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Abstract—Pedestrian safety has become an important research
topic among various studies due to the increased number of
pedestrian-involved crashes. To evaluate pedestrian safety proac-
tively, surrogate safety measures (SSMs) have been widely used
in traffic conflict-based studies as they do not require historical
crashes as inputs. However, most existing SSMs were developed
based on the assumption that road users would maintain constant
velocity and direction. Risk estimations based on this assumption
are less unstable, more likely to be exaggerated, and unable to
capture the evasive maneuvers of drivers. Considering the limi-
tations among existing SSMs, this study proposes a probabilistic
framework for estimating the risk of pedestrian-vehicle conflicts
at intersections. The proposed framework loosen restrictions
of constant speed by predicting trajectories using a Gaussian
Process Regression and accounts for the different possible driver
maneuvers with a Random Forest model. Real-world LiDAR data
collected at an intersection was used to evaluate the performance
of the proposed framework. The newly developed framework
is able to identify all pedestrian-vehicle conflicts. Compared to
the Time-to-Collision, the proposed framework provides a more
stable risk estimation and captures the evasive maneuvers of
vehicles. Moreover, the proposed framework does not require
expensive computation resources, which makes it an ideal choice
for real-time proactive pedestrian safety solutions at intersections.

Index Terms—Pedestrian safety, traffic conflicts, surrogate
safety measures.

I. INTRODUCTION

PEDESTRIAN safety is an important consideration in the
transportation system design, due to the vulnerability of

this group when involved in traffic crashes. The pedestrian
fatality rate has increased by about 46% from 2011 to 2020,
and pedestrian-involved crashes have become more deadly
and more frequent [1]. There were 6,516 pedestrian fatalities
that occurred on the roadways in the United States in 2020,
which represents a 3.9% increase from the number in 2019.
Moreover, 15% of the pedestrian fatalities occurred at inter-
sections [1].

Over the past decades, different studies have been conducted
to investigate pedestrian safety at intersections, which can
be divided into two categories based on the data sources
used in the studies: crash-based and conflict-based studies.
Crash-based studies usually use historical crashes to predict
future pedestrian-related crashes, analyze crash severity, etc.
[2, 3, 4, 5, 6]. Differently, conflict-based studies use driv-
ing data to develop behavior matrices to predict or identify
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pedestrian-vehicle conflicts and quantify the risk of conflicts
[7, 8, 9, 10]. The benefit of using conflicts over actual
crashes is they can proactively evaluate the status of traffic
safety and quantify the risks with detailed information from
both vehicles and pedestrians. Moreover, since pedestrian-
vehicle crashes are relatively rare compared to vehicle-vehicle
crashes, it may take much more time to collect a sufficient
amount of pedestrian-involved crashes with necessary pre-
crash information. Lastly, conflicts between pedestrians and
vehicles may not actually cause crashes, but still, need to be
analyzed to better understand interactions between different
road users.

Various SSMs have been used in conflict-based studies,
including time to collision (TTC) [11], post encroachment time
(PET) [12], gap time [13], deceleration to safety time (DST)
[14], etc. Recently, due to the development of object detection
techniques, it is much easier to get trajectories of road users
at intersections using devices like cameras [10, 15, 8], Li-
DARs [9, 16], etc. Using trajectories obtained by these devices,
various SSMs can be estimated and used to estimate the
risk of pedestrian-vehicle conflicts at intersections. However,
most SSMs are developed upon the assumption of constant
velocity and moving direction, which is invalid for vehicles
at intersections since they frequently adjust their speed and
acceleration to accommodate traffic conditions and their turn-
ing maneuvers. Moreover, due to this assumption, metrics like
TTC are not able to capture the evasive behaviors of vehicles
and overestimate the actual risk of conflicts [8]. Although
SSMs estimated using the actual trajectories (e.g., PET) do not
suffer from this assumption, they can only be applied in post-
analytical studies and thus cannot predict conflicts in advance.
Lastly, a threshold needs to be decided while using SSMs such
as TTC and PET, which can be subjective to each individual
study.

