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DCA: Delayed Charging Attack on the Electric
Shared Mobility System

Shuocheng Guo, Hanlin Chen, Mizanur Rahman Member, IEEE, and Xinwu Qian

Abstract—An efficient operation of the electric shared mobility
system (ESMS) relies heavily on seamless interconnections among
shared electric vehicles (SEV), electric vehicle supply equipment
(EVSE), and the grid. Nevertheless, this interconnectivity also
makes the ESMS vulnerable to cyberattacks that may cause
short-term breakdowns or long-term degradation of the ESMS.
This study focuses on one such attack with long-lasting effects,
the Delayed Charge Attack (DCA), that stealthily delays the
charging service by exploiting the physical and communication
vulnerabilities. To begin, we present the ESMS threat model by
highlighting the assets, information flow, and access points. We
next identify a linked sequence of vulnerabilities as a viable attack
vector for launching DCA. Then, we detail the implementation of
DCA, which can effectively bypass the detection in the SEV’s bat-
tery management system and the cross-verification in the cloud
environment. We test the DCA model against various Anomaly
Detection (AD) algorithms by simulating the DCA dynamics in
a Susceptible-Infectious-Removed-Susceptible process, where the
EVSE can be compromised by the DCA or detected for repair.
Using real-world taxi trip data and EVSE locations in New York
City, the DCA model allows us to explore the long-term impacts
and validate the system consequences. The results show that a 10-
min delay results in 12-min longer queuing times and 8% more
unfulfilled requests, leading to a 10.7% ($311.7) weekly revenue
loss per driver. With the AD algorithms, the weekly revenue loss
remains at least 3.8% ($111.8) with increased repair costs of
$36,000, suggesting the DCA’s robustness against the AD.

Index Terms—Delayed charging attack, false data injection
attack, electric shared mobility system, shared electric vehicle,
cybersecurity.

NOMENCLATURE

AD Anomaly Detection
BMS Battery Management System
CAN Control Area Network
CC-CV Constant-Current-Constant-Voltage
CCS Combined Charging System
CSMS Charging Station Management System
Ctrl&Comm.Control&Communication
DCA Delayed Charging Attack
DCFC DC Fast Charging
DDoS Distributed Denial of Service
DSO Distribution System Operators
ECU Electronic Control Units
EM Expectation-Maximization
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EMS Energy Management System
ESMS Electric Shared Mobility System
EVSE Electric Vehicle Supply Equipment
FDIA False Data Injection Attack
GMM Gaussian Mixture Model
HMI Human Machine Interface
IF Isolation Forest
KLD Kullback-Leibler Divergence
Kmeans K-Means Clustering
MitM Man-in-the-Middle
MTTR Mean-Time-To-Repair
NYC New York City
OCPI Open Charge Point Interface
OCPP Open Charge Point Protocol
PCC Principal Component Classifier
PLC Power Line Communication
SEV Shared Electric Vehicle
SIRS Susceptible-Infectious-Removed-Susceptible
SoC State-of-Charge

I. INTRODUCTION

Electrifying the fleet for shared mobility service is a promis-
ing direction to lower operation costs and reduce greenhouse
gas emissions [1], [2]. As an example, Shenzhen, China has
a fully-electrified taxi fleet by the end of 2019 [3]. Moreover,
New York City (NYC) will embrace 100% electrification of
its for-hire vehicles fleet by 2030 [4], which further requires
the deployment of over 1,750 DC-Fast charging ports [5].
For large-scale electric shared mobility systems (ESMSs), the
essence of the efficient operation is the optimal scheduling
of charging and mobility services, which requires seamless
interconnections among the major assets in the ESMS (see
Fig. 1), including the shared electric vehicles (SEVs), EV sup-
ply equipment (EVSE), charging station management system
(CSMS), and EVSE and SEV operators, facilitated by multiple
communication protocols, e.g., Open Charge Point Protocol
(OCPP) [6] and Open Charge Point Interface (OCPI) [7].
However, these communication pathways also present vulner-
abilities that can be exploited to compromise the SEVs and
EVSE [8], [9], [10], resulting in the battery charging controller
malfunctions and inconsistent changing outcomes for SEVs,
thus disrupting the coordination of charging schedules across
the entire fleet. This will translate into local congestion at
EVSEs, excessive downtime for vehicle supply, and degra-
dation of system performances or even catastrophic failure of
the entire mobility system. Considering the vulnerabilities and
significant consequences above, this study will take the first
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step to investigate an attack model that can disrupt ESMS and
understand its long-term impacts on operational dynamics.

The cybersecurity issues have been extensively studied in
the fields of smart grid [11], [12], [13], Internet-of-Things [14],
mobility-as-a-service systems [15], traffic signal control sys-
tems [16], cyber-physical systems [17], [18], [19], intelligent
transportation systems [20], and more recently, the ESMS [21],
[22], [23], [24], [25]. While the ESMS offers improved ef-
ficiency with coordinated charging and dispatching, it also
inherits the cyber threats from its assets, including SEVs,
EVSE, and the communication interfaces with the CSMS and
SEV operator. As such, the ESMS can be subject to new forms
of cyberattacks due to the increased system dependencies.

Wireless communication Wired communication

CSMS

SEVEVSE
CHAdeMO (CAN)
CCS (PLC)

OCPP

SEV Operator

EMS

Distribution Substation

DSO
OCPI

Power System Electric Shared Mobility System
(ESMS)

Maintenance
Operations

Patching

USB

Our focus

Fig. 1. Communication framework in the ESMS (DSO: Distribution System
Operators; EMS: Energy Management System)

As depicted in Fig. 1, we showcase a potential attack vector
represented by red lines for a distinct type of False Data Injec-
tion Attack (FDIA), known as the Delayed Charging Attack
(DCA). The DCA aims to stealthily delay the charging process
of the SEV fleet while maintaining the safety requirements of
the SEV (e.g., avoiding excessive current). This attack can
be accomplished by compromising the EVSE via a physical
access point (i.e., USB port) or intercepting the communication
between the SEV and EVSE by patching via the OCPP during
the maintenance operations. The compromised EVSE then
injects falsified State-of-Charge (SoC) data into the SEV via
the CHAdeMO or CCS physical connections. As a result,
the SEV is spoofed to accept a reduced charging rate (e.g.
lower current or voltage), which extends the charging time
to reach the target SoC. The compromised EVSE and SEV
operator bypass cross-verification achieved by the OCPI by
uploading constant charging log information to the cloud
environment (i.e., CSMS and SEV operator). For full steps
of implementation, see Section III-A.

