e−ȷ(ψl−αlt) ≈ e−ȷ(ψl−αlkT ) when kT ≤ t ≤ kT + Tm,
is employed when deriving γk. Then, we can readily
express the normalized sum-SNR with respect to Pr/σ

2
n

using the column vectors α = [α0, α1, . . . , αL−1]
T and

ψ = [ψ0, ψ1, . . . , ψL−1]
T, as

S(ϕ,α,ψ) = σ2
n/Pr

K−1∑
k=0

γk

= K

L−1∑
l=0

|gl(ϕ)|2

L
+ J(ϕ,α,ψ), (7)

where

J(ϕ,α,ψ) =
2

L

L−2∑
l=0

L−1∑
m=l+1

|gl(ϕ)||gm(ϕ)|

×
K−1∑
k=0

cos
(
ψm − ψl − (αm − αl)kT

)
. (8)

To design ACN/ABN, an optimization problem is de-
fined in [7], [9] to find the phase slopes that maximize
the sum-SNR for the worst-case AOA/AOD, and for the
worst-case ψ since it depends on the initial unknown
and uncontrollable phase offsets {βl}. The solution to the
optimization problem is found in [7], [9] to be the same
for any AOA/AOD, and it is given by

S⋆(ϕ) = sup
α∈RL

inf
ψ∈[0,2π]L

S(ϕ,α,ψ) = K

L−1∑
l=0

|gl(ϕ)|2

L
.

(9)

The optimal phase slopes are independent of the far-field
functions of antennas and exist when L ≤ K [7], [9]. They
satisfy

(αm − αl)T/2 ∈ X ∗, 0 ≤ l < m ≤ L− 1, (10)

where

X ∗ ≜ {qπ/K : q ∈ Z} \ X , X ≜ {qπ : q ∈ Z}. (11)

The condition in (10) can be satisfied when L = 2
using a single phase shifter, where α0 = β0 = 0, and
α1T/2 ∈ X ∗, β1 ∈ [0, 2π).

III. TIME-VARYING SINGLE DOMINANT PATH
PROPAGATION

The optimal phase slopes for ACN/ABN were designed
under the worst-case assumption of a negligibly varying
single dominant path over KT s. In the following, we
aim to investigate the effects of time variation of the
dominant path on ACN/ABN performance. That is done
following an investigation of the impact of variation of
ϕ, Ωl, and PL separately. Moreover, we aim to define a
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Fig. 3. Time variation of ϕ for different initial distances between the
Tx and the Rx, ∆v = −60 km/h, dy = −4 m.
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Fig. 4. Time variation of Ω1 for different initial distances between the
Tx and the Rx, ∆v = −60 km/h, dy = −4 m.

design rule to pick a robust phase slope to the variation
of these quantities. To be able to perform an analytical
investigation of the variation of ϕ, Ωl, and PL, we resort
to the simple scheme of a 1 × 2 system. It allows us to
accurately understand the effects of the quantities and to
draw design methodology. These can be used as guidelines
when investigating the time variation effects of these
quantities on Ls×Lr, where an ABN is used at the Tx in
combination with an ACN at the Rx.

To model the variation of ϕ, Ωl, and PL and to evaluate
the sum-SNR of the multiple-antenna scheme, we consider
two reference VUs on a highway as shown in Fig. 2, one
employing two antennas L = 2 and it is referred to as
the receiving VU, and the other is employing a single
antenna, and it is referred to as the transmitting VU. We
assume a LOS propagation between the two VUs, which
corresponds to the dominant component. If the two VU are
moving at the same speed, then the worst-case propagation
assumptions in Section II-C (non-variation of the channel)
are fully satisfied. In addition, if the two vehicles are
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∆v = −60 km/h, dy = −4 m.

moving at different speeds but in the same lane, then the
AOA and Ωl are fixed, while the PL varies. However, if
the vehicles are moving at different speeds and located on
different lanes, then the geometries between the Tx and
the Rx change over time and result in variations of all
three quantities of interest. In other words, the accuracy
of the aforementioned worst-case scenario assumptions
depends on the speed and lane position of vehicles (for this
particular scenario). The use of such a scenario allows us
to model the variations of the three quantities of interest.

To define certain parameters for the scenario in Fig. 2,
we take the initial position of the transmitting VU as the
origin (0, 0) of a Cartesian coordinates system. Then, we
define the following parameters.

• dx, the initial longitudinal position of the receiving
VU with respect to the transmitting VU (measured
from the center of vehicles).

• dy, the lateral position of the receiving VU with
respect to the transmitting VU.

• ∆v = (vr − vt), the speed difference between the
receiving and the transmitting VUs.

• δa, the receive antennas separation.
For simplicity, we assume that the antennas of the Rx are
mounted along the lateral axis of the vehicle.

The defined parameters dx, dy, ∆v, and δa can span
a wide range of values. However, we limit the range
of these parameters to intervals that are large enough to
allow us to observe the different effects resulting from
changing geometries between the Tx and the Rx. In
particular, we set dx ∈ [−100, 100] m since for larger
distances than 100 m, ϕ, Ωl, and PL are approximately
non-varying over KT s. From another aspect, taking
into account typical cruising speeds on highways and
assuming a maximum regulatory speed of 100 km/h, we
can restrict ∆v = (vt − vr) ∈ [−60, 60] km/h, which
corresponds to absolute speeds in the range [70, 130] km/h.
Furthermore, to cover different lane positions, we use
dy ∈ [−4, 0, 4] corresponding to a lane width of 4 m.
Lastly, we consider two cases for δa, δa = λ/2 ≈ 0.025 m

and δa = 10λ ≈ 0.5 m at carrier frequency fc = 5.9 GHz,
corresponding to a small and large antenna separation,
respectively.

In Figs. 3–5, we show examples of the time variation of
the three quantities for different dx when dy = −4 m, and
∆v = −60 km/h, which is the speed within [−60, 60] km/h
that results in the maximum change of the quantities. From
the figures, we observe that at dx = 100 m, the AOA
exhibits negligible change, and so does Ω1 (Ω0 = 0)
and the PL, implying that the worst-case assumptions in
Section II-C hold. At a short distance dx = 10 m, ϕ is very
rapidly changing. Thus, even if the AOA for a received
packet coincides with a low gain of the antenna system,
the AOA for the successive packets (e.g., when T = 0.1 s)
can be coinciding with a high gain of the antenna system,
which lowers the risk of consecutive packet losses. More
importantly, the PL is very low at such short distances, as
seen in Fig. 5, which results in a high SNR and a high
probability of decoding packets. Thus, this region is not
critical for the communication system.

At the medium distance dx = 30 m, the AOA is slowly
changing, with an approximate rate of 9 deg /1 s. In this
case, if the AOA for a received packet coincides with a
low gain of the antenna system, there is a risk that several
successive packets (e.g., when T = 0.1 s, ϕ changes by
0.9 deg/T ) experience comparably low gain as well. The
PL, which is also slowly changing, is neither too high
nor too low in this region. Therefore, there is a risk of
losing a burst of consecutive packets due to the alignment
of the dominant path with a direction of low gain of the
antenna system. From another aspect, the change in Ω1

is fast (greater than 2π rad/1 s for δa = 10λ), which
impacts the ACN/ABN system by introducing a time-
varying phase offset to the preset phase shifters. Proper
antenna processing is of paramount importance in this
region of medium to large distances, and it will, therefore,
be the focus of the coming analytical investigations.

In the coming three sections, we investigate the ef-
fects of time variation of ϕ, Ωl, and PL on ACN/ABN
performance. When ϕ changes, there is a change in the
channel phase shift which is captured by Ωl, and a change
in antenna far-field functions gl(ϕ), in both phase and
amplitude. When we refer to the time variation effects
of ϕ, we mean the far-field functions variation effects. To
simplify the analysis, we study the effects of time variation
of each quantity separately. We start with Ωl, followed
by PL, and finally ϕ. As mentioned earlier, the focus of
the analysis is on medium to large distances. This will
be backed up by a numerical assessment of the system
performance at short distances in the numerical results
section.