Considering the aforementioned limitations of existing
SSMs, this study proposes a probabilistic framework to es-
timate the risk of pedestrian-vehicle conflicts at intersections.
The proposed framework improves the existing SSMs by first
relaxing the assumption of constant velocity and direction.
The framework is able to accurately predict the trajectory of
a vehicle and estimate the probability of it taking different
maneuvers. Second, the estimated risk from the proposed
framework can reflect the evasive maneuvers of the vehicle,
which cannot be captured by existing SSMs such as TTC.
Third, the framework does not require a subjective choice of
thresholds, which provides a more generic way of analyzing
the relationships between the risk of conflicts and interactions
between pedestrians and vehicles. Lastly, the proposed frame-
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work uses simple observations (i.e., position and velocity) as
inputs and does not require heavy computational resources
compared with deep learning methods. This makes it signifi-
cantly efficient to be deployed in real-time proactive pedestrian
safety solutions at intersections.

The rest of the paper is organized as follows: Section II
reviews the current SSMs and their applications in existing
studies. Section III introduces the methods used in this pa-
per, including data preparation and the proposed framework.
Section IV presents the results of the proposed framework, as
well as a comparison to existing SSMs. The conclusions and
future research directions are summarized in Section V.

II. LITERATURE REVIEW

SSMs can be divided into two categories based on the
estimation approach: proximity-based and deceleration-based
SSMs. Proximity-based SSMs are more popular among the
existing studies. The definitions of some proximity-based
SSMs, including TTC, PET, and gap time are shown below:
• TTC can be defined as the time that remains until a

conflict between two road users occurs given that the
conflict course and speed difference are maintained [11].

• PET is the time difference between the moment an
"offending" road user passes out of the area of a potential
conflict and the moment of arrival at the potential conflict
point by the "conflicted" road user possessing the right-
of-way [12].

• Gap time is a variation of PET, which is calculated at
each time instant by projecting the movement of road
users that have the potential conflicts [13].

Ismail et al. [7] applied TTC, PET, and gap time to analyze
pedestrian-vehicle conflicts using video data. Although these
SSMs were able to identify most pedestrian-vehicle conflicts,
the authors suggested that combining different SSMs could
be the choice to better capture pedestrian-vehicle conflicts.
Some studies adopted this strategy and used multiple SSMs.
For example, Wu et al. [17] combined PET with other SSMs
(i.e., the proportion of the stopping distance and crash potential
index) to identify near-crash events between pedestrians and
vehicles. The main reason for using additional SSMs was
because PET could not reflect the change of driver behaviors,
such as a sudden deceleration before reaching the potential
conflict point.

Deceleration-based SSMs, such as DST, deceleration rate
(DR), deceleration rate required to stop (DRS), identify
pedestrian-vehicle conflicts based on vehicle deceleration and
are defined as:
• DST is defined as the deceleration a vehicle needed to

reach a non-negative PET value if the movements of the
conflicting road users remain unchanged [14].

• DR is the highest rate at which a vehicle must decelerate
to avoid a conflict [18].

• DRS is the constant deceleration rate required for the
vehicle to stop and give the right-of-way to pedestrians
[19].

Fu et al. [19] used DRS to evaluate pedestrian safety at
unsignalized intersections. Results suggested that stop sign-

controlled intersections had lower DRS than unprotected in-
tersections, which indicated that stop signs provided better
protections for pedestrians. Olszewski et al. [18] used the
value of deceleration to identify pedestrian-vehicle conflicts
at intersections. A threshold of 4m/s2 was used to detect the
abrupt braking behaviors of vehicles. Ismail et al. [8] con-
ducted a before-and-after study to evaluate the impact of the
pedestrian scramble phasing on pedestrian safety. The number
of medium and high values of DST significantly decreased
after the implementation of the pedestrian scramble phasing,
indicating the positive impact of the scramble phasing.

