
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 28, 2024

“Is Not the Truth the Truth?”
Analyzing the Impact of User Validations for Bus In/Out Detection in Smartphone-Based
Surveys
Servizi, Valentino; Persson, Dan Roland; Pereira, Francisco Camara; Villadsen, Hannah; Bækgaard, Per;
Peled, Inon; Nielsen, Otto Anker

Published in:
IEEE Transactions on Intelligent Transportation Systems

Link to article, DOI:
10.1109/TITS.2023.3291493

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Servizi, V., Persson, D. R., Pereira, F. C., Villadsen, H., Bækgaard, P., Peled, I., & Nielsen, O. A. (2023). “Is Not
the Truth the Truth?”: Analyzing the Impact of User Validations for Bus In/Out Detection in Smartphone-Based
Surveys. IEEE Transactions on Intelligent Transportation Systems, 24(11), 11905-11920.
https://doi.org/10.1109/TITS.2023.3291493

https://doi.org/10.1109/TITS.2023.3291493
https://orbit.dtu.dk/en/publications/265dfe80-89b8-4604-8565-b671bee3bb3d
https://doi.org/10.1109/TITS.2023.3291493


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

“Is Not the Truth the Truth?”: Analyzing the Impact
of User Validations for Bus In/Out Detection in

Smartphone-Based Surveys
Valentino Servizi , Dan Roland Persson, Francisco Camara Pereira , Hannah Villadsen, Per Bækgaard ,

Inon Peled, and Otto Anker Nielsen

Abstract— Knowledge of passenger flow underpins any optimal
public transport application, such as new facilities design and
operations. The interactions between passengers and sensors
may provide the foundation to measure this flow and dismiss
users and staff from the measures’ validation loop. Remov-
ing humans and their errors may impact significantly and
improve measures’ cost and quality. The literature considered
smartphones the leading enabler due to market penetration
and embodied sensors. Smartphones allow users’ localization,
identification, authentication, and billing. Via Bluetooth, smart-
phones detect short-range implicit interactions, device-to-device.
We model passenger states on buses, either be-in or be-out
(BIBO). The BIBO use case identifies a fundamental building
block of continuously-valued passenger flow, which this paper
describes through a Human-Computer interaction experimen-
tal setting involving two autonomous buses and a proprietary
smartphone-Bluetooth sensing platform. The resulting dataset
of 14,000 observations/sensors contains two ground-truth levels:
the first is the passengers’ validation; the second is validation by
video cameras surveilling buses and tracks. This study verifies
separately classification based on Bluetooth and GPS signals,
as well as an inertial navigation system, evaluating signals and
related machine learning (ML) classifiers against measurement
and ground-truth noise. The paper contributes a Monte Carlo
simulation of labels-flip to emulate human errors in the labeling
process, as in smartphone surveys, and a novel unsupervised
variational auto-encoder classifier. Experimental results indicate
error-free human validation is unlikely. The impact of mistakes
on model performance bias can be significant. This use case
supports the potential substitution of human validation with
independent Bluetooth validation.

Index Terms— Ground-truth, D2D interactions, autonomous
vehicles, bluetooth low energy, Internet of Things.
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I. INTRODUCTION

PASSENGER flow is a fundamental component for capac-
ity estimation of public transport and for designing

adequate infrastructure and services [1]. On bus transport,
this flow measures passengers’ variations in time and space,
on the vehicles [2]. Multiple approaches promise real-time
passenger flow estimation, but even the most advanced ones
struggle with imprecision due to counting passengers indi-
rectly, such as when paying by cash, or traveling without
ticket [2]. Although autonomous buses and the internet of
things (IoT) offer the opportunity of exploiting D2D (device
to device) interactions for passenger flow beyond ticket-
ing [3], available solutions such as check-in/check-out (CICO),
walk-in/walk-out (WIWO), or be-in/be-out (BIBO) [4], [5]
all seem prone to errors. For example in the CICO case,
using radio-frequency identification (RFID) technology for the
interactions between smart-cards and readers, people often
forget either the CI or CO action. In the WIWO case, multiple
users can enter the same gate at the same time and confuse the
counter. To contribute improving passengers’ count accuracy
and user experience in public transportation, we focus on
enabling next generation BIBO for ticket-less trips. This
application could allow passengers, for example, to pay with
contact-less, radio-based identification, and communication
via smartphone-Bluetooth without human intervention and
without explicit interaction [6]. This approach has the added
advantage of being the most user-friendly for the growing pop-
ulation of smartphone-users, which is above 40% worldwide
and up to 80% in western countries [7], since it depends
only on the user carrying his/her device as he/she would
normally do.

Although the global positioning system (GPS) is one of
the most reliable and adopted technologies for outdoor track-
ing [8], GPS shows important limitations in urban areas [9].
The specific radio-signal frequency requires line of sight
between sender and receiver, thus being affected by reflections
from tall buildings and clouds. Consequently, GPS measure-
ments require independent validation. Similarly, Bluetooth is
one of the principal technologies for proximity detection [10]
applied to indoor tracking, and the specific radio-signal
frequency brings other limitations. For example, a smartphone-
based travel survey on the Silver Line bus rapid transit
in Boston, Massachusetts, deployed BIBO technology [11],
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Fig. 1. Experiment workflow.

as a context detection system for a service quality survey,
and so avoided collecting ground-truth (GT), in form of
labels, from surveyed passengers; D2D implicit interaction
between smartphones and Bluetooth devices installed on buses
verified passengers’ presence aboard, independently from GPS
sensors. In the same study, the authors expose cases where
BIBO verification was successful via GPS but not Bluetooth,
potentially caused by human bodies impedance of signals
within the bus. While a large body of literature presents a
successful case for Bluetooth as indoor positioning technology,
no previous work that we are aware of analyses in detail its
use as independent measurement for labels and the impact of
labeling errors on the BIBO classifier performance. In this use
case, Bluetooth reception errors might present themselves as
flipping- and outlying-labels [12], negatively impacting ML
training and magnifying misclassifications.

Flipping-labels are known as items that human or machine
classifiers labeled with a wrong class, despite the true one
existing in the dataset; outlying-labels are items that belong to
none of the classes in the dataset, but were mistakenly labeled
as one of these classes [13]. The impact of these two problems
on ML classifiers is extensively studied for independent and
identically distributed (IID) datasets [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], such as for images, but
not for time-series, such as Bluetooth or space-time GPS
trajectories.

To train and deploy any ML classifier based on a set
of signals, the literature showed that measurements’ valida-
tion requires ground-truth collected explicitly from humans.
To bridge the gap between the limitations mentioned in the
preceding two paragraphs, we conducted a case study on a
BIBO, smartphone and Bluetooth Low Energy (BLE) based
system, with the following research question:

Can BLE-smartphone implicit interaction consis-
tently substitute person-to-device (P2D) with device-
to-device (D2D) ground-truth collection for the
BIBO use case?