Unlike other types of attacks (e.g., denial-of-service) which
cause an entire breakdown in one shot, the DCA is designed
as a stealthy cyberattack with long-term consequences. In this
regard, the DCA is likely to be overlooked for two reasons:
(1) the DCA will not lead to an immediate collapse of the
ESMS, but instead a gradual degradation over time, and (2)
the anomalies resulting from the DCA are challenging to
detect, particularly in the ESMS, where outliers (e.g., extended
charging duration) can be indistinguishable due to the large
variation in charging duration (which can range from several
minutes to 1-2 hours) across all charging activities.

To the best of our knowledge, no prior studies have inves-
tigated the DCA on the large-scale ESMS. This study aims to
address this gap by exploring the system-level consequences
of the DCA and evaluating the DCA’s efficacy and robust-
ness under different length of delayed charging service and
various Anomaly Detection (AD) techniques. Specifically, we
define the robustness of DCA as its ability to maintain the
performance even in the presence of AD algorithms, which
highlights the DCA’s effectiveness and stealthiness. This study
will begin by presenting the ESMS threat model and identify-
ing a linked sequence of potential vulnerabilities, which forms
a viable attack vector for launching DCA. Then, we model the
DCA dynamics based on the Susceptible-Infectious-Removed-
Susceptible (SIRS) process. Detection strategies are incorpo-
rated by comparing widely adopted AD techniques, which can
detect the malfunctioning EVSE based on the deviation of the
normal system performance. Those malfunctioning EVSE will
revert to susceptible state upon repair.

Our major contributions are summarized as follows:
• We present a threat model for ESMS with detailed

assets, information flow, and access points. Through our
analysis, we identify various vulnerabilities that can be
exploited as access points for launching DCA, including
physical entry points (e.g., USB ports) and communica-
tion interfaces (e.g., signal exchanges between EVSE and
SEV, software updates).

• We develop a novel DCA model that encompasses attack
vectors, potential consequences for the ESMS, and imple-
mentation details. We employ different anomaly detection
strategies to demonstrate the robustness of the DCA.

• We develop a high-fidelity simulation platform that uses
real-world data to assess the long-term effects of the
DCA on a large-scale ESMS and validate the system
consequences of this attack.

The rest of the paper is organized as follows. Section II
describes ESMS threat model and examines the viability of
the DCA model. Section III proposes the SIRS-based DCA
model and AD algorithms, and Section IV introduces the key
components in our high-fidelity simulation platform. Section V
presents the scenario design and parameter assumption, fol-
lowed by numerical experiments in Section VI. Section VII
concludes our paper.

II. THREAT MODEL FOR THE ESMS

In this section, we present the threat model of the ESMS by
highlighting the major assets, information flows, and access
points. We make a significant contribution by streamlining
a generic SEV-EVSE threat model [26] to only include the
essential components for a minimal implementation of the
large-scale ESMS while preserving the same properties as
in the original model. By extending the framework to the
system level, we demonstrate the communications between
a large-scale SEV fleet and the SEV service provider and
the potential cascading effects among the SEVs, which is
a novel contribution compared to the single-vehicle version
threat model. Moreover, we focus on specific cyber-physical
threats that occur in the real-world, rather than providing
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Fig. 2. A minimal implementation of ESMS, adapted from the STRIDE threat model proposed by the Sandia National Laboratories [26]. (The red arrows
indicate the communication channels that carry falsified data, and the grey arrows represent other communication channels.)

a generic description of possible attack approaches, which
allows us to better understand the uniqueness of the ESMS
and provides prerequisites for the development of the DCA.

Our threat model, shown in Fig. 2, provides a minimal
implementation of the electric shared mobility service operated
by a single EVSE and SEV service provider. It includes
four types of trust boundaries, the SEV fleet, and the SEV
service provider. Information flows are detailed between the
major assets and interfaces, including EVSE or SEV control
& communication interfaces, connectors, battery management
system in the SEV, and the external entities (e.g., SEV and
EVSE service providers).

A. Major Assets
We summarize the major assets in the ESMS threat model

as follows:
• CSMS: The CSMS enables SEV drivers and EVSE

operators to control and monitor the EVSE remotely,
including charging record-keeping, scheduling, and user
authentication [27].

• EVSE: The EVSE consists of four major components:
DC Fast Charging (DCFC) EVSE controller, EVSE com-
munication interface, EVSE Contactor, and local control
interface. The main function of the EVSE is to transport
the electric power from the power grid to the SEV battery.

• DCFC EVSE controller: The DCFC EVSE controller
processes the exchanged data from the local control
interface (e.g., payment information) and EVSE commu-
nication interface (e.g., SEV battery data). It processes
the real-time information between the EVSE and the
EVSE vendor controller in the CSMS, e.g., availability
status. In addition, the EVSE controller also supports the
maintenance service, which can be conducted by either
physical access (e.g., USB) or over-the-air service via
OCPP from the CSMS (e.g., patch and software update).

• EVSE communication interface: The EVSE communi-
cation interface communicates with the EVSE Contactor

for power supply, obtains charging requirements from the
EVSE control & communication interface, and sends it
to the DCFC EVSE controller [28].

• EVSE control&communication interface: The EVSE
control&communication interface is typically the only
physical link between the EVSE and SEV, which is
embedded in the charging connector. The most popular
types of DC Fast charging connectors in the U.S. include
the CHAdeMo, Combined Charging System (CCS), and
Tesla charger [29]. The connector consists of power lines,
control lines, control pilots (i.e., power line communi-
cation (PLC) in CCS, or CAN buses in CHAdeMO),
enabling power supply, analog control, and data commu-
nication, respectively [30].

• Battery Management System (BMS): BMS controls
the status of the SEV battery within the specified safe
operating conditions [31]. For instance, it monitors the
real-time voltage, current, and battery temperature to
avoid excessive current or overheating [30].

• SEV control & communication interface: SEV battery
charging interface collects the battery data information
from the BMS and sends the EVSE’s configuration to
the BMS for a compatibility check [30].

