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Abstract 

Accurate and robust localization is crucial for supporting high-level driving automation and safety. Modern localization 

solutions rely on various sensors, among which GPS has been and will continue to be essential. However, GPS can be 

vulnerable to malicious attacks and GPS spoofing has been identified as a high threat. With transportation infrastructure 

becoming increasingly important in supporting emerging vehicle technologies and systems, this study explores the 

potential of applying infrastructure data for defending against GPS spoofing. We propose an infrastructure-enabled 

framework using roadside units as an independent, secured data source. A real-time detector, based on the Isolation 
Forest, is constructed to detect GPS spoofing. Once spoofing is detected, GPS measurements are isolated, and the 

potentially compromised location estimator is corrected using secure infrastructure data. We test the proposed method 

using both simulation and real-world data and show its effectiveness in defending against various GPS spoofing attacks, 

including stealthy attacks that are proposed to fail the production-grade autonomous driving systems. 
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I. INTRODUCTION 

Technologies supporting advanced driving systems have been evolving at an unprecedented pace in recent years. 
Among them, accurately localizing a vehicle’s global positions is critical for its core role in vehicle routing and control. 

To support high-level driving automation and safety, localization modules must be robust in various driving scenarios, 

which demand advanced sensors and algorithms. Modern localization modules rely on multiple sensors, including, for 

example, Global Positioning System (GPS), Inertial Measurement Unit (IMU), Light Detection and Ranging (LiDAR), 

and camera [1]. However, sensors on vehicles are vulnerable to malicious attacks [2]. For example, GPS spoofing, 

which broadcasts falsified GPS signals, has been a long-recognized high threat [3]; LiDAR can be compromised by 

replay attacks that deceive receivers with recorded (thus outdated) data [4]; cameras are sensitive to blinding attacks 

that emit light into the camera [5]. Despite the disclosed vulnerabilities, solutions to addressing them are still limited. 

This study focuses on GPS spoofing detection and correction as GPS has been and will continue to be an essential 

technique for vehicle localization [6]. Attacks on GPS have long been recognized, notably jamming, replaying, and 

spoofing attacks. GPS jamming prevents the receivers from receiving signals properly, while a replaying attack records 

authentic signals and replays the outdated or irrelevant signals to interrupt the proper operation of vehicles. GPS 

spoofing aims to forge signals to mislead a vehicle to deviate from its planned path [9, 10], hence endangering the 

safety of passengers and other road users. Section II-A provides a detailed comparison of these attacks. Being a false 

data injection attack (see a full taxonomy of attacks in [2]), GPS spoofing can be the most effective among the three 

types of attacks as it allows the attacker to dictate the victim vehicle’s positions to achieve specific goals [9]. Despite 

being a real threat, defending against GPS spoofing is still an open security problem from both prevention and detection 

perspectives [3]. From the prevention perspective, a fundamental measure to prevent GPS spoofing is to apply 

cryptographic techniques to civilian GPS infrastructure [10]. However, it requires considerable modifications or even 

reconstruction of the existing satellite infrastructure and GPS receivers, which is impractical. From the detection 

perspective, the defense methods vary by the source of information used for detecting malicious attacks. The classical 

techniques are based on collecting and analyzing GPS signals in real time, such as accurate clock information or angle 

of arrival [9], [11]. Though effective, these techniques may not be generalizable as each technique is designed for 

specific attacks and may need a large budget for installing dedicated devices (e.g., multiple antennae) on individual 

vehicles. Another open question is how to recover accurate navigation after an attack is detected [10].  

With various sensors increasingly prevalent in vehicles, detecting sensor (e.g., GPS) attacks via cross-comparing 

multiple data sources has attracted considerable attention in recent years [12]–[14]. One typical approach is to detect 

anomalies in received real-time measurements by comparing them with patterns in previously recorded data. This is 

often done by a supervised machine learning model or a statistical model corresponding to specific attacks from these 
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records and applying the learned model to real-time anomaly detection [15]. One challenge of implementing such 

methods is the lack of labeled records for model training or the imbalance between benign and adversarial records. To 

address this challenge, some studies have developed methods based on one-class classification where anomaly 

detection models are trained using only benign data [16]. In practice, the methods may be difficult to implement as 

extracting features for one-class classification training is not trivial [16]. Another type of approaches to detect attacks 

is to integrate other real-time data sources (e.g., IMU data) with the vehicle’s (mathematical) motion model [6]. An 

anomaly/attack is detected if data from the subject sensor deviate too much from the predicted output (e.g., vehicle’s 

position) from the motion model [17]. However, the motion model could be compromised when GPS spoofing occurs 

(and before spoofing is detected), leading to unreliable predictions [18]; see also the numerical results and discussions 

later in Section VI-B. One mitigation is to simultaneously run multiple models on redundant sensors (e.g., GPS, LiDAR 

and camera) and detect attacks via cross-validation. Yet, implementing and cross-validating multiple models can be 

complicated, especially for identifying the attack source [14, 19]. Installing multiple redundant sensors can also be 

costly, given the vast number of vehicles on roads and constrained onboard resources. 

Besides emerging vehicle-based sensors and technologies, transportation infrastructure is becoming increasingly 

important in supporting various functionalities of advanced vehicle technologies, especially Connected and Automated 

Vehicles (CAVs)  [19]–[21]. It is widely accepted now that infrastructure-vehicle cooperation is probably a more viable 

path to implement emerging systems, e.g., automated driving, compared with that using driverless vehicle technologies 

solely. For this, the communication and data transmission between vehicles and infrastructure will play a central role. 