To answer, we inquire the following aspects:

(i) During the ground-truth collection, what is the
users’ response to wrong labels representing
wrong ML classification that users should vali-
date?

(ii) What is the ML classification performance based
on BLE, GPS, and inertial navigation system
(INS)?

(iii) What is the resilience of ML supervised methods
to flipping-labels?

Fig. 1 shows the process we executed through the following
steps. First, we designed and implemented a smartphone-BLE
platform. Second, we set up and ran an experiment involving a
simple transport network composed of two autonomous buses
operating on two routes and three bus stops, with a BLE device
on each bus and bus stop; the experiment ran for two days.
Third, we involved users, and we video-recorded each of their
trips through this network; simultaneously, users’ smartphone
native (Android and iOS) application programming interface
(API) read BLE devices’ signal strength and classified the
transport mode from the time-series of the INS. Our pro-
prietary application stored these trajectories in a database.
Fourth, we labeled the trajectories using video recordings
as ground-truth with BIBO binary labels (be-in or be-out).
Fifth, we created a Monte Carlo (MC) process to simulate
labeling errors, i.e., flipping-labels, with various noise levels
on recorded trip time-series. Finally, to understand the error
tolerance, we evaluated and compared multiple classifiers, both
on true and noisy labels. We create a unique dataset where
the experimental setting incorporates multiple real-world con-
ditions typical of urban high-density contexts: overlapping
BLE fields, multiple makes and types of smartphones, native
applications for the two main operating systems (OS), bus
switching routes, bus moving at low speed only (< 15 km/h),
subjective preferences on how and where users carry their
smartphones, or where they stand, both while traveling on bus
and waiting at the bus stop. In such a BIBO system setup,
we yield results (see Sec. IV) suggesting that BLE signal
alone is robust to labeling errors and performs significantly
better than commercially-available classifiers based on INS.
Consequently, the use of BLE in combination with traditional
signals, such as GPS, has the potential to dismiss humans from
the validation loop.

A. Contribution

Despite the wide body of previous work (see Sec. II),
in particular on the impact of labeling errors, this use case
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did not receive enough attention, and thus no conclusions can
be drawn as of its potential.

Whereas datasets are exclusively IID in existing work,
we investigate dependent observations over time. In contrast
to the literature studying the flipping labels’ problem using
true ground-truth from a synthetic generation of datasets,
we provide a broader analysis over the impact of noisy labels
on Machine Learning training and evaluation steps, and mostly
we can carry out this analysis on real trajectories.

(i) Labels, BLE and GPS signals are obtained from a
realistic setup involving real vehicles, devices, and
people, producing real time-series.

(ii) Video-cameras collect high-quality ground-truth iden-
tifying be-in/be-out (BIBO) labels, i.e., presence inside
(BI) or outside (BO) the bus.

(iii) Top-of-the-shelf smartphone OS provide INS-based
classifier BIBO labels, which constitute the baseline
for our analysis on both BLE- and GPS-based classi-
fiers.

(iv) We collect experimental evidence about the types of
errors in person-to-device labels collection: P2D is
typical of real-world smartphone-based travel surveys.

(v) We introduce a methodology to augment high-quality
labels by propagating errors, compatibly with experi-
mental evidence (see Sec. III).

(vi) We identify ideal performance of ML supervised mod-
els evaluated and trained on ideal labels. We compare
the ideal performance with both the perceived and
the actual performance of the same models. In this
case the perceived performance is the one we measure
“assuming” existence of labels’ errors in both model
evaluation and training; the actual performance is the
one we measure on ideal labels quality, after training
a model on labels containing errors (see Sec. IV).

(vii) Assuming a state-of-the-art P2D labels collection,
we expose and quantify the bias that labels errors
induce on the ML models at hand.

(viii) We propose a novel neural network configuration
that avoids using labels, trained with GPS against
Bluetooth as pseudo-labels, and vice-versa.

In smartphone-based travel surveys, errors in labels and
consequent bias in passengers transport records translates
directly, e.g., in sub-optimal transport applications, design of
new facilities, and operations. The above contributions expose
a substantial risk of bias, identify bias due to labels error –
which previous work seldom contemplated – and thus offer a
methodology to reduce the need of labels for the BIBO case
and beyond.

II. RELATED WORK

This section focuses on two main bodies of literature that
contribute to expose perspectives relevant for this use case: one
on deployment of BLE beacons networks and signal process-
ing for location prediction and activity classification, the other
on the problem of label noise for ML classifiers. This section
pinpoints candidate parameters and methods considered for
designing the experimental setup of this work.

A. Bluetooth Applications
BLE stems from Bluetooth and WiFi protocols, and special-

izes in IoT applications; the communication is one-to-many,
involves few bits of data to be broadcast frequently, and
requires no pairing operation with other devices. All these
properties make BLE technology particularly suitable for
proximity detection [8]. Although transport mode detection
is heavily unbalanced towards other sensors, such as GPS and
INS [8], BLE and WiFi are considered promising technolo-
gies even in complex multimodal transport chains [22], [23],
[24], [25], [26], [27]. For example, Bjerre-Nielsen et al. [27]
perform transport mode detection based on received signal
strength (RSSI) from Wi-Fi and Bluetooth signals, measured
in decibels. The study analyzes and compares three supervised
classifiers: random forest, logistic regression, and support
vector machines. None of these methods involves artificial
neural networks.

For implicit BIBO classification, Narzt et al. [6] propose
an architecture where Bluetooth receivers are inside the bus
while passengers carry a BLE device. The study carries out
several experiments to recreate bus-space realistic conditions
and analyses multiple configurations for Bluetooth receivers
and device positions. No real users nor vehicles are involved
in the study. The conclusion cautiously supports the hypothesis
that larger-scale deployment of such a system is feasible.
To further investigate potential interactions with the envi-
ronment, the study highlights the need for a survey under
realistic conditions from a larger-scale deployment perspec-
tive. An important limitation of Narzt et al. setup is that
current BLE transmission in smartphones enables mac address
randomization which means devices cannot be identified when
not activated. Therefore, in our study, each smartphone is a
receiver of signals generated with BLE devices installed in
the transport infrastructure, i.e., buses and bus stops.

An independent, complementary, and substantial body of
literature focuses on multiple sensors and algorithms for
Mobile Anchor Node Assisted Localization [28], where WiFi
and BLE signals are extensively studied in general, and
in particular for indoor tracking [29]. Among the methods
available, geometric approaches are widespread, e.g., based on
the Friis equation [30], and trilateration [31]. These methods
rest on the knowledge of each device position and radio-signal
propagation physics to approximate a receiver’s location based
on reception strength. Prevalent RSSI fingerprints approaches
are ML-based, e.g., on k-nearest-neighbor and Kalman-Filters
(KL) [32], [33], [34]. These algorithms rely on mapping a
geo-spatial context with a sample of signal-strength-records,
received from the devices on the range; grid resolution on the
mapped space and signal-sample-size depend on the location
accuracy required by the use case.