Existing SSMs have been successfully applied by different
studies. Nevertheless, little research has been done to deal
with the inherent flaws of existing SSMs. First, SSMs such
as TTC suffer from the assumption of constant velocity and
direction and overestimate the severity of actual conflicts.
For example, a typical conflict happens when the vehicle
is making a right turn and the pedestrian is crossing. The
vehicle’s speed is constantly changing during the process of
turning, which may not be captured by the TTC due to this
assumption. Second, Johnsson et al. [20] indicated that TTC
and PET may not be able to capture the evasive actions of
vehicles (e.g, a vehicle brakes as approaching a pedestrian).
Lastly, deceleration-based measures may falsely identify a
conflict since they focus solely on the magnitude of evasive
actions. Thus, it is necessary to develop a comprehensive
and generic framework for estimating the risk of pedestrian-
vehicle conflicts at intersections, which can relax the existing
assumption and identify the vehicle’s evasive behaviors.

III. METHODS

A. Data Description

Data used in this study was collected by three Ouster OS1-
128 LiDAR sensors installed at the intersection of E. MLK
Blvd. and Georgia Ave. in Chattanooga, Tennessee (Fig. 1)
from approximately 11 AM to 12 PM on Oct 8, 2021. The
data update frequency was 10Hz. The studied intersection
is a signalized intersection with designated pedestrian sig-
nals and marked crosswalks. The LiDAR data was initially
processed by the Seoul Robotics software and the object-
level data including labels, corresponding size, velocity, signal
information, etc. was released as part of the Transportation Re-
search Board (TRB) Transportation Forecasting Competition
2022 [21].

B. Data Preprocessing

The goal of the data preprocessing is to retain a set of clean
and relatively complete vehicle and pedestrian trajectories
for the forthcoming analysis. We describe the steps taken to
identify data issues, clean data anomalies, and transform the
data into a readily usable format below:

1) Creating unique trajectory label for each individual
tracked object: A unique label (i.e., vehicle, pedestrian, cy-
clists, or misc) was assigned for every trajectory based on a
majority vote, where each trajectory was given the label with
the highest proportion of assignments.
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Fig. 1. LiDAR set-up at the studied intersection

Fig. 2. Squares colored by log-transformed pedestrian trajectory density,
with squares never visited by any pedestrian trajectories in grey; identified
crosswalk start/end points were denoted by red dots

2) Estimating the start and end points of the four cross-
walks: This study focuses on interactions and conflicts be-
tween vehicles and pedestrians at an intersection. The position
of crosswalks and the movement of road users relative to
the crosswalk is thereby an important component for any
forthcoming analysis. Due to the absence of GPS coordi-
nates, we located the start and end of crosswalks based on
pedestrian trajectories. Since the majority of pedestrians used
the crosswalk to cross the intersection and their movements
were captured beyond the crosswalk, pooling all pedestrian
trajectories gives us a rough estimate of the areas containing
the start/end of the four crosswalks. Within each estimation,
the start/end of a crosswalk was the center of the area with
the highest frequency of trajectories passing through (Fig. 2).

It is recognized that the identified start and end points were
not necessarily the center points of the actual crosswalks.
Rather, they are the center of areas at the two ends of
crosswalks with the most pedestrian trajectories passing by.
Thus, the identified points are considered closely approximate

the actual crosswalk start/end location while also accounting
for the real movement of pedestrians at this intersection.

3) Classifying entering and moving direction for vehicle
trajectories: The two pairs of crosswalks’ start/end points in
the diagonal direction were used to divide the intersection area
into four quadrants. The entering direction of a specific vehicle
trajectory was then determined based on which quadrant the
first point of the trajectory belongs to. For example, if the
first point locates in the bottom right quadrant, the trajectory
was labeled entering from the South of the intersection.
Additionally, the sequence of unique quadrants a trajectory has
traveled through was extracted and used to label the moving
direction for all vehicle trajectories. Especially, this paper only
focused on through, left-turn, and right-turn movements since
they accounted for most movements.

4) Merging pedestrian trajectories: Preliminary data anal-
ysis showed that pedestrian trajectories were oftentimes short
and suspected to be incomplete. Thus, the goal of this step
is to identify trajectories that were potentially from the same
pedestrian and combine them into a single new trajectory.