Indeed, V2X messages (e.g., the basic safety message (BSM)) have already been defined for data transmitted between 

vehicles and “everything” (including other vehicles, the infrastructure, and other users of the roadway), and secure data 

transmission schemes (e.g., the secure credential management system (SCMS) [22]) have also been proposed for V2X 

data. Emerging V2X communication systems, such as 5G-based Cellular V2X, are capable of supporting real-time 

decisions in, for example, collision avoidance systems and positioning of vehicles. Leveraging secure data from the 

infrastructure may help defend against cybersecurity attacks, including GPS spoofing attacks. Therefore, while we 

should continue to encourage research on more effective GPS spoofing defense methods based on signal processing, 

anomaly detection, and data fusion (some recent methods can be found in [8], [13], [23]), we should also welcome 

methods via exploring the use of secure infrastructure data for GPS spoofing detection and mitigation.  

This study focuses on such a new exploration by proposing an infrastructure-enabled defense (IED) framework via 

utilizing roadside units (RSU) as an independent, secure data source. An RSU broadcasts locational information 

(similar to or could be part of the V2X data from RSU); vehicles in the broadcast range can use the information to 

estimate their locations periodically (see Section V-A for more details). Such secure, independent data from RSUs 

enables new ways to detect and mitigate GPS spoofing, which we will explore and elaborate more in the remainder of 

this paper. The proposed IED framework has several unique features compared with existing solutions. First, it takes 

advantage of the communication modules between vehicles and infrastructure (e.g., existing or newly deployed V2X 

devices), instead of requiring sophisticated in-vehicle GPS receivers or redundant sensors for cross-validation. Second, 

enabled by the secure data from infrastructure, it is feasible to design a simpler yet effective defense solution to detect 

and correct GPS spoofing. Computed from secure RSU data, the features for attack detection are also “protected” (i.e., 

safe from attackers’ manipulation), relieving the challenge of developing attack-resilient algorithms [24]. Third, it is 

more practical to secure the information from RSUs than to secure the established civilian GPS satellite infrastructure 

(see Section II-D for more discussions). Therefore, the proposed IED solution provides a new and valuable alternative 

to addressing GPS spoofing issues. Furthermore, exploring IED solutions for GPS spoofing may provide helpful 

insights to address other data-related cybersecurity issues in transportation, which we will elaborate more in later 

sections. We note here that, while we focus on GPS spoofing on ground vehicles in this paper, GPS spoofing has also 

been studied for aircraft and marine vehicles (ships) [7]. In fact, an infrastructure-based GPS spoofing mitigation idea 

for aircraft was also reported in [25]. However, due to the distinct characteristics/operations of ground vehicles and 

aircraft (or ships), their safety requirements, and the drastically different space they are operated in, methods for aircraft 

or ships cannot be applied directly to ground vehicles (e.g., the idea in [25] does not apply to ground transportation). 

We first introduce the design of secure RSU data and the method of how a vehicle interacts with the infrastructure 

to obtain secure, global position measurements. Based on the secure measurements, we develop and compute multiple 

features, with which a real-time detector, based on the Isolation Forest, is constructed to detect GPS spoofing. Once 

spoofing is detected, GPS measurements are isolated, and the potentially compromised location estimator is corrected 

using the RSU data. We design the detection and correction methods under the situation that RSU data is not always 

available due to certain constraints (e.g., a limited budget to install RSUs all over the road network). If RSU data are 

not available, an RSU-based prediction model utilizes the last available RSU measurement and the vehicle motion 



  

model to predict vehicle locations, preserving timely attack detection. We test the proposed IED framework using both 

simulation and real-world data and show its performance compared with state-of-the-art solutions in defending various 

types of GPS spoofing, including a stealthy attack that is proposed to fail the production-grade autonomous driving 

systems [16]. The major contributions of this paper are summarized as follows. 

1) This study explores and proposes an IED framework for detecting and correcting GPS spoofing that complements 

existing methods that mainly rely on (likely insecure) vehicular data.  

2) By integrating both GPS and RSU data, we develop a machine learning-based spoofing detection method that is 

simple yet effective in detecting GPS spoofing, adding new tools to the current toolbox for GPS spoofing. 

3) A new correction model is also developed leveraging the RSU data, which results in much-reduced location errors 

when GPS spoofing attacks occur. 

In the rest of this paper, we review related works in Section II. In Section III, we present the problem statement and 

major assumptions and some preliminaries on which our problem is constructed. Section IV introduces GPS spoofing 

attack models. Section V presents the proposed IED framework and Section VI evaluates it using both simulation and 

real-world data. Concluding remarks are discussed in Section VII.  

II. LITERATURE REVIEW 

A. GPS Spoofing Attacks 

Existing studies have revealed potential vulnerabilities of localization sensors to malicious attacks [13], [16]. GPS 

is particularly prone to attacks, including jamming, replaying, and spoofing [2]. GPS jamming can prevent vehicles 

from receiving GPS signals properly by, e.g., transmitting radio signals that overpower the (weak) authentic GPS 

signals. Jamming could be addressed by implementing beam/null-steering antenna arrays that can filter out jamming 

signals [26]. Replaying attacks aim to confuse vehicles by recording and rebroadcasting GPS signals that could be 

outdated or irrelevant to the vehicles’ real-time operation. False signals in such attacks could be identified by 

monitoring the receiver’s clock bias over time [26]. GPS spoofing misleads vehicles’ trajectories by forging counterfeit 

GPS signals, which could be done by intercepting and falsifying authentic signals before sending them to GPS receivers 

[3]. GPS spoofing falls into the broad category of false data injection attacks, which compromise sensor readings 

stealthily so that undetected errors are introduced into state predictions. A full taxonomy of various types of attacks 

can be found in [2]. It is well recognized that GPS spoofing can be stealthy to be detected among these attacks and is 

still an open challenge in the cybersecurity community.  