A natural extension of these technologies in the field of
intelligent transport systems, is the study of vehicles to any-
thing (V2X) communication. Whereas Bluetooth in general is
not considered optimal for bi-directional communication due
to slow paring process [35], BLE technology is substantially
different and is able to trigger events in smartphones’ OS,
without any paring operation [36].
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In summation, the above works indicate several pre-
requisites for successful BLE application: (i) BLE signal
transmission rate above 0.3 Hz; (ii) The density of the Blue-
tooth beacons network above one device every 30 square
meters; (iii) Appropriate imputation of RSSI readings.

B. Noisy Labels in Machine Learning Classifiers

The problem of noisy data receives a lot of attention from
the research community. The cause of noise in labels is
manifold and use case dependent. For example, crowd-sourced
labeling of images relies on expertise and attention of labelers,
which they may not always have [19]. Similarly, in prompted
recall surveys, users validate travel diaries with different ded-
ication levels, and may therefore, negatively affect the quality
of what is often perceived as ground-truth [8]. Consequently,
noisy labels in turn negatively affect the classification accuracy
of supervised or semi-supervised ML methods, which depend
on these labels in the training process.

Previous systematic studies on noisy labels compare multi-
ple supervised classifiers on multiple synthetic datasets [18],
and analyze how robust learning algorithms are to noise [37],
[38], [39]. Another research line works on noise cleansing or
labels correction methods [40], [41], [42]. Numerous alter-
native approaches exist for improving classification accuracy
in the presence of noisy labels, for example: (i) To pin-
point wrong labels, majority voting across multiple neural
networks [43]. (ii) To learn labels’ noise distribution, spe-
cialized layers for artificial neural networks [19], [44], [45].
(iii) To predict the noise affecting training, conditional noise
models [46]. (iv) To reduce the number of labels necessary for
training, semi-supervised approach achieved with generative
models [47]. (v) To leverage on existing high-quality sub-set
of labels, propagation methods of these labels [48]. (vi) To
learn labels on the fly and reduce human errors, graph-based
label propagation methods [49].

III. METHODS AND MATERIALS

To assess BIBO error tolerance under the experiment
setup, first we need to understand how users collect faulty
ground-truth, and then use this knowledge to derive a Monte
Carlo process generating the same noise on the labels.
Fig. 1 describes the methodological process we adopted;
Figure 2 presents the BIBO platform we designed, imple-
mented and deployed for data collection.

A. Procedure

The experiment took place in a private area because the
two autonomous buses in use were not yet allowed in public
roads, and no public service operations were in place. There-
fore, users were recruited among the campus personnel and
students.

First, we distributed a paper-based form to each user. The
form included the experiment description and the information
on data collection and use exclusive for research purposes
(GDPR complainant). Then we briefed each participant on the
following steps: (i) Install on smartphones the application we

Fig. 2. Sensing platform.

published to the application stores (for beta testing). (ii) Read
general conditions and grant the application permission to
access smartphone sensors and activity recognition. The latter
performs transport mode detection [50], [51]. (iii) Wear a
sleeve number to ease the ground-truth collection from video
recordings. (iv) Use the transport network with the commit-
ment to enter and exit the bus more than once, and with
the possibility of walking between bus stops. (v) Count the
total number of stops, defined as the discontinuities between
transportation modes, and expect a message stating our count,
in the following days, with the request to validate or correct
such a count.

Next, we answered any questions raised by the participants,
and from all the participants willing to participate we collected
a paper-based signed authorization to proceed with experiment
and data collection.1

B. Wizard of Oz (WoZ) for P2D Ground-Truth Collection

In this case, WoZ refers to the experimenter pretending that
a BIBO system is operational on the test-bed [52]. The role
of the user is to validate the measurements of such a BIBO
system. Therefore, the user is briefed to count how many times
he or she stopped according to the definition of stop provided
in Sec. III-A. To observe the P2D validation dynamic, the
experimenter then provides WoZ’s count to the user.

C. Qualitative Survey on P2D Error Types

Active ground-truth collection P2D, which users provided
in the days following the experiment, included fourteen valid
replies, which is twice the number recommended for similar
qualitative studies [53].

To collect P2D labels from users after the experiment and
link each user’s feedback to the other data collected from
smartphones, we rely on electronic forms with a pre-filled
unique identifier corresponding to the user.

1This project is a social science study, includes data and numbers only,
is not a health science project, and does not include human biological material
nor medical devices. Consequently, in Denmark, where the data collection
took place, the Health Research Ethics Act provides a dispensation for
notification to any research ethics committee.
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To explore the users’ commitment and the type of errors
present in P2D ground-truth collection, first we counted the
total number of stops for each user from video-recordings;
next, we introduced a level of noise in these counts before
submitting the validation request, on a random sample of
users. For the noise distribution, we assumed that validation
errors could be Poisson distributed, similarly to OD matrix
counts [54], as each error event is discrete and has minimal
probability.

D. Experiment Setup and Data

The possibility of replicating beacons’ density of indoor
settings, which should be > 1

30 m2 , is not realistic from this use
case’s scale-up perspective (see Sec. II-A). However, installing
devices both on the bus and on bus stops, which is more
realistic, allows a temporary and nearly-optimal density of the
beacons’ network, at least between passengers’ boarding and
alighting, and when the bus stations in front of a bus stop.

The setup consisted of two autonomous vehicles operational
on two distinct routes and three bus stops. To allow passengers’
transfer between the buses, one bus-stop was shared between
the routes, additionally sharing a segment of the test track;
during the experiment, the buses’ assignment to the route
has been switched for technical problems, similar to real
world settings. The BLE beacon network counted one device
per bus and one device per bus stop, with five devices in
total (see Fig. 2). Each device transmitted at the rate of
1.667 H z and −8 d Bm power. As these two settings affect the
battery life of BLE beacons, the decision considers a realistic
battery life expectation above one year, within the frequency
recommendations from indoor studies (see Sec. II-A).

1) Dataset Signals and Baseline Collection: Smart-
phone onboard sensors collected trajectories for a total of
13, 723 points. We stored for each of these timestamps: User
Pseudonym, GPS longitude and latitude; 5 RSSI readings
from the BLE beacons network, one for each of the 5 BLE
devices, and the transport-mode as detected by top-of-the-
shelf INS-based classifiers available on both Android and iOS
operating system. The sampling rate for all the sensors is
approximately 1 second. We don’t know what is the sampling
rate underpinning the proprietary INS-based classification. The
literature shows a range between 20 H z and 50 H z. Raw
acceleromenter, gyroscope and magnetometer data were out
of the scope. Completed the data collection, we found a high
number of unavailable trajectories, approximately 1

3 of the
total: Four users did not grant the permission to access location
sensors, turning in no database records.

