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Abstract— This paper introduces DataFITS (Data Fusion on
Intelligent Transportation System), an open-source framework
that collects and fuses traffic-related data from various sources,
creating a comprehensive dataset. We hypothesize that a het-
erogeneous data fusion framework can enhance information
coverage and quality for traffic models, increasing the efficiency
and reliability of Intelligent Transportation System (ITS) appli-
cations. Our hypothesis was verified through two applications
that utilized traffic estimation and incident classification models.
DataFITS collected four data types from seven sources over nine
months and fused them in a spatiotemporal domain. Traffic
estimation models used descriptive statistics and polynomial
regression, while incident classification employed the k-nearest
neighbors (k-NN) algorithm with Dynamic Time Warping (DTW)
and Wasserstein metric as distance measures. Results indicate
that DataFITS significantly increased road coverage by 137%
and improved information quality for up to 40% of all roads
through data fusion. Traffic estimation achieved an R2 score
of 0.91 using a polynomial regression model, while incident
classification achieved 90% accuracy on binary tasks (incident
or non-incident) and around 80% on classifying three different
types of incidents (accident, congestion, and non-incident).

Index Terms— Intelligent transportation systems, heteroge-
neous data fusion, traffic estimation, incident classification.

I. INTRODUCTION

ATA availability is a critical aspect in the design of

modern Intelligent Transportation Systems (ITSs), which
implement models to understand better various patterns of the
transportation system [1], thus improving mobility and safety
for people and goods. With modern society depending heavily
on efficient and reliable transportation, the importance of these
systems has seen a rapid increase in significance over recent
years. In Germany alone, both the number of registered cars
and the number of carried passengers using public transporta-
tion have shown a substantial increase, reaching their all-time
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highs of 48.5 million cars (2022) and 12.7 billion carried
passengers (2019, before the pandemic) [2], [3]. As a result,
urban areas experience an increasing number of traffic-related
incidents (e.g., congestion and accidents), increasing time
delays, emissions, and fuel consumption [4].

For this reason, academia and industry have driven efforts
to create the next generation of transportation systems that
are eco-friendly, cost-efficient, and powered by data analysis
and communication technology. We hypothesize that a het-
erogeneous data fusion framework can enhance the coverage
and quality of information serving as input for traffic models,
thus increasing the efficiency and reliability of ITS applica-
tions. Therefore, we propose the Data Fusion on Intelligent
Transportation System (DataFITS) framework, providing a
spatiotemporal fusion of data used to train models for two
ITS applications, traffic estimation, and incident classification.
DataFITS collects and combines real heterogeneous data (e.g.,
weather, traffic, incident) from various sources (e.g., open
databases, map applications), preparing them by fixing errors,
adapting the data structure, and finally fusing them in the exact
location and point in time. Our hypothesis is verified using
data characterization to quantify the benefits of combining
heterogeneous data sources and the proposal of two ITS
applications. The performance of the two applications ratifies
the benefits of larger data coverage/quality while estimating
traffic and classifying incidents. Thus, the main contributions
of this investigation are:

o An open-source framework DataFITS for heterogeneous
spatiotemporal data fusion, covering the acquisition, pro-
cessing, and fusion of data, available in a public code
repository. !

o The characterization of a heterogeneous dataset combin-
ing real traffic data from two cities in Germany, col-
lected from seven sources over nine months and provided
together with the repository.

o Two traffic estimation models, one using descriptive
statistics and another using polynomial regression with
different parameters such as time, road type, and weather,
and a comparison between single and fused datasets.

e An incident classification model trained and
evaluated on heterogeneous fused data using
k-nearest neighbors (k-NN), with Dynamic Time

Warping (DTW) and Wasserstein as distance methods.

The rest of the paper is organized as follows. Section II
reviews recent literature using data fusion to design appli-
cations like traffic estimation and incident classification and

1 https://github.com/prettore/DataFITS
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compares them against our solution. The design of DataFITS
and the traffic data applications are described in Section III.
Section IV evaluates the performance of our framework and
the effectiveness of our traffic estimation and incident classi-
fication models using the heterogeneous fused data, verifying
our hypothesis. Finally, we conclude this paper in Section V,
highlighting open problems for future investigations.

II. RELATED WORK

This section reviews the literature on three main topics
related to our proposed solution: (i) data collection and
fusion, (ii) traffic estimation, and (iii) incident classification.
Finally, we summarize and compare the literature with our
proposal.

A. Data Collection and Fusion

To develop ITS applications, significant data is required
from real or virtual sensors [5]. Vitor et al. [4] present a
platform to collect, process, and export heterogeneous data
from smart city sensors, providing different statistics and
visualizations. However, their platform concentrates on secur-
ing data. Similarly, [6] proposes a smart city data platform
containing information from various cities. In contrast to our
framework, we focus on improving the quantity and quality of
the information by fusing data, and we assess the advantages
of using fused data through two ITS applications.

Data fusion combines data from multiple sources, enrich-
ing spatiotemporal information [7], [8], [9], [10]. Several
applications benefit from data fusion, such as emergency
management [11] and path planning [12]. However, fusing het-
erogeneous data requires additional preprocessing to combine
various data types and features [13], [14]. This investigation
focuses on two applications supported through data fusion:
traffic estimation and incident classification, and the methods
to achieve their goals, such as data acquisition, fusion, machine
learning, correlation, and different data types.

B. Traffic Estimation

Traffic estimation is a crucial smart city application for
better transportation management. This review focuses on
data fusion, spatiotemporal correlation, and machine learning
techniques to achieve accurate and reliable traffic estimation
using historical data. The increasing availability of open
databases (kept by governmental authorities) and Application
Programming Interfaces (APIs) to commercial applications
(Bing, Google Maps, etc.) results in a vast collection of traffic-
related data, making big data an opportunity for heterogeneous
data fusion [15]. The challenge is to combine stationary sensor
data (e.g., traffic cameras or loop detectors) and probe vehicle
information (e.g., cameras, GPS, cellular data, or vehicular
sensors). Anand et al. [16] used a Kalman filter to fuse
traffic flow values (from cameras) and travel time (from GPS),
improving a traffic estimation approach.

Many recent traffic estimation models use Machine Learn-
ing (ML) [17], [18], [19], [20], [21], [22], [23], [24], [25]. Ref-
erence [17] proposes an auto-regressive model that uses data
from a traffic simulator and adapts to events like accidents.
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Their results showed that estimation up to 30 minutes ahead
has an error of 12%. Meanwhile, [18] employs deep learning
algorithms for traffic estimation, showing an improvement of
accuracy and efficiency. These approaches discuss the usage
of ML to create accurate models for traffic estimation, but do
not consider further methods, such as data fusion, correlation,
etc.