Before discussing existing defense solutions against GPS spoofing, we summarize common types of GPS spoofing 

in recent studies[10], [13], [14]. 

• Instant: One GPS measurement that is unexplainable and significantly different from previous ones. 

• Noise: A consecutive sequence of GPS measurements with increased variance. Noise attack occurs across multiple 

successive sensor readings.  

• Constant bias: A sequence of GPS measurements with a constant offset from the vehicle’s true locations.  

• Gradual drift (stealthy attack): A sequence of GPS measurements that are modified to gradually deviate the 

vehicle from its true trajectory during a period of time. 

The references above also discuss in detail the consequences of each type of GPS spoofing attacks. Among these 

attacks, the constant bias and gradual drift attacks have received the most attention. In particular, the gradual drift 

attack is one type of stealthy attacks, which is more deceptive than other attacks: it can result in a large deviation 

between the true trajectory and the falsified trajectory over time. Sophisticated stealthy attacks have been proposed in 

recent studies, making them difficult to be detected. For example, stealthy GPS spoofing is proposed in [13] to 

gradually drift the true vehicle position according to its kinematic model. In [1], a stealthy GPS spoofing attack (named 

FusionRipper) is designed to fail production-grade autonomous driving systems (e.g., Baidu’s Apollo system) with an 

over 90% success rate. FusionRipper targets the predominantly adopted Multi-Sensor Fusion (MSF) algorithms and 

performs exponential spoofing, which injects mild deviations at the beginning to gradually compromise MSF and then 

aggressive deviations with exponential growths. The deviations injected over time are controlled by two parameters 

which are tuned according to MSF’s configuration. In this study, we implement FusionRipper as a stealthy attack to 

test the IED framework. 

B. Detection Methods against GPS Spoofing 

Defending GPS spoofing could be done from the prevention perspective, i.e., enhancing data security via techniques 

such as encryption and user authentications. Preventing GPS spoofing this way requires significant modifications of 



  

the civilian GPS satellite infrastructure (i.e., satellites, GPS receivers, and their communication that is currently without 

any encryption scheme) that has been widely deployed and used for decades. Clearly, doing so would be very costly 

and impractical [3]. As well recognized and adopted extensively in previous studies [9], [11], [27], practical GPS 

spoofing defense solutions contain two major steps: spoofing detection and spoofing correction (mitigation). We 

review detection methods here, while correction methods are covered in the next subsection.  

Classical GPS spoofing detection methods focus on collecting and processing rich information in GPS signals, such 

as accurate clock information, signal power and arrival angle [1], [9], [23]. These methods have been shown effective 

in detecting specific types of attacks. However, they often require dedicatedly designed GPS receivers in vehicles (e.g., 

receivers with moving or multiple antennae) and may not be generalizable to sophisticated attacks that largely mimic 

authentic GPS signals [3]. Meanwhile, how to correct the compromised location estimator and recover accurate 

localization after attack detection is still an open question [10].  

In recent years, sensors are increasingly installed in vehicles and this has promoted studies that detect spoofing 

attacks (i.e., anomalies) via cross-validating multiple data sources [12], [13], [16]. Such studies can be categorized into 

two groups: data-driven and model-based [16]. The former relies on prepared (historical) data to learn a set of patterns 

or rules, with which the real-time sensor data is determined as benign or adversarial [12], [14]. The rules could be 

learned by formulating a supervised learning problem, where a classifier is learned using the labeled training data. The 

trained classifier serves as the detector to detect whether a sensor is under attack or not [15]. Such supervised learning 

algorithms have been shown effective in detecting spoofing attacks on real-time localization systems implemented on 

a wheeled robot [28]. Recently, deep learning methods have been applied to detecting anomalies in speed sensors [14]. 

Despite their success in specific applications, supervised-learning-based methods have two limitations [15]: i) the 

training data requires labeled (at least two classes of) records, which can be challenging to prepare; and ii) the trained 

model may not be generalizable to address new types of attacks that are not represented in the training data. To address 

these limitations, recent studies propose to perform unsupervised learning or one-class classifications (OCC) that are 

trained only on normal data and thus do not require specific labels associated with the data [29]. Then, real-time sensor 

data is fed into the learned classifier to detect attacks or anomalies. In [7], the authors formulated attack detection as 

an unsupervised binary classification problem and applied K-means to cluster the data into two groups, one for attack 

and the other for non-attack. Applying K-means to detect stealthy GPS spoofing can be challenging, as it requires 

predetermining the feature space and distance function for measuring the distance between data points. In [13], a One-

Class Support Vector Machine (OCSVM) model is proposed to detect anomalies in vehicular sensor readings. Though 

robust in detecting inconsistencies among data sources, studies have shown that OCSVM could be sensitive to outliers 

and tends to produce false-positive errors [30]. Meanwhile, OCC-based detectors do not address another limitation 

associated with the data-driven methods: the detector may detect the existence of anomalies but could fail to identify 

their source (i.e., which sensor is under attack). This may make it challenging to design and implement mitigation 

measures (e.g., isolating the attacked sensor).  