IV. CHANNEL PHASE (Ω) VARIATION EFFECTS

In this section, we first model Ωl based on the reference
scenario shown in Fig. 2 when the distance between the
two VUs is medium to large. We then derive the sum-SNR
of 1 × 2 ACN system under the effects of time variation
of Ωl. Last, we derive a design rule to pick a robust phase
slope under these conditions.
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A. Channel Phase Shift (Ω) Model

Given that L = 2, and Ω0(t) = 0, under LOS
propagation between the reference VUs shown in Fig. 2,
the relative phase shift at receive antenna l = 1 with
respect to the reference antenna (l = 0), Ω1(t) ≜ Ω(t)
is modeled by

Ω(t) = 2π/λ(d1(t)− d0(t))

= 2π/λ

(√
(dx +∆vt)2 + (dy − δa/2)2−√

(dx +∆vt)2 + (dy + δa/2)2
)
. (12)

Observe that as dx becomes large ∆v/dx → 0, and
Ω becomes approximately constant as seen in Fig. 4.
Moreover, the smaller the antenna separation δa, the slower
the time variation of Ω. To investigate the effect of this
time variation, we resort to the approximation

Ω(t) ≈ bΩ + aΩ t, (13)

where aΩ and bΩ can be obtained using first-order Taylor
series, or the least squares (LS) method. When first-order
Taylor expansion around t = t0 is used, aΩ is given by

aΩ =
2π

λ
∆v

(
(dx +∆vt0)√

(dx +∆vt0)2 + (dy − δa/2)2

− (dx +∆vt0)√
(dx +∆vt0)2 + (dy + δa/2)2

)
, (14)

and bΩ = Ω(t0) − aΩt0. Based on Fig. 4, we expect the
affine approximation to have good accuracy at medium
to large distances with ∆v ∈ [−60, 60] km/h. At short
distances, the approximation is not expected to be very
accurate, especially when the antenna separation is large
(e.g., δa = 10λ), and the speed difference is high.

B. Sum-SNR

To evaluate the sum-SNR of ACN/ABN taking into
account the effects of time variation of Ω only, we assume
the use of isotropic antennas at the Rx, i.e., g0(ϕ) =
g1(ϕ) = 1, ∀ϕ. Thus, despite that ϕ varies, the gain of
the antenna system does not vary. Moreover, we assume
that PL is approximately non-varying over KT s. This
allows us to disentangle the effects of variation of the
channel phase Ω from the effects of variation of AOA
and PL. Now, assume that the ACN is implemented using
a single phase shifter, implying that α0 = β0 = 0, and
α1 ≜ α ∈ R, β1 ≜ β ∈ [0, 2π). Then, from (5) and (13),
we have

ψ1(t)− ψ0(t) = (Ω(t)− g1(ϕ)− β) + g0(ϕ)

≈ (bΩ + aΩ t− g1(ϕ)− β) + g0(ϕ)

= y + aΩ t (15)

where

y = bΩ − g1(ϕ)− β + g0(ϕ). (16)

Assuming that the time variation due to aΩ is negligible
over a packet duration Tm ≪ T , we approximate for kT ≤
t ≤ kT + Tm, k = 0, 1, . . . ,K − 1,

ψ1(t)− ψ0(t) ≈ ψ1(kT )− ψ0(kT ). (17)

Following this, the sum-SNR (7) can be expressed tak-
ing into account (15), the isotropic antenna characteristics,
and L = 2 as

SΩ(ϕ,α,ψ) = σ2
n/Pr

K−1∑
k=0

γk = K + JΩ(ϕ,α,ψ), (18)

where JΩ is given by (8), and it simplifies to

JΩ(ϕ,α,ψ) = |g0(ϕ)||g1(ϕ)|

×
K−1∑
k=0

cos
(
ψ1(kT )− ψ0(kT )− (α1 − α0)kT

)
≈
K−1∑
k=0

cos
(
y + aΩkT − αkT

)
=

K−1∑
k=0

cos
(
y − (α− aΩ)kT

)
=

K−1∑
k=0

cos
(
y − 2xk

)
≜ JΩ(x, y), (19)

where the approximation follows from (15), and where

x ≜ (α− aΩ)T/2. (20)

We can write the sum-SNR as

SΩ(x, y) = K + JΩ(x, y). (21)

Now, we can evaluate the performance of the system
using the worst-case sum-SNR, which is similar to what
was used in the optimization problem in (9),

inf
y∈[0,2π)

SΩ(x, y) = K

(
1 + inf

y∈[0,2π)

JΩ(x, y)

K

)
. (22)

That is, we account for the worst-case value of y since
it depends on the unknown, uncontrollable, initial phase
shift β of the ACN. When the channel phase variations
are negligible, aΩ = 0, we know from (9) that the optimal
worst-case sum-SNR is given by infy SΩ(x, y) = K,
which implies that infy JΩ(x, y) = 0. Therefore, we define
the loss function as

LΩ(x) ≜ − inf
y∈[0,2π)

JΩ(x, y)

K
, (23)

and we characterize some of its properties in the following
lemma.

Lemma 1. Let LΩ(x) be as defined in (23), x ∈ R, and
let X be as defined in (11), then

(i) The loss function is given by

LΩ(x) =

{
1, x ∈ X
|f1(x)|/K, x /∈ X

(24)

where f1 : R \ X → R, is given by

f1(x) =
sin(Kx)

sin(x)
. (25)

(ii) LΩ is periodic with period π, and symmetric around
π/2.
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(iii) The loss function is bounded as

0 ≤ LΩ(x) ≤ 1, x ∈ [0, π), (26)

where LΩ(x) = 0 when x ∈ X ⋆, and X ⋆ is defined
in (11).

Proof. See the Appendix.

The loss function for K = 5 and K = 10 is shown in
Fig. 6. Since LΩ(x) is periodic with period π, we define

A⋆ ≜

{
q
2π

KT
; q = 1, 2, . . . ,K − 1

}
, (27)

which has K − 1 elements, where each α ∈ A⋆ satisfies
αT/2 ∈ X ⋆. These are all the unique elements in X ⋆,
since for every x ∈ X ⋆, we can write x = αT/2 + qπ,
where α ∈ A⋆, q ∈ Z.

Recall that when aΩ = 0, all α ∈ A⋆ yield the same op-
timal sum-SNR, and LΩ(x) = 0. However, under channel
phase variation, aΩ ̸= 0, these phase slopes yield different

sum-SNR. To observe that, consider an example where
aΩT/2 ∈ [−π/K, π/K], and αT/2 = π/K (α ∈ A⋆).
It follows that x = (α − aΩ)T/2 ∈ [0, 2π/K], and thus,
the worst-case loss due to phase deviation aΩ corresponds
to LΩ(x) = 1, as can be seen from Fig. 6. On the other
hand, when αT/2 = 2π/K, (α ∈ A⋆) it follows that
x ∈ [π/K, 3π/K], and from Fig. 6 we see that the worst-
case loss in this case is LΩ(x) ≈ 0.25, and LΩ(x) ≈ 0.22
for K = 5, and K = 10, respectively. Hence, under chan-
nel phase variation, not all phase slopes α ∈ A⋆ yield the
same loss in sum-SNR. Moreover, αT/2 = 2π/K is more
robust than αT/2 = π/K in mitigating phase deviation
effects when aΩT/2 ∈ [−π/K, π/K]. Therefore, in the
following, we propose a design rule to choose a robust
phase slope in A⋆ under channel phase shift variation.