A trajectory TB is considered an immediately next trajectory
of trajectory TA if TA’s end point and TB’s start point satisfy
the following four criteria:
• Difference in time is no more than 0.2 secs.
• Difference in distance (based on X and Y coordinates) is

no more than 1 m.
• Difference in heading is no more than 90°.
• Difference in the angle of a trajectory, pointing from the

position of the first data point to the last data points, is
no more than 120°.

All thresholds in the four criteria were selected based on
an examination of the data and were intentionally kept tight
to reduce false matching of trajectories. A slightly larger
threshold was set for heading to accommodate the wider
variation of headings for pedestrian trajectories. If multiple
candidates satisfy the four criteria, the one that outperformed
the others (i.e., with smaller differences in the given criteria)
was selected.

5) Selecting pedestrian trajectories: Since a large propor-
tion of short and incomplete trajectories still exist even after
merging, additional steps were taken to remove pedestrian
trajectories that were:
• Too short in time (≤1 sec) or distance (≤ 5 m)
• With a higher proportion (≥50%) of invalid data points
• Moving too fast to be considered a pedestrian, i.e.,

velocity is no less than 3m/s for at least 10 data points
(approximately 1 sec)

• Either outside the crosswalk or the roadway areas, or were
within the roadway area but leaving the crosswalk

C. Probabilistic Risk Estimation Framework

Fig. 3 shows an example of a potential conflict between a
vehicle and a pedestrian. Given the current position of a vehi-
cle, the proposed framework needs to estimate the probability
of the vehicle making different maneuvers (left turn, right turn,
and going straight) and the corresponding future trajectories
to estimate the risk of this conflict. Moreover, the framework
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should also be able to predict the pedestrian’s future trajectory.
Then, given the predicted vehicle and pedestrian trajectories,
the risk of the conflict can be estimated using Equation 1,
where i = 1, 2, 3 denotes the vehicle’s maneuvers of turn-
ing left, turning right, and going straight, respectively, and
Prob(i|pos) represents the probability of a vehicle making
the ith maneuver given its current position (pos). The risk of a
vehicle-pedestrian conflict given vehicle maneuver i (Riski) is
calculated as the exponential of the negative TTC (Equation 2)
so that a smaller value of TTC corresponds to a higher risk
of conflict. Tvehi

and Tpedi represent the time a vehicle and
pedestrian needs to reach the conflict point (ci) if it exists. The
use of exponential function allows the risk to decay gracefully
with the increase in time difference without the explicit need
for a threshold.

Fig. 3. An example of a pedestrian-vehicle conflict

Risk =

N∑
i=1

Riski · Prob(i|pos) (1)

Riski =

{
exp(−|Tvehi

− Tped|), if ci exists
0, otherwise

(2)

Fig. 4 shows the flowchart of risk estimation at timestep
t. The GPR model is applied to the vehicle for predicting
its future trajectory in terms of the ith maneuver, while the
classification model is used to estimate the probability of the
vehicle making the ith maneuver. A linear dynamic model is
applied to the pedestrian trajectory for estimating the future
trajectory, which assumes the pedestrian will keep a constant
velocity. The reason for using a complicated model for pre-
dicting the vehicle’s trajectory is because a vehicle usually has
more complex behaviors than a pedestrian, such as turning,
accelerating, braking, etc, which makes the assumption of the
constant velocity not valid. Then the Riskit is estimated for
the ith vehicle maneuver at time t using Equation 2, while the
risk at time t (Riskt) is estimated using Equation 1.

D. Gaussian Process Regression

Gaussian process regression (GPR) is a non-parametric
Bayesian approach [22], which has been widely used for
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Classification Model

!&+,(.|0+1!)