Model-based detection methods involve modeling and continuously predicting a vehicle’s motion dynamics using 

real-time measurements from the vehicle [31], [32]. The basic idea is that if a sensor measurement deviates from the 

expected value from the vehicle dynamic model too much, the sensor may be compromised. The 𝜒2 -test-based 

detection is often used to determine whether the deviation is large enough to claim the sensor being an outlier or under 

attack [33]. The detection test is a statistical test, based on the statistic Normalized Estimation Error Squared (NEES) 

that follows a 𝜒2 distribution [8], [34]. The 𝜒2-test-based detection can be sensitive to sensor noises, resulting in a high 

rate of false positives (i.e., outliers that are incorrectly identified as attacks due to sensor noises). To mitigate this issue, 

a cumulative sum (CUSUM) discriminator is recently proposed to detect attacks on GPS and LiDAR [16]. CUSUM 

detects an attack by inspecting multiple consecutive sensor measurements instead of one measurement only: if the 

inconsistency between the sensor measurement and the expected vehicle position appears continuously, the sensor is 

likely under attack. There are some limitations with CUSUM in real-world applications. First, it requires two tuning 

parameters that can be challenging to determine in real-world implementations. Second, being a model-based method, 

it relies on a prediction model that may be compromised by stealthy attacks. Specifically, an attack can carefully 

manipulate the input to the prediction model such that the generated predictions are corrupted. If this occurs, the 

features computed from the predictions are no longer reliable indicators of attacks. In the numerical experiments in this 

paper, we show the weakness of CUSUM when facing stealthy attacks.  

C. Mitigation/Correction Methods again GPS spoofing 

Existing studies are mainly on attack detection and have limited discussions on mitigating/correcting the errors 

caused by the attack [28], [31]. The typical strategy is to run a fail-safe mechanism (e.g., handing over control to the 



  

human driver) if an attack is detected [35]. However, such a fail-safe mechanism can be costly as it interrupts the 

system or may not be applicable in certain scenarios (e.g., automated driving).  

Another typical solution is to deploy multiple sensors, such that an attacked sensor is isolated and the system relies 

on the rest of the sensors [36]. For example, a vehicle equipped with GPS and LiDAR will rely on LiDAR for 

localization if GPS spoofing is detected [16]. However, there are some limitations to such solutions. First, as noted 

above, identifying the attack source (i.e., which sensor is under attack) in the multi-sensor setting is often challenging, 

especially when all sensors are vulnerable. Consequently, isolating the attacked sensor is not trivial. Second, in the 

presence of detection lag, the data fusion framework would have been partially compromised before noticing an attack 

and isolating the attacked sensor [1]. Previous studies only emphasize isolating the attacked sensor but lack discussions 

on correcting the compromised data fusion framework. One possible solution is to run a secondary system (e.g., a 

localization module independent of GPS sensor) so that the system under attack is isolated and replaced by the 

secondary system [35]. Yet, deploying and running redundant systems could be economically and computationally 

costly. 

D. Methods of Obtaining Secure Infrastructure Data 

Infrastructure plays an increasingly important role in modern driving systems, facilitating their various advanced 

functions, such as detecting pedestrians and efficient driving at intersections [12], [37]. The proposed IED framework 

in this paper requires secure infrastructure data (RSU data). Yet, the infrastructure data itself can be vulnerable to 

malicious attacks, including DoS attacks and spoofing attacks. Fortunately, active research has been conducted on 

securing infrastructure and practical security strategies are currently available [38].  

Infrastructure data collection and transmission can be secured by applying a variety of state-of-the-art secure 

channels that use advanced encryption algorithms (e.g., DES, 3DES, AES, RSA and Blowfish [39]). These existing 

encryption methods can be evaluated in transportation applications and revised, if needed, to fit transportation scenarios 

better. In practice, secure data communication is becoming a standard in CAV development and deployment. For 

example, a recent review in [38] summarizes the integrity of V2X communication from different contexts, such as 

reputation analysis and message integrity checking. In [22], SCMS is presented to secure V2X data. SCMS issues 

digital certificates to vehicles and RSUs to secure their communications while maintaining efficient revocation of 

misbehaving or malfunctioning vehicles. SCMS may be readily used for secure data transmission in our proposed IED 

framework. Besides data transmission, the received secure infrastructure data may also be encrypted before storage 

(and decoded before using them), ensuring data security even if the system (hardware) is hacked [40].  

These existing studies suggest that secure data transmission between vehicles and the infrastructure can be 

reasonably done. As we focus on developing GPS spoofing detection and mitigation methods using infrastructure data, 

in this paper, we apply the state-of-the-art encryption method to set up secure channels for secure data transmission 

between an RSU and its nearby vehicles. Specifically, we implement an Advanced Encryption Standard (AES) scheme 

[41] in terms of the process of encrypting and decrypting transmitted data with user authentication, which is similar to 

the SCMS scheme for secure V2X transmission. See Section V-A and Section VI-A for more detailed discussions on 

this. 