C. Phase Slope Design Under Time-Varying Ω (aΩ ̸= 0)

To derive a design rule to choose a robust phase slope in
A⋆ under channel phase variation, we start by characteriz-
ing the trends of the loss function, LΩ(x). Let α ∈ A⋆, and
assume that aΩ ̸= 0. At the points x = (α−aΩ)T/2 = qπ
the loss function is at its maximum value LΩ(x) = 1. On
the other hand, as can be seen in Fig. 6, in the range
[π/K, (K − 1)π/K] the loss function exhibits K − 2
lobs. These lobes have decreasing maxima in the range
[π/K, π/2]. That follows since sin(x) is increasing over
the interval, while | sin(Kx)| is periodic with π/K (which
is equal to the lobes width). Due to the symmetry around
π/2, the lobes maxima are increasing as we get far from
the symmetry point in the range [π/2, (K − 1)π/K]. In
addition, the maximum loss within [π/K, (K−1)π/K] is
bounded following

LΩ(x) ≤
1

K sin(π/K)
, x ∈

[
π

K
, (K − 1)

π

K

]
, (28)

since | sin(Kx)| ≤ 1 and sin(π/K) ≤ sin(x) where x ∈
[π/K, (K−1)π/K]. This bound is decreasing with K and
it quantifies to LΩ(x) ≤ 0.34 for K = 5, and LΩ(x) ≤
0.32 for K = 10. Substituting with the bound in (22) we
deduce that the sum-SNR when x ∈ [π/K, (K − 1)π/K]
is at worst −1.8 dB, and −1.7 dB below the zero-loss
sum-SNR (infy SΩ(x, y) = K) for K = 5, and K = 10,
respectively. Hence, in summary, the loss in sum-SNR is
moderate within the interval [π/K, (K − 1)π/K] and it
gets lower as we approach the point of symmetry π/2
of the loss function. On the other hand, the loss in sum-
SNR is severe in the intervals centered around the points
(α− aΩ)T/2 = qπ.

Guided by these trends in the loss function LΩ(x), we
aim to pick a phase slope in A⋆ that handles a wide range
of error due to channel variation, aΩ, without resulting
in the most severe loss in sum-SNR occurring at x =
(α−aΩ)T/2 = qπ. This is equivalent to picking the phase
slope that has the largest phase distance from the points
with the most severe loss, x = qπ, and which is, in turn,
the phase slope that has the shortest phase distance from
the point x = π/2. We formally define this as

α⋆ ≜ arg min
α∈A⋆

|αT/2− π/2|. (29)
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Besides having the largest phase distance from the points
with the most severe loss, the ACN with α⋆ ensures that
the effective phase slope (α⋆−aΩ)T/2 is within the region
with moderate loss in sum-SNR, [π/K, (K − 1)π/K] for
the widest range of aΩ compared to any other phase slope
in A⋆. Thus, α⋆ is the most robust phase slope in A⋆ when
Ω is time-varying. The solutions to (29) are given by

α⋆ ∈


{
K

2

2π

KT

}
, K even{

K − 1

2

2π

KT
,
K + 1

2

2π

KT

}
, K odd

(30)

To get more insight into the design rule (29) we plot
in Fig. 7 the range of aΩ as a function of dx when
∆v ∈ [−60, 60] km/h. (i) We observe that for δa = λ/2
the variation of aΩ is very limited at medium to large
distances. This indicates that the impact of channel phase
variation is not severe when the antenna separation is
small. (ii) For δa = 10λ, we see that aΩ has much
wider range compared to δa = λ/2. The interval of aΩ
increases with the increase of speed difference |∆v| or
the decrease of distance |dx|. This is an indication that
certain choices of α ∈ A⋆ can have better properties
in mitigating the effects of variation of Ω over a wide
range of speeds and distances. This supports the proposed
design rule in (29). For example, assuming K = 10, then
α⋆T/2 = π/2. Following that, from Fig. 7 we obtain that
when |dx| ≥ 20 m, |aΩ|T/2 < π/2 for ∆v ∈ [−60, 60].
Thus, when |dx| ≥ 20, the effective phase slope (α⋆−aΩ)
satisfies 0 < (α⋆ − aΩ)T/2 < π, implying that α⋆ allows
us to avoid severe loss in sum-SNR for any speed when
|dx| ≥ 20 m. On the other hand, using αT/2 = π/K, then
0 < (α−aΩ)T/2 < π is satisfied for any ∆v ∈ [−60, 60],
only when |dx| ≥ 35 m. Hence, for medium distances
below 35 m, there exists ∆v ∈ [−60, 60] for which the
ACN system with αT/2 = π/K experiences the most
severe loss in sum-SNR. Thus, α⋆ is a robust choice that
allows us to avoid severe loss in sum-SNR over a wide
range of distances.

For short distances |dx| ≤ 15 (δa = 10λ), we see in
Fig. 7 that aΩT/2 can take any value in [−π/2, π/2]
(recall that LΩ is periodic with π), which implies that
for any α ∈ A⋆ including α⋆, there exists ∆v ∈ [−60, 60]
for which the most severe loss is experienced. In other
words, no choice of phase slope is better than others
in mitigating the effects of variation of Ω over the full
speed range ∆v ∈ [−60, 60] at short distances |dx| ≤ 15
(δa = 10λ). However, we recall that approximating Ω as
an affine function (13) is not very accurate over the full
range of speed difference at low distances. Therefore, a
numerical quantification of the system performance at such
short distances is shown in the numerical results section.

V. PATH-LOSS VARIATION EFFECTS

In this section, we investigate the performance of ACN
under time-varying PL following the same steps as in the
previous section.

A. Path-loss Model
The path-loss is typically modeled following a power

law [19], and so does its inverse, the path gain, which

will be the one explicitly used in the analysis to follow.
A generic model of the path gain is given by [19]

A(t) = A0 ×
(
dref
d(t)

)ne

10−Xσ(d)/10, d ≥ dref , (31)

where d(t) =
√
(dx +∆vt)2 + d2y, is the distance be-

tween the Tx and the Rx, ne is the path loss exponent,
dref is a reference distance with path gain A0, and Xσ(d)
is a zero-mean Gaussian random process with standard
deviation σSH corresponding to shadowing (large scale
fading). Shadowing is a spatially correlated process with
autocorrelation E{Xσ(d)Xσ(d+∆d)}, that can be mod-
eled using a decaying exponential function with parameter
dc [20]. The decorrelation distance dc, represents the
distance difference at which the autocorrelation is equal
to e−1. In the context of highway scenarios, it is reported
to be 23.3 ≤ dc ≤ 32.5 m in [19], and dc = 25 m
in WINNER+B1 path-loss model [18]. Taking this into
account, and for simplicity, we assume that shadowing is
a block-type fading over the duration of KT s,

Xσ ≜ Xσ(d|t=(K−1)T/2), 0 ≤ t ≤ KT.

Then, assuming that3 d(0) > dref and d
(
(K − 1)T

)
>

dref , we can approximate the average path gain following

A(t) = E{A(t)} = µXA0

(
dref
d(t)

)ne

≈ bPL + aPLt,

(32)

where µX = E{10−Xσ/10} = e(ln(10)σSH)
2/200. Assuming

that the variation of path gain is negligible over a packet
duration Tm ≪ T , we reach

A(t) ≈ A(kT ) = bPL + aPLkT, kT ≤ t ≤ kT + Tm.

The approximating affine function parameters can be com-
puted using either first-order Taylor expansion or using the
LS method. Since A(kT ) > 0, the coefficients need to sat-
isfy the condition bPL+aPLkT > 0, k = 0, 1, . . . ,K−1,
for the approximation to be valid. When Taylor expansion
at t = t0 is applied, the coefficients are given by

aPL = −µXA0d
ne

ref

ne∆v × (dx +∆vt0)

dne+2(t0)
, (33)

and bPL = A(t0)− aPL t0.

B. Sum-SNR

To study the effects of the variation of the average PL on
the ACN/ABN system, we assume that the two reference
vehicles in Fig. 2 are moving in the same lane, i.e., dy =
0 m. Hence, the AOA and the channel phase shift do not
change with time (aΩ = 0). Furthermore, we assume that
the antennas have isotropic patterns (i.e., even if ϕ is time-
varying, the antenna responses are fixed).