B. Information Flows in SEV Charging Process
The ESMS relies heavily on seamless communication for

an efficient coordination of dispatching and charging needs.
In particular, a full cycle of charging service, from charging
reservations to completion, requires various communication
exchanges between the SEV driver, EVSE, and CSMS. For
instance, the SEV driver must initiate a charging request
with the desired SoC or charging duration, which can be
accomplished through the charging app (e.g., EVgo [32] and
EVmatch [33]) or human-machine interface (HMI). Before the
charging starts, several rounds of confirmation will proceed
via the analog control lines for a compatibility check (e.g.,
SEV battery and charger parameters) [30]. During the charging
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TABLE I
SUMMARY OF POSSIBLE ATTACKS ON THE ESMS

Type of attacks Targeted assets Impacts Ref.
EV-EVSE interface tampering EV-EVSE communication Terminate charging unless manually reconnecting [8]
Distributed Denial-of-Service CSMS and its communication with EVSE Unavailability of EVSE, delayed response from CSMS [38]
Electronic control manipulation EVSE Human Machine Interface (HMI) or SEV Modify the HMI front panel display (SoC, time remaining),

disrupt controls coordination between power modules
[37]

Man-in-the-Middle attack Communication between EVSE, EV, and EV driver Track issues, payment fraud, spoofing for a free service [39]

process, numerous communication exchanges take place be-
tween the EVSE and SEV regarding power supply and battery
conditions [30] (e.g., maximum voltage to stop charging, target
voltage, battery capacity, and maximum admissible current
of the EVSE and SEV). Furthermore, the BMS continuously
calculates the optimal charging current based on the current
SoC, battery condition, and temperature. Upon reaching the
target SoC or charging duration, the BMS sends a signal to
the EVSE to end the charging process.

C. Access Points

The wireless communication and physical entries in the
ESMS open a wide attack surface, which can be exploited
as access points to disrupt the charging process. We briefly
summarize three types of access points in the ESMS as follows
(for a comprehensive review, see Johnson et al. [24]).

• Control Area Network (CAN): The initial design pur-
pose of CAN was to ensure communication performance
under a complex electromagnetic environment, which
does not include consideration for cybersecurity [34].
The communication mechanism within CAN utilizes a
broadcasting mechanism, enabling eavesdropping attacks.
As seen in Fig. 2, the CAN buses cover the major
components in the EVSE and SEV through the EVSE
control & communication interface, where the transmitted
messages can be modified and broadcast to all covered
electronic control units (ECUs) without discretion. [34].

• OCPP: Nasr et al. [27] reported 13 types of vulnerabili-
ties (e.g., missing authentication, hard-coded credentials,
and missing rate limit) in 16 real-world CSMSs. Those
vulnerabilities can be further exploited to compromise the
lower-level EVSE by embedding malware into patches,
thus disrupting the charging process and manipulating the
default setting of the EVSE.

• USB port on EVSE: Although potential vulnerabilities
of USB ports were demonstrated in several studies [35],
[22], the first attack via the external interface, e.g.,
USB or serial interfaces, was reported by the Idaho
National Laboratory [36], [37]. After obtaining physical
and remote access to the EVSE, researchers successfully
manipulated the modular power electronics modules in
EVSE ports equipped with J1772 CCS and CHAdeMO
protocols, thus disrupting the charging process.

D. Possible Attacks on ESMS

In the ESMS, the vulnerabilities identified during the charg-
ing process create a linked sequence from the external USB
port in the maintenance interface, via the connector, and

to the BMS and ECUs in the SEV. These vulnerabilities
provide various attack surfaces for different malicious attacks,
including an EV-EVSE tampering attack, Distributed Denial-
of-Service (DDoS) attack, Man-in-the-Middle (MitM) attack,
and electronic control manipulation. We summarize these
attack vectors and their corresponding impacts on the charg-
ing service in Table I. Specifically, the EV-EVSE interface
tampering is only possible by physically deploying the off-the-
shelf radio near the EVSE, which will significantly suffer from
high attacking costs for large-scale impacts. Moreover, the
charging process will completely terminate unless manually
reconnecting to the connector, making the attack easily de-
tectable through manual reporting of malfunctions. Similarly,
the consequences of DDoS and electronic control manipulation
are mainly explicit and easier to detect, e.g., delayed server
response and web service disruption for hours [40], which
have little impact on the ESMS in the long run. As for the
MitM attack, the primary target is the data privacy issue, yet
few impacts have been reported on the system performance of
ESMS. In summary, we note that the above attacks target either
one-time breakdowns or data privacy issues, which do not
align with our research goal. On the other hand, our proposed
DCA serves as a special type of the FDIA that stealthily
falsifies the SEV to accept a lower charging rate, leading to
a delayed charging service and long-term degradation of the
ESMS. In the following sections, we will present the stage-by-
stage DCA development and the AD techniques for the DCA
detection.

III. DCA DEVELOPMENT AND ANOMALY DETECTION

In this section, we focus on the development of the DCA
model and its evaluation against AD techniques. Specifically,
we contribute to a novel DCA model that includes the attack
vector, potential consequences for the ESMS, and implemen-
tation details. To evaluate the efficacy and robustness of the
proposed DCA, we introduce five different AD techniques and
incorporate them into a SIRS process, enabling the modeling
of DCA dynamics in a more realistic and practical manner.

A. DCA Modeling

The DCA is a distinct form of FDIA that aims to disrupt the
charging service for the SEV fleet by injecting falsified SoC
information into the SEV. The attacker exploits vulnerabilities
in physical entries (e.g., USB ports) and communication inter-
faces and protocols (e.g., CAN bus and OCPP) to manipulate
the SEV into accepting a reduced charging rate while still
ensuring SEV battery’s safety (e.g., avoiding excessive current
or voltage). The DCA first compromises a set of EVSE via
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the USB port and targets the delay of charging services for
the SEV fleet. This deviation from the normal operation can
hardly be detected by SEV drivers and standard AD techniques
due to the wide range of charging duration, from several
minutes to 1-2 hours [3]. These minor delays in individual
charging activities will result in local congestion at EVSEs and
the unavailability of SEVs, eventually leading to a cascading
failure in ESMS.

It is worth noting that a straightforward DCA can be exe-
cuted by directly charging the SEV at a lower rate. However,
the BMS in SEV continuously monitors the input current via
the CAN bus and ECUs. The BMS will raise the alarm if the
deviation from the optimal charging current surpasses a set
threshold. Therefore, special care is required to devise a DCA
model that can stealthily slow down the charging process.
We next outline the full steps of the DCA implementation
as below (also illustrated in Fig. 3, where the falsified data
are highlighted as red arrows):

EVSE Comm. 
Interface

DCFC EVSE 
Controller

BMS
SEV Ctrl & 

Comm. 
Interface

SEV

CSMSLocal Control 
Interface

EVSE

USB

HMI

lower charging rate
SEV Battery

SEV driver(s)

False Data

Ground Truth Data

Battery Charging 
Control Interface

SEV 
Operator

EVSE Ctrl & 
Comm. Interface

Cloud

Wireless/wired Communication

Wireless/wired Communication with False Data

Fig. 3. A block diagram of DCA

1) Compromise the EVSE via the USB port.
2) Before the charging starts, the compromised EVSE sends

true configuration data to the SEV for the compatibility
check.