III. PROBLEM STATEMENT AND PRELIMINARIES 

A. Problem Statement 

Fig. 1 illustrates the problem setup and the general idea of the IED framework against GPS spoofing. We consider a 

simple yet common localization solution, where a vehicle can be tracked by a typical motion model with high-

frequency local measurements from a low-end IMU and takes low-frequency global measurements from GPS for 

correcting location errors periodically. Low-end IMUs are pervasive nowadays and are widely deployed in 

smartphones and vehicles. The problem setting here ensures the generality of the study since one can obtain IMU 

measurements from a vehicle’s OBD portal [42], without installing additional sensors or utilizing the data from such 

sensors even if they are installed. GPS could be spoofed in an adversarial environment. The vehicle could deviate from 

the desired trajectory if spoofing is not detected. Our goal here is to propose an IDE method with which the vehicle 

can utilize the secure data from RSUs to timely detect GPS spoofing and correct location errors incurred by the attacks. 

Section V-A provides more details about the data provided by the RSU.  
 



  

 

Fig. 1. ILLUSTRATION OF GPS SPOOFING AND IED SOLUTION. 

B. Assumptions 

We impose the following assumptions to simplify our discussion and clarify the focus of this study.  

1) GPS spoofing studied here belongs to data security, which is orthogonal to attacks/defenses of hacking into 

software or hardware systems, or physical network security [38], [43]. To focus on the research challenges and 

methods of GPS spoofing, we assume in this paper that other attacks have been mitigated with proper 

countermeasures. The only exception is the methods for secure data transmission between vehicles and the 

infrastructure; see 2) below. 

2) Vehicles can obtain secure RSU data to calculate their global locations. As discussed in Section II-D and more in 

Section V-A, we assume that secure RSU data can be readily available by applying (or tailoring) existing security 

schemes [38]. This paper directly applies AES [41] to secure the data and focuses on developing and testing 

detection and correction methods.  

3) We assume that IMU is secure due to assumption 1) above. IMU measurements are typically accessed via a wired 

channel; thus, their exposure to potentially adversarial environments is low unless in the presence of physical 

attacks against in-vehicle hardware. This assumption has also been widely adopted in recent cybersecurity research 

involving IMUs [9], [17]. 

C. EKF-based Localization Model 

Estimating vehicle positions from multiple sensors can be achieved by a Kalman Filter (KF)-based method or its 

variants [44]. Here we briefly describe the KF-based localization model used in this paper to combine GPS (global) 

and IMU (local) data. Vehicle (global) location at time 𝑘 is represented by the KF’s state �̂�𝑘 and uncertainty with a 

covariance matrix �̂�𝑘. Due to the non-linearity of the vehicle motion model, we adopt an Extended Kalman Filter 

(EKF) proposed in [1].  

Following initialization at 𝑘 = 0, EKF estimates the vehicle positions by iterating a prediction step and an update 

step. The prediction step iterates the motion model (1) to predict the vehicle positions using IMU data; the process is 

often referred to as dead-reckoning. This prediction step is expressed as a discretized vehicle motion model (1) together 

with the propagation of uncertainty (2) [45]. 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘) (1) 

𝑷𝑘 = 𝑭𝑘−1�̂�𝑘−1𝑭𝑘−1
𝑇 + 𝑳𝑘−1𝑸𝑳𝑘−1

𝑇  (2) 

Here, 𝒙𝑘  and 𝑷𝑘  represent the vehicle position and its uncertainty at time step 𝑘 , respectively. 𝒖𝑘  gives the IMU 

measurement containing white noises 𝒘𝑘  with covariance matrix 𝑸. 𝑭𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝒙𝑘−1
|�̂�𝑘−1

, 𝑳𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝒘𝑘−1
|�̂�𝑘−1

are the 

partial derivative matrices corresponding to the state and noises that are obtained by linearizing the system model (1).  

The update step is for periodically correcting the cumulated errors in the prediction steps once GPS data 𝒛𝑘
𝐺𝑃𝑆 is 

received. The measurement model for GPS data is given by [16]: 

𝒛𝑘
𝐺𝑃𝑆  =  𝑯 × 𝒙𝑘 + 𝒆𝑘

𝐺𝑃𝑆  (3) 

Here matrix 𝑯 maps vehicle position to the measurement space. 𝒆𝑘
𝐺𝑃𝑆 is the measurement noise which is assumed to 

be additive white noise with covariance matrix 𝑹𝐺𝑃𝑆. 

As shown in (4), the update step takes a GPS measurement 𝒛𝑘 and its uncertainty 𝑹𝐺𝑃𝑆 as input to compute the 

Kalman gain 𝑲𝑘, which is then used to correct the predicted state [1]. 



  

               𝑲𝑘 = 𝑷𝑘𝑯𝑇(𝑯𝑷𝑘𝑯𝑇 + 𝑹𝐺𝑃𝑆)−1 

(4)                 �̂�𝑘 = 𝒙𝑘 + 𝑲𝑘(𝒛𝑘
𝐺𝑃𝑆 − 𝑯𝒙𝑘)𝒓𝑘

𝐺𝑃𝑆 

                �̂�𝑘 = 𝑷𝑘 − 𝑲𝑘𝑯𝑷𝑘 

IV. ATTACK MODELS 

Attack models are essential for investigating attack detection and mitigation. We consider two types of GPS spoofing 

attacks: the constant bias attack and the stealthy attack. As shown in the results section, these two attack models allow 

for evaluating the IED framework under stealthy and non-stealthy attacks, generating some interesting insights. Other 

types of spoofing attacks on GPS discussed in Section II-A (including instant and noise attacks) are not implemented 

in this study, since they either fall out of the scope of this study (e.g., DoS attacks) or can be approximated by the 

constant bias or stealthy attacks [14] (also briefly discussed below).  