The received power of the kth packet can be expressed
as Pr = E{|a(t)x(t)|2} = A(kT )Pt, where A(kT ) =

3When d < dref , the model in (31) is invalid. In such a case, the path
gain can be assumed to be equal to that at dref as done, for example, in
WINNER+B1 model [18, Table A.1.4-1].
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E{|a(t)|2}, and Pt = E{|x(t)|2|} is the transmitted power.
Then, the SNR of the kth packet (6) is expressed as

γk =
Pt

Lσ2
n

A(kT )

∣∣∣∣ L−1∑
l=0

e−ȷ(ψl−αlkT )

∣∣∣∣2, (34)

since gl(ϕ) = 1, l = 0, 1. Then, normalizing the SNR with
respect to Pt/σ

2
n and summing over k, we find that

SPL(x, y) =
1

L

K−1∑
k=0

A(kT )
(
2 + 2 cos(y − 2xk)

)
≈ 1

L

K−1∑
k=0

(bPL + aPLkT )
(
2 + 2 cos(y − 2xk)

)
= c1K

(
1 +

JPL(x, y)

c1K

)
, (35)

where the approximation follows from (32), and where x
and y are given by (20) and (16), respectively (x = αT/2,
since aΩ = 0), c1 =

(
bPL + aPLT (K − 1)/2

)
, and

JPL(x, y) =

K−1∑
k=0

(bPL + aPLkT ) cos
(
y − 2xk

)
. (36)

As done earlier, we define the loss function as

LPL(x) ≜ − inf
y∈[0,2π)

JPL(x, y)

c1K
, (37)

where the worst-case sum-SNR is given by

inf
y∈[0,2π)

SPL(x, y) = c1K(1− LPL(x)). (38)

We then state certain properties of the loss function in the
following lemma.

Lemma 2. Let LPL(x) be as defined in (37), x ∈ R, and
(bPL + aPLkT ) > 0, k = 0, 1, . . . ,K − 1, then

(i) The loss function is given by

LPL(x) =

{
1, x ∈ X√
c21f

2
1 (x) + c22f

2
2 (x)/(c1K), x /∈ X

(39)

where c1 =
(
bPL + aPLT (K − 1)/2

)
, c2 = aPLT/2,

X is defined in (11), f1 is defined in (25), and f2 :
R \ X → R, is given by

f2(x) =
K cos(Kx)

sin(x)
− sin(Kx)

sin(x)
cot(x). (40)

(ii) The loss function is periodic with period π and
symmetric around π/2.

(iii) LPL can be bounded as

0 < LPL(x), aPL ̸= 0, LPL(x) ≤ 1. (41)

(iv) If x ∈ X ⋆ then

LPL(x) =

∣∣∣∣ c2
c1 sin(x)

∣∣∣∣. (42)

(v) The loss function is bounded when x /∈ X as

|f1(x)|
K

≤ LPL(x) ≤
√
(K − 1)2f21 (x) + f22 (x)

K(K − 1)
.

(43)

Proof. See the Appendix.
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Fig. 8. The sum-SNR loss function under PL variation, LPL(x), for
K = 10, dx = 30 m, dy = 0 m, and ∆v = ±60 km/h. The upper
and lower bounds (43) of the loss function are shown in dashed lines.

C. Phase Slope Design Under Time-Varying PL (aPL ̸= 0)

We recall that when the PL is approximated as con-
stant (aPL = 0), the phase slopes x = αT/2 ∈ X ⋆

ensure identical optimal performance corresponding to
infy SPL(x, y) = c1K, and LPL(x) = 0. Now, when the
PL is time-varying, aPL ̸= 0, we see from Lemma 2 (42)
that the loss in sum-SNR LPL(x) ̸= 0 for x = αT/2 ∈
X ⋆, and it is not identical for all the elements of X ⋆. Since
LPL is periodic with π, there exist K−1 unique elements
in X ⋆, which are represented in A⋆ (27). Following that,
we can deduce that the phase slope that minimizes the
loss in sum-SNR under PL variation among A⋆ is also
the solution to (29). That is,

arg min
α∈A⋆

LPL(αT/2) = arg min
α∈A⋆

|αT/2− π/2|. (44)

This follows from (42) since 1/| sin(αT/2)| is minimized
by the phase slope satisfying the right-hand side of (44).
These results can be observed in Fig. 8 where the loss
function, is plotted for dx = 30 m and ∆v = ±60 km/h.
The WINNER+B1 path-loss model [18], [21] is used.
Assuming a carrier frequency fc = 5.9 GHz, and antenna
heights of 1.5 m, the path gain between the Tx and the
Rx when d ≤ 177 m (this distance depends on fc and
the antennas heights) can be modeled using (31), with the
parameters, dref = 3 m, A0 = 105.32, ne = 2.27, and
σSH = 3.

From Fig. 8, and using the bounds in (43), we see
that the loss in sum-SNR is low for all α ∈ A⋆

(x = αT/2 = qπ/K). In particular, substituting by
the upper bound (43) of the loss function in (38) we
can deduce that the phase slopes α = q2π/KT , where
q = 1, . . . ,K/2, (α ∈ A⋆), respectively achieve a sum-
SNR that is at worst, −1.94, −0.91, −0.64, −0.54, and
−0.51 dB, lower than the reference zero-loss sum-SNR,
infy SPL(x, y) = c1K. Note that due to the symmetry of
the loss function with respect to π/2, the phase slopes
α = q2π/KT , q = K/2+1, . . . ,K− 1, achieve identical
sum-SNR to their symmetric counterparts.
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Thus unlike the effects of variation in Ω, when PL is
time-varying over the duration of KT s at medium to large
distances, the loss in sum-SNR is much lower than the
maximum loss LPL(x) = 1, and thus PL time variation
does not cause severe loss in sum-SNR.

As dx increases, the loss in sum-SNR decreases for
all phase slopes α ∈ A⋆. This can be observed from
Lemma 2 (42), where the loss is proportional to c2/c1,
which is given by∣∣∣∣c2c1

∣∣∣∣ = ne|∆v|
|dx +∆vt0|

T/2, (dy = 0), (45)

assuming the use of (33) with t0 = (K − 1)T/2. As dx
becomes large, the loss becomes negligible for all phase
slopes α ∈ A⋆.

D. Combined PL and Ω Variation

Consider now the scenario where the two reference
VUs (in Fig. 2) are on different lanes dy ̸= 0. Then,
besides PL, Ω is also time-varying over KT s, and can
be approximated using (13), where aΩ ̸= 0. Despite that
ϕ varies too, the isotropic antenna responses are fixed,
and do not affect the system. In this scenario, the sum-
SNR and the loss function are still modeled by (35)
and (37) respectively, where x = (α−aΩ)T/2. Therefore,
at medium to long distances, variation in PL changes the
shape of the loss function, in the sense that, for any x,
the loss in sum-SNR is greater than the loss under non-
varying PL, LPL(x) ≥ LPL(x)|∆v=0, as can be seen
in Fig. 8. On the other hand, variation in Ω deviates
the ACN/ABN phase slope α by an offset of aΩ. Using
the bounds (43) and from Fig. 8, we see that the loss
function under PL variation has similar trends to the
loss function under time-varying Ω (24) (which is the
lower bound). That is, the maximum loss occurs at the
points x = (α − aΩ)T/2 = qπ, and the loss function
has decreasing maxima within [π/K, π/2], and increasing
maxima in [π/2, (K − 1)π/K]. Thus, under the variation
of both PL and Ω, the design rule (29) still leads to the
most robust phase slope in A⋆. In other words, choosing a
phase slope according to (29) allows us to avoid the most
severe loss in sum-SNR over the widest range of aΩ, when
both Ω and PL are time-varying over KT s.

VI. EFFECTS OF AOA VARIATION WITH
NON-ISOTROPIC ANTENNAS

So far, we have assumed that the antenna patterns are
isotropic. Now, consider non-isotropic antennas with far-
field functions g0(ϕ), and g1(ϕ). When the two reference
vehicles in Fig. 2 are on different lanes (dy ̸= 0), the AOA
varies depending on the speed and initial distance between
the Tx and the Rx. This introduces variation in both the
gain and phase of the far-field functions of antennas. In
the following, we investigate the effects of these variations
on the performance of ACN at medium to large distances.
As was done in the previous sections, we study the effects
of variation of antenna far-field functions while neglecting
the effects of the two other quantities of interest (Ω and
PL), by assuming that they remain constant over KT s.
That is, Ω(t) ≈ bΩ, aΩ = 0 in (13), and A(t) ≈ bPL,

aPL = 0 in (32), when 0 ≤ t ≤ KT . Then, we express
the SNR of the kth packet (6) in this case as

γk =
PtbPL

Lσ2
n

∣∣∣∣ L−1∑
l=0

|gl(ϕk)|e−ȷ(ψl(kT )−αlkT )