Some ML approaches use spatiotemporal correlation
to improve traffic estimation quality. In [19], a neural
network(NN)-based estimation using Graph Convolutional
Network (GCN) and Gated Recurrent Unit (GRU) models is
proposed with full public access. The GCN captures spatial
dependencies from the road network, and GRU detect dynamic
changes in traffic data and captures temporal dependencies.
Other NN-based approaches, such as [20] and [21], show
similar improvements in accuracy using data correlation.
Wang et al. [22] propose an open-source deep learning frame-
work using GCN to estimate network-wide traffic multiple
steps ahead in time. Zheng et al. [23] introduce another open-
source solution, the Graph Multi Attention Network (GMAN),
using an encoder-decoder architecture to provide long-term
traffic estimation up to one hour ahead. These approaches
also include correlation to improve the discussed models and
offer access to their data but do not propose a solution
for collecting or fusing data. Limited literature combines
data fusion, spatiotemporal correlation, and ML to estimate
traffic, similar to our solution. In [26], the authors fuse traffic
data from stationary and dynamic sensors, considering the
spatiotemporal correlation between traffic levels of road seg-
ments. A Multiple Linear Regression (MLR) model processes
the fused information to enhance traffic estimation accuracy.
Unlike our solution, this approach relies solely on traffic
data from sensors but does not consider different data types
and sources. Zhao et al. [24] propose a general platform for
spatiotemporal data fusion to enhance traffic estimation. The
approach introduces a fusion method to improve accuracy
by combining direct and indirect traffic-related data as input
for two different ML models. The indirect traffic-related data
features contain information about weather and points of inter-
est and are used to improve the estimation quality. However,
their model uses pre-existing datasets, offering no solution
for data collection, and our study focuses on incident-related
data, while the authors in [24] consider points of interest and
weather conditions.

In [27], the authors introduce a model to estimate traffic
within a small urban area in Zurich, with data acquired as part
of a video measurement campaign. Their solution fuses infor-
mation from Loop detectors, traffic lights, and other sensors
(e.g., video plus license plate recognition, thermal cameras)
and trains different MLR models with this data. Finally,
they evaluate the various sensors’ accuracy and robustness.
In contrast to our solution, they investigate the quality of a
regression model using different sensor data fused to stationary
data. Furthermore, their data is acquired using sensors that are
not publicly available, covering only a small urban area.

Finally, [25] proposes a traffic speed prediction by inte-
grating heterogeneous data from various sensors, including
exogenous data like weather, into a hybrid spatiotemporal
features space. The main contributions are a hybrid model
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using Long short-term memory (LSTM) and GRU, comparing
the model against other well-known classical deep learning
models, showing the highest efficiency and lowest error metric.
In contrast to our study, this investigation focuses on the
prediction using only vehicle speed and has no open access to
their solution and the data.

C. Incident Classification

Numerous ML and deep-learning models are also used for
incident classification [28], [29], [30], [31]. These models
improve road safety in urban areas by facilitating traffic man-
agement, warning systems, and emergency rescue operations.
Other applications, such as incident detection, are proposed
in [32] and [33], which provide additional traffic management
enhancements, including the ability to control traffic lights
from emergency vehicles.

In [28], the authors introduce a Convolutional Neural Net-
work (CNN) model to predict traffic accidents using a state
matrix with influencing traffic features. Their solution achieves
high prediction accuracy, but limited training data affects CNN
model quality, which could be improved by using data fusion.
Park et al. [29] propose a big data approach using the Hadoop
framework to combine incident-related and other traffic data.
The study classifies data into groups of traffic incidents. Data
fusion benefits the approach, but incorporating spatiotemporal
aspects could further increase model accuracy.

In [30], the authors propose a recurrent neural network
to predict traffic accident risk by combining incident data
with a spatiotemporal traffic correlation. The model has high
accuracy and can be used for accident prevention and inte-
grated into traffic control systems. However, its main lim-
itation is the consideration of only directly-related incident
data. Other traffic-related features (e.g., traffic flow, weather,
vehicular data, etc.) could be fused to improve accuracy.
Shang et al. [31] propose a hybrid approach for automatic
incident detection using random forest-recursive feature elim-

ination and a LSTM network with Bayesian optimization.
Their approach provides an accurate binary classification of
incidents, outperforming other state-of-the-art solutions, but
does not classify them into different types.

Other approaches use location-based social media (LBSM)
to improve the detection and classification of incidents.
Rettore et al. [34] propose a framework containing two data
services, one to detect traffic-related events. The framework
collects data from social media platforms (e.g., Twitter), which
is used in a road incident detection model based on heteroge-
neous data fusion to provide more descriptive transportation
system data. The free access of user data through Twitter’s API
improves the availability of incident data, an essential aspect
in developing ITS solutions. Also, in [35], the authors describe
a real-time traffic event detection solution using Twitter posts.
Their solution is based on a text classification algorithm to
identify traffic-related tweets with their location and classify
the information into different classes of events.

D. Comparison & Summary

Table 1 summarizes the reviewed literature, categorizing
them into five applications: smart city, emergency, traffic esti-
mation, incident classification, and our solution. The second
and third columns list the key aspects and the correspond-
ing references. The remaining columns denote the following
labels: Data Acquisition, Data Fusion, ML, Correlation, Sta-
tionary, Probe, and LBSM. These labels indicate whether the
approach collects data, uses data fusion techniques, utilizes
ML and deep-learning models, incorporates data correlation,
employs stationary sensor data, uses probe vehicle data, or uti-
lizes georeferenced social media data. Moreover, we classify
the availability of the source code and data of all solutions into
three categories using different colors no, limited, or yes public
access. A paper labeled with no public access does not offer
access to their data or solution, unlike solutions that provide
full public access to source code and data. Limited public
access describes the usage of datasets that are not accessible
anymore or solutions that plan to offer open access in theory
but currently do not fulfill this aspect.

The last row of Table I compares our investigation with
the literature, highlighting the coverage and contributions of
our proposed solution. Compared with most of the literature,
we provide a methodology that covers four of five stages of
the data cycle (acquisition, preparation, processing, use) [13],
providing an open-source framework,! and access to the
collected datasets. Making the models and datasets available,
or the means to acquire and process them, is crucial to
enable a fair comparison between models/methodologies,
which we did not find in most literature. Moreover, the
DataFITS framework is designed to support multiple data
types, including stationary and probe data, and can potentially
incorporate additional types of information like LBSM.
We perform spatiotemporal data fusion to provide enriched
information used as an input for two, but not limited to, data
applications showing the benefit of using fused heterogeneous
data. In contrast, other approaches in the literature focus on
specialized solutions that combine only a subset of the listed
features in the context of ITS.
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III. THE DESIGN

This research proposes a solution including two differ-
ent modules: A data fusion framework DataFITS and two
data applications traffic estimation and incident classifica-
tion. The DataFITS design follows a three-stage workflow,
as presented in Fig. 1-A. It starts by gathering data from
heterogeneous transportation-related data sources using APIs
and web crawlers (1). In sequence, all acquired data are fused
geographically by mapping them to road segments and aligned
temporally (2). After fusing the data, we can perform data
analysis to identify and visualize specific data characteristics
(e.g., traffic and incident statistics) (3). DataFITS can export
data which then can be used as input for different applications,
depicted in Fig. 1-B. In this article, we use the fused data in
two applications: traffic estimation and incident classification
that can benefit from fused data (see Section III-B) providing
a more comprehensive perspective of the results (4).