3) During the charging process:
a) The DCFC EVSE controller collects the ground-truth

information of the SEV battery via CAN and reports
it to the CSMS via OCPP.

b) The DCFC EVSE controller sends falsified SoC
information to the BMS in SEV through the
EVSE control&communication interface (CAN bus in
CHAdeMO and PLC in CCS protocol).

Step 3(b) serves as the core of our DCA for delaying
the charging service. It ensures that the battery safety re-
quirement, e.g., maximum current and voltage, are met while
bypassing the BMS’s monitoring for the optimal charging
current. Furthermore, our DCA guarantees that the charging
log information uploaded to the cloud (e.g., CSMS and SEV
Operator) remains unchanged, allowing for successful cross-
verification in the cloud.

To better understand the SEV battery’s recharging and
monitoring mechanisms, we present the charging profiles of
the normal operation and the DCA in Fig. 4. We assume that
the BMS adopts the constant-current-constant-voltage (CC-

CV) recharging scheme that is widely used for Lithium-ion
batteries. Under the proper design of falsified SoC information,
the charging service can be delayed within safe limits.
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Fig. 4. Charging profiles under normal operation and DCA: (a) CC-CV
charging process and (b) SoC profile

The CC-CV recharging scheme, shown in Fig.4a, maps
the charging duration (or SoC information) and charging rate
(i.e., charge voltage and current) in a one-to-one relationship.
During the constant current (CC) phase, the charge voltage
increases gradually to reach its maximum. At a certain SoC
tipping point (e.g., 80%), the charge current begins to decrease
gradually to zero in the constant voltage (CV) phase. This
relationship allows the BMS to detect a change in the charging
rate if the SoC information and charge voltage (or current) do
not match. In light of this, our DCA leverages this charac-
teristic to manipulate the SoC reported to the BMS, leading
to a reduction in the optimal charging current. The difference
between the original and delayed charging currents are shown
in Fig. 4a, indicating that the optimal charging current under
DCA will be less than or equal to the original charging rate.
As illustrated in Fig. 4b, the lower charging rate will produce
a smoother charging profile and lead to a longer charging
duration to reach the target SoC, while still respecting the
safety limits of charge voltage and current.

B. DCA Dynamics in SIRS Process

To model the DCA dynamics, we consider an SIRS process.
First, the DCA is launched at a set of infectious EVSE ports.
As discussed in Sec. III-A, the infected EVSE controller will
send falsified SoC information to the SEV’s BMS, resulting
in a lower optimal charging current and an extended time
to reach the same target SoC. As shown in Fig. 5, the
DCA model comprises three states of EVSE: S (Susceptible),
I (Infectious), and R (Removed), as well as parameters β
and γ that denote the transmission rate and recovery rate,
respectively. In addition, we denote by τ the repair rate, where
1/τ represents the repair time, indicating the time required for
an EVSE to return to the susceptible state. The implementation
is outlined in Algorithm 1.

1) S-I transmission: In the S-I transmission process, an
EVSE is compromised by either a wireless communication
interface (e.g., between CSMS and EVSE under OCPP) or
an external physical entry (e.g., USB port). For this study,
we make a conservative assumption such that the EVSE is
only infected by the physical access via the USB port, as this
approach has been validated to disrupt the SEV’s charging
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Fig. 5. SIRS model under DCA

Algorithm 1 SIRS model in the ESMS
Input: At time step t, set of SEVs Vt, set of EVSE St = StS

⋃
StI

⋃
StR

Output: Set of EVSE St+1 with updated status.
1: for i ∈ St do {*/loop all EVSE*/}
2: if i is susceptible then
3: Calculate xS→I

i ← B(1, β) {*/B is Binomial distribution*/}
4: if xS→I

i == 1 then
5: Update the status to infectious
6: St+1

I ← StI
⋃
{i}; St+1

S ← StS \ {i}
7: Record the time stamp tIi ← t
8: end if
9: else if i is removed and t− tRi ≥ 1/τ then {*/Repair is finished*/}

10: Update the status back to susceptible
11: St+1

S ← StS
⋃
{i}; St+1

R ← StR \ {i}
12: end if
13: end for
14: for i ∈ StI do {*/loop all infectious EVSE*/}
15: Proceed δI→R

i ← ANOMALYDETECTION(di, ti, ci)
16: if δI→R

i == 1 then {*/EVSE is identified to be an anomaly*/}
17: Conduct alarm validation
18: if alarm is true positive then
19: Update the status to removed.
20: Record the time stamp tRi ← t

21: St+1
R ← StR

⋃
{i}; St+1

I ← SII \ {i}
22: end if
23: end if
24: end for

service by the Idaho National Laboratory [36], [37]. We also
note that the malware may also spread through the EVSE com-
munication network and SEV-EVSE connection [21]. These
stronger assumptions may contribute to a higher transmission
rate β. However, there is currently a lack of real-world evi-
dence within the ESMS to support such assumptions. As such,
these types of malware infection will be the focus of future
research as more vulnerabilities in the ESMS are identified.

2) I-R transmission: The I-R transmission relies on the AD
algorithm based on the charging log information. Upon a pos-
itive alarm, the EVSE operator will first verify it through the
EVSE communication network (assumed within one minute)
and send out technician for repair service. If the alarm is
confirmed to be a true positive (the EVSE is infectious), the
EVSE will be isolated and the technicians will inspect and
repair. Therefore, the recovery rate (γ) strongly depends on the
effectiveness of the AD algorithm, which will be introduced
in Section III-C.

3) R-S transmission: The R-S transmission occurs after the
completion of the repair process for the infected EVSE. The
duration of this process is determined based on the mean-time-
to-repair (MTTR), denoted by τ . During this period, the EVSE
is out of service, and the queued SEV will relocate to other
available EVSE ports.

