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An Enhanced Backtracking Search Algorithm for
the Flight Planning of a Multi-drones-assisted

Commercial Parcel Delivery System
Yiying Zhang, Guanzhong Zhou, Peng Hang, Chao Huang and Hailong Huang

Abstract—Using drones to carry out commercial parcel deliv-
ery can significantly promote the transformation and upgrading
of the logistics industry thanks to the saving of human labor
source, which is becoming a new component of intelligent
transportation systems. However, the flight distance of drones
is often constrained due to the limited battery capacity. To
address this challenge, this paper designs a multi-drones-assisted
commercial parcel delivery system, which supports long-distance
delivery by a generalized service network (GSN). Each node of
the GSN is equipped with charging piles to provide a charging
service for drones. Given the limited number of charging piles at
each node and the limited battery capacity of a drone, to ensure
the efficient operation of the system, the flight planning problem
of drones is converted into a large-scale optimization problem
by a priority-based encoding mechanism. To solve this problem,
an enhanced backtracking search algorithm (EBSA) is reported,
which is inspired by the characteristics of the considered flight
planning problem and the weak ability of the backtracking search
algorithm to escape from a local optimum. The core components
of EBSA are the designed comprehensive learning mechanism
and local escape operator. Experimental results prove the validity
of the improved strategies and the excellent performance of EBSA
on the considered flight planning problem.

Index Terms—Parcel delivery, flight planning, multi-drones,
generalized service network, backtracking search algorithm.

I. INTRODUCTION

THE rapid development of commercial drones is pounding
greatly at the traditional parcel delivery methods. Using

drones for parcel delivery can 1) improve delivery efficiency,
2) solve delivery problems in remote areas, 3) reduce op-
erating costs, and 4) effectively promote the transformation
and upgrading of the logistics industry. Some famous logistics
companies, such as Amazon and SF Express, have made some
attempts to employ drones for parcel delivery [1]–[3].

When a drone is regarded as a platform for parcel delivery,
its energy should be added multiple times by either replacing
the battery or recharging the battery to execute long-distance
delivery due to the limited battery capacity [4], [5]. Given this,
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the flight planning (FP) for the drone is strongly correlated
with the operating cost and delivery efficiency. For a multi-
drones-assisted parcel delivery system, determining the flights
of drones can be regarded as solving an optimization problem,
whose objective function is the operating cost that is usually
measured by the average travel time or average energy con-
sumption of all drones during parcel delivery. The limitation of
the sharing resources, such as service facilities for replacing or
recharging the battery, is usually seen as the constraint of the
optimization problem. Specifically, solving the optimization
problem is to search for the optimal flights for all drones from
the search space meeting the constraint.

To offer support for using drones to carry out long-distance
delivery, researchers have reported two models, i.e., the drone-
vehicle model and the drone-station model. The drone-vehicle
model can be divided into two major categories: 1) a vehi-
cle carries some spare batteries to add power to drones by
replacing the battery [6], [7], which needs the help of human
drivers, and 2) drones travel with public transportation vehicles
to perform delivery [8], [9], which is greatly influenced by
the public transportation network. The delivery efficiency of
the drone-vehicle model has usually a large uncertainty due to
unpredictable traffic. The basic idea of the drone-station model
is that some service stations (SSs) are deployed, which can
provide some professional services (e.g., replacing the battery,
recharging the battery, and maintenance) for drones [10]. From
this sense, the drone-station model is a more reliable and
promising delivery technique than the drone-vehicle model.

For the drone-station model, once the locations of SSs and
the delivery missions are fixed, its delivery efficiency mainly
depends on the flights of drones. In recent years, scholars have
done some research on the FP of drones. However, they mainly
pay attention to the obstacle avoidance of drones [11]–[13],
which do not cover the long-distance FP of multiple drones.
Lee et al. [2] present an approach to finding a set of collision-
free paths for delivery missions in a congested flight space.
Dorling et al. [14] report an Internet of Things-based drone
delivery system. However, the techniques of using drones to
execute long-distance delivery missions are not mentioned in
[2], [14]. Huang et al. [1] study the FP of a drone used to
carry out long-distance delivery, but it does not discuss multi-
drones-to-multi-missions. Here, it should be pointed out that
using multi-drones to perform long-distance delivery missions
is the basic feature of the drone-station model.

To get close to the real parcel delivery situation based on
the drone-station model, this paper solves the FP problem of
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a multi-drones-assisted commercial parcel delivery system by
the proposed enhanced backtracking search algorithm (EBSA).
In the considered system, a drone carries a parcel from a
depot to a destination parcel station (DPS), which is the closest
parcel station of all the parcel stations to the recipient. After
the parcel is dropped into the DPS, its recipient can take it
away according to the received electronic message. In general,
the delivery distance between the depot and the DSP could be
much longer than the maximum range of the drone. To assist
drones, some SSs are well deployed. Each SS is equipped
with some charging piles, which can offer a charging service
to drones. In addition, both the depot and the DPS are also
equipped with charging piles to make full use of the facilities.
In the system, all facilities including depots, SSs, and DPSs
form a generalized service network (GSN). In the GSN, each
facility can be seen as a node. A drone can fly from one node to
another with the help of the GSN. Here, it should be pointed
out that the system can support multi-drones to execute the
delivery tasks at the same time. However, given the limited
number of charging piles at each node, when the number of
drones that need to be charged is more than the number of
charging piles at one node, some drones must wait. Under the
considered system, the goal of this paper is to determine the
optimal flights (the least average travel time consumed by all
drones during parcel delivery) on the premise of satisfying the
constraints of the limited battery capacity of a drone and the
limited number of charging piles at each node.

To solve the considered FP problem, this paper uses the
priority-based encoding mechanism (PBEM) [15] to assign a
priority sequence (PS) (which generates a flight for a drone)
for each drone. That is, flights for all drones can be regarded as
a set of PSs. This set can be called the total priority sequence
(TPS). In addition, the lengths of PS and TPS are equal to
the number of nodes in the GSN and the production of the
number of nodes in the GSN and the number of drones (a
drone corresponds to a task in the system), respectively. Thus,
determining the optimal flights for all drones is to find the
optimal TPS from all feasible TPSs. Note that, the length
of TPS could be far more than 100 in this system. Given
this, the considered FP problem can be seen as a large-scale
optimization problem (LSOP) [16]. To solve such an LSOP,
EBSA is proposed, which is an improved version of the back-
tracking searching algorithm (BSA) [17]. BSA is a simple but
efficient population-based metaheuristic algorithm. However,
it is easy to be trapped into local optimal solutions in solving
challenging LSOPs due to the single learning strategy and the
weak ability to escape from a local optimum. Motivated by the
characteristics of the considered FP problem, the LSOP and
BSA, a comprehensive learning mechanism consisting of three
learning strategies and a local escape operator are introduced
to EBSA. The main contributions of this paper are as follows.