A. Data Fusion Framework

1) Data Acquisition: Within the data acquisition, Fig. 2 (1),
DataFITS collects information from different predefined data
sources according to a set of user-defined parameters (e.g.,
geographical area and time interval). Currently, DataFITS
supports multiple methods to collect traffic, incident, vehicular,
and weather data. In addition, the framework parses hetero-
geneous information and stores them in standardized CSV
files. The acquisition follows a modular application design,
ensuring easy expandability of the framework functionalities
and allowing the specification of additional data sources.

2) Data Preparation: The compiled data undergo an addi-
tional preparation step as illustrated in Fig. 2 (2). The key
component of the preparation stage is data standardization,
converting different feature names and types into a uniform
representation and a set of user-customizable data mappings
to deliver consistent data types. In sequence, the data is
prepared to be mapped onto geographical locations. Lever-
aging OpenStreetMap (OSM), a free map database, DataFITS
gathers shapefiles according to the bounding box parameter
specified in the data acquisition stage, using OSMNX [40].
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Fig. 2. Workflow of DataFITS.

A shapefile stores road network information identified by
the primary key (fid) for each road segment, which is used
in the map-matching procedure conducted within the data
processing. DataFITS can also extract the road type and speed
limit from shapefiles. Finally, the collected data is converted
into “trip files”, a representation of the input used by the map-
matching.
3) Data Processing:

a) Temporal fusion: Fig. 2 (3) displays the temporal
data fusion. This process groups the complete data within
an arbitrary time window aggregation (e.g., hourly, daily, or
10 minutes for the results in this paper), adapting the time
interval from the collection process.

b) Spatial fusion: DataFITS leverages the map-matching
technique, taking GPS points and aligning them to established
coordinates under a predetermined degree of accuracy based
on an underlying road network. This results in a balanced level
of accuracy and associate all geo-located data with the same
road network.

Among different strategies of map-matching, DataFITS
integrates Fast Map Matching (FMM), an open-source tool,
which provides two different algorithms for achieving optimal
performance based on the given road network size [41]. To this
end, FMM uses the trip and shapefiles created in the prior
stage and connects all input data points to a corresponding
road network. Each data entry within the trip file contains a
Linestring representing the GPS coordinates (path) of a road
segment, except for incident data entries, which only contain
coordinates of a start and end point. In addition to the matched
points of each input entry, the algorithm returns two arrays,
opath and cpath, that contain a set of road identifiers (fids)
from the OSM. The first array, opath, stores the fid for each
matched point, representing a list of road segments that got
matched to the input data entry (data source coordinates with
OSM road map). The cpath, second array, stores the fid values
that create a path between all matched road segments. This is
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necessary for creating the road trajectories for data entries that
are only represented by a start and an end point within the data.

This process is performed on each record of the vehicular
and incident data sources, while the geo-location of the traffic
data sources is only matched once for each area, as those
are static and do not change between data acquisitions. This
strategy significantly reduces the execution time and com-
putation required for map-matching. Instead of processing
all data points within each acquisition, the main amount of
data points, namely the traffic-related information, is only
matched once. On our nine-month data time frame and a
10-minute acquisition time, this reflects a single matching
procedure instead of 38,800 procedures, significantly reducing
the runtime and required computation power.

The spatial data fusion process combines the fused input
dataset with the map-matching output, adding the enriched
information about opath, cpath, and matched GPS points.
To provide the data for all given road segments, the informa-
tion is rearranged by extracting all fid values from the cpath
array of each data entry. The amount of computing power and
memory for grouping data points is a non-linear function of
the input data size. Therefore, the framework splits the data
into chunks, reducing the memory requirement and allowing
multi-threading to speed up the process.

4) Data Usage: The last stage, (4) in Fig. 2, describes
different use cases of the fused dataset, e.g., as an input to
various data applications or being characterized through dif-
ferent types of statistics and visualizations for spatiotemporal
data analysis. For example, DataFITS provides heat maps and
density plots separated by each source and different features,
such as the number of observations, traffic levels, speed, and
types of incidents. In the scope of temporal analysis, DataFITS
provides time-series statistics for a specific time window (e.g.,
by the hour, day of the week, month, and season) and shows
the correlation between different features. Moreover, the fused
data is exported in different data structures, allowing to be used
by various data applications, such as our proposed models or
other third-party tools (e.g., ArcGIS).

B. Applications

1) Traffic Estimation: The proposed traffic estimation appli-
cation is organized into two phases, as shown in Fig. 3.
Phase (1) prepares the data, groups it by intersecting areas,
identifies similar traffic regions based on correlating traffic
patterns and performs a train-test-split. A traffic region is
defined as the set of connected paths (road segments) reported
from a data source, represented through unique road identifiers
(fids). By intersecting areas, we obtain a list of unique traffic
regions and are able to measure the similarities between them.
In phase (2), the prepared data is used to create and evaluate
two traffic estimation models using: i) descriptive statistics
(naive); and ii) polynomial regression. Each model estimates
traffic values for a single area within an arbitrarily defined time
interval and can also utilize data from correlating regions with
similar traffic behavior. Furthermore, the process considers
optional input parameters like weekday, weather, and road type
to create more specific models for the given characteristics.
This research mainly focuses on the regression-based model

1 - Data Preparation 2 - Traffic Estimation
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Final Evaluation
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Fig. 3. Design of the traffic estimation application.

but also discusses the model based on descriptive statistics.
and gives a comparative evaluation of both approaches in
section IV.

a) Preprocessing: The fused data from DataFITS is
cleaned, removing all incident-related information, as it is not
required by the model, and grouped into traffic areas contain-
ing one or multiple road segments. Using a data aggregation
over the array of road identifiers (cpath), we create a list of
areas contributing traffic information to the dataset.

Due to the traffic area grouping, the data may contain
overlapping areas due to the data fusion that merges traffic
areas from different sources. Those intersecting areas describe
the same spatial region but with minor differences in the
covered road segments. Combining them removes potential
duplicated areas, resulting in a final set of unique traffic
areas. The underlying function iterates through all existing
areas, calculates pairwise intersections, and combines them if
the overlapping road segments exceed a predefined threshold
thoveriap. Finally, the initial set of fused data is re-grouped
according to the new set of combined traffic areas, resulting in
an input dataset for the traffic estimation models that contains
the combined information for each area.