GPR Model
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Fig. 4. The flowchart of estimating the risk of conflicts

modeling trajectory data [23, 24]. GPR balances functional
complexity with capturing the underlying data and is thus
both more general and more principled than other forms of
regression [25]. A GPR model on an input X can be defined
by its mean function m(X) and covariance function k(X,X ′)
as shown in Equation 3.

f ∼ gp(m(X), k(X,X ′)) (3)

1) Kernels: Two kernels (i.e., covariance functions) were
commonly used in existing studies, including the Radial Basis
Function (RBF) and Rational Quadratic (RQ) kernels as shown
in Equations 4 and 5. The performance of these two kernels
was compared in this study to select the best kernel.

kRBF (X,X ′) = exp(
(X −X ′)2

2σ2
) (4)

kRQ(X,X ′) = (1 +
(X −X ′)2

2ασ2
)−α (5)

2) Hyperparameters: The kernel used in a GPR model
usually has several hyperparameters that are unknown and
need to be inferred from the data [22]. For example, the
RBF kernel in Equation 4 has one hyperparameter σ, which
is its length scale. The RQ kernel in Equation 5 has two
hyperparameters including α and σ, which are the length scale
and weighting parameter, respectively.

3) Loss function: Similar to other machine learning models,
the development of a GPR model involves training and testing.
Moreover, since the kernel of a GPR model usually has several
hyperparameters, they should be optimized during the process
of training. All of these require a specific loss function to
measure the performance of a GPR model. The log marginal
likelihood is used to compute the loss of a GPR model. Given
a GPR model (Equation 3), its inputs X , and targets y, the
marginal likelihood of the model is estimated using Equation 6
[26], while the log transformation of the marginal likelihood is
negated to be used as the loss of a GPR model. Moreover, an
Adam optimizer [27] with a learning rate of 0.1 was used in
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this study to optimize hyperparameters of a GPR model based
on its loss.

L = pf (y|X) =

∫
p(y|f(X))p(f(X)|X)df (6)

Given a vehicle’s position pos = (xt, yt) and velocity v =
(vxt

, vyt) at time t. A pair of GPR models are used to model
its speed based on its current position as shown in Equation 7.

vxt ∼ gpx(m(xt, yt), k((xt, yt), (xt, yt)
′))

vyt ∼ gpy(m(xt, yt), k((xt, yt), (xt, yt)
′))

(7)

To predict a vehicle’s future trajectory based on its current
position (x0, y0), the pair of GPR models is firstly applied
to sample a trajectory derivative (speed) (vx0

, vy0) at the
current moment, the next position (x1, y1) is estimated as
(x0 + vx0∆t, y0 + vy0∆t), while ∆t = t1 − t0. Then the
next position (x2, y2) is estimated using the speed (vx1

, vy1)
sampled from (x1, y1). This process is repeated for T time
steps (∆t) to predict the vehicle’s trajectory from pos(x1, y1)
to pos(xT , yT ).

IV. RESULTS

A. Data Summary

After data preparation, the data set contains trajectories of
935 vehicles and 311 pedestrians. Table I shows the descriptive
statistics of the vehicle and pedestrian data. Moreover, the
number of vehicles turning left, turning right, and going
straight are 145, 199, and 591, respectively Fig. 5 shows
trajectories of vehicles entering from different directions. In
total, the number of vehicles entering the intersection from
the North, East, South, and West directions are 197, 351, 93,
and 294, respectively.

Fig. 5. Trajectories of vehicles entering from different directions

B. Framework Development

1) Vehicle maneuvers identification: Random forest was
used to predict the probability of the vehicle making different
maneuvers. Five features were used as the model’s inputs, in-
cluding the vehicle’s location, velocity, yaw rate, and entering

direction. The prepared trajectory data were randomly divided
into training, validation, and test in a ratio of 80%:10%:10%
for 10 times. The process of developing the model is shown
in Fig. 6. The model was developed based on the training
and validation data by tuning its hyperparameters, then it
was evaluated on the test data. Moreover, since the data
contained more going straight than turning maneuvers, directly
developing the model on the data could make it favor the
majority maneuver. An over-sampling method was applied to
balance the training data. Synthetic Minority Oversampling
Technique (SMOTE) [28] was used in this paper since it was
widely used for a similar purpose and achieved better results
compared with other over-sampling methods.