1) This paper presents a multi-drones-assisted commercial
parcel delivery system. Unlike the previous research, this
system can support simultaneously multi-drones to carry
out long-distance parcel delivery, which consists of four
core components, i.e., the depot, the drone, the SS, and
the DPS. The depot is used to store parcels that need to

be delivered. The drone is a parcel delivery tool, which
can fly from a depot to a DPS. The DPS is for the
temporary storage of parcels, where customers can pick
up their parcels. In addition, the depots, SSs, and DPSs
are equipped with charging piles for providing charging
services for drones, which can be regarded as nodes that
form a GSN that can help multi-drones to fly from the
depot to their DPSs at the same time.

2) This paper presents a new population-based metaheuris-
tic algorithm, namely EBSA, to determine the optimal
flights for drones. As mentioned previously, determining
the optimal flights for drones is to find the optimal
TPS from all feasible TPSs. Each individual in EBSA
denotes a TPS. EBSA is an improved version of BSA,
which has two core components that are employed to
enhance the global search ability on LSOPs. On the one
hand, a comprehensive learning mechanism consisting
of three learning strategies is built in EBSA. The first
learning strategy is the same as that of BSA; the second
learning strategy is based on randomly exchanging PSs
between an individual and the obtained best solution;
the third learning strategy is driven by the introduced
weighted mean position. On the other hand, a local
escape operator based on random numbers generated by
the standard normal distribution is designed to enhance
the ability of EBSA to escape from a local optimum.

3) This paper simulates a realistic multi-drones-assisted
commercial parcel delivery scenario based on the geo-
graphic information of Hong Kong In this scenario, the
GSN consists of 46 nodes, i.e., a depot, 29 SSs, and 16
DPSs, and each node is equipped with a limited number
of charging piles. In addition, to be as close as possible
to the real parcel delivery situation, this paper designs
a grouping delivery mechanism. Following this mecha-
nism, the required delivery tasks are divided into three
groups, which cover all DPSs and are executed at regular
intervals. Besides, six evaluation indicators including
average delivery efficiency, average flight efficiency,
average wait efficiency, average charging efficiency, con-
vergence performance, and computational efficiency are
employed to evaluate the delivery performance of EBSA
and the compared algorithms.

The rest of this paper is divided into five sections. Related
work is introduced in Section II. Section III presents prob-
lem formulation. Section IV describes the proposed EBSA.
Experimental results are discussed in Section V. Section VI
concludes this paper and brings forward future research.
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Fig. 1. A random network with 9 nodes. The weights of the
connecting edges are shown adjacent to the corresponding
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NOMENCLATURE
Symbol Meaning
Xh Historical population
X Population
η The penalty factor
θ The connected factor
ξ The number of independent runs
Dc The connected distance
E The residual energy of a battery
Ec,k,i The current power of drone k at node i
El The consumed energy of a drone during landing
Ep The penalty energy
Er,k,i The required power of drone k at node i
Et The consumed energy of a drone during take-off
lk The number of nodes in the flight planning of drone k
Lmax The maximum range of a drone
m The total number of nodes
n The number of drones
nc The number of charging piles
nd The number of destination parcel stations
np The number of depots
ns The number of service stations
Sn The sequence of numbers of all nodes
t The charging time
td,k The travel time of drone k during parcel delivery
tl The consumed time of a drone during landing
ttc,k The total charging time of drone k during parcel delivery
ttf,k The consumed time of drone k during the normal flight
ttl,k The consumed time of drone k during take-off and landing
ttw,k The total wait time of drone k during parcel delivery
tt The consumed time of a drone during take-off
v The speed of a drone during the normal flight
λk The numbers of nodes in the flight planning of drone k
GGSN The connected graph of the generalized service network
I task The task information
OFP The optimal flight planning
P drone The parameters of a drone
x∗ The best solution
xi,FP The corresponding flight planning of individual i
CE Charging efficiency
Erp,λk,q

The real penalty power of drone k at node λk,q

E0 The total power of a drone
FE Flight efficiency
N Population size
P0 The rotated power of a drone
Si,j The occupied time period of charging pile j at node i
WE Wait efficiency
da,b The Euclidean distance between node a and node b
ta,k,i The time of drone k arriving at node i
te,i,j The occupied end time of charging pile j at node i
ts,i,j The occupied start time of charging pile j at node i
tw,k,i,j The wait time of drone k at jth charging pile of node i
tw,k,i The wait time of drone k at node i

II. RELATED WORK

Over the past three decades, population-based metaheuris-
tic algorithms have developed greatly. A lot of population-
based metaheuristic algorithms have been applied to practical
engineering problems, such as the traffic signal optimization
problem [18], the electric vehicle charge scheduling problem
[19], and the sustainable ship routing and bunker management
problem [20]. In addition, some researchers have made some
attempts to use population-based metaheuristic algorithms to
solve the FP problem of unmanned aerial vehicles (UAVs) (a
type of drones). Yu et al. [21] propose a hybrid particle swarm
optimizer by merging the simulated annealing algorithm to
solve the FP problem of UAVs in complex three-dimensional
environments. Yu et al. [22] design a constrained differential
evolution algorithm to solve the FP problem of a UAV in

disaster scenarios. Qu et al. [23] present a novel reinforcement
learning-based grey wolf optimizer algorithm to solve the FP
problem of UAVs in complicated environments with multiple
obstacles. Pehlivanoglu et al. [24] employ an enhanced genetic
algorithm to solve the FP problem of autonomous UAV in
target converge problems. Phung and Ha [25] use a spherical
vector-based particle swarm optimization to solve the safety-
enhanced FP problem of a UAV. According to the experimental
results, these algorithms show excellent performance in de-
termining the FP of the considered scenarios. However, they
pay attention to searching the optimal FP that can avoid the
given obstacles, which do not cover the characteristics of the
considered FP problem in this paper.

Specifically, the characteristics of the considered FP prob-
lem can be summarized as:

1) Problem properties: From the perspective of problem
properties, its characteristics can be stated as:

• Multi-hop path. In a real parcel delivery situation, the
distance between the depot and the DPS is usually much
longer than the maximum range of a drone. The drone
must return to the ground serial times to add its energy
to complete the delivery task. Thus, the flight route of
the drone can be seen as a multi-hop path.

• Multi-drones-to-multi-tasks. The delivery mode of multi-
drones to multi-tasks is an essential feature of the modern
parcel delivery system based on the drone-station model,
which can significantly improve delivery efficiency and
effectively reduce inventory pressure.

• Resource sharing. Charging services are the fundamental
guarantee of supporting the drone to perform the long-
distance delivery task, which are shared by all drones
used to perform the delivery tasks.

• Self-performance of a drone. The self-performance of a
drone includes the maximum range, the maximum battery
capacity, speed, take-off and landing energy consumption,
charging characteristics, and the rated power, which has
a significant impact on its FP.