A. Constant Bias Attack 

A constant bias attack injects a constant bias into the true measurements, causing the GPS readings to deviate from 

the true ones temporarily. In practice, attackers could launch a bias attack to mislead a vehicle by adding a lateral offset 

or a longitudinal offset (or both) to the true GPS readings 𝒛𝑘
𝐺𝑃𝑆. Mathematically, the received GPS measurement would 

be:  

�̃�𝑘
𝐺𝑃𝑆 =  𝒛𝑘

𝐺𝑃𝑆 + 𝑪 (𝑘 ∈  [𝑡𝑠 , 𝑡𝑒]), (5) 

where �̃�𝑘
𝐺𝑃𝑆 is the spoofed GPS data, and 𝑪 is a constant vector that can be added to the true GPS readings. 𝑡𝑠  and 𝑡𝑒  

represent the start time and end time of the attack, respectively. With a constant bias attack, the vehicle may be deceived 

by believing that it is at the wrong location on the roadway and thus takes faulty actions. Notice that an instant attack 

can be implemented by taking 𝑡𝑒 = 𝑡𝑠 + 1.  

B. Stealthy Attack 

A stealthy attack injects a sequence of increasing deviations into true measurements, such that the vehicle gradually 

drifts away from its true trajectory. Mathematically, the received GPS measurement can be expressed as:  

�̃�𝑘
𝐺𝑃𝑆 =  𝒛𝑘

𝐺𝑃𝑆 + 𝒄𝑘  (𝑘 ∈  [𝑡𝑠 , 𝑡𝑒]), (6) 

where 𝒄𝑘 is carefully designed to avoid triggering an attack detector. Stealthy attacks are more deceptive than constant 

bias attacks; multiple such strategies have been proposed for GPS spoofing. To implement a noise attack, one could 

generate 𝒄𝑘 by sampling a random distribution (e.g., norm distribution) with a large variance. 

As noted in Section II-A, we implement FusionRipper, the state-of-the-art stealthy spoofing strategy that is 

recognized by top-tier cybersecurity communities [1]. In this study, the implementation of FusionRipper is simplified 

since our localization solution includes no LiDAR as in the original study. Specifically, we skip the vulnerability 

profiling step (for determining when GPS measurements dominate the location estimator) and implement the 

aggressive spoofing step directly. The aggressive spoofing performs exponential spoofing that increases the deviation 

𝒄𝑘 exponentially. As shown by (7), the deviation 𝒄𝑘 is a function of time 𝑘, controlled by two parameters: m and n 

(with n slightly larger than 1). At the beginning of the attack, the deviation is small, making it difficult to be detected. 

As a result, the spoofed GPS measurements would be fused and corrupt the data fusion framework (i.e., EKF). Once 

this occurs, aggressive deviations can be injected without alerting the detection algorithm.   

𝒄𝑘 = 𝑚 ∗ 𝑛𝑘 (7) 

V. INFRASTRUCTURE-ENABLED DEFENSE METHOD  

An overview of the IED framework is shown in Fig. 2.  Besides the EKF-based localization model that continuously 

localizes the vehicle (Section III-C), there are three new components. The first component aims to obtain secure, global 

measurements of vehicle positions from RSUs. The second one (RSU-enabled detection component) runs a real-time 

detector to monitor whether a received GPS measurement is spoofed or not. The third component is to correct the 

vehicle location using RSU data. In the following, we describe each of the three components in detail. 

A. Secure RSU Data from the Infrastructure 

1) Design of Secure RSU data 

Methods for obtaining secure RSU data include two major aspects: (i) what data to collect and how to collect them; 

and (ii) how to secure data collection and transmission. We focus on (i) in this study. For (ii), as discussed in Section 



  

II-D, we apply the AES scheme, one of state-of-the-art encryption methods, to design dedicated secure channels for 

secure data collection and transmissions, focusing on testing its performance in spoofing detection and correction in 

Section VI. 

 
Fig. 2. IED SOLUTION FOR GPS SPOOFING DETECTION AND CORRECTION. 

 

The design of secure RSU data ensures that a vehicle can use the data to obtain a global position measurement similar 

to GPS, denoted as 𝒙𝑘
𝑅𝑆𝑈. This has been extensively studied in the field of GPS-free localization [46]–[48]. A common 

practice is to first estimate the vehicle’s relative position to the RSU via ranging methods and then compute the 

vehicle’s global position given the (global) coordinates of the RSU [38]. In a ranging method, the distance between a 

radio transmitter (the RSU here) and a receiver can be inferred from the properties of the radio wave observed at the 

receiver [47]. Note that this distance is termed as range following the literature. The widely known ranging methods 

include those collecting and utilizing received signal strength (RSS), arrival time or arrival angle [46]. For CAVs that 

can communicate with RSUs, such range information can be readily available on the vehicle side. Following [46], we 

use 𝑀(•) to express a ranging method that obtains the range information 𝑧𝑘
𝑅𝑆𝑈 at time k: 

𝑧𝑘
𝑅𝑆𝑈  =  𝑀(𝒙𝑘 , 𝐶𝑟𝑑𝑅𝑆𝑈)  + 𝑒𝑘

𝑅𝑆𝑈. (8) 

Here, 𝑀(•) is essentially a measurement model depending on the vehicle’s (true) global position 𝒙𝑘 and the RSU’s 

coordinates 𝐶𝑟𝑑𝑅𝑆𝑈. 𝑒𝑘
𝑅𝑆𝑈 is the measurement noise in a Gaussian distribution with covariance matrix 𝜎𝑅𝑆𝑈. In [46], 

a recent review of RSU-assisted localization methods is provided, which vary with the RSU data types and 

configurations of signal transmitters on RSUs and receivers on vehicles. There are also real-world implementations in 

GPS-absent environments (e.g., Waze’s Beacon program to provide navigation for drivers underground [49]). The 

RSU-assisted localization methods could reach an accuracy in centimeters, much higher than that of GPS [47].  