2) High Quality Ground Truth: To count passengers’
flow, we installed a high-resolution video-camera pointing
to the buses’ doors at each bus stop as the principal
ground-truth. However, the three cameras in combination
also allowed the full surveillance of the track. A problem
with the video-cameras, prevented the determination of high
quality ground-truth for three users. Using video footage as
ground-truth for the trajectories successfully collected from
the remaining users. On each point we provided a set of
binary labels consistent with the BIBO model [6]: inside (BI)
or outside (BO) the bus.

3) Sensing Platform: The smartphone sensing platform’s
main components are the front-end applications and back-
end. The front-end is specific, or native, for Android and
iOS. The apps contain the following features: data collection
from onboard sensors and native APIs, such as users’ transport
activities classification; data transfer to the back-end from a
local buffer that avoids data loss in case of external connectiv-
ity problems; and lastly, real-time tracking of buses on a map,
with bus stops. The sensors we target are GPS, and BLE signal
strength perceived from the BLE beacons network, which
is external to the smartphone and independent. To improve
smartphones’ battery efficiency, we monitor users’ activities.
We switch on and off smartphone GPS and data transfer, when
the user is active and inactive. We collect such an INS-based
activity recognition that any OS offers via APIs to discrimi-
nate between states, such as: automotive, bicycling, walking,
running, stationary and unknown [50], [51]. The back-end,
which includes several specialized APIs, is responsible for
exposing the information from the autonomous vehicles to the
smartphone and handing the data from smartphones to the
database.

As opposed to another architecture presented for BIBO [6],
where users carry BLE devices, and buses are equipped with
signal processing devices, we decide to follow the architecture
of smartphone-based travel surveys [8], where users carry
their smartphone, which is also a signal processing device,
while buses are equipped with BLE devices. This configuration
presents two main advantages. First, we extend the beacons’
network outside the bus, at the bus stops. Second, we allow
users to carry their phones and not interfere with their normal
behavior while picking up signal from multiple sources. From
the perspective of a larger-scale deployment, the experimental
setup seems more realistic under these two conditions. The
installation cost of a beacon device should be a fraction of
the Raspberry-Pi deployed in [6]; furthermore, users should
carry their smartphones only and not a new device. This last
element introduces a new random variable: The varying quality
of sensors installed in different smartphone models, and the
sample collected in this experiment is not representative of
this broad population. Thus, to collect consistent data, we rely
on the standardization of sensors and protocols represented on
the aforementioned OS.

E. Data Preparation and Classifiers for BIBO

To assess BLE beacons’ signal performance in determining
users’ presence inside (BI) or outside (BO) the buses, we use
INS and GPS as benchmarks.

From smartphones’ OS we collect the binary classification
automotive vs. everything else, compatible with BIBO in this
context, which is based at least on accelerometer.

From GPS we extract the following features: distance
between points, bearing, and speed [55], [56], which we
process as time series. For BLE beacons we apply the same
methodology. Table V presents the list of features collected in
10 seconds sliding window.

Concerning the choice of ML models, we would like to
highlight that we choose two top-of-the-shelf algorithms [8].
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To benchmark the performance of the underlying data streams,
i.e., BLE against INS and GPS, we consider these two algo-
rithms sufficient baselines.

1) Framework: Scikit-learn is a popular python-based
framework that includes several effective ML models. Random
Forests (RF) represent a reliable and scalable supervised
method for this task [57]. At the same time, Multi-layer
perceptron (MLP) can be considered a building block of
generative models, which can operate semi-supervised or
unsupervised [47]. Therefore, we include these two supervised
classifiers in the study. For more advanced neural network con-
figurations [58], we rely on Pytorch. The following sections
present further details, on preparation, training, and validation
of the classifiers.

2) Random Forest: RF evolve from decision tree predictors,
averaging results from multiple of these predictors. The effect
is a more accurate classifier less prone to over-fitting. The
training phase starts with bootstrapping [59], which consists
of several sub-samples with replacement from the training
dataset. Each training sub-set is then split into in-bag [59] (IB)
and out-of-bag [59] (OOB). The latter’s size is one-third of
such a sub-set, while the former accounts for the rest. A deci-
sion tree is constructed from each IB, while the attributes
are sampled randomly to determine the decision split [59].
Finally, the RF output is aggregated over all individual trees,
and the output is the class with the highest average probability,
whereas in classical majority voting the output is the most
common class prediction among trees.

3) Multi-Layer Perceptron: Perhaps we can consider it
the most simple feed-forward artificial neural network [60].
MLP incorporates multiple layers for logistic regression.
Multiple perceptrons, or neurons, compose each layer and
handle nonlinearities through activation functions, such as
sigmoids and rectified linear units (ReLU). For classification,
each neuron’s weight and bias is trained by minimizing
the cross-entropy between the class predicted by the net-
work and the ground-truth. These parameters are iteratively
updated at each classification attempt, defined epoch, by back-
propagating the resulting stochastic gradient towards the
cross-entropy local minimum.

4) Split-Brain Variational Autoencoder (SVAE): Inspired
by the split-brain autoencoder architecture [61], we define
two variational autoencoders. The encoder and decoder of the
first are defined as qφ(z|dBLE) and pθ (dGPS|z); the encoder
and decoder of the second, as q

φ̂
(ẑ|dGPS) and p

θ̂
(dBLE|ẑ).

dBLE and dGPS identify any signal extracted respectively from
Bluetooth low-energy and GPS. This architecture (see Fig. 3)
reflects a simple form of causal directed acyclic graph [62],
which we implement with a convolutional neural network: The
position in space/time of each smartphone in the experimental
context (cause) determines the BLE signal strength that each
smartphone detects (effect).

This two variational autoencoders are trained minimizing
at the same time [63] the two Variational Maximum Mean
Discrepancy (MMD) losses [64] (1), which are expressed in
(2) and (3) as LMMD and L ˆMMD, where β > 0 in the first term
is a scaling factor similar to β−VAE [65] and the second term
is the reconstruction loss. MMD is expressed in (4), where

Fig. 3. Split-brain variational autoencoder (SVAE).

k(z, z′) = e
−
||z−z′||2

2γ 2 and γ is an hyperparamenter controlling
the smoothness of the Gaussian kernel k (see Tab. III). k′

is a true sample from a standard distribution. In (1), σ1 and
σ2 are optimal weights found together with φ, φ̂, θ , and θ̂

(2), (3), leveraging the same back-propagation algorithm (see
Appendix, Alg. 1). With MMD we aim to match the latent
space distribution of all the possible signals q(Z) (5), which
reflects distribution over all the observed signals dX , with the
distribution p(Z). The choice of MMD divergence (4) for,
e.g., the loss LMMD (2), over the Kullback–Leibler divergence
of the loss LELBO, the Evidence Lower Bound (ELBO) [47],
derives from the better performance in disentangling classes
representations in the variational autoencoder’s latent space.