2) Problem solving: As mentioned in Section I, the FP
problem can be converted into an LSOP by TPS, which is
generated by PBEM. PBEM is a common encoding approach
to constructing the path between the source node and the
destination node in a network topology. Its basic idea is as
follows [15]: 1) each node is assigned a random priority value,
2) the larger the priority value, the higher the priority, 3) once
a node is selected into the constructed path, the priority value
of this node is given a large negative value to make this node
no longer selected, and 4) the node with the largest priority
value among all nodes connected to the terminal node of the
path is selected as a new node into the path. Next, a simple
example is used to illustrate the steps of constructing the path
by the PBEM. Fig. 1 shows a 9-node random network. Node
1 and node 9 are the source node and destination node in
Fig. 1, respectively. Let a random priority sequence Sp =
[5.66, 7.31, 6.71, 7.45, 2.38, 7.24, 3.98, 0.84, 8.24] corresponds
to the set of priority values from node 1 to node 9. According
to Sp, the achieved path (which is denoted by node numbers) is
1 → 4 → 3 → 6 → 9. In addition, many algorithms will suffer
from the curse of dimension in solving LSOPs, which can be
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Fig. 2. An example illustrating the built multi-drones-assisted commercial parcel delivery system (“connected line” means that
the connected two facilities are reachable).

described as follows. With the increase of the dimension, the
number of feasible solutions rises exponentially.

Thus, although the reported algorithms cannot be directly
applied to the considered FP problem, the population-based
metaheuristic algorithm can get a promising solution to the
FP problem of the UAV based on the experimental results
presented in these references. Motivated by this, to solve the
considered FP problem, this paper designs a new population-
based metaheuristic algorithm, namely EBSA, based on the
characteristics of the considered FP problem.

III. PROBLEM FORMULATION

This section first presents the built multi-drones-assisted
commercial parcel delivery system. Then, the mathematical
model of the considered FP problem is described.

A. The multi-drones-aided commercial parcel delivery system

Fig. 2 shows an example of the multi-drones-assisted com-
mercial parcel delivery system. The system contains a depot
(to store parcels), three drones (which carry out the delivery
tasks from the depot to three DPSs), three DPSs (which are
temporary storage areas for customers to pick up their parcels),
and 11 SSs (each SS is equipped with a limited number of
charging piles). To make full use of the system, the depot
and three DPSs are also equipped with a limited number of
charging piles. A facility (e.g., a depot, a DPS, or a SS) is
regarded as a node. All facilities including a depot, three DPSs,
and 11 SSs form a GSN with 15 nodes. Benefiting from the
GSN, a drone can perform a long-distance delivery task.

We take drone 1 as an example to describe the operation of
the system. Its FP is divided into three stages. Drone 1 takes
off from the depot in the first stage. After reaching a given
height, it turns into the normal flight state with a constant
speed. In the second stage, it flies from SS 1 to SS 11 by
charging its battery at SS 1, SS 2, SS 7, and SS 11. In the
third stage, it takes off from SS 11 and then lands at DPS 1
after performing the normal flight state. As shown in Fig. 2,
SS 7 also offers charging service for drone 2. That is, drone 2
is a potential influencing factor for the FP of drone 1 due to
the limited number of charging piles at SS 7. In addition, in
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Fig. 3. Charging curve of the battery of a drone (t0 is the time
to fully charge the battery).

Fig. 2, only three drones are considered. In a real scenario, the
number of drones is far more than three, which means more
drones may perform the delivery tasks via SS 7. Clearly, the
FP of drone 1 will bear the greater pressure. The challenge
faced by drone 1 also applies to other drones.

B. Mathematical model of the FP problem

This section describes the mathematical model of the con-
sidered FP problem. Firstly, five assumptions are made:

• All drones used to execute the delivery tasks are exactly
the same and their batteries are fully charged at the depot.
A drone performs an independent task, which does not
collide with other obstacles during the flight.

• A drone has three flight states, i.e., take-off, landing, and
normal flight. The drone takes off and lands vertically
above the take-off point and landing point, respectively.
The drone flies from one node to another node in a
straight line at a constant speed and altitude.

• The influencing factors on the energy consumption of a
drone include take-off, landing, charging for its battery,
and normal flight.

• The influencing factors on the running time of a drone
include take-off, landing, normal flight, charging for its
battery, and wait.

• The influence factor of the parcel weight on drone per-
formance is not considered.

From Fig. 2, the mathematical model of the considered FP
problem is mainly related to the following four parts:
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1) Charging function: Each node in the GSN can offer a
charging service for drones. At present, a drone is typically
equipped with series-connected lithium-ion polymer battery
cells [26]. The charging speed for a drone generally follows
the ”slow-fast-slow” rule during the charging process [27].
Without loss of generality, a charging function is defined by:

E =
E0

1 + exp(6− t/5)
, (1)

where t is charging time, E0 is the total energy capacity of a
battery, E is the residual energy of a battery. Fig. 3 shows the
charging curve based on (1). To compute the charging time,
(1) is rewritten by:

t = 30− 5 ln(
E0

E
− 1). (2)

Let Ec,k,i and Er,k,i be the current power at node i and the
required power at node i of drone k, respectively. According
to (2), the charging time can be computed by:

tc,k,i = 5 ln(
E0

Ec,k,i
− 1)− 5 ln(

E0

Er,k,i
− 1), k ∈ [1, n], (3)

where n is the number of drones and tc,k,i is the charging
time of drone k at node i.

2) Connected graph: To describe the positional relations
among nodes in the GSN, each node is numbered. Let np,
ns, nd, and Sn denote the number of depots, the number of
SSs, the number of DPSs, and the sequence of numbers of all
nodes, respectively. Sn can be represented by:

Sn = [1, 2, . . . , np, np + 1, np + 2, . . . , np + ns,

np + ns + 1, np + ns + 2, . . . , np + ns + nd].
(4)

According to (4), the node numbers for depots are from 1 to
np; the node numbers for SSs are from np +1 to np +ns; and
the node numbers for DPSs are from np+ns+1 to np+ns+nd.
That is, each node has its own number. Let m denote the total
number of nodes in the GSN, and m meet m = np +ns +nd.
To measure the positional relation between two nodes in the
GSN, the connected distance Dc is defined by:

Dc = (1− θ)× Lmax, (5)

where θ is called a connected factor and Lmax is the maximum
range of the drone. If the distance between two nodes is less
than Dc, the two nodes are connected (without recharging the
battery, a drone can fly between the two nodes); otherwise, the
two nodes are not connected (without recharging the battery, a
drone cannot fly between the two nodes). In this paper, θ is set
to 0.1. Based on (4) and (5), the positional relations among
nodes in the GSN can be described by a connected graph
GGSN based on a 0-1 matrix with m rows and m columns. In
the GGSN, “0” means that two nodes are not connected; “1”
means that two nodes are connected.