Fig. 6. The process of model development

The model’s results on the test data are shown in Table II.
Precision, recall, and F1-Score were averaged over the 10
splits. Equations of estimating these metrics can be found in
[29].

2) Vehicle trajectory prediction: Trajectories of vehicles
were first divided into 12 clusters based on their turning
maneuvers and entering directions. A pair of GPR models
were developed using Equation 7 for each cluster. Then
the developed GPR models were applied to predict vehicle
trajectory. Moreover, the RQ kernel was used in this study
as it achieved better results than the RBF kernel. Fig. 7
shows three examples of using the developed GPR models
for predicting vehicle trajectory. Specifically, the developed
GPR models were used to predict the next 30 trajectory points
using only the information of the 10th trajectory point. Results
from Fig. 7 indicated that GPR models were able to accurately
predict future vehicle trajectory using data from only one
point. Moreover, GPR models had a better performance in the
earlier stage of predictions, this was because the accumulation
of errors could lead to worse results in the later stage of
predictions.

A dynamic model was used as the baseline to compare with
the GPR model. The dynamic model uses a vehicle’s current
speed and acceleration to estimate its next position, as shown
in Equation 8, where axt

and ayt represents the acceleration
of a vehicle at time t in X- and Y-axis, vxt

and vyt represents
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TABLE I
DESCRIPTIVE STATISTICS

Type Name Description Mean Std Min Max
Vehicle V elocityx The speed of vehicles in X-axis (m/s) -0.42 3.23 -13.02 15.65

V elocityy The speed of vehicles in Y-axis (m/s) 0.31 4.45 -13.58 15.60
Y awrate The yaw rate of vehicles (deg/s) 3.05 1.56 0.00 6.28

Pedestrian V elocityx The speed of pedestrians in X-axis (m/s) 0.03 0.79 -6.38 6.63
V elocityy The speed of pedestrians in Y-axis (m/s) -0.02 0.82 -6.21 6.56

(a) (b) (c)

Fig. 7. Examples of GPR models on predicting trajectory, (a) vehicle is turning left, (b) vehicle is turning right, (c) vehicle is going straight

TABLE II
ACCURACY METRICS FOR IDENTIFYING MANEUVERS

Maneuvers Precision Recall F1-score
Left-turn 0.938 0.961 0.950
Right-turn 0.916 0.946 0.931
Going straight 0.973 0.957 0.965

the velocity of a vehicle at time t in X- and Y-axis, (xt, yt)
represents the position of a vehicle at time t.

xt+∆t =
1

2
axt

∆t2 + vxt
∆t+ xt

yt+∆t =
1

2
ayt∆t

2 + vyt∆t+ yt

(8)

To quantify the performance of a model on predicting
vehicle trajectory, Euclidean distance between the estimated
trajectory point (x̂i, ŷi) and the real trajectory point (xi, yi)
was used to quantify the error of trajectory prediction as shown
in Equation 9. Table III shows the results of GPR and dynamic
models on predicting the next 30 points (three seconds) using
different starting points in terms of different maneuvers. To
estimate the results in Table III, when the starting point was
the 10th point, GPR models were applied to estimate the
next 30 trajectory points for each vehicle, then the distance
between the estimated and true trajectory points was estimated
using Equation 9. The mean and standard deviation of the
distance of all vehicles making the same maneuver were then
estimated. The same process was used to get the results of
dynamic models. Table III indicates that the GPR model has
achieved much better results than the dynamic model. First,
the GPR model had higher accuracy than the dynamic model
as it had smaller values of mean distance. Second, the GPR
model had a much more stable performance compared with
the dynamic model since it had much smaller values of the
standard deviation of distance. Lastly, the GPR model was not

sensitive to the choice of starting points since it remained a
consistent performance among different starting points.