C. Anomaly Detection for DCA

To examine the robustness of the DCA model, we in-
corporate the AD algorithms in the ESMS that proactively

monitor the system charging performances and protect against
potential threats. The core purpose of the AD algorithms is
to prevent the SEV fleet from experiencing delays in charging
service, thereby mitigating the potential for cascading failures
in the entire system due to the local congestion and excessive
downtime of SEV supply, especially during the peak hour. In
particular, we will focus on five AD techniques considering
(1) the features of anomalies and (2) the ESMS operation.
For the former, the anomalies in our study are assumed to be
contextual [41]. For instance, a short charging duration (e.g.,
20min) may be considered anomalous during the nighttime
but acceptable during the peak hours [3]. For the latter, we
treat the historical charging performance as the baseline (e.g.,
training set), assuming that it only includes data instances col-
lected during the normal operation before the DCA launched.
We next introduce five AD techniques as follows:

1) Isolation Forest (IF): The IF algorithm was first pro-
posed by Liu et al. [42] for the purpose of AD and was later
used for the purpose of cyberattack detection [43]. The IF-
based detection algorithm proceeds as follows. We first train
the IF model using the benign historical charging log data
to understand the properties of the normal operation. The
charging log data consists of the charging duration, time of
day, and the initial SoC, denoted by (di, ti, ci). With a pre-
defined false alarm rate αI and the number of estimators n,
we are able to train an IF model consisting of n proper binary
trees, where αI of the samples are considered as the anomaly.
Next, we collect batches of charging log data online as testing
data. We denote the anomaly score of sample i in the testing
set by si ∈ [0, 1], which takes the form:

si = 2−
h̄i
h̄ (1)

where h̄i denotes the average path length of a sample i from
a collection of isolation trees, and h̄ is the average path length
of an unsuccessful search, which is adapted to normalize the
h̄i. Thus the anomaly score can be understood as the efforts
to find a path in the isolated tree, where the anomalies can
be identified at the early stage of exploration. By further
incorporating with a false alarm rate αI , the anomaly is defined
by a binary indicator yi, where yi = 1 if si < αI (the sample
i is identified to be an anomaly) and 0 otherwise.

2) Kullback–Leibler Divergence (KLD): The KLD [44]
measures the differences between two probability distributions
p(x) and q(x) regarding the event x ∈ X , denoted by D(p||q),
which can be expressed as:

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
(2)

where the p(x) and q(x) are assumed to represent the histor-
ical distributions of one EVSE under normal operation and
DCA, respectively. Specifically, p(x) is obtained based on the
historical charging log data, and q(x) represents the real-time
charging logs. For the charging log sample x, each log can be
expressed as a triple (di, ti, ci). And the anomaly is identified
if the samples are associated with the KLD D(p||q) larger than
a pre-defined threshold αKLD.
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3) K-Means clustering (KMeans): The KMeans clustering
method [45] is a cluster-based algorithm that groups the input
samples into K disjoint clusters based on the sample features.
Specifically, we first obtain K clusters based on the historical
charging log data (di, ti, ci). Next, we measure the distance
between the online charging logs (dj , tj , cj) and the nearest
centroid of the K clusters. Given a sensitivity level of αKM ,
we report the EVSE i ∈ S as an anomaly if more than αKM%
of the real-time samples are associated with a distance larger
than the pre-defined threshold DKM .

4) Gaussian Mixture Model (GMM): The GMM is a model
consisting of K separate multivariate normal distributions
N (·), known as mixture components. Each mixture component
is parameterized by θk := {µk,Σk}, where µk and Σk

represent the mean value vector and covariance matrix of the
k-th mixture component. Let πk ≥ 0 be the associated weight
for the k-th mixture component, where

∑K
k=1 πk = 1. We

consider the probability density function for the GMM as a
weighted sum of the mixture components:

p(x|θ) =
K∑

k=1

πkN (x|µk,Σk) (3)

where x is a collection of tuple (di, ti, ci) with the dimension
K = 3. For the GMM-based AD technique, we define the
anomaly as the samples xi with p(xi|θ) < cG, where cG
denotes the significance level of the GMM. An anomaly is
detected if more than αG% samples for an EVSE are identified
as an outlier. Note that there is no analytical solution for
the parameters θ := {θk : k = 1, · · · ,K}. Instead, we can
estimate the parameters θ using the Expectation-Maximization
(EM) algorithm [46]. The EM algorithm proceeds by initiating
a random set of parameters θ̂ and iteratively estimating the
optimal set θ̂⋆ that can maximize the average log-likelihood
given the training set x. For the detailed implementation of the
EM algorithm, we refer interested readers to Reynolds [47].

5) Principal component classifier (PCC): The PCC [48]
first obtains the principal components from the covariance
matrix of the training data (assumed as the historical charging
log data under normal operation). Next, an anomaly score
is assigned to each online charging event based on its de-
viation from the principal components. The anomaly score
incorporates the major and minor components. Specifically,
the former detects extreme observations (charging events with
large variances). The minor components help to detect the
values that are not outliers but inconsistent with the correlation
structure as the normal operation. For each EVSE i ∈ S, we
define the EVSE i as an anomaly if over αP% of the batch
of real-time charging events are associated with a significant
level of cP for either the major or minor components.

IV. AGENT-BASED SIMULATION PLATFORM

We develop an agent-based simulator 1 to characterize
the interactions between agents (SEVs) and the environment
(passenger demand and EVSE ports). Our simulator has five
components: matching, dispatching, repositioning, charging,

1https://github.com/sguo28/DCA Simulator

and DCA unit. Specifically, the DCA unit includes the SIRS-
based DCA model and AD techniques to demonstrate the
robustness of DCA. In addition, we also design utility-based
heuristic algorithms that guide unoccupied SEVs to the under-
supply areas and match the SEVs to available EVSE. Key
features in our simulator are listed below (for more detailed
settings, see Qian et al. [49]).

A. DCA Unit
1) SIRS-based DCA Model: We first assume all EVSEs

are infectious after the warm-up period. The SEVs using
the infectious EVSE ports will encounter a delayed charging
service following the Gaussian noise ∆d ∼ N (µd, σd) such
that the charging duration is di ← di +∆d. If the infectious
EVSE is detected, it will undergo the Infectious-Removed-
Susceptible process, such that the EVSE can be infected again
after being repaired.

2) AD Techniques for DCA Detection: The infectious
EVSE can be identified as an anomaly by comparing the real-
time and historical charging log information (e.g., charging
duration, time of day, and initial SoC), see details in Sec-
tion III-C and Algorithm 1.

B. Charging
1) Matching with EVSE Ports: We consider a utility-based

heuristic such that each SEV is assigned to the EVSE with
the highest utility scaled by a soft-max function. For each
EVSE port j ∈ S, a shorter queuing time qj and travel time
t·j will lead to a higher utility. Specifically, for an SEV i, the
probability of selecting EVSE j, P c(j|i), is shown below:

P c(j|i) = exp (−qjtij)∑
j∈S

exp (−qjtij)
(4)

where
∑
j∈S

P c(j|i) = 1 and P c(j|i) > 0 for each location i.

2) Charging Service and Queuing: The charging service
follows the first-come-first-serve rule.

3) SIRS Process: Only the EVSE in susceptible and in-
fectious statuses can serve SEVs. If an infectious EVSE is
detected for repair, the SEV in the queue will relocate to a
nearby EVSE with the highest utility following Eq. (4).