3) Status chart of charging piles: In the GSN, each node is
equipped with a limited number of charging piles to provide
charging services to drones. Let nc denote the number of
charging piles at one node. The rule of using charging piles at
one node can be described as follows. All drones that need to
be charged line up in the order of arrival. When the number

Algorithm 1 The computing method of tw,k,i and Si,j

Input:
Si,j , ta,k,i, tw,k,i, tw,k,i,j

Output:
tw,k,i, Si,j

1: Initialize the flag bit fb by fb = 0; // fb is to determine whether to wait
2: Initialize tw,k,i,j by tw,k,i,j = 0;
3: for j = 1 to nc do
4: if ta,k,i > te,i,j then
5: fb = 1; // there is no need to wait
6: tw,k,i = 0; // the wait time is 0
7: ts,i,j=ta,k,i; // update the status of charging pile j
8: te,i,j = ta,k,i + tc,k,i; // update the status of charging pile j
9: Break;

10: else
11: tw,k,i,j = te,i,j − ta,k,i; // compute the wait time
12: end if
13: end for
14: if fb == 0 then
15: Find the charging pile j∗ with the minimum wait time;
16: tw,k,i = tw,k,i,j∗ ; // compute the minimum wait time
17: ts,i,j∗ = ta,k,i; // update the start time that charging pile j∗ is

occupied
18: te,i,j∗ = ta,k,i + tc,k,i + tw,k,i. // update the end time that charging

pile j∗ is occupied
19: end if

of drones is more than nc, some drones must wait until idle
charging piles appear. To describe the status of charging piles,
a status chart of charging piles is designed by:

Si,j = [ts,i,j te,i,j ], i ∈ [1, ns + nd + np], j ∈ [1, nc], (6)

where Si,j is the time period that charging pile j at node i is
occupied, ts,i,j is the start time that charging pile j at node
i is occupied, and te,i,j is the end time that charging pile j
at node i is occupied. Let ta,k,i denote the time of drone k
arriving at node i, tw,k,i denote the wait time of drone k at
node i, and tw,k,i,j denote the wait time of drone k at the jth
charging pile of node i. The computing method of tw,k,i and
Si,j can be found in Algorithm 1.

4) Objective function: According to (4), the FP of drone k
can be denoted by a sequence of nodes in the GSN. Let λk

denote the node numbers of the sequence corresponding to the
FP of drone k and lk denote the number of nodes in the λk.
λk is expressed by:

λk = [λk,1, λk,2, . . . , λk,lk ], lk ≥ 3, (7)

λk,p ∈ Sn, p ∈ [1, lk]. (8)

In (7), lk is no less than 3. This ensures that at least one
node exists between the start node (a depot) and the end node
(one DPS). Based on (7) and (8), Fig. 4 presents an example
of the flight of drone k. In Fig. 4, the travel time of drone k
in the delivery process consists of the following four parts:

• The consumed time by drone k on take-off and landing.
From Fig. 4, the number of take-off and landing of drone
k is lk−1 and lk−1, respectively. Let tt and tl denote the
consumed time during take-off and landing, respectively.
Let ttl,k denote the consumed time by drone k on take-off
and landing. ttl,k can be computed by:

ttl,k = (tt + tl)× (lk − 1). (9)

• The consumed by drone k on the normal flight. The
constant speed for drone k on the normal flight is set to
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v. Let ttf,k denote the consumed time by drone k during
the normal flight. ttf,k can be expressed by:

ttf,k =

lk−1∑
m=1

dλk,m,λk,m+1

v
, (10)

where dλk,m,λk,m+1
is the Euclidean distance between

node λk,m and node λk,m+1.
• The consumed time by drone k on charging. According

to (3), tc,k,λk,q
is related to Ec,k,λk,q

and Er,k,λk,q
, where

q is an integer meeting q ∈ (1, lk). Next, the computing
methods of Ec,k,λk,q

and Er,k,λk,q
are introduced. In this

paper, to improve the delivery efficiency of drone k, the
battery of drone k is charged to Er,k,λk,q

rather than E0

at node λk,q . Er,k,λk,q
is the minimum power that allows

drone k to fly from node λk,q to node λk,q+1. Thus,
Er,k,λk,q

can be computed by:

Er,k,λk,q
=

P0 × dλk,q,λk,q+1

v
+ Et + El, (11)

where El is the consumed energy during landing, Et is
the consumed energy during take-off, and P0 is the rated
power of drone k. From (11), when drone k lands at
node λk,q+1, Ec,k,λk,q+1

is equal to 0. This is extremely
harmful to the battery. To avoid this, (11) is rewritten by:

Er,k,λk,q
=

P0 × dλk,q,λk,q+1

v
+ Et + El + Ep, (12)

where Ep is the penalty energy that can be achieved by:

Ep = η × E0, (13)

where η is called the penalty factor that is set to 0.1 in
this paper. Note that, Ec,k,λk,q+1

is much larger than 0 due
to the introduction of Ep. However, Er,k,λk,q

achieved by
(12) may be more than E0 due to the introduction of Ep.
Thus, Er,k,λk,q

needs to be further addressed by:

Er,k,λk,q
=

{
E0, if Er,k,λk,q

> E0 ;
Er,k,λk,q

, if Er,k,λk,q
≤ E0.

(14)

For the convenience of describing the computing method
of Ec,k,λk,q

, the real penalty power is introduced, which
can be represented by:

Erp,λk,q
=

{
E0 − Er,k,λk,q

, if Er,k,λk,q
> E0 ;

Ep, if Er,k,λk,q
≤ E0,

(15)

where Erp,λk,q
is the real penalty power of drone k at

node λk,q . According to (15), Ec,k,λk,q
is obtained by:

Ec,k,λk,q
=

{
E0 −

P0×dλk,1,λk,2

v − Et − El, if q = 2;
Erp,λk,q

, if q ∈ (2, lk).
(16)

Based on (3), (14), and (16), tc,k,λk,q
can be written by:

tc,k,λk,q
= 5 ln(

E0

Ec,k,λk,q

−1)−5 ln(
E0

Er,k,λk,q

−1). (17)

Let ttc,k denote the total charging time of drone k during
parcel delivery. ttc,k can be denoted by:

ttc,k =

lk−1∑
q=2

tc,k,λk,q
. (18)

……

Depot SS SS DPS,1( )k ,2( )k , 1( )
kk l  ,( )

kk l

Fig. 4. The FP of drone k from a depot to a DPS.

• The consumed time by drone k on wait. Let ttw,k denote
the total wait time of drone k during parcel delivery. From
Algorithm 1, ttw,k can be computed by:

ttw,k =

lk−1∑
q=2

tw,k,λk,q
. (19)

Let td,k denote the travel time of drone k during parcel
delivery. td,k can be expressed by:

td,k = ttl,k + ttf,k + ttc,k + ttw,k. (20)

Let Tatt denote the average travel time of all drones during
parcel delivery. Solving the considered FP problem is to
get the optimal Tatt. Therefore, the objective function of the
considered FP problem can be defined by:

minTatt = f(λ1,λ2, . . . ,λn) =
1

n

n∑
k=1

td,k. (21)

subject to (5), (6), (7), (8), (9), (10), (18), (19), (20), and

λk ∈ Sn, k = 1, 2, . . . , n. (22)

As shown in (21), the most remarkable characteristic of the
designed system is that it can support multi-drones to execute
long-distance parcel delivery at the same time.

IV. THE PROPOSED ALGORITHM

EBSA is an improved version of BSA. This section first
introduces BSA and then describes the proposed EBSA.