Furthermore, the design covers a procedure to add data
points from other regions that show similar traffic patterns
based on correlation. The goal is to increase the volume of
data points in areas with insufficient training data. Therefore,
by correlating the traffic patterns (traffic level/relative speed)
from different regions, the highly correlated areas can be
merged, increasing the training dataset, thus, benefiting the
accuracy of the traffic estimation. To identify such regions,
we calculate data similarity based on the traffic values, aiming
for a more precise representation of the traffic situation within
the original area. The corresponding function implements a
modified version of the Pearson Correlation and the DTW to
identify correlated traffic areas with similar traffic patterns.
The correlation between two time series was defined in [36]
and adapted for our proposed methodology.

o L Si0) = 5)(S (1) — Si)
Xl’] B L—t R L—t S
VS0 =502 S 50 - 52

Using Eq. (1), we calculate the respective correlation
between two time series of any traffic data feature S;(¢) for

(1)
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two regions i and j at a given time 7. We compute this value
between all regions and define a correlation threshold th..
to identify similarity. However, this type of correlation can
solely describe a linear relationship between two variables,
not considering the value variation. To overcome this issue,
we use DTW to measure the distance between the two series
and set a threshold thg;y, to ensure that both correlating areas
have similar values. DTW measures the similarity between
two time series that are not synchronized. More precisely, the
algorithm can use a temporal alignment of the data pattern
resulting in a more similar comparison than using, e.g., the
Euclidean distance, comparing timestamps regardless of the
feature values [42]. Calculating both correlation and DTW for
the traffic and speed data, we can identify a set of areas that
show similar patterns and satisfy Eq. 2:

(Cortraf > theor A COTspeed = theor) A
(dtwlruf < thgrw N dtwspeed < thytw) )

Finally, the dataset is filtered according to the chosen
parameters (i.e., time frame, weekday, road type, and weather)
to generate the final model input data. We perform a Train-
Test-Split and generate estimations for each individual area.

b) The model: Our initial model to estimate traffic values
is based on descriptive statistics, with the goal to verify
if basic statistics with low-computational costs can provide
accurate predictions on a set of heterogeneous fused data. Eq. 3
describes the calculation of Y(¢), representing an estimated
traffic value for a point in time ¢. Additionally to the mean
of the original region at time t, x(z), we also add the average
value of all correlating regions i € 1, ..., nqorr, represented by
the second part of the equation. More details on the descriptive
statistics approach can be found in [43].

1 Neorr

* > xi(1) 3)
i=1

The second proposed traffic estimation model is based on
ML and uses polynomial regression to estimate a continuous
traffic value Y (e.g., traffic level or speed), as shown in Eq. (4).

Y(t) =x(t) +

Ncorr

Y =00+ 0ix+60x>+03°+...+0x¢ +e (4

The input feature x represents all traffic or speed values that
are within the training dataset for a single traffic region,
matching the parameters defined by the model. A higher-order
polynomial, up to a degree d, can represent the dependent vari-
able Y. The corresponding implementation calculates a least
squares regression, resulting in an estimation that minimizes
the sum of squares between the dependent and independent
variables. The model is configured based on the input data
created in the preprocessing phase, matching the previously
defined thresholds and the following parameters: i) Required:
data feature, polynomial degree, and time frame; ii) Optional:
weekday, weather, and road type.

For example, the model could be configured to estimate the
traffic level for a traffic area on a Monday in a 10-minute time
interval.

The regression is implemented, generating a polynomial
feature matrix of a certain degree d, where the optimal
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Fig. 4. Design of the incident classification application.

degree depends on the input data used to train the model
and is obtained during the model creation. Then, the data
is transformed into a matrix of features to represent the
given input in a higher-order feature space. For example,
a 2-dimensional feature space (X1, X») is transformed to
(1,X1,X2,X%,X1 . X2,X%). Therefore, the newly created
feature contains the bias value of 1, all values raised to
the power for each degree € 0, ..., d, and all combinations
between every pair of features. Finally, the data points within
the training dataset are fitted using polynomial regression, and
the model is used to create traffic value estimations.

2) Incident Classification: Our second proposed application
classifies traffic patterns to different incident types using a
modified version of the k-NN algorithm. The application
has three stages as shown in Fig. 4. It starts by applying
preprocessing methods to prepare the input for the classifica-
tion model, including collecting incident-related traffic data,
defining a time frame for all incidents, and data validation
mechanisms. Secondly, an input dataset is made by combining
data from incidents and non-incident traffic situations. Also,
a data interpolation process fills gaps in the traffic data and
a train-test-split is performed. Finally, we train a k-NN-like
algorithm to perform binary classification (incident and non-
incident) or a multi-class classification (accident, congestion,
and non-incident).

a) Preprocessing: First, all incident-related information
is collected from the heterogeneous dataset, filtering the data
by incident information and grouping it into unique reports
with a specific duration. Because the incident-related data
sources do not include information about traffic data features
(e.g., traffic level and speed), this type of information is added
through spatiotemporal fusion. To gather all data related to one
specific incident, a method extracts all traffic areas that have
a spatial intersection with the incident region and combines
them in a temporal domain. The corresponding implementation
uses the dataset of incidents, a list containing the unique traffic
areas, and an overlapping threshold to calculate the intersec-
tion between the incident area and corresponding regions with
available traffic information.

The incident duration is key information to define the right
time window, which includes traffic data related to a particular
incident. However, usually, this duration is not included in
the data sources, requiring strategies to calculate it using
another data source. Therefore, we developed two approaches:
static and estimated incident start time. The static approach
collects traffic data in a time interval of 90 or 120 minutes



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZIBNER et al.: DataFITS: A HETEROGENEOUS DATA FUSION FRAMEWORK

before and after the reported incident start time from the
data source, representing a time interval that includes data
prior to and after the measurable incident effect. We chose
the values of 90 and 120 minutes based on an exploratory
data analysis (briefly indicated in Table IV), showing that
the majority of incidents did not exceed 120 min impacting
the traffic behavior, except for a few cases during congestion
and disabled vehicle incidents. The second approach tries to
estimate the incident start time, iterating over the traffic data,
to find significant changes in the traffic pattern and setting the
start point based on this observation. The estimated approach
aims to provide a more realistic representation of the incident
start time, which is evaluated later in Section IV.