C. Repositioning
To better describe the status-quo scenario [50], we assume

that the idled SEVs will reposition to an under-supplying area.
Specifically, we conduct a utility-based heuristic analogous
to the EVSE matching (see Eq. (4)). The utility score is
calculated based on the supply-demand gap and travel time.
At location j, the supply-demand gap is defined by the gap
between the number of fulfilled orders (N order

j ) and idled SEVs
(N idle

j ) in the past 15min. For an empty SEV at location i,
the probability of selecting location j ∈ Z , P r(j|i), takes the
form of a soft-max function, shown as follows.

P r(j|i) =
exp

(
N order

j −N idle
j

tij

)
∑
j∈Z

exp
(

N order
j −N idle

j

tij

) (5)

https://github.com/sguo28/DCA_Simulator
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where Z denotes the set of hexagonal zones, and tij is the
travel time between locations i and j.

D. Matching with Requests

We conduct a greedy matching strategy, which sequentially
assigns idle vehicles to the open orders to achieve the shortest
travel time within the permissible waiting time threshold.
These include the idling and cruising SEVs that are traveling
to the relocation destination. For the cruising SEVs, it is
considered available for matching at its real-time location.
After being matched, it will stop cruising and move to the
assigned pick-up location.

E. Dispatching

The SEVs with assigned requests will be dispatched to the
pick-up location. The idled SEV will, on the other hand, be
guided to the target location with the highest utility consid-
ering the supply-demand pattern and travel time. The route
is generated and processed from the Open Source Routing
Machine (OSRM) engine [51], which provides the detailed
real-time location for each simulation tick.

V. NUMERICAL EXPERIMENTS

A. Case Study Area

We conduct a real-world case study in NYC to demonstrate
the effectiveness of the DCA model on the ESMS. In partic-
ular, we develop a high-fidelity simulation platform extended
from our previous study [49]. The simulation environment is
updated every minute and covers 1,347 hexagon cells (each
covering an area of 0.14 square miles). We use NYC taxi
data in May 2016 as the input [52], and all trips are assumed
to originate and head to the centroid of the hexagon cells.
In addition, we obtain the real-world locations of EVSE ports
from the Alternative Fuels Data Center [53]. Note that we only
consider the DCFC ports considering the system efficiency
and poor accessibility for taxi drivers to home charging in
NYC [5]. The travel time between each pair of centroids is
obtained by overlaying with the actual road network and then
querying from the OSRM engine.

We perform a downscaled status-quo experiment of the taxi
system by randomly sampling 25% of the historical trip record
(around 130,000 trips). As existing EVSE facilities can hardly
support the charging demand of the 100% electrified SEV
fleet [5], we also consider enlarging the number of charging
piles of the real-world charging stations [53]. To find the best
combination of the SEV fleet size, demand, and the number of
EVSE ports, we conduct a cross-validation procedure by first
fixing 25% of the taxi trip demand and tuning the fleet size
from 1,300 to 1,500, incremented by 50 and increasing the
number of EVSE by 1.5 to 3.0 times stepped by 0.5. The best
combination consists of 1,400 SEVs and 215 DC Fast EVSE
ports to serve 25% of real-world daily taxi trips. The baseline
scenario is justified by real-world evidence (see Figs. 6a-6c)
Unless otherwise specified, available SEVs will be dispatched
to passengers that can be reached within 20min, and the
maximum waiting time for passengers is 10min. Finally, we

consider a 4-week simulation using three random seeds, where
the first week is regarded as a warm-up, and the other three
weeks are the validation period. The DCA is launched at the
end of the warm-up.

B. Parameter Setting

We summarize in Table II the parameter setting in this study,
including SEV, mobility service, and the SIRS process.

TABLE II
PARAMETER ASSUMPTION

Item Assumptions Ref.
SEV
SEV prototype 2019 Tesla Model 3 Standard Range [54]
Charging profile Constant charging rate under an SoC

below 80%
[55], [56]

Target SoC N (0.78, 0.02) bounded by 0.80 -
Charging rate 5.13mile/min [57]
Battery capacity 50 kWh for 220miles [57], [54]
Mobility service
Payment $0.631×∆dist + $0.287×∆time [49], [58]
SIRS process
Transmission rate β 0.1 -
Recovery rate γ Related to AD techniques Sec. III-C
Repair rate τ 1/3hours [59]

Specifically, we adopt the prototype of the Tesla Model 3
for the electric mobility service [60], which is supported by
both Tesla Supercharging and CCS EVSE ports. Based on
the field experiment by Moloughney [56], it took 32min for
a Tesla Model 3 to reach 80% SoC and another 31min for
a full charge, where the charging rate for the first 80% is
observed to be approximately linear. Such a linear charging
profile is also validated by the in-vehicular database [57],
which reports an average charging rate of 3.3%SoC/min
(5.13miles/min) for our prototype. For the DCA model,
a higher sensitivity level (α(·)) results in a more sensitive
AD, which may effectively identify the anomaly but incur
a higher repair cost (e.g., sending out technician labor to
inspect and repair). To compromise the EVSE, we make a
conservative assumption based on real-world evidence [36].
The susceptible EVSE is infected by manually inserting a USB
drive every 30min with a transmission rate of β = 0.1. The
AD algorithm is conducted every 30min, and the technicians
for repair service are sent out for on-site assistance every
30min. The whole repair process for an EVSE port is set as
τ =3hours. According to the Avista EVSE pilot report [59],
we assume that the MTTR is 15 days to address the issue
completely and the average cost to repair is $214 (including
the warranty and non-warranty labor and material costs). We
note that multiple times of on-site assistance (e.g., power
cycling, inspection, repair, or replacement) are required to fully
resolve the issue [59]. Therefore, the repair cost is estimated
to be $1.78 per time.

C. Simulation Scenarios

We present the detailed scenario design considering the
different time delays for the charging service from 5min to
15min and the sensitivity levels of the AD algorithms (α(·)).
We will consider three types of experiments: (1) baseline, (2)
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DCA without AD, and (3) DCA with AD. The attack-free
baseline scenario is to justify the downscaled status quo under
normal operation. We also compare the scenarios under DCA
with and without the AD to explore the trade-off between re-
pair cost and improvement of the system performance. Finally,
we conduct sensitivity analyses on the AD techniques. The
range of α(·) is determined by a cross-validation procedure,
where the parameter settings are shown in Table III.