A. BSA

BSA is a very popular population-based metaheuristic al-
gorithm and its structure consists of four parts [17]:

1) Selection-I: In BSA, the historical population Xh(Xh =
{xh,1,xh,2, . . . ,xh,N}) is used to guide the search direction of
the current population X(X = {x1,x2, . . . ,xN}), where N
is the population size. Xh is first obtained by:

Xh =

{
X, if ϕ1>ϕ2;
Xh, otherwise, (23)

where ϕ1 and ϕ2 are two random numbers in [0,1]. Then, φ(·)
is used to sort individuals in the Xh randomly, which can be
described by:

Xh = φ (Xh) , (24)

2) Mutation operator: This operator is to compute the trail
individual of individual i, which can be expressed by:

zi = xi + F × (xh,i − xi) , i ∈ [1, N ], (25)

where F is scale factor and zi is the trail individual of xi.
F is computed by 3 × α, where α is a random number with
standard normal distribution
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3) Crossover operator: The crossover operator is further
processed for zi by a binary integer-valued matrix G with
N rows and D columns, where D is the dimension of the
problem. The method of generating G is based on the mix
rate [17]. This operator can be denoted by:

zi,j=

{
xi,j , if gi,j=1;
zi,j , if gi,j=0,

(26)

where xi,j is the jth element of xi, zi,j is the jth element of
zi, and gi,j is the jth element of the ith row in the G.

4) Selection-II: This operator is to accelerate the conver-
gence speed of BSA, which can be represented by:

xi =

{
xi, if f(xi)<f(zi),
zi, if f(xi)≥f(zi).

(27)

B. EBSA

Algorithm 2 shows the flowchart of BSA. From Algorithm 2
the disadvantages of BSA are as follows:

• Single learning strategy. BSA only has a learning strategy,
which is not helpful for keeping population diversity.

• Unclear search direction. In BSA, the search direction
of the population is guided by the selected randomly
historical population, which cannot help to accelerate the
convergence speed.

• Underutilized the population information. BSA only em-
ploys historical information, which does not consider
other valuable population information.

• No local escape operator. BSA is easy to converge to the
local optima in solving LSOPs due to the lack of a local
escape operator.

Motivated by these disadvantages, EBSA is reported to im-
prove the performance of BSA on the considered FP problem.
In the proposed EBSA, each individual denotes a TPS of n
drones. Let xp,k denote the PS of drone k. The number of
elements in each PS is equal to the number of nodes in the
GSN. Thus, xi can be expressed by:

xi = {xp,1,xp,2, . . . ,xp,n}, i ∈ [1, N ], (28)

where xp,k is module k of xi. That is, xi has n modules and
each module includes m elements. The obtained FP based on
xi is denoted by xFP,i. EBSA includes two core components:

1) Comprehensive learning mechanism: The built compre-
hensive learning mechanism includes three learning strategies:

• The first learning strategy is the same as that of BSA.
• The second learning strategy aims to randomly exchange

information between xi and the obtained best solution
x∗. x∗ contains some valuable information for finding
the global optimal solution. Motivated by this, β modules
are exchanged between x∗ and xi. β is obtained by:

β = ⌈n× ϕ3⌉ , (29)

where ϕ3 is a random number in [0,1].
• The basic idea of the third learning strategy is to make

full use of the population information. The mean position
is a common indicator to measure the overall information

Algorithm 2 The flowchart of BSA.

Input:
Population size N , the current number of iterations Nc(Nc = 0), the
maximum number of iterations Nm, and the mix rate Mrate

Output:
The optimal solution x∗

1: Initialize X and Xh;
2: Evaluate X , find x∗, and update Nc by Nc = Nc + 1;
3: while Nc < Nm do
4: Update Xh by (23-24); // Selection-I
5: Generate the binary integer-valued matrix G;
6: for i = 1 to N do
7: Execute mutation operator for xi by (25); // Mutation operator
8: Execute crossover operator for xi by (26); // Crossover operator
9: Generate the next generation of for xi by (27); // Selection-II

10: end for
11: Update x∗ and Nc by Nc = Nc + 1. // Update the optimal solution
12: end while

of the population. To better keep the population diversity,
the weighted mean position Mw is defined by:

Mw = ϕ4×(ϕ5×xi+(1−ϕ5)×xj)+(1−ϕ4)×
1

N

N∑
i=1

xi,

(30)
where j is an integer selected randomly from 1 and N ,
ϕ4 is a random numbers in [0,1], and ϕ5 is 0 or 1. The
third learning strategy is described as:

xi = xi + ϕ6 × (x∗ −Mw), (31)

where ϕ6 is a random number in [0,1].
The three learning strategies have the same importance and

are assigned the same selected probability, which is adjusted
by a switch probability ps. ps is a random number that follows
a uniform distribution between 0 and 1.

2) Local escape operator: The basic idea of the designed
local escape operator is that using random numbers from the
standard normal distribution replaces randomly some elements
of some modules in the x∗. Let γ∗ denote the number of the
selected modules in the x∗. γ∗ can be represented by:

γ∗ = ⌈n× ϕ7⌉ , (32)

where ϕ7 is a random number in [0,1]. The number of the
replaced elements in a selected module is denoted by:

h∗
s = ⌈m× ϕ8⌉ , s ∈ [1, γ∗], (33)

where h∗
s is the number of the selected elements of the selected

sth module in the x∗ and ϕ8 is a random number in [0,1].
Let x∗

e,s,j denote the selected jth element of the selected sth
module in the x∗. The local escape operator is defined by:

x∗
e,s,j = µ× x∗

e,s,j , j ∈ [1, h∗
s], (34)

where µ is a random number with the standard normal
distribution that is employed to adjust the amplitude of x∗

e,s,j .
In addition, the obtained new individual by performing the
local escape operator is denoted by x∗

e , whose corresponding
FP is x∗

e,FP.
In addition, for the considered FP problem, the upper limit

and lower limit of each element in the PS are set to m and
−m, respectively. X can be initialized by:

xi,j = −m+ 2×m× ϕ9, i ∈ [1, N ], j ∈ [1,m× n], (35)
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Algorithm 3 The implementation of EBSA on the considered FP problem

Input:
Population size N , the current number of iterations Nc, the maximum
number of iterations Nm, the mix rate Mrate, the connected graph of
GSN GGSN, the task information Ltask, the number of charging pile nc,
and the parameters of a drone P drone

Output:
x∗ and the optimal FP OFP

1: // Initialization parameters (lines 2 to 4)
2: Compute m and n according to GGSN and Ltask;
3: Initialize X by (35), Xh by (34), Mrate by Mrate=1, and Nc by Nc=0;
4: Compute the corresponding FP of each individual in the X based on

PBEM, GGSN and Ltask;
5: // Evaluate FP and obtain the optimal individual (line 6)
6: Evaluate each FP based on P drone and (22), and get x∗ and OFP;
7: Update Nc by Nc = Nc + 1;
8: // Main loop (lines 9 to 36)
9: while Nc < Nm do

10: Generate G by Mrate and update Xh by (23-24);
11: for i = 1 to N do
12: // Perform comprehensive learning mechanism (lines 13 to 21)
13: Generate ps ;
14: if ps < 1/3 then
15: Perform the first learning strategy to update xi by (25-27);
16: else if ps < 2/3 then
17: Get β by (29);
18: Perform the second learning strategy to update xi by exchanging

β modules randomly between xi and x∗;
19: else
20: Perform the third learning strategy to update xi by (30-31);
21: end if
22: Compute xFP,i of xi based on PBEM, GGSN and Ltask;
23: Check xFP,i and evaluate xFP,i based on P drone and (22);
24: if f (xFP,i)<f (OFP) then
25: OFP = xFP,i, x∗ = xi;
26: end if
27: // Perform local escape operator (lines 28 to 32)
28: Perform the local escape operator to get x∗

e by (32-34);
29: Compute x∗

e,FP of x∗
e based on PBEM, GGSN and Ltask;

30: Check x∗
e,FP and evaluate x∗

e,FP based on P drone and (22);
31: if f (x∗

e,FP)<f (OFP) then
32: OFP = x∗

e,FP, x∗ = x∗
e ;

33: end if
34: end for
35: Update Nc by Nc = Nc + 1.
36: end while

where ϕ9 is a random number in [0,1]. Algorithm 3 shows the
implementation of EBSA on the considered FP problem. The
source code of EBSA can be loaded from https://github.com/
jsuzyy/EBSA. The features of EBSA can be summarized as:

• To overcome the mentioned first disadvantage of BSA,
EBSA builds a comprehensive learning mechanism.