Distance =
√

(x̂i − xi)2 + (ŷi − yi)2 (9)

Moreover, to evaluate the impact of the prediction horizon
on a model’s performance, the 10th trajectory point of a
vehicle was used as the input for the GPR and dynamic model
to predict the next 10, 15, and 20 points. Table IV shows the
results of GPR and dynamic models on different prediction
horizons. The performance of both models was highly related
to the choice of prediction horizons, while the GPR model
achieved a more stable performance than the dynamic model.
For example, the mean distance of the GPR model ranged
from 0.6m to 1.3m, but the mean distance of the dynamic
model increased from 2.4m to 4.6m. Results from Table IV
suggested that the GPR model was more robust towards the
change of prediction horizons as it had a much smaller value of
the standard deviation of distance, which made it more suitable
for predicting vehicle trajectory than a dynamic model.

C. Risk Estimation

To evaluate the performance of the proposed framework
in estimating the risk of pedestrian-vehicle conflict, real
pedestrian-vehicle conflicts were first identified from the data
using PET. PET was used as it was based on actual trajectories
and was suggested as the most reliable SSM [7]. A threshold
of 3 seconds was used in this paper for PET. In total, 16
pedestrian-vehicle conflicts were identified from the data. The
proposed framework was then applied to the data. A potential
conflict was identified if the value of an estimated risk was
larger than 0. Several metrics were used to evaluate the per-
formance of the framework, including sensitivity, false alarm
rate, and the area under the curve (AUC). The estimation of
these metrics can be referred to [30]. The proposed framework
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TABLE III
RESULTS OF GPR AND DYNAMIC MODELS ON DIFFERENT STARTING POINTS

Starting Points Maneuvers GPR Model Results Dynamic Model Results
Mean Std Mean Std

10
Left-turn 1.307 1.611 6.741 6.316
Right-turn 2.169 2.076 7.863 6.443
Going Straight 2.035 2.022 6.890 5.326

15
Left-turn 1.869 2.069 6.087 5.051
Right-turn 2.201 2.151 7.120 6.347
Going Straight 2.141 2.196 6.056 4.921

20
Left-turn 1.679 2.024 5.863 4.927
Right-turn 2.020 2.008 6.247 5.915
Going Straight 2.526 2.375 4.933 4.344

TABLE IV
RESULTS OF GPR AND DYNAMIC MODELS ON DIFFERENT PREDICTION HORIZONS

Prediction Horizons Maneuvers GPR Model Results Dynamic Model Results
Mean Std Mean Std

10
Left-turn 0.635 0.645 2.384 2.261
Right-turn 0.676 0.582 2.765 2.212
Going Straight 0.702 0.539 2.424 1.860

15
Left-turn 0.803 0.898 3.490 3.344
Right-turn 1.008 0.959 4.066 3.297
Going Straight 1.021 0.848 3.566 2.751

20
Left-turn 0.941 1.137 4.589 4.381
Right-turn 1.387 1.367 5.348 4.366
Going Straight 1.332 1.184 4.685 3.622

had a sensitivity of 1, a false alarm rate of 0.19, and an AUC
of 0.93. Results indicated that the proposed framework was
able to predict all conflicts while maintaining a relatively low
false alarm rate.

Moreover, two case studies were conducted to compare
the performance of the proposed risk framework and the
traditional TTC. Fig. 8 shows one case study of a pedestrian-
vehicle conflict while the vehicle was going straight. Specif-
ically, Fig. 8 (a) shows the trajectory of the pedestrian and
vehicle, the actual conflict point, and predicted conflict points
using the proposed framework. Fig. 8 (b) shows the risk
estimated using the proposed framework, TTC, and vehicle’s
velocity. Velocity was plotted since it is a crucial factor in
terms of estimating the risk of a pedestrian-vehicle conflict.
Since the vehicle was going straight, its trajectory was rela-
tively easy to predict. Therefore, the predicted conflict points
overlapped with the actual conflict point. Fig. 8 (a) also shows
the distribution of actual and predicted conflict points in a
zoomed-in view. The predicted conflicts were getting closer
to the actual conflict point, which corresponded to the results
from Table IV. In this case, the vehicle was going straight and
the assumption of constant velocity and direction may not be
violated, therefore, both the proposed risk and TTC were able
to predict the conflict as evidenced by Fig. 8 (b), although
TTC was much less stable than the proposed risk.