Moreover, each incident report is validated by identifying
samples with high noise in the corresponding traffic data.
Noise has a negative contribution to the model and adds a
potential bias to its accuracy. Therefore, it is detected and
removed from the input dataset using three different strategies
to validate each incident report, where at least one must be
satisfied: i) Comparing the absolute difference between the
traffic at the start and the end of the incident time interval,
checking for a noticeable difference given by a deviation
of more than a predefined threshold; or ii) Calculating the
standard deviation over the entire incident time interval and
comparing it to a certain threshold; or iii) Iterating over
the data points close to the incident start and end time and
checking for a point-wise traffic variation above a defined
threshold. Based on these methods, we extract incidents that
reflect a clear traffic pattern that shows a measurable impact
of the incident on the traffic behavior and remove all other
patterns that could be confused with a non-incident traffic
pattern or a biased sensor report.

Lastly, to create the final dataset for the classification model,
three further data processes are performed:

o Add “normal traffic data”: Adding non-incident sam-
ples to the input data is essential in the designing
of our incident model. We add observations similar in
time, weekday, and location to get the most comparable
data. Therefore, these reports can accurately identify a
non-incident situation for every incident in the dataset.

o Data Interpolation: As a result of measurement errors or
other problems in the data collection, there is a possibility
of missing traffic values within the incident duration.
Therefore, we use linear data interpolation to fill gaps
in the traffic data if required.

o Train-Test-Split: Finally, the input data is split into train-
ing and testing datasets. The former is used to train the
ML model, allowing it to be generalized. Furthermore,
the testing dataset evaluates the classification quality. The
incident cases are randomly sampled and used within the
training or testing dataset.

b) The model: We use k-NN algorithm, a well-known
supervised learning approach to solve the classification prob-
lem. To train it, each incident entry has multiple features
and a label referring to a particular incident type (accident,
congestion, or non-incident). The data features represent a time
series with the corresponding traffic level, speed (absolute and

relative to the speed limit), and road type. k-NN was trained
using two different distance metrics suitable to time series
data. The DTW metric is used to measure the distance between
two time series in the classification model. Furthermore,
we train a model using the Wasserstein metric, a function to
calculate the distance between two probability distributions u
and v, defined in Eq. 5 [44].

inf
yel(u,v)

1
W (i, v) = ( [ dwyrave, y))" )
RxR
We based our model on the k-NN-Implementation K Near-
est Neighbors with Dynamic Time Warping,”> modified and
extended to support the Wasserstein metric. k-NN uses a
parameter n (the number of neighbors) and the maximum
warping window for the DTW, limiting the number of ele-
ments to compare and therefore reducing the execution time.

Moreover, data over and under-sampling are used to reduce
the under-representation of accident samples in our imbalanced
input dataset. To reduce the severity of this problem, two
methods are used: i) Oversampling: Adds new samples of
the minority class to the training data, using the information
from the already existing data points. Our implementation
includes Random Oversampling and SMOTE Oversampling;
ii) Undersampling: Provides the contrary part by removing
samples from a majority class. Our implementation includes
Nearmiss Undersampling. These data sampling approaches are
evaluated later in Section IV, further comparing the model
quality using an imbalanced dataset.

Finally, the classification model is created using the param-
eters k (number of neighbors), warping window (compar-
ison constraint), and metric (DTW or Wasserstein). Next,
the model is trained, and each test data sample is classified
using the trained model, returning a class label together with
the corresponding probability. This method is implemented
by calculating a distance matrix that contains the respective
distance (DTW or Wasserstein) between all data samples
regarding the chosen data feature. Using this matrix, our
proposed algorithm can find the k closest neighbors and extract
the most representative label for all test data samples.

IV. EVALUATION

This section evaluates DataFITS by quantifying the
improvements in data quality and quantity and presents a data
characterization analysis from a real heterogeneous dataset.
Finally, the enhanced fused data is used to evaluate the traffic
estimation and incident classification models.

A. The Data Fusion Framework

1) The Data: The data acquisition process started on
December 1st, 2021, and covers nine months of heterogeneous
data from Bonn and Cologne. The acquired dataset from Bonn
contains 13,700,000 entries with a total size of 14 GB, whereas
the dataset from the neighboring city Cologne has 28,700,000
entries with a total size of 31 GB. The data is structured

2 github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-
Warping
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TABLE II
COVERED ROADS BY DATA SOURCE

Bonn Cologne
S Total ~ Unique  Fusion Total Unique  Fusion
ource Roads  Roads  Portion Roads Roads  Portion
Traf. HERE 684 339 21.0% 2940 1379 27.1%
Traf. OD 581 195 12.0% 914 173 3.4%
Inc. HERE 206 53 3.3% 946 370 7.3%
Inc. BING 597 256 15.8% 1944 821 16.2%
Inc. OD 52 31 1.9% 193 86 1.7%
Envirocar 433 178 11.0% 905 245 4.8%
Overlap 567 567 35.0% 2007 2007 39.5%

Total 1619 5081

into four types of information acquired from seven different
data providers: i) Traffic data from the commercial service
HERE and the open service Open Data (OD), containing
data features like speed, traffic, and GPS coordinates; ii)
Incident reports from the commercial services HERE, BING
and OD, containing data features like the type of incident,
GPS coordinates, and additional information; iii) Vehicular
probe data from the Envirocar platform, providing in-depth
data about the vehicle such as speed, fuel consumption, CO2
emissions, torque, throttle position, and more; and iv) Weather
data from the Meteostat providing the weather conditions.

Commercial map services like Google, HERE, and Bing are
the leading traffic data providers. They offer limited or paid
access per user. Contrasting, projects like Open Data (OD) pro-
vide open access to data from multiple information categories.
The goal is to create a collaborative data infrastructure that
can be used by industry, academia, government, and civilian
people, to design intelligent data-driven systems.

2) The Fusion: Table II emphasizes the benefits of hetero-
geneous data fusion by tabulating the number of roads covered
by all sources and the ones that are spatiotemporally covered
by multiple data sources, labeled with Overlap. Thus, the
overlapped data correspond to multiple sources reporting data
in the same location and time. Each source covers a number of
total roads and provides a portion of unique roads to the fused
dataset of Bonn and Cologne. For instance, Traffic HERE
presents a proportion of 21% to the fused data for Bonn and
27% for Cologne. In contrast, OD contributes a significantly
lower amount of information to the fused dataset, especially
within the Cologne data at only 3.4%.