• To overcome the mentioned second disadvantage of BSA,
EBSA makes full use of the obtained best solution in the
second and third learning strategies.

• To overcome the mentioned third disadvantage of BSA,
EBSA defines a weighted mean position involved to all
individuals to design the third learning strategy.

• To overcome the mentioned fourth disadvantage of BSA,
EBSA introduces a local escape operator based on the
random numbers with standard normal distribution.

As done in [28], from Algorithm 3, the time complexity of
each operation in EBSA mainly includes six parts:

• Initializing X and Xh costs 2 ∗O(N).
• Evaluating X costs O(N).
• Comparison between two values costs O(3 ∗N + 1).
• Generating G costs O(N ∗D).
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Fig. 5. A real multi-drones-assisted parcel delivery scenario.

• Executing the comprehensive learning mechanism costs
O(N ∗ (D + 1) in the worst case.

• Executing the local escape operator costs O(N ∗ (D+1)
in the worst case.

V. EXPERIMENTS AND DISCUSSION

A. Experiment preparation

As shown in Fig. 5, this paper simulates a realistic multi-
drones-assisted parcel delivery scenario according to the geo-
graphic information of Hong Kong. From Fig. 5, np, ns, nd,
and m are equal to 1, 29, 16, and 46, respectively. That is,
the GSN consists of 46 nodes (one depot, 29 SSs, and 16
DPSs). Multi-drones can fly from the depot to any DPS at
the same time with the help of the GSN. The parameters
of drones are extracted from [1], which are summarized as
follows: E0 = 3.20×105J, Et = 6.25×103J, El = 6.25×103J,
tt = 25s, tl = 25s, t0 = 64min, v = 4m/s, P0 = 300W, and
Lmax = 4.27Km.

To be as close as possible to the real parcel delivery situa-
tion, a grouping delivery mechanism is designed. Specially, all
delivery tasks are divided into three groups that are executed
at regular intervals. In addition, as presented in Fig. 5, DPSs
are concentrated in the northeast, east, and south, which is the
basis of setting delivery tasks. The assigned delivery tasks for
each group cover three directions:

• Group 1: Group 1 can be seen as routine tasks and are
first performed: drone 1 to drone 16 fly from the depot
to DPS 1 to DPS 16, respectively.

• Group 2: Group 2 can be seen as temporary tasks. Half
an hour after the start of group 1, group 2 starts: drone
17 to drone 22 fly from the depot to DPS 2, DPS 3, DPS
8, DPS 10, DPS 13, and DPS 15, respectively.

• Group 3: Group 3 also can be seen as temporary tasks.
Half an hour after the execution of group 2, group 3 starts:
drone 23 to drone 28 fly from the depot to DPS 1, DPS
4, DPS 7, DPS 9, DPS 12, and DPS 14, respectively.

To verify the competitiveness of EBSA, it is compared with
BSA, an improved BSA (IBSA) [29], particle swarm optimiza-
tion (PSO) [30], generalized normal distribution optimization
(GNDO) [31], and artificial rabbits optimization (ARO) [32].
Especially, PSO is a very classical and popular population-
based metaheuristic algorithm. IBSA is a powerful variant of

https://github.com/jsuzyy/EBSA
https://github.com/jsuzyy/EBSA
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TABLE I: The detailed parameters of the utilized system.

Name Setting
Hardware
Solid state drive 500G
RAM 16.0G
Frequency 2.30 GHz
CPU 12th Gen Intel(R) Core(TM) i7-12700H
Software
Language MATLAB R2017A
Operating system Windows 11

BSA. GNDO inspired by the normal distribution function and
ARO inspired by the survival strategies of rabbits in nature
are two novel population-based metaheuristic algorithms. The
population size is set to 50 for all the applied algorithms.
Note that, as shown in Algorithm 3, each individual in EDDE
is evaluated twice in one loop. To make a fair comparison,
the maximum number of iterations is set to 500 and 250 for
the compared algorithms and EBSA, respectively. In addition,
the other control parameters of the compared algorithms are
extracted directly from the corresponding references and the
detailed parameters of the utilized system are shown in Table I.
Besides, nc is between 1 and 4 at each node and the number
of independent runs is set to 30 for each algorithm in each
case. Experimental results are shown in Tables (II-V). In these
tables, the best results are in bold, and “BEST”, “MEAN”,
and “STD” represent the best value, the mean value, and the
standard deviation, respectively.

B. Comparison on the average travel time

According to (21), the designed objective function aims to
find the optimal average travel time (average time consumed
by all drones during package delivery). To the convenience of
description, (21) can be rewritten by:

Tatt,i =
1

n

n∑
k=1

td,k,i , i ∈ [1, ξ], (36)

where Tatt,i is the average travel time of all drones in the ith
run, ξ is the number of independent runs, and td,k,i is the travel
time of drone k in the ith run. From (36), a smaller average
travel time means a more efficient delivery efficiency.

Table II presents the statistical results of the average travel
time. By observing Table II, EBSA outperforms the compared
algorithms in all the considered four cases. This represents
that EBSA has better global search ability and stability than
the compared algorithms. In addition, ARO and GNDO show
strong competitiveness. When nc is equal to 1, ARO can get
the second best BEST; when nc is larger than 1, GNDO can
get the second best BEST. Besides, PSO and BSA are the
two worst algorithms in all the considered four cases. In other
words, EBSA can determine the better flights for 28 drones
than the compared algorithms in each case. From Table II,
EBSA can achieve the optimal delivery efficiency on nc = 4,
whose corresponding average travel time is 2.9902 hours. Fig.
6 shows 12 typical flights obtained by EBSA with nc = 4.