Fig. 9 shows another example in which the vehicle was
making a left turn and had a potential conflict with the
pedestrian. Fig. 9 (a) shows locations of the predicted and
actual conflict points. A wider variation among the predicted
conflict points could be observed as compared with Fig. 8
(a). However, the zoomed-in view shows that the predicted
conflict points were getting closer to the actual conflict point

with the increase in time. This observation indicated that
the performance of the proposed risk framework gradually
improved as the vehicle moving. Moreover, since the vehicle
was making a turning maneuver, the assumption of constant
velocity and direction was violated. Therefore, the values of
TTC were extremely unstable and had significant fluctuations
as shown in Fig. 9 (b). The values of the proposed risk
were much more stable than the traditional TTC due to the
ability of the GPR model to accurately predict the vehicle’s
trajectory. Moreover, Fig. 9 (b) shows that the proposed risk
framework could capture the evasive maneuvers of the vehicle
as the value of estimated risk gradually decreased once reached
the highest point. This decreasing trend was consistent with
the decrease in the vehicle’s velocity. As the vehicle was
approaching the pedestrian, the vehicle would make certain
evasive behaviors and therefore reduce its velocity, which
decreased the overall risk of the conflict. However, the value
of TTC did not reflect any observable patterns and had much
larger fluctuations compared with the estimated values of the
risk, which made it harder to analyze interactions between the
pedestrian and vehicle using TTC.

In summary, the proposed risk framework outperforms the
traditional TTC in several ways. First, the proposed risk
framework is able to capture the vehicle’s evasive behaviors
due to the prediction ability of the GPR model. Second,
the proposed risk framework is more robust toward noisy
observations and can achieve lower false alarm rates compared
with the traditional TTC. Third, the proposed risk framework
is able to accurately predict the conflict point between the
pedestrian and vehicle. Lastly, the proposed risk indicator is
not a discrete metric since it does not require a subjective
threshold, which can help researchers better understand the
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pattern of conflict risk and interactions between pedestrians
and vehicles.

(a)

(b)

Fig. 8. Results of the 1st case study. (a) Trajectories of the pedestrian and
vehicle, as well as the predicted and actual conflict points, The change of
colors from light to dark represents the increase of time, (b) The change of
the risk, TTC, and vehicle’s velocity over time.

V. CONCLUSIONS

Extensive studies have been conducted to use various SSMs
for improving pedestrian safety at intersections over the past
decade. However, existing SSMs suffer from the assumption
of constant velocity and direction, pre-defined thresholds,
and other limitations, which make pedestrian-vehicle conflicts
prediction and risk estimation lack of high accuracy.

This paper proposed a probabilistic framework to estimate
the risk of pedestrian-vehicle conflicts at intersections. LiDAR
sensor data has been used to extract trajectories of pedestrians
and vehicles at an intersection. Trajectory data were then used
to illustrate the performance of the proposed framework in
predicting the vehicle’s trajectory and estimating the risk of
conflicts. The unique contributions of the proposed framework
are: (1) it is able to accurately estimate the real-time risk of
pedestrian-vehicle conflicts given their current position; (2) it
can capture and filter the evasive behaviors of the vehicle;
and (3) it has achieved more stable and interpretative results
compared to traditional TTC. In addition, it is able to predict

(a)

(b)

Fig. 9. Results of the 2nd case study. (a) Trajectories of the pedestrian and
vehicle, as well as the predicted and actual conflict points, The change of
colors from light to dark represents the increase of time, (b) The change of
the risk, TTC, and vehicle’s velocity over time.

all conflicts with the information presented in the trajectory
data, and only simple inputs (i.e. position and velocity) are
used to operate and have the potential to expand to new
locations.

In the future, additional studies could be conducted to im-
prove the performance of the trajectory prediction algorithm,
as well as develop methods for predicting the trajectory of
pedestrians. The transferability of the proposed framework
should be investigated using data from other intersections.
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