In this study, we implement an efficient and low-cost V2X-based vehicle localization method by Ma et al. [50].  See 

a discussion of its efficiency in terms of computational latency below. It is low cost as it needs only a single data 

transmitter on the RSU side and a single receiver on the vehicle (i.e., it is similar to and can be implemented via the 

current V2X framework), compared with other ranging methods using multiple transmitters or receivers to collect 

information such as angle of arrivals [50]. Ma et al. [50] assumes that the RSU broadcasts its coordinates, and a vehicle 

receives the message and extracts associated range information (i.e., the relative distance information). Then the vehicle 

computes its global position 𝒙𝑘
𝑅𝑆𝑈using a sequence of range information 𝑧𝑘

𝑅𝑆𝑈. Therefore, this method may be readily 

deployed based on the current V2X systems without additional hardware requirements (the range information does 

need to be extracted from the receiver on the vehicle side). Omitting the details, we denote this method with function 

𝐺(•) [50]: 

(𝒙𝑘
𝑅𝑆𝑈 , 𝑹𝑘

𝑅𝑆𝑈) = 𝐺([𝒛𝑘
𝑅𝑆𝑈 , 𝒛𝑘−1

𝑅𝑆𝑈 , … , 𝒛𝑘−𝑜
𝑅𝑆𝑈], 𝐶𝑟𝑑𝑅𝑆𝑈 , [𝒖𝑘 , 𝒖𝑘−1, … , 𝒖𝑘−𝑜]). (9) 

[𝒛𝑘
𝑅𝑆𝑈 , 𝒛𝑘−1

𝑅𝑆𝑈 , … , 𝒛𝑘−𝑜
𝑅𝑆𝑈]  is the sequence of range information associated with the messages from an RSU. 

[𝒖𝑘 , 𝒖𝑘−1, … , 𝒖𝑘−𝑜] is a sequence of local measurements containing either speeds or local displacements. These local 

measurements can be easily accessible from either the vehicle’s own wheel encoder or IMU. Covariance matrix 𝑹𝑘
𝑅𝑆𝑈 

considers the uncertainty associated with the estimated position 𝒙𝑘
𝑅𝑆𝑈, which may be affected by the sequence length 

and noises in the range information. It is reported that the error of 𝒙𝑘
𝑅𝑆𝑈 is less than one meter. In our study, we conduct 



  

sensitivity analysis in Section VI to test whether RSU-assisted location accuracy will play a role in detecting and 

correcting GPS spoofing attacks.  

Lastly, the latency needs to be considered when implementing the AES scheme to set up the secure channel between 

an RSU and vehicles. Here latency stems from three sources: the communication latency, the latency due to encrypting 

and decrypting the transmitted data, and the computational time to derive the vehicle’s global position. One main 

contribution to the communication latency is the V2X technology involved, such as the Dedicated Short Range 

Communication (DSRC) and the emerging 5G-based Cellular-V2X (C-V2X) system. Previous studies have reported 

that the DSRC communication latency ranges from 10ms to 100ms [51], [52] and the C-V2X communication latency 

would not exceed 60ms even when there are 150 vehicles in the same communication channel [51], [53]. In our 

implementation, the run times for encrypting/ decrypting the transmitted data and deriving vehicle’s global position 

are negligible (0.60ms and 0.13ms, respectively), when evaluated from an average of 1000 runs on a personal computer 

(with a 3.60GHz AMD Ryzen 7 CPU). This suggests that the latency of the designed secure RSU data is dominated by 

the communication latency. In this paper, we use 100ms, the largest reported communication latency in the numerical 

experiments. 

2) RSU-based location prediction  

The relative vehicle position measured by RSU, 𝑧𝑘
𝑅𝑆𝑈, would not always be available, depending on the availability 

of RSUs along the road. Due to budget limits in a real-world setting, RSUs may be spatially sparse in the road network 

and RSU data is only available when vehicles are within an RSU’s service range. In this study, we assume the distance 

between two consecutive RSUs, denoted as 𝐷𝑅𝑆𝑈, is uniform, and the service range 𝑑𝑅𝑆𝑈 is fixed. In Section VI, we 

conduct sensitivity analyses on how the spacing of RSUs will impact the performance of the proposed methods. 

If RSU data are unavailable, we utilize the last available RSU data and vehicle motion model to predict a vehicle’s 

location, enabling us to continuously monitor GPS measurements and timely detect attacks. The prediction should not 

involve GPS measurements that may have been compromised at the time when attacks are detected. However, since 

the vehicle location may change dramatically following commands from the vehicle’s actuator (e.g., throttle, brake and 

steer), predicting the vehicle location can be challenging. 