To verify the impact of nc on delivery efficiency, Fig. 7
is shown based on the data from Table II. Looking at Fig.
7, with the increase of nc, the optimal delivery efficiency
of each algorithm can be improved continuously while the

TABLE II: Statistical results of average travel time from 30
independent runs (the unit is hours).

nc Indicator PSO BSA ARO IBSA GNDO EBSA

1 BEST 8.6940 8.7891 7.4117 7.9335 7.6650 4.2621
MEAN 10.7535 9.5454 8.6231 8.9100 9.6889 4.4927
STD 1.5111 0.5227 0.5232 0.4534 0.9800 0.1342

2 BEST 5.8208 5.5970 5.3706 5.3184 5.0750 3.3856
MEAN 6.5784 6.2060 5.7495 5.8986 6.0580 3.5256
STD 0.4117 0.2677 0.2149 0.2921 0.4577 0.0933

3 BEST 4.8287 4.8189 4.5258 4.8063 4.4854 3.0734
MEAN 5.6549 5.3442 4.9833 5.1362 5.1921 3.2226
STD 0.3283 0.2066 0.2034 0.2051 0.3545 0.0722

4 BEST 4.7305 4.5632 4.2926 4.5182 4.1825 2.9902
MEAN 5.3708 4.8977 4.6238 4.7795 4.8536 3.0825
STD 0.3158 0.1559 0.1373 0.1367 0.2724 0.0570

TABLE III: Statistical results of average flight efficiency from
30 independent runs (the unit is seconds per meter).

nc Indicator PSO BSA ARO IBSA GNDO EBSA

1 BEST 1.0387 1.0593 0.9632 0.9724 0.9906 0.7274
MEAN 1.1951 1.1295 1.0615 1.0872 1.1285 0.7613
STD 0.1298 0.0448 0.0530 0.0432 0.0816 0.0160

2 BEST 0.6997 0.7158 0.6811 0.6821 0.6756 0.5902
MEAN 0.7490 0.7531 0.7275 0.7334 0.7365 0.6080
STD 0.0281 0.0250 0.0281 0.0256 0.0209 0.0093

3 BEST 0.6242 0.6263 0.6213 0.6237 0.6155 0.5581
MEAN 0.6545 0.6535 0.6410 0.6456 0.6416 0.5698
STD 0.0183 0.0151 0.0145 0.0137 0.0150 0.0081

4 BEST 0.5966 0.5947 0.5890 0.5881 0.5886 0.5440
MEAN 0.6203 0.6144 0.6070 0.6120 0.6108 0.5518
STD 0.0121 0.0114 0.0100 0.0091 0.0101 0.0042

improvement range is significantly decreased. This can be
explained as follows. When nc = 1, charging resources in
the GSN is pretty intense and a drone needs to spend a
lot of time on wait. Thus, when nc is increased from 1 to
2, charging resources are obviously relieved and the average
travel time of each algorithm shows a sharp decline. With the
continuing increase of nc, the impact of charging resources on
determining the flights is getting gradually weaker.

C. Comparison on the average flight efficiency

For an ideal flight under the considered scenario, the con-
sumed time on take-off and landing, charging, and wait should
be reduced as small as possible. Motivated by this, to measure
delivery efficiency, the average flight efficiency is defined by:

FE,i =
1

n

n∑
k=1

td,k,i/
1

n

n∑
k=1

Lf,k,i , i ∈ [1, ξ], (37)

where FE,i is average flight efficiency of all drones in the ith
run, Lf,k,i is flight length of drone k in the ith run, td,k,i is
travel time of drone k in the ith run. From (37), the average
flight efficiency means the required travel time per unit flight
length. That is, a smaller average flight efficiency represents
a more efficient delivery efficiency.

Table III shows the achieved average flight efficiency by
EBSA and the compared algorithms. Looking at Table III, in
terms of BEST, EBSA is superior to the other algorithms in
all considered four cases. That is, EBSA has better flight effi-
ciency than the compared algorithms in each case. In addition,
ARO, IBSA, and GNDO have similar BEST in each case. PSO
and BSA are the two worst algorithms in terms of the quality
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(a) Drone 3 from group 1
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(b) Drone 8 from group 1
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(c) Drone 10 from group 1
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(d) Drone 16 from group 1
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(e) Drone 17 from group 2
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(f) Drone 19 from group 2
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Fig. 6. 12 typical flights obtained by EBSA with nc = 4.
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Fig. 7. The statistical results of the optimal average travel time.

of the obtained average flight efficiency. By observing Table
III, with the increase of nc, the obtained optimal average flight
efficiency of each algorithm has been falling steadily, which
can be explained as follows. The increase of nc can effectively
reduce the wait time of a drone at one node, which can help
to reduce the travel time of a drone.

TABLE IV: Statistical results of average charging efficiency
from 30 independent runs (the unit is seconds per meter).

nc Indicator PSO BSA ARO IBSA GNDO EBSA

1 BEST 0.3190 0.3170 0.3142 0.3155 0.3236 0.2746
MEAN 0.3380 0.3306 0.3292 0.3294 0.3353 0.2831
STD 0.0095 0.0058 0.0067 0.0080 0.0071 0.0061

2 BEST 0.3153 0.3085 0.3115 0.3097 0.3101 0.2713
MEAN 0.3351 0.3265 0.3235 0.3270 0.3290 0.2795
STD 0.0086 0.0070 0.0063 0.0081 0.0094 0.0047

3 BEST 0.3083 0.3103 0.3133 0.3107 0.3126 0.2653
MEAN 0.3332 0.3254 0.3221 0.3234 0.3266 0.2788
STD 0.0087 0.0077 0.0059 0.0065 0.0077 0.0068

4 BEST 0.3180 0.3120 0.3058 0.3074 0.3103 0.2669
MEAN 0.3328 0.3222 0.3201 0.3221 0.3247 0.2733
STD 0.0070 0.0056 0.0069 0.0057 0.0071 0.0033

D. Comparison on the average charging efficiency

A drone can add its battery capacity by the offered charging
service. However, charging also takes some extra time, such
as take-off, landing, and wait. To improve delivery efficiency,
charging times should be reduced as small as possible. Moti-
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TABLE V: Statistical results of average wait efficiency from
30 independent runs (the unit is seconds per meter).

nc Indicator PSO BSA ARO IBSA GNDO EBSA

1 BEST 0.4416 0.4589 0.3757 0.3827 0.3874 0.1827
MEAN 0.5906 0.5323 0.4657 0.4912 0.5267 0.2113
STD 0.1255 0.0440 0.0513 0.0429 0.0815 0.0133

2 BEST 0.0975 0.1193 0.1009 0.1012 0.0884 0.0477
MEAN 0.1473 0.1599 0.1374 0.1398 0.1410 0.0616
STD 0.0279 0.0243 0.0279 0.0243 0.0183 0.0082

3 BEST 0.0354 0.0266 0.0305 0.0343 0.0297 0.0181
MEAN 0.0548 0.0614 0.0522 0.0557 0.0485 0.0242
STD 0.0151 0.0139 0.0123 0.0143 0.0104 0.0042

4 BEST 0.0118 0.0086 0.0097 0.0111 0.0071 0.0064
MEAN 0.0209 0.0255 0.0202 0.0233 0.0195 0.0116
STD 0.0077 0.0102 0.0085 0.0075 0.0060 0.0028

vated by this, to measure delivery efficiency, average charging
efficiency is defined by:

CE,i =
1

n

n∑
k=1

ttc,k,i/
1

n

n∑
k=1

Lf,k,i , i ∈ [1, ξ], (38)

where CE,i is average charging efficiency of all drones in the
ith run and ttc,k,i is charging time of drone k in the ith run.
From (38), the average charging efficiency means the required
charging time per unit flight length. That is, a smaller average
charging efficiency means a more efficient delivery efficiency.