TABLE III
CROSS-VALIDATION FOR AD TECHNIQUES

AD Range of α(·) Hyperparameters
IF (αI ) 0.05 to 0.15 by 0.025 -

KLD (αKLD) 1 to 5 step by 1 -
KMeans (αKM ) 0.2 to 0.6 step by 0.1 DKM = 2.5

GMM (αG) 0.05 to 0.55 step by 0.1 cG = 0.01
PCC (αP ) 0.3 to 0.8 step by 0.1 cP = 0.005

VI. RESULTS

A. Baseline Scenario

This subsection presents the dynamics in the baseline sce-
nario using real-world data. As seen in Figs. 6a-6d, we show
four primary metrics to justify the status quo simulation exper-
iment, including (1) SEV occupancy rate, (2) order fulfillment
rate, (3) EVSE occupancy rate, and (4) SEV queuing time
at EVSE. Fig. 6a compares the SEV’s occupancy rate with
the historical NYC taxi fleet [61]. The simulation results
are observed to agree with the historical records, where the
overall occupancy rate varies from less than 0.1 during 3 -
6 AM to nearly 50% during the evening peak. The slightly
higher occupancy rates in the simulation may result from
the undersupply of the SEV fleet. In addition, we report
an admissible fulfillment rate of nearly 100% during the
daytime and over 75% during the evening peak (6 - 11 PM).
Moreover, the validity of the EVSE occupancy rate and the
SEV queuing time is confirmed by the real-world practice
of the fully electrified taxi fleet in Shenzhen, China. In this
case, an EVSE occupancy rate from 10% to 80% [62] and a
queuing time of 10min to 40min [63] are considered to be
plausible. Despite the different taxi market settings between
NYC and Shenzhen, we believe that the charging dynamics
in our simulation platform are permissible in the real-world
ESMS, which can sufficiently justify our baseline scenario.

B. System Performance of EVSE

We next present the daily-average charging dynamics over
the three-week period under the DCA, including queuing time
at EVSE and charging duration, shown in Figs. 7a-7b.

Specifically, Fig. 7a shows the queuing time of a SEV at an
EVSE port. We will consider three cases: baseline, the DCA
with and without AD under a fixed delayed charging time
of 10min. For the baseline scenario, we observe two peaks
during the early morning period (e.g., 6 - 8 AM) and the
late afternoon period (around 4 PM), with the longest queuing
time exceeding 22min compared with the shortest queuing
time of about 10min. After launching DCA with a 10min
delay, an additional queuing time of over 15min is observed
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during the noon period and even nearly 20min during the
early morning period (e.g., 7-8 AM). The extended queuing
time is due to the cascading effects. For instance, one SEV
may relocate to the EVSE with the higher utility (e.g., average
queuing time and travel time) after exceeding a queuing time
threshold, which accelerates the snowballing of the excessive
queuing time. With the AD techniques, the queuing time is
greatly reduced by over 10min. However, there still exists
space for improvement during the daytime, especially during
the daytime (9 AM - 5 PM). This is because there exists a
proportion of EVSE that is removed for repair and out-of-
service for at least τ = 3hours. In this regard, the SEVs in
the queue have to relocate to other EVSE ports, resulting in
local congestion at the EVSE ports in S and I statuses. As
seen in Fig. 7b, the charging duration can be reduced from
over 30min to relatively the same levels as the baseline under
all five AD techniques. Compared with the early morning and
evening periods, the average delays in charging service are
observed to be longer at around 6 AM and 2 PM, potentially
due to a higher proportion of infectious EVSE ports.
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C. System Performance for SEV Fleet

This subsection shows the SEV driver’s weekly revenue loss
under different lengths of charging delay with and without
the AD models. To better understand the degradation of
the mobility service, we also present two major dynamics,
including order fulfillment rate and SEV occupancy rate.
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Fig. 8. Comparison of total revenue during the last (4th) week in simulation

Fig. 8 displays the system revenue loss during the last week
in our simulation to capture the long-term impact of the DCA.
One immediate observation is the strong linear relationship
between delayed charging time and revenue loss. Specifically,
without the AD, we report a system revenue loss of at least
$172.9 (5.9%), $311.7 (10.7%), and up to $404.0 (13.9%)
under the delay of 5, 10, and 15min, respectively. With a delay
of 15min, the system revenue loss can be reduced to about
$140.1 (4.8%) comparing all five AD techniques. Furthermore,
our results show that for both IF and GMM, the revenue losses
initially decrease when the delay in charging time is between
5 to 10 minutes, but start to increase as the delay grows from
10 to 15 minutes. This suggests that as the extended charging
time increases, it may result in more severe charging delays
at the system level, while also making it more susceptible to
detection as the charging duration deviates further from the
normal operation. This highlights the importance of carefully
balancing between DCA’s efficacy and robustness. Finally,
despite the improvement in a system revenue loss of up to
8.6% (from 13.9% to 5.9%), the underlined repair cost may
grow exponentially with longer delay of charging, which will
be evidenced in Fig. 11.

Figs. 9a-9b illustrate the order fulfillment and SEV fleet’s
occupancy rates under the baseline and the DCA with and
without AD. For the scenarios under AD, we only show
the results of the KLD, which is observed to be one of the
most effective AD techniques in Fig 8. In Fig. 9a, distinct
differences between the baseline and scenarios without the AD
are observed during the morning and evening peaks (e.g., 8 to
10 AM and 6 to 11 PM). In this case, we report a reduction
of fulfillment rates of about 20% during the morning peak
and 12% during the evening peak, yielding fulfillment rates of
80% and 67%, respectively. Similarly, the reduction of SEV
occupancy rates varies from 2% to 6% under the delay of
5min and 15min from 6 PM to 11 PM. Under the PCC, we
report an improvement in fulfillment rate of up to 8% and a
SEV occupancy rate as high as 5% under the delay of 15min.
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Fig. 9. Dynamics of electric mobility service during the last (4th) week in
simulation: (a) order fulfillment rate and (b) SEV fleet’s occupancy rate.

D. Impacts of EVSE

We illustrate in Fig. 10 the SIR proportions of EVSE under
different delays and AD techniques during the 4th week.
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Fig. 10. Proportion of EVSE in statuses S, I, and R under five AD techniques.

In general, the numbers of susceptible (status S) EVSE
under 5min delay are lower than those under 10min and
15min delay. In particular, under a 5min delay, the IF and
GMM are associated with the lowest number of susceptible
EVSE, which implies the relatively higher revenue loss in
Fig. 8. At the same time, significantly higher proportions of
infectious EVSE and lower proportions of removed EVSE
are observed under the IF and GMM, especially with the
delay of 5min. This can be explained by the stealthiness of
DCA, which can hardly be detected by the AD techniques
mentioned above. In addition, the numbers of removed EVSE
under 15min delay are reported to be higher than those under
10min delay. In this case, the higher proportion of removed
EVSE results in a higher revenue loss, as observed in Fig. 8,
and lower fulfillment rates and occupancy rates in Fig. 9.