Regarding the incident data, a significant amount of addi-
tionally covered roads was added to the fused dataset, con-
tributing 20-25% of new information. Furthermore, there is a
substantial amount of extra information provided by Envirocar,
especially in Bonn, with the probe vehicles covering areas
that are not equipped with sensors and committing a portion
of 11% to the fused data. This can be explained by the fact
that the users contributing to the platform also collect data
in many residential areas that are usually not equipped with
sensors. The amount of overlapping road segments reaches
35% for Bonn and 39.5% in Cologne, revealing the potential
of information enrichment using heterogeneous data fusion.
These numerical results show that we can utilize fused data to
better describe the transportation system status and improve
the amount of information compared to only using a single
data source. For instance, the Traffic HERE solely covers
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TABLE III
GENERAL TRAFFIC DATA STATISTICS

Road Type Traffic Entries Traffic Speed Rel. Sp.
Main Road  Low 2,670,574 (81%) 0.86  37.74 69%
Normal 527,150 (16%) 221 31.88 57%
Increased 61,169 (02%) 5.07 17.68 32%
Jammed 44,047 (01%) 9.79 15.37 31%
Motorway Low 2,029,821 (80%) 0.41 83.79 87%
Normal 296,694 (12%) 2.11 79.72 81%
Increased 166,481 (07%) 491 53.78 57%
Jammed 28,643 (01%) 8.74 2742 29%
Residential ~ Low 286,654 (94%) 0.88  27.04 54%
Normal 285 (00%) 227 13.76 28%
Increased 16,218 (05%) 5.00 13.26 27%
Jammed 3,062 (01%) 10.00 3.31 03%

684 roads in Bonn and 2940 in Cologne, while the fused
data covers 1619 and 5081 roads, respectively. This is a data
enrichment of 137% in Bonn and 173% in Cologne.

3) Data Characterization: DataFITS presents general traf-
fic statistics as a function of time, day, or road type.
It helps in analyzing collected and fused data. The traffic
values are grouped into levels: Low (0-1), Normal (>1-4),
Increased (>4-7), and Jammed (>7-10) over three types of
roads: Motorway, Main Road, and Residential. Additionally,
it provides the characterization of incident data from Bonn,
which includes four incident types, namely Accident, Conges-
tion, Disabled Vehicle, and Road Hazard.

a) Traffic data: Table III lists the number of data entries,
in Bonn, for each traffic level on different road types, includ-
ing the average values for traffic, speed, and relative speed
(sp:e’;%). One can observe a similar distribution of traffic
for different road types. The low-traffic level presents more
entries, but there is a variation between the distributions
related to the various road types. On main roads, nearly
97% of all data entries represent a low or normal traffic
level. On motorways, the amount is 92%, a difference of 5%,
distributed in the other two levels (increased and jammed).
The traffic in residential areas is mainly represented in a low
(94%) or increased level (5%).

Table III also lists the traffic and speed (absolute and
relative). The relative speed varies significantly on the three
road types, decreasing from nearly 70% in a low traffic level
to 30% in a jammed condition on a main road. A similar
pattern is observed on motorways with higher relative speeds
at the first two traffic levels. In residential areas, the speed
reaches a maximum of 54% and significantly decreases to
3% when jammed. This characterization suggests that the city
of Bonn has a low traffic level most of the time (>80% of
all data entries). Higher traffic levels were observed in seven
percent of all data entries, with the proportion of a jammed
condition representing one percent. This depicts a realistic
behavior, as congestion generally emerges during rush hours
or in case of specific incidents. Moreover, Table III shows
a significant reduction in speed for high traffic levels (seven
or more), especially in the case of residential areas. A low
average speed on the residential roads is also noticed, with
less than 27 kmh™!, representing a safe value to reduce noise,
pollution, and the probability of fatal accidents.

In summary, the traffic data characterization suggests that
the city demands different traffic management strategies based
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TABLE IV
GENERAL INCIDENT DATA STATISTICS

Inc Type Road Type Entries Dur. (avg) Dur. (max)
Accident Main Road 4 (01,48%) 10.00 min 10 min
Motorway 260 (95.94%) 15.92 min 170 min

Residential 7 (02.58%) 25.71 min 120 min

Congestion Main Road 326 (07.37%) 12.98 min 90 min
Motorway 3892 (88.03%) 19.15 min 730 min

Residential 203 (04.59%) 11.43 min 50 min

Dis. Vehicle Main Road 9 (02.58%) 10.00 min 10 min
Motorway 328 (93.98%) 15.88 min 210 min

Residential 12 (03.44%) 18.33 min 60 min

Road Hazard  Main Road 11 (02.49%) 10.91 min 20 min
Motorway 412 (93.42%) 15.29 min 110 min

Residential 18 (04.08%) 18.33 min 110 min

on road type and location to improve its quality and safety. Due
to the limited space, more spatiotemporal data characterization
is provided by the DataFITS on the git repository.!

b) Incident data: Table IV lists the number of reports
for each type of incident, grouped by different road types.
As expected, the amount of congestion reports surpasses the
number of all other incident types within the dataset because
congestion is a re-occurring event, generally emerging due to
high traffic. Furthermore, a significant reduction in incidents is
shown when comparing motorways to the other two discussed
road types. Besides the higher traffic on motorways in general,
this observation matches the results of the previous traffic data
characterization, suggesting that there is a lower speed on main
roads, especially in residential areas, reducing the probability
of accidents. Finally, Table IV includes the average and
maximum duration regarding each group of incident reports,
showing significant differences, especially for the maximum
duration of congestion on a motorway reaching 730 minutes,
compared to not more than 210 minutes for the other groups.

By showing traffic and incident events together, it is possible
to identify the effects of a single incident on the traffic levels
in the surrounding area, as shown in Fig. 5. The accident
(marked by ‘X’) was reported on a motorway at 17:30, and
the traffic levels on the surrounding roads over time are shown
with green to red colors, from no traffic (level 0) to high
traffic (level 10), respectively. Before the accident, a low traffic
level around the incident location can be observed, but the
traffic increases in the directly connected areas 10 minutes
before the incident is reported in the respective source. This
condition can be observed further, escalating to a jammed road
at 17:30 with very high traffic on the connected roads. It reverts
to the initial state at 17:50, indicating that the incident lasts
about 30 minutes. Therefore, the accident impacts the traffic
pattern of many neighboring roads, especially between 17:30
and 17:40.

DataFITS includes further data characterization by combin-
ing incidents with different weather conditions and seasons,
showing a more significant number of incidents reported
in worse weather conditions (e.g., rain and snow) than in
normal conditions. Moreover, analyzing the different road
types, most incidents occur on motorways, mainly at two
certain intersections that are important parts of the trans-
portation system. For more data characterization, please see
the DataFITS repository.'

Accident, Motorway, 17:30  Traffic I

00 25 50 7.5 100

17:10 17:20
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Fig. 5. Incident effect on the traffic level.