The average charging efficiency obtained by EBSA and the
compared algorithms is shown in Table IV. By observing Table
IV, according to BEST and MEAN, EBSA can get the best
charging efficiency in the considered four cases. In addition,
in terms of STD, EBSA can not compete with BSA, ARO,
and IBSA on nc = 1, nc = 3, and nc = 3, respectively.
However, EBSA is the best of all algorithms on nc = 2 and
nc = 4. Besides, GNDO can get the second best BEST on
nc = 1, nc = 2, and nc = 3. ARO can obtain the second best
BEST on nc = 4. In general, PSO and BSA are the two least
competitive algorithms.

E. Comparison on the average wait efficiency

Thanks to a limited number of charging piles at one node,
a drone sometimes needs to wait to charge. However, wait is
harmful to delivery efficiency. Motivated by this, to measure
delivery efficiency, average wait efficiency is defined by:

WE,i =
1

n

n∑
k=1

ttw,k,i/
1

n

n∑
k=1

Lf,k,i , i ∈ [1, ξ], (39)

where WE,i is average wait efficiency of all drones in the ith
run and ttw,k,i is wait time of drone k in the ith run. From
(39), the average wait efficiency means the required wait time
per unit flight length. That is, a smaller average wait efficiency
represents a more efficient delivery efficiency.

The obtained average wait efficiency by the applied algo-
rithms are presented in Table V. According to the considered
scenario, the increase of nc can effectively reduce the wait time
of a drone. From Table V, although the optimal wait efficiency
of each algorithm has been a marked decline with the increase
of nc, the compared algorithms still cannot compete with
EBSA. That is, EBSA takes the least wait time in each case,
which has a more efficient wait efficiency than the other five
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Fig. 8. Average convergence curves from 30 independent runs.

TABLE VI: Average running time (the unit is second) from 30
independent runs of the applied algorithms on each iteration.

nc PSO BSA ARO IBSA GNDO EBSA

1 1.0906 1.0589 1.0677 1.0510 1.1333 1.5354
2 1.1250 1.1047 1.1042 1.0995 1.1880 1.5724
3 1.1547 1.1260 1.1234 1.1240 1.2427 1.6135
4 1.2036 1.1500 1.1646 1.1646 1.2599 1.6563
Avg. 1.1435 1.1099 1.1150 1.1098 1.2060 1.5944

algorithms in each case. Note that, PSO and BSA are inferior
significantly to the other four algorithms in terms of waiting
efficiency.

F. Comparison on the convergence performance

Fig. 8 shows average convergence curves from 30 indepen-
dent runs achieved by the applied algorithms in four cases.

Looking at Fig. 8, PSO has the worst convergence ability
in the considered four cases. BSA and GNDO have similar
convergence performances. IBSA has slightly better conver-
gence performance than BSA and GNDO. Although ARO has
obvious convergence advantages over PSO, BSA, IBSA, and
GNDO, it is far inferior to EBSA. In addition, PSO, BSA,
IBSA, ARO, and GNDO suffer from premature convergence,
which converges to locally optimal solutions earlier. In terms
of convergence performance, EBSA is significantly superior
to PSO, BSA, IBSA, ARO, and GNDO due to two reasons:
1) the built learning mechanism with three learning strategies
that can help to keep the population diverse of EBSA, and 2)
the designed local escape operator based on random numbers
with standard normal distribution can enhance the ability of
EBSA to escape from the local optima.

G. Comparison on the running time

Table VI shows the average running time from EBSA and
the compared algorithms on each iteration. From Table VI,
as the number of charging piles increases, the running time
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consumed by each algorithm generally has an upward trend
due to the structure of Algorithm 1. In addition, according to
the average running time shown in the last column of Table VI,
the computation efficiency of six algorithms can be sorted
from best to worst in the following order: IBSA, BSA, ARO,
PSO, GNDO, and EBSA. Clearly, EBSA is the worst of all
algorithms in terms of computation efficiency, which can be
explained as follows.

Although the excellent performance of EBSA on the con-
sidered FP problem has been proven, it requires more com-
putational efforts on executing the local escape operator. In
other words, the excellent performance of EBSA is at the cost
of reducing computational efficiency. Note that, according to
the characteristics of the local escape operator, the number of
nodes in the GSN is roughly proportional to the computational
overhead of performing the local escape operator.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper focuses on determining the optimal flights for
multi-drones to execute long-distance parcel delivery. A multi-
drones-assisted commercial parcel delivery system consisting
of the depot, the SS, the DPS, and the drone is built. The
facilities are equipped with a limited number of charging
piles, which form a GSN to provide the charging service
for drones. When drones carry out delivery tasks, their FP
problem can be converted into an LSOP by PBEM. EBSA is
proposed, whose key components are the built comprehensive
learning mechanism with three learning strategies and the
designed local escape operator with random numbers obeying
the standard normal distribution. Experimental results demon-
strate that EBSA can determine more efficient flights than
the compared algorithms in terms of the considered indicators
including average travel time, average flight efficiency, average
wait efficiency, average charging efficiency, and convergence
performance. That is, experimental results prove the validity of
the improved strategies. In addition, as discussed and analyzed
in Section V, as the number of charging piles at one node
continues to increase, the improvement in delivery efficiency
begins to decline. In other words, the number of charging
piles at one node needs to be set properly to maximize the
comprehensive economic benefits. According to the obtained
experimental results presented in Section V, the optimal num-
ber of charging piles at one node is three in the considered
scenario of this paper.

Note that, in the simulation results, we have not taken
into account the issue that the drones can not cross some
areas. However, our framework can accommodate the no-fly
zone constraint. Specifically, the designed system supports
multi-drones to execute long-distance parcel delivery by the
connected graph and the deployed charging piles at each node.
The connected graph is a 0-1 matrix: “1” means that two nodes
are connected (the Euclidean distance between the two nodes
is no larger than the given threshold), while “0” means that
two nodes are not connected (the Euclidean distance between
the two nodes is larger than the given threshold). In the
presented simulation results, we used the Euclidean distance
for simplicity. If there is some no-fly zone between a pair of

nodes, we can simply replace the Euclidean distance with the
length of a feasible flight path between the two nodes. This
does not impact the operation of the proposed algorithm at all.

As discussed in Section V-G, the excellent performance of
EBSA is at the expense of computational efficiency. To over-
come this disadvantage, our future research will pay attention
to designing a simpler and yet more efficient local escape
operator by transfer learning to improve the computational
overhead of EBSA on the considered FP problem with a large-
scale GSN. In fact, a real multi-drones-assisted commercial
parcel delivery system is very complex, whose FP needs
to consider two scenarios happening simultaneously. One is
that some drones are flying from the depot to their DPSs.
Another is that some drones are flying from their DPSs to
the depot. In addition, some essential functions also need
to be considered, such as a drone needs to pick up parcels
returned by customers, a drone needs maintenance after a long
flight to its destination parcel station, and a drone needs to
avoid obstacles during flight, which also influence the flight
planning. Motivated by this, based on the achieved results in
this paper, our further work will pay attention to providing
the solution to determine the flight planning that covers the
round trips of drones between the depot and their destination
parcel stations, and some influencing factors, such as picking
up parcels returned by customers, maintaining drones after a
long-distance flight, and avoiding the obstacles.
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