E. Performance of AD Techniques

Table IV reports the performance between the five AD
techniques: accuracy, precision, recall, and F1 score.

We note that the KLD and PCC outperform the other AD
techniques under different charging delays, where the accuracy
and precision are over 0.86 and F1 scores are at least 0.92.
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TABLE IV
COMPARISON BETWEEN FIVE AD TECHNIQUES

5min 10min 15min

AD Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
IF 0.73(0.01) 0.82(0.01) 0.74(0.01) 0.78(0.01) 0.80(0.01) 0.81(0.01) 0.85(0.01) 0.83(0.01) 0.80(0.01) 0.82(0.01) 0.86(0.01) 0.84(0.01)

KLD 0.86(0.05) 0.86(0.05) 0.99(0.0) 0.92(0.03) 0.87(0.01) 0.88(0.01) 0.99(0.0) 0.93(0.0) 0.85(0.01) 0.86(0.01) 0.99(0.00) 0.92(0.01)
KMeans 0.78(0.01) 0.84(0.00) 0.86(0.01) 0.85(0.00) 0.82(0.00) 0.84(0.00) 0.91(0.00) 0.88(0.00) 0.81(0.00) 0.84(0.00) 0.91(0.00) 0.87(0.00)
GMM 0.64(0.01) 0.81(0.00) 0.57(0.02) 0.67(0.02) 0.77(0.01) 0.79(0.01) 0.78(0.02) 0.78(0.01) 0.79(0.00) 0.79(0.01) 0.80(0.01) 0.79(0.01)
PCC 0.85(0.00) 0.87(0.00) 0.98(0.00) 0.92(0.00) 0.85(0.00) 0.86(0.00) 0.98(0.00) 0.92(0.00) 0.86(0.00) 0.87(0.00) 0.98(0.00) 0.92(0.00)
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Fig. 11. Trade-off between revenue loss and repair cost under a delay of 10min over a three-week period

In particular, the recall can reach up to 0.99, which suggests
a significantly low miss-detection rate (as low as 1%). The
superior performance of KLD and PCC can be explained by
the non-parametric features, where no prior assumptions are
made on the sample distribution. In particular, the low-rank
approximation under the PCC exhibits the great potential of
identifying the anomaly, especially for large-scale problems.
In addition to the PCC, we also report good performances
under the KMeans. In this case, all metrics are over 0.80
under the 10min and 15min delay. Also, we observe that
the precision and recall exceed 0.80 in all cases, indicating
a good performance regarding the false-positive and miss-
detection rates. As a clustering-based technique, high-quality
clusters are obtained based on the historical data under normal
operation. The outliers are likely to be associated with high
anomaly scores (i.e., long distance to the cluster).

F. Sensitivity Analysis

To better understand the trade-off between repair cost and
system revenue loss, we conduct sensitivity analyses on the
AD techniques with respect to α(·) (the ranges for the cross-
validation procedure were detailed in Table III). We summarize
the repair cost and revenue loss under the 10min delay in
Fig. 11. We first observe that the higher sensitivity levels
lead to linearly or even exponentially increasing repair costs,
ranging from about $6,000 (KMeans) to nearly $40,000 (KLD
and PCC). This is because the AD models aim to perform
more sensitive DCA detection by grouping more charging
events as anomalies, resulting in higher repair costs to send
out a technician for repair service. At the same time, the
revenue loss (red dotted lines) witnessed an overall reduction
with significantly higher repair costs due to more sensitive
detection. However, the revenue loss remains at least 4% in all
five AD models regardless of the repair cost, which suggests
the robustness of the DCA model. Observing the trade-off
between repair cost and revenue loss, we note that a slight
compromise on the revenue loss can result in a significantly

lower repair cost, e.g., αI = 0.05, 0.075, αKLD = 1, 2, and
αP = 0.3, 0.4. Those trade-off decisions will shed light on the
coordinated management of SEV and EVSE for commercial
purpose [64]. We highlight that there will always be a pro-
portion of infectious EVSEs serving the SEV fleet, resulting
in huge revenue loss regardless of the sensitivity levels of the
DCA detection models. Meanwhile, more sensitive detection
may not contribute to more successful detection but lead to
exponentially increasing repair costs and higher miss-detection
rates (proportion of false-positive and false-negative alarms).
In this regard, we alert more tailored AD models that can best
balance the trade-off between system revenue and repair cost.

VII. CONCLUSION

This study presents a novel DCA model that can surrep-
titiously impede the ESMS by delaying the charging service
of the SEV fleet. By utilizing the NYC taxi trip data and
real-world EVSE locations, we evaluated the system impacts
of the DCA on the ESMS in NYC using a self-developed
high-fidelity simulation platform. Our results demonstrate a
long-term degradation of the ESMS caused by the DCA, with
a 10min delay resulting in up to 35% longer queuing times
at EVSE during the daytime (11AM - 6PM) and up to 6.8%
longer average charging times at around 10AM. Furthermore,
such a disruption to the charging service leads to an 8%
increase in unfulfilled requests, which results in a 10.7%
($311.7) weekly revenue loss per SEV driver. Even with the
AD techniques, our results show that the weekly revenue loss
remains at a minimum of 3.8% ($111.8), along with increased
repair costs of up to $36,000 per week. Therefore, our DCA
model highlights a realistic and stealthy cyberattack approach
that can chronically harm the ESMS. In conclusion, this study
contributes to the field of cybersecurity by introducing a new
cyberattack approach and providing insights into the system-
level impacts of the DCA on the ESMS.

Future research should focus on incorporating a more real-
istic EVSE choice model to better understand the impacts of
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DCA and its cascading failures. For instance, the SEV may
detour to a relatively distant EVSE due to the preference [65].
Additionally, tailored defense strategies should be developed to
effectively identify malfunctioned EVSEs, even under minimal
disruptions in charging service (e.g., a 2min delay). This
is especially relevant to the increasing prevalence of high-
wattage EVSEs (e.g., extreme fast chargers [29]) and heavy-
duty electric trucks in the ESMS. Moreover, SEV drivers may
have different target SoC levels (e.g., above or below 80%)
due to time constraints, which can result in a non-linear CC-
CV charging profile. Future studies should incorporate this
factor to simulate more realistic charging behaviors. Finally,
battery degradation [66] is an important consideration that
adds another layer of variability to charging duration beyond
human-involved activities. Incorporating battery degradation
in our future research will make our proposed DCA approach
even more robust and applicable to real-world scenarios.
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