OSVAE = arg min(
1

2σ 2
1
· LMMD+

1
2σ 2

2
· L ˆMMD)

+ ln σ1+ln σ2 (1)
LMMD = β ·MMD(qφ(Z)||p(Z))

+ E
pdata(dGPS)

· E
qφ(Z |dBLE)

· [log pθ (dGPS|Z)] (2)

L ˆMMD = β ·MMD(q
φ̂
(Ẑ)||p(Ẑ))

+ E
pdata(dBLE)

· E
q
φ̂
(Ẑ |dGPS)

· [log p
θ̂
(dBLE|Ẑ)] (3)

MMD(qφ(Z)||p(Z)) = E
p(z),p(z′)

[k(z, z′)]

+ E
q(z),q(z′)

[k(z, z′)]

− 2 E
p(z),q(z′)

[k(z, z′)] (4)

qφ(Z) = E
pdata(dX )

qφ(Z |dX ) (5)

Since this architecture allows the reconstruction of the BLE
features from the GPS features and vice-versa, instead of
labels, we train this neural network using one group of sensors,
i.e., BLE, as pseudo-labels for the other group of sensors, i.e.,
GPS, and vice-versa.
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TABLE I
RANDOM FOREST HYPERPARAMETERS SEARCH SPACE

TABLE II
MULTI LAYER PERCEPTRON HYPERPARAMETERS SEARCH SPACE

TABLE III
SVAE HYPERPARAMETERS SEARCH SPACE

The resulting latent space Z ⊕ Ẑ represents the space
dG P S ⊕ dBL E , but with only few dimensions. Such a latent
space can represent the BIBO classes disentangled and
enable unsupervised classification. In this work we use a
Density-based clustering based on hierarchical density esti-
mates (HDBSCAN) [66], which can identify clusters of
varying density.

5) Optimal Model Hyperparameters Search: To perform
this task on RF and MLP we used GridSearchCV, a special-
ized library available in Sklearn. To obtain a set of optimal
hyperparameters, we perform a 5-fold cross-validation on the
training-set exploring those that Table I and Table II describe
for RF and MLP. In a following step we train the classifier on
the training-set, fixing these optimal hyperparameters, and we
perform the evaluation out-of-sample (OOS) on the test-set.
Sec. III-G provides further details on this process within the
simulation of ground-truth collection errors causing flipping-
labels.

For SVAE, optimal hyperparameters search was per-
formed manually and focused exclusively on convolutal neural
netowrks (CNN) [60] (see Tab. III).

6) Validation Process: The risk of information spill-over
between training- and validation-set is higher when working
with time-series. Reference [67] shows that the violation of

the OOS principle is not rare in the existing literature. Such a
violation yields a virtual higher performance when evaluating
a classifier, resulting in a biased measurement. Even in the
assumption of non-violation of the OOS principle, researchers
have several options for assessing a classifier, such as hold-
out, leave-one-out, and cross-validation. (i) In the hold-out
case, typically, the training-set should use approximately 2

3 of
the dataset; the validation-set, the remaining 1

3 . Training and
validation proceed only once and yield the model performance
based on the sole validation-set. (ii) In the leave-one-out
case, the training-set should use a dataset’s random sample
of size M − 1, where M is the dataset’s cardinality; the
validation-set, the remaining one sample. Training and val-
idation proceed M times and yield the model performance
as a distribution over M-validations. (iii) In the cross-vali-
dation case, the dataset is split into N equal partitions; the
training-set uses N-1 partitions, while the validation-set uses
the remaining one partition. Training and validation proceed
N times and yield the model performance as a distribution
over N-validations. The approach (i) is computationally light-
weight, but the resulting performance estimation might be
negatively biased; (ii) is unbiased but could present a large
performance variance, and the method is computationally
expensive; (iii) is a good compromise between the previous
two [68]. Sec. III-G explains how our simulation combines
these three methods with the hyperparameters grid-search to
provide an optimal and unbiased performance estimation and
how we sample training- and validation-set to avoid OOS vio-
lation. Sec. III-H, describes the validation for SVAE, which is
an unsupervised method, thus allows more flexibility in the use
of data.

F. Comparison Metrics

To compare the results of the classifiers, we chose the tradi-
tional area under the receiver operating characteristic (AUC).
AUC’s domain is ∈ [0, 1]. For BIBO binary classification,
AUC is strictly around 0.5 for Random Classifiers. AUC
is > 0.5 for a classifier consistent in classifying correctly
the target class. AUC is < 0.5 for a classifier consistent in
classifying the opposite of the target class. Motivations and
details on what AUC is and why we chose it over other metrics,
are available in Appendix (see Sec. A).

G. Classification Performance Over Error Simulations

After data preparation, as summarized in Alg. 2, we proceed
with the simulation (MS), as detailed in Alg. 4.

With the following three steps, we obtain labels augmen-
tation: (i) Systematic sampling user-by-user; (ii) Sampling of
errors’ number per user; and (iii) Error propagation on the
labels of each users’ trip. At each run we train and evaluate
ML classifiers against the Random Classifier, over features
extracted from BLE sensors, versus features extracted from
GPS sensors. We ensure the OOS validation principle on both
grid-search and methods’ evaluation by randomly sampling
20% of the users and then picking all their trajectories to
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compose the validation set. Thus, we take the complement
for the training-set.

We yield performance’s unbiased estimation by applying an
hold-out scheme within each run, where the training partition
allows a grid-search (see Sec. III-E.5) for optimal models’
hyperparameters through a 5-fold cross-validation. The opti-
mal hyperparameters are used for models’ evaluation OOS
on the validation-set. Following a fine-grained step sequence
of error rates inducing total flipped-labels ∈ (0%, 100%),
we repeat the error propagation process 100 times per step,
and each time we plot the mean of the model evaluation
performance (see Figs 3-6).

H. SVAE Classification Performance

After data preparation, we sample 20% of the users to
compose the test-set. The remaining users compose the
training-set. After training SVAE, we process the test-set and
we apply HDBSCAN clustering in the SVAE’s latent space.
Based on the test-set we assign the clusters to the BIBO state.
Next, we assign to these clusters the points of the whole
dataset. Since labels are never used in the training phase,
to compute the distribution of this unsupervised classification,
we can include the points of the training-set.

IV. RESULTS

In this section we organize the results according to the
three problems listed in Sec. I, directed to answer the research
question.

A. People Errors Types During Ground-Truth Collection

The experiment included video recordings of the
ground-truth for eighteen users in total, that we used
for the P2D validation experiment. The resulting confusion
matrix on error distributions for labels (see Table IV), shows
that 50% of the received replies were perturbed. Nearly
60% of the user modified the counts, while the remaining
population confirmed the counts as received. One user
confirmed the perturbed count, and two users modified the
correct counts. Overall, more than 40% of the validations
contained at least one error, with average 0.7. After users’
correction, the number of errors is six; before the correction,
seven.