∣∣∣∣2, (46)

where the AOA is assumed to be constant over a packet
duration ϕ(t) = ϕk, kT ≤ t ≤ kT+Tm, k = 0, 1, . . . ,K−
1, and so is ψl, l = 0, 1. Recalling that α0 = 0, and
α = α1 ∈ R, the normalized sum-SNR can be expressed
as

σ2
n

PtbPL

K−1∑
k=0

γk =

K−1∑
k=0

1∑
l=0

|gl(ϕk)|2

2
+

K−1∑
k=0

|g0(ϕk)g1(ϕk)|

× cos
(
ψ1(kT )− ψ0(kT )− αkT

)
. (47)

From (5), it follows that for k = 0, 1, . . . ,K − 1,

ψ1(kT )− ψ0(kT ) = Ω(kT )− g1(ϕk) + g0(ϕk)− β

= bΩ − g1(ϕk) + g0(ϕk)− β,

since Ω0(t) = 0, Ω1(t) = Ω(t) = bΩ when 0 ≤ t ≤ KT ,
β0 = 0 and β1 = β ∈ [0, 2π). Unlike the case when
antennas were assumed to be isotropic, we see here that
the phase responses of non-isotropic antennas change with
ϕk, and introduce a time-varying phase shift. To analyze
its effect, we apply an affine approximation taking into
account the slow change of the AOA at medium to large
distances (e.g., at dx = 30 m, ϕ changes by 9 deg /1 s at
most, when ∆v ∈ [−60, 60] km/h), following

g0(ϕk)− g1(ϕk) ≈ bPH + aPHkT. (48)

The coefficients bPH and aPH depend on the antenna
patterns used and how fast the AOA changes. They can
be obtained using the LS method or using the first-
order Taylor series when an analytical formula for the
antenna far-field functions is available. Adopting the above
approximation, we can express the sum-SNR (47) as

Sϕ(x, y) =

K−1∑
k=0

1∑
l=0

|gl(ϕk)|2

2
+ Jϕ(x, y),

where

Jϕ(x, y) =

K−1∑
k=0

|g0(ϕk)g1(ϕk)| cos(y − 2xk), (49)

x = (α − aPH)T/2 and y = (bΩ + bPH − β). The ACN
initial phase shift β can take any value in [0, 2π), and so
does y. Therefore, we assess the performance according
to the worst-case sum-SNR

inf
y∈[0,2π)

Sϕ(x, y) =

K−1∑
k=0

1∑
l=0

|gl(ϕk)|2

2
+ inf
y∈[0,2π)

Jϕ(x, y).

(50)

When developing the ACN system under worst-case
propagation assumptions in [7], [9], the signal direction
ϕk was assumed to be negligibly varying over KT s, and
coinciding with the worst-case AOA defined as

ϕmin = arg inf
ϕ∈[0,2π)

1∑
l=0

|gl(ϕ)|2

2
. (51)
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Thus, we can straightforwardly establish that when the
AOA is varying, we achieve a gain in sum-SNR with
respect to the worst-case scenario (i.e., ϕk = ϕmin, ∀k),
since the first term in (50) satisfies

K−1∑
k=0

1∑
l=0

|gl(ϕk)|2

2
≥
K−1∑
k=0

1∑
l=0

|gl(ϕmin)|2

2

= K

1∑
l=0

|gl(ϕmin)|2

2
. (52)

On the other hand, under worst-case assumptions of non-
varying ϕk for k = 0, . . . ,K − 1 (which implies that
aPH = 0), we know that for x = αT/2 ∈ X ⋆,
infy Jϕ(x, y) = 0. To investigate if this holds when
the AOA is time-varying, and taking into account the
slow change rate of ϕ at medium to large distances, we
approximate using the LS or first-order Taylor series

|g0(ϕk)g1(ϕk)| ≈ bϕ + aϕkT, (53)

where bϕ + aϕkT > 0, k = 0, 1, . . . ,K − 1. Following
that,

Jϕ(x, y) =
K−1∑
k=0

|g0(ϕk)g1(ϕk)| cos(y − 2xk)

≈
K−1∑
k=0

(bϕ + aϕkT ) cos(y − 2xk). (54)

From (54) we see that variation in ϕ has identical effects
to PL variation effects captured by JPL (36), and therefore
they can be represented using the same loss function. Con-
sequently, using the left-hand statement of Lemma 2 (41),
and the definition (37), we deduce that

inf
y∈[0,2π)

Jϕ(x, y) < 0, aϕ ̸= 0, x ∈ R.

Therefore, when the AOA is time-varying, there is a loss in
sum-SNR (50) (unlike the case when ϕ is fixed and where
infy Jϕ(x, y) = 0). The loss in sum-SNR is due to two
factors. The first factor is the variation of the antenna gains
|g0(ϕk)g1(ϕk)|, which results in a loss even if aPH = 0,
x = αT/2 ∈ X ⋆. This is identical to the effects of PL
variation. The second factor is due to the variation of the
phase response of antennas (48), which shifts the effective
phase slope of ACN to x = (α−aPH)T/2, and introduces
a loss in sum-SNR that has been studied in Section IV
under time variation of Ω.

In summary, the effects of time-varying AOA, with
an affine approximation of the phase and magnitude re-
sponses of non-isotropic antennas, have the same model
as the combined PL and Ω time variation model discussed
in Section V-D. Therefore, we can readily conclude that
the phase slope in A⋆ that ensure a robust performance
under the effects of time-varying far-field functions is
given by (29). It is important to note that these conclusions
are applicable for medium to large distances, where the
affine approximations used in evaluating the sum-SNR loss
term, infy Jϕ(x, y), are expected to be accurate. At short
distances, despite that the characterizations of the loss
term made in this section may not be very accurate, the
gain term in sum-SNR indicated by (52) is still achieved.
Furthermore, this gain is expected to be more noticeable
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Fig. 9. Normalized worst-case sum-SNR under Ω variation
(
1−LΩ(x)

)
in dB, for K = 10, δa = 10λ, dx = 30 m, and worst-case dy ∈
{−4, 4} m. (ᾱ = 2π

KT
)

at short rather than large distances, since the AOA change
rate is much higher for the former case. These aspects are
highlighted using an example of an antenna pattern in the
numerical results section.

VII. NUMERICAL RESULTS

In this section, we present numerical results correspond-
ing to the normalized sum-SNR of a 1 × 2 ACN system
(or equivalently a 2 × 1 ABN) when Ω, PL, and ϕ vary
over the duration of a burst of K consecutive CAMs,
KT s. Throughout this section, we assume that the CAM
broadcast period is T = 0.1 s and the burst length is
K = 10 packets. This results in a maximum tolerable
AoI of KT = 1 s (which is also used in other works,
e.g., [22]).

A. Sum-SNR Under Variation of Ω

In the following, we visualize the sum-SNR for different
choices of α ∈ A⋆, taking into account the time variation
of Ω only. That is, the antennas are assumed to be
isotropic, and the change in PL is assumed to be negligible
over KT s. The coefficients for the affine approximation
of Ω in (13) are computed based on Taylor series expan-
sion (14). The LS-based affine approximation was found
to produce comparable results, and it is therefore omitted
from the figures that follow in this subsection.

We recall that the worst-case normalized sum-SNR (22),
is given by

inf
y∈[0,2π)

SΩ(x, y) = K
(
1− LΩ(x)

)
, (55)

where x = (α − aΩ)T/2. Since aΩ (14) depends on
∆v, dx, δa, and dy, we visualize the sum-SNR as a func-
tion of ∆v for a fixed initial distance dx, and a fixed
antenna separation δa. Furthermore, since the effect of
lateral distance results in aΩ|−dy = −aΩ|dy (follows
from (12), or (14)), the sum-SNR is minimized over
dy ∈ {−4, 4}.