B. Traffic Estimation

This section reports a comparative evaluation of the esti-
mation model introduced in Section III-B.1 and the model
introduced in a previous paper [43]. Both were trained with
the heterogeneous fused dataset characterized in the earlier
sections. To measure the performance of each model, we cal-
culate three different performance metrics: i) Coefficient of
Determination (R?) represents the variance proportion between
the true and estimated values. The optimal value is one, and
zero is given to a model that always predicts the average of
the true value y. ii) Mean Absolute Error (MAE) is an error
metric that describes the sum of absolute errors between the
real and estimated values, aiming for a value close to zero.
iii) Root Mean Squared Error (RMSE) denotes the root of the
Mean Squared Error (MSE), a measurement for the average
squared distance between the estimated values by the model
and the real values within the dataset, also having a desired
value of zero. We compare the model’s performances against
each other, using different input parameters and a fused vs.
non-fused dataset.

The proposed model estimated the traffic level for 181 dif-
ferent traffic areas in Bonn and was trained using a dataset of
more than 7 million entries using the following thresholds:
thoverlap = 0.50, theor = 0.90 and thy;y, = 0.25. Within
the experimental setup, we used a train-test split of 60-40
and a polynomial degree of 10, reflecting the optimal model
configuration based on extensive experiments using different
polynomial degrees. All estimations shown here use a time
frame of 24 hours. The remaining input parameters are stated
within each result throughout this section.

Fig. 6 depicts four examples of traffic estimation for two
different regions (A and B), for an entire day, with the time
displayed in hours on the x-axis. It shows the estimated regres-
sion line (red) on the training dataset (green dots). For better
visualization, we grouped the observations within the training
data and showed the mean values. The blue line depicts the
test data, representing real-world traffic data. Noticeably, the
estimation in Fig. 6(a) shows a high precision on both traffic
(left) and speed (right), suggesting that the model fits well on
the prepared input dataset. The second area depicted in Fig. 6b
shows a similar result, scoring an even higher performance
and providing a very close estimation compared to the ground
truth.
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(a) Traffic (left) and speed (right) estimation on region A.
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(b) Traffic (left) and speed (right) estimation on region B.

Fig. 6. Comparison: Estimation and real data.

TABLE V

PERFORMANCE OF THE REGRESSION MODEL ON VARIOUS
STREETS AND WEATHER CONDITIONS

Road Type  Weather  Feature R?> MAE RMSE

£ Al All Traffic 076  0.07 0.09
Speed 0.84 0.06 0.08

@ Motorway All Traffic 0.68 0.08 0.10
Speed 0.71 0.08 0.11

£  Main All Traffic  0.81  0.06 0.08
Road Speed 0.91 0.05 0.07

®  Residential  All Traffic 0.75 0.07 0.10
Speed 0.91 0.05 0.07

* Al Clear Traffic 0.74 0.07 0.09
Speed 0.82 0.06 0.09

§ Al Rain Traffic 0.55 0.08 0.11
Speed 0.69 0.08 0.11

§ Al Snow Traffic 0.23 0.09 0.15
Speed 0.28 0.11 0.16

Furthermore, the model can be configured to differentiate
road types and weather conditions. Table V shows the overall
performance of the traffic estimation from all 181 areas
when using different configurations. The first line at the top
represents the performance measures of the model using the
entire dataset without any additional filter. In total, the model
achieves a high R? score of 0.84, using speed or relative
speed, while also performing well estimating the traffic value
reaching a score of 0.76. Both error measures are low for
each respective data feature, represented by values below
0.10. By differentiating the road types and weather conditions,
it is noticeable that the model achieves the best performance
estimating traffic on main roads with no specified weather
conditions, achieving R? scores of 0.91 using the speed data
and 0.81 using traffic. The general performance on motorways
(orange circle) is slightly lower compared to both main roads
and residential areas (green up arrow), reaching an R? score
of up to 0.84.

The same measurements using different weather conditions
are shown in the last three rows of Table V. Noticeably,
the performance is significantly lower in estimating traffic in
case of rain, and especially snow (indicated by the red down
arrows). This is due to the low amount of traffic observations
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TABLE VI
PERFORMANCE OF THE REGRESSION MODEL ON
VARIOUS INPUT DATASETS

Feature = Dataset ~ Unique Area Coverage R2 MAE RMSE
@ Traffic  FUSED 181 (36 ovip.) 0.76 0.07 0.09
%* HERE 94 (43.3%) 0.81 0.06 0.09
3 OD 123 (56.7%) 0.66 0.08 0.10
f  Speed FUSED 181 (36 ovlp.) 0.84 0.06 0.08
(@) HERE 94 (43.3%) 0.81 0.07 0.09
Q OD 123 (56.7%) 0.83 0.06 0.08

TABLE VII
COMPARISON OF STATISTICAL AND REGRESSION MODEL

Metric Dataset Descriptive Statistics Model ~ Regression Model
R2 2 months -0.9 0.15
9 months -0.57 0.68
MAE 2 months 0.3 043
9 months 0.23 0.16

within our data during rain or snow, significantly reducing
the size of the training dataset. The estimation uses many
interpolated data points instead of real values, reducing the
overall quality. However, the model can accurately estimate
traffic features in clear weather conditions (green up arrow).
This exploratory investigation suggests the model performs
well on most input data parameters. However, using separate
configurations to estimate the traffic based on a specific road
type achieves the best results. In contrast, creating a model
based on the weather conditions, rain, and snow reduces the
quality of the model’s estimations.

1) Single Vs. Fused Data: Due to the limited public access
to source code and data of most of the literature as discussed in
Section II, we compared the polynomial regression approach
on the non-fused datasets, containing information that was
obtained from a single source, with the fused dataset in order
to compile quantitative evidence that data fusion shows the
benefits in precision and coverage as listed in Table VI
Estimating traffic values, the single data source HERE scores
the best results, indicating that the fused dataset is biased by
the poor performance of the OD dataset. However, on the
estimation of speed values, the fused dataset achieves the
highest performance of 0.84 for the R? and error metrics of
0.06 and 0.08. By fusing multiple datasets, we can combine
their individual benefits and achieve a minor improvement
in the model quality. Furthermore, the area coverage within
the combined data is much higher, comparing 94 unique
areas covered by HERE, 123 by OD, and 217 areas covered
by the fused information, represented through 181 unique
and 36 overlapping areas from both datasets. These results
demonstrate that although a single data source can perform
better in some cases, it is still limited in spatiotemporal
coverage, limiting the model’s generalization. A similar result
was achieved by comparing the statistical model using the
fused vs. non-fused dataset in our previous study [43].

2) Descriptive Vs. ML-Based Model: When evaluating the
use of data from correlating areas in the training dataset,
we noticed no further improvement in the polynomial regres-
sion model. However, the descriptive statistics model showed
a substantial improvement in the estimation quality using the
correlation approach. In general, the model based on ML,
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proposed in this article, achieves significantly better results
compared to the descriptive statistics approach presented
in [43], as shown in Table VII. On the dataset containing
nine months of data, we could improve the average R? score
from 0.15 to 0.68 and achieve significantly lower error metrics.
However, the descriptive statistics model is not relying on
a large amount of data and, therefore, may be useful in
the case of small input datasets. In conclusion, we could
identify that using the polynomial regression model on our
entire heterogeneous fused dataset provides promising results,
reaching an R? score of up to 0.91. However, a less complex
and costly model (computation and time), such as using
descriptive statistics, can be applied in the case of a reduced
amount of data available.