These results show that labels in P2D interactions can
quickly flip from correct to wrong and hardly from wrong to
correct. We could test only one noise level on a relatively small
sample of users: a broader study would be precious and require
a specific effort that is out of this study’s scope. However,
based on these results, we can already simulate the impact of
these types of errors on ML algorithms.

B. BIBO Classification Performance

This section presents BLE- and GPS-based classifier’s
performance (CP) compared with INS-based classifiers,
as baseline. It shows RF and MLP algorithms’ perfor-
mance, and their bias due to training with flipped labels.

Fig. 4. Random forest one flip experiment.

The “Flipping-label” bias emerges when we compare algo-
rithms trained and evaluated using ideal labels, which are
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Fig. 5. Multi layer perceptron one flip experiment.

extracted from high-quality ground truth, and the same algo-
rithms trained with labels containing a controlled fraction

Fig. 6. Random forest two flips experiment.

of errors and evaluated with ideal labels. (i) “Android and
Apple activity recognition, camera GT evaluation”, (ii) “GT
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TABLE IV
PERSON TO DEVICE GROUND-TRUTH VALIDATION

training and GT evaluation”, and (iii) “Simul-Error training,
camera GT evaluation” plots describe this case in Figs 3-6.
These Figures show the number of wrong labels in the
abscissae and AUC error in the ordinate. We show two
metrics for the number of wrong labels. The error rate,
on the bottom, represents the Poisson distributed mean error.
This error distribution translates into a percentage of wrong
labels on the total labels, which is reported on the top of
the Figure.

Results show that the INS-based BIBO CP is 0.51 AUC,
significantly different and very close to the Random Classifier,
which is 0.5 AUC.

GPS-based CP is > 0.60±0.02 AUC both for RF and MLP.

(i) In the “one flip” error type – where wrong users’ counts
will cause some segments to flip their correct class and
match the previous or following segment’s label – the
bias is significant and > 0.01 AUC. In this experiment,
the maximum number of labels we can flip is ≤ 32% of
the total (see Figs 4b-5b).

(ii) In the “two flips” error type – where the discrete number
of errors sampled from Poisson propagates to a random
sample of trip segments by flipping the label from the
correct class to the alternative – the bias is close to
0 when the ratio of flipped labels is around 0%. The
bias is approx. 0.3 (maximum) when the ratio is around
100% (see Figs 6b-7b).

BLE-based CP is > 0.55±0.02 AUC for RF and > 0.48±
0.02 AUC for MLP.

(i) In the “one flip” labels error type the RF bias is significant
and > 0.03 AUC (see Fig. 4a); MLP bias is ∈ [0.01, 0.15]
(see Fig. 5a).

(ii) In the “two flips” labels error type the RF bias is
significant and close to 0 when the ratio of flipped labels
is around 0%. The bias is 0.15 (maximum) when the ratio
is around 100% see Fig. 6a). MLP bias is ∈ [0.01, 0.15]
(see Fig. 7a).

For BLE and GPS classification, the Random Forest
algorithm trained and evaluated with ideal labels performs
significantly better than the INS-based classifier. In the same
conditions, BLE-based multi-layer perceptron performs con-
sistently worse than the Random Classifier. By switching
consistently BLE-based MLP output class, this classifier would
be comparable with the INS baseline. As opposed to the other
examples – including the BLE-based RF classifier – BLE-
based MLP proximity to the Random Classifier may justify
its flat performance and bias with respect to various labels’
flipping rates. In contrast, GPS-based MLP performs simi-
larly to RF. Overall, the low performance of production-level

Fig. 7. Multi layer perceptron two flip experiment.

INS-based classifiers reflects this challenging and realistic
experiment setup.
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C. BIBO Resilience to Label Flipping

This section presents BLE- and GPS-based classifiers’
performance and their bias due to training with labels contain-
ing a controlled fraction of errors. (i) “Simul-Error training,
Simul-Error evaluation”, (ii) “Simul-Error training, camera GT
evaluation”, and (iii) “GT training and GT evaluation” plots
describe this case in Figs 3-6. As in the previous section,
Figs 3-4 refer to the “one flip” error type; Figs 5-6, to the
“two flips”. The “model” bias emerges as the distance between
the “actual” and the ideal performance, comparing models’
evaluated with labels containing a controlled fraction of errors
and the same algorithms evaluated with ideal labels. The
“unperceived” bias emerges as the distance between the “per-
ceived” and ideal performance of a model, when we compare
algorithms evaluated with labels containing a controlled frac-
tion of errors and the same algorithms trained and evaluated
with ideal labels.

When flipped labels rate increases from 0% to 30%, for
both error types, GPS-based RF and MLP classifiers show
a constant increase of the “unperceived” bias, which is
approx. ∈ [0, 0.1] AUC; beyond 30%, in the second error
type, the models’ maximum unperceived bias corresponds
to 50% of flipped labels. At 100% of flipped labels, the
bias is equivalent to the 0% case, which is approx. 0 AUC.
The model bias is approx. null at 0% and 50% of flipped
labels rates, and it is maximum at 100%. The interval of
flipped labels ∈ [0%, 30%] is the most interesting. For the
“one flip” error type, the model bias is constantly increasing
approx. between 0 and 0.1. For the “two flips” error type,
somewhere ∈ [20%, 40%] of flipped labels, the model bias
presents its maximum value, which is between 0.05 and 0.1
(see Figs 4b, 6b, 5b, and 7b).

For the “one flip” error type, BLE-based RF and MLP
classifiers’ unperceived bias increases significantly for RF, and
dramatically for MLP, after 20% of flipped labels. For RF this
bias is ∈ [0, 0.1]; for MLP, ∈ [0, 0.3] (see Figs 4a and 5a).
The model bias in this case is negligible compared to the
unperceived bias. For the “two flip” error type, BLE-based
classifiers’ behavior is consistent with the description provided
for GPS-based classifiers. However, due to the proximity
between ideal and Random Classifiers plots, both unperceived
and model bias are smaller.

The distance between the origin and the point where
the “actual” performance remains below the curve of the
Random Classifier, measured on the abscissae, is a measure
of the model tolerance to flipped labels. The BLE-based
RF classifier seems mostly above the Random Classifier up
to 30% of flipped labels in both error types (see Fig. 4a,
and Fig. 6a).