In Fig. 9, we plot the sum-SNR, after further normal-
ization with respect to K, in dB, at a medium distance

11
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Fig. 10. Normalized worst-case sum-SNR under Ω variation
(
1 −

LΩ(x)
)

in dB, for K = 10, worst-case dy ∈ {−4, 4} m, δa = 10λ at
dx = 100 m, and δa = λ/2 at dx = 30 m. (ᾱ = 2π

KT
)

dx = 30 m, when the antenna separation is δa = 10λ.
We recall that the loss function under variation of Ω, LΩ

is symmetric around π/2 and therefore, we visualize the
results only for α ∈ A⋆, α = q 2π

KT , q = 1, . . . , 5. From
Fig. 9, we see that the choice of α⋆ = 5 × 2π/KT ,
which satisfies (29), exhibits a robust performance to
channel phase variation with a low loss over the full
range of ∆v ∈ [−60, 60] km/h. Besides α⋆, the choice
of α = 4 × 2π/KT , or α = 3 × 2π/KT results in
comparably low loss too, which follows since the phase
slopes have, respectively, the second and the third largest
phase distances from the points of severe sum-SNR loss
x = qπ. The phase slope with the shortest phase distance
from these points, ᾱ = 2π/KT , exhibits the highest loss,
and it is the least robust phase slope in A⋆. In Fig. 9, we
also plot the sum-SNR using the exact value of Ω (12), for
the most and the least robust choices of phase slopes in
A⋆ (α⋆ and ᾱ). We see that the corresponding sum-SNR
to the linear model matches the sum-SNR evaluated using
the exact value of Ω for most speeds. The maximum loss
experienced by α⋆ when antennas are δa = 10λ apart is
approximately 0.5 dB (according to the exact sum-SNR).
If the antenna separation is smaller δa = λ/2, then the
ACN has a significantly lower sum-SNR loss for both
α⋆ and ᾱ as can be seen in Fig. 10. In fact, the loss in
sum-SNR of the ACN with δa = λ/2 at dx = 30 m is
comparable to that of the ACN with δa = 10λ at a large
distance dx = 100 m. This suggests that implementing
ACN systems with smaller antenna separation limits the
sum-SNR loss caused by the time variation of Ω. Note
that, for both cases shown in Fig. 10, α⋆ has an advantage
over ᾱ, but the loss in sum-SNR is not significant for both
phase slopes.

As explained in Section IV-A, modeling Ω as an affine
function is valid for medium to large distances. Therefore,
we are interested in evaluating the sum-SNR for short
distances using the exact value of Ω. In Fig. 11, we
show the sum-SNR at dx = 10 m when the antenna
separation is δa = 10λ. As expected, we see that at
such a short distance, the affine model is accurate only
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Fig. 11. Normalized worst-case sum-SNR under Ω variation
(
1 −

LΩ(x)
)

in dB, for K = 10, δa = 10λ, dx = 10 m, and worst-case
dy ∈ {−4, 4} m. (ᾱ = 2π

KT
)

for relatively low speeds ∆v ∈ [−15, 35]km/h. Note that
the variation in Ω is faster for negative relative speeds
than for positive speeds. This is because, in the case of
negative speeds, the geometries between the Tx and the
Rx change more dramatically due to decreasing distance
between the VUs and potential overtaking movement. On
the other hand, for positive speeds, the distance between
the VUs is increasing, leading to a less severe change in
geometries.

At high relative speeds, the change in Ω becomes
much faster and cannot be approximated using a first-
order polynomial. Following this, at the points x =
(α − aΩ)T/2 = qπ, as it is the case for the ACN with
α⋆ at ∆v ≈ −30,−58 km/h, the loss in sum-SNR is
not as severe as it is predicted using the linear model.
This is also observed at ∆v = −41,−46 km/h for ᾱ.
This suggests that when the change in Ω is very fast to
be accurately estimated using a linear approximation, the
ACN/ABN system actually performs better than predicted
by the linear model. It should be noted that at this short
distance, α⋆ shows an advantage compared to ᾱ mostly
when ∆v > −15 km/h.

To further emphasize the importance of a proper choice
of α, Fig. 12 displays the sum-SNR at a distance of dx =
10 m, with antenna separation δa = λ/2. We can see that
with such a small antenna separation, the linear model
is valid over a larger range of speed, even at this short
distance. Moreover, the phase slope α⋆ sustains a high
level of performance across the full speed range compared
to ᾱ.

B. Sum-SNR Under PL Variation

To show the effects of PL variation and the performance
of the different phase slopes, we plot in Fig. 13 the sum-
SNR (38) for the worst-case y as a function of ∆v at a
fixed medium distance dx = 30 m. Both vehicles are on
the same lane, dy = 0 m, which results in non-varying
Ω (aΩ = 0). Antennas are assumed to be isotropic. We
normalize the sum-SNR with respect to the average path
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gain at dx = 30 m and with respect to K, such that it is
equal to 0 dB at ∆v = 0 km/h. We show the results for the
affine approximation of the path gain, which is modeled
according to WINNER+B1 model, based on both Taylor
series (33) and the LS method, since the latter exhibited
more accurate results in this case. From the figure, we
observe that the loss due to PL variation is not significant
for all phase slopes α ∈ A⋆. In particular, the loss is
at most around 0.4 dB, and 1.5 dB, for α⋆T/2 = π/2,
and ᾱT/2 = π/K, respectively (based on exact curves at
∆v = −60 km/h). The maximum loss of the remaining
phase slopes within A⋆ falls in between these two values.
As discussed in Section V, unlike the effects of variation
of channel phase, variation in PL does not shift the
ACN/ABN phase slope, explaining the low loss in the
sum-SNR.

C. Sum-SNR Under Antenna Response Variation

In Section VI, we have seen that as ϕ varies, the phase
and amplitude responses of antennas vary too. In Fig. 15,
we show the sum-SNR (50) under these effects when the
antennas employed by the ACN/ABN are those shown
in Fig. 14. The sum-SNR is plotted as a function of
∆v for a fixed dx, and for the worst-case y ∈ [0, 2π),
and worst-case dy ∈ {−4, 4}. The received signal is
assumed to coincide with the worst-case AOA, ϕmin (51),
at time t = 0. Moreover, PL and Ω are assumed to be
approximately constant over KT s. The affine coefficients
for the approximation of the far-field functions phase (48)
and amplitude (53) are computed using the LS. For
consistency, we normalize the sum-SNR with respect to
(|g0(ϕmin)|2 + |g1(ϕmin)|2) and with respect to K, such
that the sum-SNR equals 0 dB at ∆v = 0 km/h.

From Fig. 15, we see that at a medium distance dx =
30 m, the loss in sum-SNR is low for ᾱ and negligible for
α⋆ and the remaining phase slopes in A⋆. Despite that the
phase slopes are shifted by aPH, resulting in x = (α −
aPH)T/2, the loss in sum-SNR is not as large as it was the
case under time variation of Ω at dx = 30 m and δa = 10λ.
The sum-SNR gain (52) due to the time-variation of ϕ is
negligible at dx = 30 m for these antenna patterns, as
can be inferred from the reference curve in Fig. 15 (dx =
30 m). However, at dx = 10 m, this gain is higher. On the
other hand, the loss in sum-SNR due to infy Jϕ(x, y) is
also higher at dx = 10 m compared to dx = 30 m, and it
is most noticeable for ᾱ. This loss is largely caused by the
phase deviation aPH, which results in dips in sum-SNR,
e.g., at ∆v ≈ 38 km/h, when x = (ᾱ − aPH)T/2 = qπ.
This can be concluded by examining the sum-SNR for
ᾱ when the phase response of the antennas is assumed
constant over KT s (aPH = 0). Unlike ᾱ, the phase slopes
α⋆ and α ∈ {4× 2π/KT, 3× 2π/KT} effectively reduce
these effects and exhibit a low loss (approximately less
than 0.5 dB) over the entire range of ∆v.

Although the linear model cannot be generally claimed
to be accurate at short distances, we see from Fig. 15 that
it correctly predicts the behavior of the sum-SNR curves,
and it enables us to make a robust selection of a phase
slope within A⋆ (29) in mitigating the loss in sum-SNR
due to the variation of antenna responses.