C. Incident Classification

We compare the performance and training of our proposed
incident classification model for two different approaches:
A binary classification (Incident or Non-Incident) and
a multi-class approach (Accident, Congestion, and Non-
Incident). The classification relies on the fused dataset com-
bining the information on traffic and incidents. Therefore, all
proposed results are generated on the heterogeneous fused
dataset. First, we evaluate the performance of the presented
data preparations, referring to ii) incident validation; iii) over-
and undersampling; and iv) various time intervals.

The proposed incident validation approach, which is a part
of the data preparation presented earlier in Section III-B.2,
provides a major accuracy improvement. Precisely, it improves
the overall performance by 26%, e.g., increasing the accuracy
from 0.7 on a not validated input dataset to 0.86 after the
validation.

Regarding the imbalanced dataset problem, we use SMOTE
Oversampling to improve the precision of classifying accident
data samples from 0.35 to 0.77 while keeping high precision at
all other data classes. Using SMOTE improves the precision
by 15% from 0.72 to 0.83. In contrast, using the Nearmiss
Undersampling method also showed a minor benefit on the
precision score of accident data samples but reduced the total
score from 0.72 to 0.59. Based on this investigation, we apply
the incident validation approach and the SMOTE oversampling
in the final configuration of the classification model.

We compare the model’s performance using the originally
reported start time of each incident against the idea of esti-
mating a more realistic start time, obtained by iterating over
the time series, as presented in Section III-B.2. Furthermore,
we evaluated two different time intervals of 90 or 120 minutes
before and after the incident start time (original start time
or estimated start time), respectively. Fig. 7 shows all per-
formance metrics over the different time interval strategies.
Generally, the traffic patterns during the 90-minute time inter-
vals achieve the highest overall scores, with an accuracy of
0.86 for the DTW and 0.81 for Wasserstein distance metrics.
Furthermore, we noticed an advantage of using the (original)
reported start time, in the 90-minute time interval, compared
to our estimated incident start time approach. In contrast, the
larger time interval (120 minutes) shows only minor perfor-
mance differences between using the original and estimated

Metric DTW - WASSERSTEIN

Accuracy Precision

0.9
0.8 - - 0.78 0.79 0.79
0.7
0.6

0.5

Score

Recall F1 Score

0.9
08
07 068 . 0.69

0.6

0.5
orig- 90 g5t Orig. 120t 120 5rg. 90 gt 90 rig. 120gqt. 120

Data Input

Fig. 7. Comparison: Different input strategies.

starting point. Moreover, the Wasserstein metric achieves a
better performance on the larger input intervals, compared to
the DTW in the case of the estimated incident start time.

In conclusion, our final model uses input data covering a
90-minute time frame before and after the originally reported
incident time, as this provides the overall best results. The
conducted evaluation shows that using the iterative approach
to estimate a more realistic start point of an incident does not
benefit the model’s accuracy. Moreover, increasing the input
time interval to 120 minutes shows a minor decrease in the
overall performance but benefits the model in all test setups
that use the Wasserstein metric, especially when working with
the estimated start time.

Finally, we compare the performance of the three-class
classification model with the binary classification. Evaluating
the binary classification that distinguishes between Incident
and Non-Incident, we achieve an overall accuracy and an
F1 score of 90%, with no differences between the number
of samples in both classes, due to a balanced input dataset.
Furthermore, DTW shows a minor advantage compared to
using the Wasserstein metric, improving 5% on all metrics
on average. The three-class model adds complexity by classi-
fying the types of incidents (Accident, Congestion, and Non-
Incident). and achieves an average accuracy of 86%, slightly
lower than the binary model. When considering the perfor-
mance of each class, the problem of data imbalance remains
even after using data oversampling. This is reflected by the
significantly lower performance to identify the Accident data
as shown by comparing the F1 scores of 0.56 to 0.9 on other
classes. To obtain a more generalized and accurate model,
we proposed a completely balanced dataset, combining over-
and undersampling methods, achieving better accuracy scores
of 80% and an F1 score of 0.78 on all data classes.

V. CONCLUSION

In this paper, we introduce DataFITS, an open-source
data fusion framework that integrates diverse data by col-
lecting, analyzing, and fusing it. We hypothesize that het-
erogeneous data fusion increases data quantity and quality,
thereby improving datasets for ITS applications. To verify
this, we developed two ITS applications: one used polynomial
regression to estimate traffic levels, while the other combined
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traffic and incident data to classify events into accident,
congestion, or non-incidents.

Using real heterogeneous data from two German cities,
we quantified the advantages of DataFITS by compiling a
fused dataset. Our results indicate that DataFITS integrated
data from multiple sources for 40% of all roads, thereby
increasing the overall road coverage by 137%. In addition, the
traffic estimation model, which uses polynomial regression,
outperformed our previous approach based on descriptive
statistics, achieving a high R? score of 0.91, low error metrics
of 0.05, and provides accurate traffic estimations using the
fused dataset. Compared to using a single sources dataset, the
fused dataset estimation showed minor accuracy improvements
but drastically improved the spatiotemporal coverage of the
estimated areas. Our incident classification model relies on the
fusion of traffic and incident data, achieving a 90% binary clas-
sification accuracy rate within our evaluation. Preprocessing
the data, such as removing unclear traffic patterns, improved
accuracy by an average of 29%. The classification of incidents
into different categories resulted in a slightly lower accuracy
of 86%, with unequal performance among classes indicated
by F1 scores. To mitigate this problem, we oversampled the
training dataset to create a more uniform representation of the
data, resulting in an 80% accuracy for each class. Collecting
more accident data can also solve this problem.

We plan to expand the DataFITS framework by collecting
and fusing more data types, improving its performance and
data quality, and expanding its data analysis. We focus on
data types such as social media and images, which require
methods such as Natural Language Processing (NLP) and
image processing. For ITS applications, we aim to use auto-
mated machine learning to explore different models and
hyper-parameters and compare them with our current models.
We also plan to analyze the correlation between traffic and
incidents and incorporate it into the traffic estimation models.
In addition, we intend to explore the use of big data in
military scenarios, combining information from the civilian
and military fields to support strategic operations in urban
warfare. To this end, our framework can be enhanced to collect
and combine different types of information (image, text) to
create common operational pictures and verify/authenticate
information, thereby avoiding misinformation that may influ-
ence political decisions.
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