D. BIBO via Clustering on the SVAE Latent Space

The classification performance of the unsupervised
HDBSCAN classifier III-E.4 after dimensionality reduction
via SVAE, relies on sensors’ signals device-to-device as
pseudo-labels, instead of person-to-device collected labels.
dG P S features include smartphone speed, bearing, and time

TABLE V

FEATURES [69] EXTRACTED FROM SENSORS’ SIGNALS, WITHIN
10 SECONDS SLIDING WINDOW: BLE RSSI AND GPS SPEED,

SPACE- AND TIME-GAP

interval between two GPS points. dBL E features include RSSI
from the devices installed at the three bus stops. Surprisingly,
we yield the best results excluding the BLE signals from
the devices installed in the buses. HDBSCAN default
configuration with euclidean metric yields four clusters on
SVAE latent space. After visual examination, we assign three
clusters to BI class and the remaining to BO class. The AUC
distribution over the users in the test set only is 0.63± 0.07.
The AUC distribution over the users in the whole dataset
that results from automatic assignment of the points to these
clusters, is 0.58 ± 0.05. The results are comparable to the
performance of the RF supervised classifier trained with GPS
features and flipped labels ≤ 20% (see Figs 4b, 6b). In the
open area where the experiment took place, a bus between
two bus stops, users in front of the bus stops or inside the
bus, may create meaningful signal variation patterns for BLE
devices at the bus stops rather than devices in the buses. For
the future, buses GPS could allow the comparison between
bus/smartphone distance with the BLE RSSI from the devices
installed in the buses.

V. CONCLUSION

This paper investigates the realistic large-scale deployment
of a BIBO system based on BLE beacons, and analyzes the
sensitivity of its ML components to errors on labels. The
experimental setup recreates challenging conditions with a
high density of BLE signals and low speeds of both users
and vehicles present in the transport network.

We test hypotheses on person-to-device labeling types of
error, typical of current smartphone-based travel surveys.
We find that users’ validation errors may affect both wrong
and correct predictions. In the first case users are often
unable to correct all the errors. In the second case, users
introduce errors by amending correct predictions. Results
show that, in urban dense context, the likelihood of wrong
labels presented to users for validation is very high, and
so is the risk of bias for classifiers trained with flipped
labels.

To reduce such a risk and increase the perception of models’
bias, we evaluate GPS-, BLE- and INS-based classifiers, the
latter available in native Android and iOS APIs.
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On the one hand, BLE is significantly better than the
INS baseline, and show resilience to labeling errors up to
30%. Overall, Random Forest performs significantly better
on both BLE and GPS. At the same time, RF proves to be
robust to noise, more on GPS than BLE. One recommendation
stemming from the results on traditional supervised methods
is that design and evaluation should include a sensitivity
analysis on the classifiers performance with respect to flipping
labels.

On the other hand, the proposed Split-brain variational
autoencoder supports the potential substitution of person-to-
device validated labels with device-to-device. In this case,
BLE pseudo-labels supervise GPS and vice-versa, allow
a disentangled low-dimension representation of the BIBO
classes, and thus enable unsupervised classification applying,
i.e., density based clustering. The performance is comparable
with supervised classifiers trained with ≤ 20% of flipped
labels.

APPENDIX A
VALIDATION METRICS

As performance estimation metrics for binary classifiers, the
literature presents a broad use of precision (6), recall (7),
F1-score (8) and accuracy (9). Although these metrics are
often sufficient, we introduce the measure of the area under
the receiver operating characteristic curve (AUC). This curve
describes the true-positive-rate (TPR) (7), which is another
identification for the recall, as a function of the false-positive-
rate (FPR) (10), within the domain of any possible FPR
∈ [0, 1]. We derive these metrics directly from the confusion
matrix, i.e., true positives (Tp), true negatives (Tn), false
positives (Fp), and false negatives (Fn).

The binary BIBO classes are quite imbalanced and the
classification task is rather challenging given the experiment’s
realistic conditions. We recreate a congested urban context
with multiple buses operating at speed similar to walking
pace, in proximity to various bus stops. Whereas F1-score
identifies cases where the Random Classifier is better than
our classifier, AUC identifies also cases where the classifier
only predicts the larger class. The domain of precision (6),
recall (7), F1-score (8), and accuracy (9) is ∈ [0, 1], the
higher the value the better. AUC’s domain is also ∈ [0, 1].
The interpretation of AUC coefficient for Random Classifiers
results in the same distribution of the F1-score, strictly around
0.5. In contrast with F1-score, for cases where classifiers
predict only one class AUC presents the same distribution
of the Random Classifier. Therefore, with AUC we expect
good classifiers above 0.5 threshold, with higher values being
better. Below this threshold a classifier would be consistent in
predicting the wrong class. Both random and trivial classifiers
should score 0.5 AUC in average. To assess our simulation
results against both the Random Classifier and the single-class-
predictor, AUC measures how well predictions are ranked, and
is invariant to scale and classification-threshold [70]. Since at
this stage we are agnostic on the cost of false positives and
false negatives, these two properties are not a disadvantage,
as opposed to the advantages in assessing the classification

Fig. 8. Beacons RSSI timestamp with values vs. Not a Number (NaN),
on total points available.

performance with different levels of errors on the labels, over
a large number of samples.

P =
Tp

Tp + Fp
(6)

T P R = R =
Tp

Tp + Fn
(7)

F1 = 2
P · R

P + R
(8)

A =
Tp + Tn

T otal population
(9)

F P R =
Fp

Tn + Fp
(10)

APPENDIX B
IMPUTATION

Fig. 8 shows that BLE beacons readings are present only
on a fraction of the points where GPS is present. BLE
signal goes undetected when the receiver device is not in
the beacon range. However, the relative position of the
two devices to the user’s body often leads to the same
result even when the two are in range [11]. We need
to perform imputation and fill the gaps whenever appro-
priate. Existing work shows multiple techniques. Although
Kalman-filters might seem the obvious choice from indoor
experience [32], this use case requires simplicity. Therefore,
we consider exponential-weighted-moving-average (EWMA),
which consists of computing the average of the readings
within a time window, where points close to the center
window have a higher weight than points at the end of
the window [71]. For EWMA, the weight depends on the
window size and the decay rate. From the perspective of a
fingerprinting approach (see Sec. II-A), especially on large-
scale deployments, we need to inform the classifier on points
where the imputation algorithm could not fill the gaps.
We cannot use zero, because BLE beacons signal domain
can be found, empirically, in the following domain RSSI ∈
(−100,−50) [72]. Further, smartphones record the null value
when on the fringe of a BLE range, which is counter-intuitive
given the signal’s domain. Because of the meaning of null
value and the expected amount of gaps, filling these gaps
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Algorithm 1 Mini-Batch Version of the Split-Brain
Variational Autoencoder Algorithm

Result: Parameters σ1, σ2, φ, φ̂, θ, θ̂

Input : dG P S , dBL E , Hyperparameters (See. Tab. III)

σ1, σ2, φ, φ̂, θ, θ̂ ← Initialize Parameters
repeat

dBL E , dG P S ← Random mini-batch of 16 data points
Z ← Random samples from noise distributions p(Z)