D. Combined Effects of the Dominant Path Variation

In this section, we show the sum-SNR taking into
account the combined effects of time-varying Ω, PL, and
ϕ, i.e., a time-varying dominant path. The PL is modeled
using WINNER+B1 channel model, and the receiver an-
tennas have the patterns shown in Fig. 14. The received
signal is assumed to coincide with the worst-case AOA,
ϕmin at time t = 0. To be able to compare the sum-SNR
for different distances, we plot it without normalization.
To that end, we set the transmitted power to Pt = 23 dBm
and the noise power at the receiver to σ2

n = −95 dBm,
which correspond to the commercial IEEE802.11p radio
values (at 6 Mbit/s) [23]. In Fig. 16, we show the sum-SNR
for worst-case y ∈ [0, 2π), and worst-case dy ∈ {−4, 4},
at dx ∈ {10, 30, 100}.
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Fig. 14. Back-to-back patch antenna pattern. The antennas are designed by Smarteq4for Vehicular applications.
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From the figure, we see that the observations made
earlier when analyzing the effects of the three quantities
separately are valid when taking into account their com-
bined effects. Namely, ACN is impacted by time variation
at medium and short distances. The choice of α⋆ (29)
yields a robust performance under time variation of the
dominant path. Despite that ᾱ = 2π/KT yields optimal
performance under a non-time-varying dominant path (i.e.,
under worst-case assumptions), it can exhibit a severe
loss in sum-SNR when the dominant path is time-varying,
e.g., around 13 dB at dx = 30 m, and around 16 dB at
dx = 10 m. Other choices of α ∈ A⋆ are more robust
than ᾱ and less robust than α⋆. We recall that the antenna
separation is set to δa = 10λ ≈ 0.5 m. Using lower δa
decreases the loss for all α ∈ A⋆ and vice versa. In this
paper, motivated by the low PL at short distances, we
focused our analysis of ACN/ABN at medium to large
distances. In Fig. 16, we see a visual validation of this
approach where even under severe loss in sum-SNR, the
system performance at dx = 10 m is higher than the
performance at dx = 100 m and at dx = 30 m for the
major part of the speed interval.

As reported in [7], using a single digital port ACN yields
a sum-SNR that is 3 dB lower than the sum-SNR achieved
by a two-port MRC. Fig. 16 shows that ACN with the
robust phase slope approximately maintains this 3 dB gap
even under time-variation of the dominant path.

VIII. CONCLUSIONS AND FUTURE WORK

The ACN [7] and ABN [9] are robust multiple antenna
schemes that maximize the sum-SNR of K consecutive
broadcast periodic packets under a worst-case propagation
scenario. This corresponds to a single dominant path with
non-varying AOA, PL, and phase shift between antennas
Ω for K packets. In this work, we investigated the per-
formance of a 1 × 2 ACN (2 × 1 ABN) when the three
quantities of the dominant path are time-varying instead.
The main findings of this work follow.

• The phase slopes that yield identical optimal sum-
SNR when the AOA, PL, and Ω are non-varying,

4Smarteq Wireless AB, Sweden is a company specializing in antenna
design and development for the vehicle industry and others.
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yield different sum-SNR when any of these three
quantities varies over the duration of K packets.

• Time variation of Ω results in shifting the ACN phase
slope and incurs a loss in sum-SNR that depends on
the phase slope used, how fast the time variation of
Ω is, and the antenna separation. In particular, the
smaller the antenna separation, the less susceptible
ACN is to these variations.

• To mitigate the loss in sum-SNR under the variation
of Ω at medium to large distances, we proposed a
design rule (29) that yields a phase slope that is
robust against time variations and optimal under time-
invariant conditions.

• Time variation of the PL does not induce a shift to
the ACN phase slope, but it attenuates the sum-SNR
achieved using any phase slope compared to the sum-
SNR achieved under time-invariant conditions. The
sum-SNR loss incurred is minor compared to the loss
incurred due to the time variation of Ω. The derived
design rule (29) is found to yield a robust phase slope
against variation of PL at medium to large distances,
as well.

• Variation of the AOA induces a variation of the phase
and amplitude of the antenna far-field functions,
which has an equivalent effect to the combined Ω and
PL time variation effects, with an extent that depends
on the antennas employed. The design rule (29) yields
a robust phase slope in A⋆ in this case too.

In this study, we investigated the performance of
ACN/ABN after relaxing the worst-case propagation sce-
nario assumed when designing them. The next step is to
study the performance of ACN/ABN under rich multipath
propagation, which represents a full relaxation of the
worst-case propagation assumption and is left for future
work.

APPENDIX

A. Preliminaries

Here we present preliminary statements and lemmas that
are used in the proof of Lemma 1 and Lemma 2.

Define the sets

X ≜ {qπ, q ∈ Z}, (56)

X ⋆ ≜ {qπ/K, q ∈ Z} \ X . (57)

It follows that

x ∈ X ⇐⇒ x+ π ∈ X , (58)
(π/2− x) ∈ X ⇐⇒ (π/2 + x) ∈ X . (59)

The first statement follows since if x ∈ X then x = mπ,
m ∈ Z and hence x + π = (m + 1)π ∈ X . Similarly,
if (x + π) ∈ X then x + π = mπ, m ∈ Z, and hence
x = (m − 1)π ∈ X . To show (59), let (π/2 ± x) ∈ X ,
then π/2±x = mπ, where m ∈ Z. Then multiplying both
sides by −1 and adding π, we obtain π/2∓x = (1−m)π,
hence (π/2∓ x) ∈ X .

For fixed positive integer K > 1 define the functions
f1 : x ∈ R \ X → R, and f2 : x ∈ R \ X → R following

f1(x) ≜
sin(Kx)

sin(x)
, (60)

f2(x) ≜
K cos(Kx)

sin(x)
− sin(Kx)

sin(x)
cot(x). (61)

Lemma 3. Let f1 be as defined in (60), then |f1(x)| and
f21 (x) are periodic with period π, and symmetric around
π/2.

Proof. From (60), and sin(Kπ) = 0 it follows that

f1(x+ π) =
sin(Kx+Kπ)

sin(x+ π)
= − sin(Kx) cos(Kπ)

sin(x)
.

Hence |f1(x + π)| = |f1(x)| and |f21 (x + π)| = |f21 (x)|,
and the periodicity property follows. To prove the sym-
metry property, we show that

|f1(π/2 + x)| = |f1(π/2− x)|. (62)

We have |f1(π/2 + x)| is given by∣∣∣∣ sin(K π
2 ) cos(Kx) + cos(K π

2 ) sin(Kx)

cos(x)

∣∣∣∣. (63)

On the other hand, |f1(π/2− x)| is given by∣∣∣∣ sin(K π
2 ) cos(Kx)− cos(K π

2 ) sin(Kx)

cos(x)

∣∣∣∣. (64)

If K is even, it follows from (63) and (64) that |f1(π/2+
x)| = | sin(Kx)/ cos(x)| = |f1(π/2− x)|. If K is odd, it
follows from the same equations that |f1(π/2 + x)| =
| cos(Kx)/ cos(x)| = |f1(π/2 − x)|. Hence |f1(x)| is
symmetric around π/2. Since f1 is a real-valued function,
f21 (x) = |f1(x)|2, and thus f21 (x) is symmetric around
π/2 too, and the lemma follows.

Lemma 4. Let f2 be as defined in (61), then f22 (x) is
periodic with period π, and symmetric around π/2.

Proof. Employing trigonometric identities and noting that
sin(Kπ) = 0, we have

f2(x+ π) =
K cos(Kx) cos(Kπ)

sin(x+ π)

− sin(Kx) cos(Kπ)

sin2(x+ π)
cos(x+ π)

= − cos(Kπ)

×
(
K cos(Kx)

sin(x)
− sin(Kx)

sin2(x)
cos(x)

)
. (65)

Hence, f22 (x + π) = (− cos(Kπ))2f22 (x) = f22 (x), and
thus f22 (x) is periodic with period π. To prove the sym-
metry property, we first let K be even. Using trigonometric
identities and the fact that sin(K π

2 ) = 0, we can express
f2(π/2 + x) as

K cos(K π
2 ) cos(Kx)

cos(x)
+

cos(K π
2 ) sin(Kx)

cos2(x)
sin(x),

and that is equal to f2(π/2−x), when K is even. Second,
let K be odd, then f2(π/2 + x) can be expressed as

−
K sin(K π

2 ) sin(Kx)

cos(x)
+

sin(K π
2 ) cos(Kx)

cos2(x)
sin(x),
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while f2(π/2−x) = −f2(π/2+x). Combining the cases,
K even and K odd, we can conclude that f22 (π/2+x) =
f22 (π/2−x), and hence the symmetry property holds, and
the lemma follows.

B. Proof of Lemma 1 and Lemma 2

We demonstrate the results of Lemma 1 and Lemma 2
together. To that end, for a fixed integer K > 1, x ∈ R,
and y ∈ [0, 2π), define

J(x, y) ≜
K−1∑
k=0

(b+ akT ) cos(y − 2xk), (66)

where (b+ akT ) > 0, k = 0, 1, . . . ,K − 1, implying that
b > 0, and a > −b/(K − 1)T . Moreover, define

L(x) ≜ − inf
y∈[0,2π)

J(x, y)

c1K
, (67)

where c1 = (b+aT (K−1)/2) > 0. For b = bPL and a =
aPL, (66) and (67), correspond to the functions JPL (36),
and LPL (37), respectively. Similarly, for b = 1 and a =
0, (66) and (67) correspond to the functions JΩ (19) and
LΩ (23), respectively.

To show the claims of Lemma 1 and Lemma 2 it is
enough to show that for any b > 0 and a > −b/(K−1)T ,

(i) L(x) is given by

L(x) =

{
1, x ∈ X√
c21f

2
1 + c22f

2
2 /(c1K), x /∈ X

(68)

where c2 = aT/2, f1, f2 are defined in (60), (61),
respectively, and X is defined in (56).
Note that when b = 1 and a = 0, L(x) = |f1(x)|/K,
x /∈ X .

(ii) L(x) is periodic with period π and symmetric around
π/2.

(iii) L(x) can be bounded as{
0 < L(x), a ̸= 0

0 ≤ L(x), a = 0
, L(x) ≤ 1. (69)

(iv) If x ∈ X ⋆, where X ⋆ is defined in (57), then

L(x) =

∣∣∣∣ c2
c1 sin(x)

∣∣∣∣. (70)

Note that if a = 0, then c2 = 0, (c1 sin(x) ̸= 0) and
the lower bound in (69) is achieved, L(x) = 0.

(v) For x /∈ X , L(x) can be bounded as

|f1(x)|
K

≤ L(x) ≤
√
(K − 1)2f21 (x) + f22 (x)

(K − 1)K
.

(71)

Note that the lower bound is achievable when a = 0.

Proof. We start by deriving a different expression of J
that facilitates the proof of the lemmas. Let x ∈ X , it
follows that

J(x, y) = cos(y)

K−1∑
k=0

(b+ akT ) = cos(y)c1K. (72)

Then, let x /∈ X . We can write

J(x, y) = b Re

{
eȷy

K−1∑
k=0

e−ȷ2xk
}

+ aT Re

{
eȷy

ȷ

2

d

dx

K−1∑
k=0

e−ȷ2xk
}
. (73)

Using the sum of the geometric series, we obtain
K−1∑
k=0

e−ȷ2xk = e−ȷ(K−1)xf1(x),

d

dx

K−1∑
k=0

e−ȷ2xk = −ȷ(K − 1)e−ȷ(K−1)xf1(x)

+ e−ȷ(K−1)xf2(x),

since f2(x) = d
dxf1(x). Substituting in (73) we arrive at

J(x, y) =


c1K cos(y), x ∈ X
c1f1(x) cos

(
y − (K − 1)x

)
−c2f2(x) sin

(
y − (K − 1)x

)
, x /∈ X

(74)

Now we tackle the lemmas claims.
(i) To show that L(x) is given by (68), we first let x ∈ X .

Then, it follows from (74) that

L(x) = − inf
y∈[0,2π)

J(x, y)

c1K
= − inf

y∈[0,2π)
cos(y) = 1.

Second, let x /∈ X , and write

c1f1(x) = R(x) cos
(
φ(x)

)
,

−c2f2(x) = R(x) sin
(
φ(x)

)
,

R(x) =
√
c21f

2
1 (x) + c22f

2
2 (x),

φ(x) = arctan

(
− c2f2(x)

c1f1(x)

)
.

Then, it follows from (74) that

J(x, y) = R(x) cos
(
y − (K − 1)x− φ(x)

)
,

and thus, when x /∈ X

− inf
y∈[0,2π)

J(x, y)

c1K
=
R(x)

c1K
=

√
c21f

2
1 (x) + c22f

2
2 (x)

c1K
.

where the minimizer is given by y = mod
(
(K −

1)x+ φ(x) + π, 2π
)
. Hence, (68) holds.

(ii) To show that L is periodic and symmetric, let x ∈ X ,
then from (68) we get L(x) = 1, which is a constant.
Using (58) and (59) we can conclude that L is peri-
odic with period π, and symmetric around π/2 when
x ∈ X . The same statement is true when x /∈ X ,
since by (68) L(x) =

√
c21f

2
1 (x) + c22f

2
2 (x)/(c1K),

and since both f21 and f22 are periodic and symmetric
as shown in Lemma 3 and Lemma 4, respectively.

(iii) To show (69), we first proof that L(x) ≤ 1. To that
end, observe that

∑K−1
k=0 (b + akT ) = c1K. Then

using (66) we deduce that

−c1K ≤J(x, y) ≤ c1K. (75)

Then, it follows that L(x) = − infy J(x, y)/(c1K) ≤
1, which is achievable when x ∈ X .
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Second, to show the lower bounds in (69), we em-
ploy (68) and the fact that c1 > 0 to deduce that

L(x) = 0 ⇐⇒ x /∈ X
⇐⇒

(
f21 (x) = 0, c22f

2
2 (x) = 0

)
. (76)

Since f1(x) = 0 if and only if x ∈ X ⋆, and since

f22 (x) =

(
K

cos(Kx)

sin(x)

)2

> 0, x ∈ X ⋆, (77)

we conclude that 0 < L(x) when a ̸= 0, (since c2 =
aT/2), and 0 ≤ L(x), when a = 0.

(iv) Let x ∈ X ⋆, from the definition (57) we deduce that
x = mπ/K, where m ̸= qK, q ∈ Z, hence x /∈ X .
Substituting in (68), and recalling from the previous
argument that f1(x) = 0 we get

L(x) =
|c2f2(x)|
c1K

=

∣∣∣∣c2K cos(mπ)

c1K sin(x)

∣∣∣∣
=

∣∣∣∣ c2
c1 sin(x)

∣∣∣∣. (78)

(v) From (68) it follows that, for x /∈ X ,

L(x) =
1

K

√
f21 (x) +

(
c2
c1

)2

f22 (x). (79)

From the definitions of c1 and c2, we deduce that

c2
c1

=
aT/2

b+ a(K − 1)T/2
(80)

=
1

K − 1

a/b

a/b+ 2/(K − 1)T
(81)

=
1

K − 1

w

w + 2A
, (82)

where w = a/b and A = 1/(K − 1)T . From the
condition a > −b/(K − 1)T , we have that (82) is
valid for w > −1/(K − 1)T = −A.
We can now write, for x /∈ X ,

L(x;w) =
1

K

√
f21 (x) + g(w)

f22 (x)

(K − 1)2
(83)

=

√
(K − 1)2f21 (x) + g(w)f22 (x)

K(K − 1)
, (84)

where

g(w) =

(
w

w + 2A

)2

, w > −A. (85)

It is easily seen that for a fixed x ̸= X , L(x;w)
increases as g(w) increases. Moreover, it is easily
verified that

g(0) = 0,

lim
w→−A

g(w) = lim
w→∞

g(w) = 1,

d

dw
g(w) =

4Aw

(w + 2A)3
=

{
≤ 0, −A < w ≤ 0

> 0, w > 0

In other words, g(w) is decreasing for −A < w ≤ 0,
attains its minimum as w = 0, and increases for

w ≥ 0. It follows that supw>−A g(w) = 1 and
infw>−A g(w) = 0, and, therefore,

L(x;w) ≤ sup
w>−A

L(x,w) (86)

=

√
(K − 1)2f21 (x) + f22 (x)

K(K − 1)
, (87)

and

L(x;w) ≥ inf
w>−A

L(x,w) =
|f1(x)|
K

. (88)

Hence (71) holds.
All the claims have been shown and thus Lemma 1, and

Lemma 2 follow.
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