Ẑ ← Random samples from noise distributions p(Ẑ)

g← ∇
σ1,σ2,φ,φ̂,θ,θ̂

OSVAE Grad. of mini-batch estimator (1)

(σ1, σ2, φ, φ̂, θ, θ̂ )← Update parameters using gradients g
until Convergence of Parameters (σ1, σ2, φ, φ̂, θ, θ̂ )

return σ1, σ2, φ, φ̂, θ, θ̂

with zero is likely to poison any classifier. Instead, we apply
a mask filling these positions with an arbitrary constant and
augment the fingerprint vector reporting a weight 0 in the
position filled with the arbitrary constant and 1 otherwise [73].
(11) defines the fingerprint vector at time t as F Pt , where
vi represents the RSSI signal received from the i th BLE
beacon, while v jG AP is the gap of signal from the j th BLE
beacon. F Pt ∈ Rm+n can be augmented, resulting in a new
vector F P At ∈ R2·(m+n) (12), where v jI M P corresponds to
the signal imputation of the j th BLE beacon gap, for example
with EWMA, while vkC O N ST represent the remaining signal
gap from the j th BLE beacon, filled with an arbitrary not
null constant. The augmented vector F P At passes all the
information.

F Pt = (v0, v1, . . . , v0G AP ,

. . . , vi , . . . , vnG AP ,

. . . , vm),

m > 0 ∧ n ≥ 0 ∧ i ∈ (1, m) (11)
F P At = (v0, v1, . . . ,

v0I M P , . . . , vi , . . . , vn I M P , . . . ,

v0C O N ST , . . . , v j , . . . , vkC O N ST ,

. . . , vm,

10, 11, . . .

10, . . . , 1i , . . . , 1n, . . . ,

00, . . . , 1 j , . . . , 0k

. . . , 1m),

m > 0 ∧ n ≥ 0 ∧ k ≥ 0
∧ i, j ∈ (1, m), i ̸= j

vsC O N ST = vpC O N ST = C,

∀s, p ∈ [0, k], s ̸= p (12)

APPENDIX C
ALGORITHMS

This section lists the pseudo-code of the algorithms we
implemented.

To train the propose Split-brain Variational Autoencoder
(SVAE), we implement Alg. 1.

Algorithm 2 Data Preparation

Result: Clean trajectories, assign trip IDs, and extract standardized
features for both GPS and BLE signals

Input : raw dataset (RD), true labels (TL)

Output: dataset with tripID labels and features vectors (CD)

UU L I ST ← list-unique-users(RD)
foreach user ∈ UULIST do

tr i pI Dsuser ← clean-segment-trajectories(RD, user, TL)
foreach TS ∈ {BL E, G P S} do

if TS == BLE then
C Duser ← imputation-trick(D, user, TS, tr i pI Dsuser)

end
C Duser ← extract-standard-features(C Duser , TS)

end
CD.insert(C Duser )

end
return CD

Algorithm 3 Simulate and Propagate P2D Validation
Errors

Result: Faulty ground-truth vector

Input : true labels vector (TL), unique users list (UULIST),
features-from-pre-processed-dataset (FCD, see Alg. 2)

Output: flipped labels vector FL

foreach user ∈ UULIST do
/* draw errors number from Poisson

distribution */
N E ← draw-from-Poisson(ERR)
/* Draw NE random TripIDs, as mislabeled

trips */
WrongTIDuser ← draw-random-tripIDs(NE, FC Duser )
/* Copy TL and flip labels for each trip

drawn in the previous step */
F L ← TL
foreach trip ∈ WrongTIDuser do

F L tr i p ← flip-labels(F L tr i p)
end

end
return FL

For the simulation, Alg. 2 refers to the data preparation
and Alg. 3 to the error simulation and propagation. Alg. 4
encompasses both Alg. 2 and 3, and performs the following
steps.

(i) Iterative grid-search of the optimal hyperparameteres,
accomplished only once per setting, at loop C = 0, with
5-fold cross-validation.

(ii) Model Training, accomplished at each loop C ≥ 0, using
the same optimal hyperparameters found at loop C = 0.

(iii) Model Evaluation, accomplished the four settings of
interest.

These four settings of interest are the following.

(i) Evaluation on camera GT of the model trained with
camera GT;

(ii) Evaluation on GT with flipped labels of the model trained
on GT with flipped labels;

(iii) Evaluation on camera GT of the model trained on GT
with flipped labels.

(iv) Evaluation of a Random Classifier on camera GT.
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Algorithm 4 Model/Sensor Performance Estimation

Result: BIBO Performance distributions of RF and MLP models, evaluated separately for BLE and GPS features, over
different average error rates

Input : features-from-pre-processed-dataset (FCD, see Alg. 2), true-labels (TL), target-signal (TS),
hyperparameters-search-space (HSS, see Table I, II), maximum-error-rate (MERR)

Output: F1 (8), A (9), AUC, Optimal Hyperparameters (OP)

/* Simulate flipping labels and evaluate model performance against true
ground-truth */

UU L I ST ← list-unique-users(FCD)
E R R← 0.5
while ERR ≤ MERR do

while C < 100 do
/* Simlulate users errors and propagate through trajectory labels (see Alg.

3) */
FL← simulate-and-propagate-error(UULIST, TL, FCD)
/* Create Training- and Validation-set, compliant with OOS principle */
VA← pick-random-user-IDs(UULIST, users-num=2)
VA← extract-features-trajectories-by-user-ID-from-dataset(FCD,VA)
TR← extract-features-trajectories-by-user-ID-from-dataset(FCD,VA∁)
/* Evaluate classifiers against true and flipped labels (TL Vs. FL) */
foreach (TR,VA) ∈ {(TR,VA)G P S, {(TR,VA)BL E } do

foreach model ∈ {RF, M L P} do
foreach label ∈ {F L , T L} do

L ← label
M ← model
if C=0 then

/* Hyperparameters 5-fold grid-search on training-set */
O PL , (F1LCV , ALCV , AUCLCV )M ← model-5-fold-grid-search(TR,L)

else
/* Train a classifier with optimal hyperparameters and labels L */
classi f ierL ← train-model(TR,L,O PL )

end
/* Hold-out evaluation on true labels and validation-set, of a

classifier M trained with input-labels L */
(F1L H O , AL H O , AUCL H O )M ← evaluate-model(classi f ierL , VA, TL)
/* Hold-out evaluation on flipped labels and validation-set, of a

classifier M trained with input-labels L */
(F1L H O , AL H O , AUCL H O )M ← evaluate-model(classi f ierL , VA, FL)
/* Hold-out evaluation on labels L and validation-set, of Random

Classifier */
(F1RL H O , ARL H O , AUCRL H O )M ← evaluate-model(random, VA, L)
(F1, A, AUC, O P).insert(F1, A, AUC, O P)M

end
end

end
C ← C+1

end
E R R← ERR+0.5

end
return ( OP, F1, A, AUC )
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