We build an RSU-based prediction model leveraging RSU data and the vehicle motion model to address this 

challenge. Specifically, given the most recent vehicle (global) position information (𝒙𝑘
𝑅𝑆𝑈 ; see Error! Reference 

source not found.)) enabled by the RSU at time 𝑘, we predict vehicle location at 𝑘 + ∆𝑘. For this, we start a standalone 

vehicle motion model at 𝑘, initialize it with 𝒙𝑘
𝑅𝑆𝑈 and then iterate it using IMU data 𝒖𝑡 (𝑡 ∈ [𝑘 + 1, 𝑘 + ∆𝑘]) as the 

input. Note that besides predicting vehicle locations, we also propagate the errors in IMU data to gain the prediction 

uncertainty that is represented by a covariance matrix 𝑷𝑡
𝑅𝑆𝑈. The iterations of 𝒙𝑡

𝑅𝑆𝑈 and 𝑷𝑡
𝑅𝑆𝑈 are expressed in (10). 

We will use this prediction model in Section V-B to detect GPS spoofing and in Section V-C to correct the vehicle 

location when GPS spoofing is detected. 

       𝒙𝑡
𝑅𝑆𝑈  =  𝑓(𝒙𝑡−1

𝑅𝑆𝑈 , 𝒖𝑘)  

       𝑷𝑡
𝑅𝑆𝑈  = 𝑭𝑡−1𝑷𝑡−1

𝑅𝑆𝑈𝑭𝑡−1
𝑇 + 𝑳𝑡−1𝑸𝑳𝑡−1

𝑇  
(10) 

       𝑡 ∈ [𝑘 + 1, 𝑘 + ∆𝑘] 

Here, 𝑭𝑡−1 =
𝜕𝑓𝑡−1

𝜕𝒙𝑡−1
|
𝒙𝑡−1

𝑅𝑆𝑈  and 𝑳𝑡−1 =
𝜕𝑓𝑡−1

𝜕𝒘𝑡−1
|
𝒙𝑡−1

𝑅𝑆𝑈  are the partial derivative matrices w.r.t. the state 𝒙 and IMU noises 

𝒘.  

B. iForest Model-base Attack Detection 

Given the RSU data, the spoofing detection is formulated as a real-time anomaly detection problem, containing two 

parts: 1) generating real-time features, and 2) building a machine learning model that determines whether a GPS 

measurement is anomalous or not given the features at k.  

1) Feature generation  

- The classical feature NEES 

We start with the classical feature for GPS spoofing detection, called NEES (Section II-B). It is computed as the 

normalized deviation of the received (possibly spoofed) GPS �̃�𝑘
𝐺𝑃𝑆 from the predicted location �̂�𝑘, denoted as 𝒓𝑘

𝐺𝑃𝑆, as 

below. 

                         𝒓𝑘
𝐺𝑃𝑆 = �̃�𝑘

𝐺𝑃𝑆 − 𝑯�̂�𝑘 

            𝑺𝑘
𝐺𝑃𝑆 = 𝑯�̂�𝑘𝑯𝑇 + 𝑹𝐺𝑃𝑆 

    𝑁𝐸𝐸𝑆𝑘
𝐺𝑃𝑆 = (𝒓𝑘

𝐺𝑃𝑆)
𝑇

(𝑺𝑘
𝐺𝑃𝑆)

−1
𝒓𝑘

𝐺𝑃𝑆 

(11) 



  

Note that 𝑯 and �̂�𝑘 are defined in Section III-C, and 𝑺𝑘
𝐺𝑃𝑆 is a covariance matrix reflecting the uncertainty of 𝒓𝑘

𝐺𝑃𝑆. 

It has been proven that if the noises in measurements follow a normal distribution, NEES follows a 𝜒2 distribution 

[34]. Therefore, in previous studies, the 𝜒2 -test-based detection using 𝑁𝐸𝐸𝑆𝑘
𝐺𝑃𝑆  is often applied to detect GPS 

spoofing. However, NEES could be impacted by noisy GPS measurements, making it hard to differentiate attacks from 

noises [18]. Furthermore, the 𝜒2-test-based detection could be ineffective for stealthy attacks [1]. This is because 

attackers could inject a sequence of false information into the authentic GPS measurements; each piece of false 

information alone may not lead to a large enough NEES to trigger the alarm, but these errors together could successfully 

deviate the vehicle. If this happens, the 𝜒2-test-based detector itself may also be compromised, making it less likely to 

detect spoofing attacks. 

- Features generated from RSU data  
We can create new features based on the measurements from RSUs, without involving GPS measurements, to 

address the issues associated with NEES. A straightforward way to create new features is to compute the difference 

between RSU and GPS measurements. However, as noted earlier, measurements from RSUs and GPS may not be at 

the same frequency, with the former not always being available. As a result, the two would not be directly comparable.  

We address this issue by utilizing the RSU-based location prediction (see Section V-A). The predicted location is 

generated whenever a GPS measurement is received and needs to be validated. Then, new features are created by 

comparing the GPS measurement with RSU-based prediction in (10). Since the prediction in (8) does not involve GPS 

measurements, these features are ‘protected’ as they are immune to GPS spoofing attacks. Specifically, using the RSU-

based location prediction 𝒙𝑘
𝑅𝑆𝑈 and the associated covariance matrix 𝑷𝑘

𝑅𝑆𝑈 (see Section V-A), we first compute the 

residual between the GPS measurement and the prediction 𝒓𝑘
𝐺𝑃𝑆  as well as the uncertainty of the residual 𝑺𝑘

𝑅𝑆𝑈 , 

following (12). Then we generate two new (scalar) features 𝑟𝑘
𝑅𝑆𝑈 and 𝑆𝑘

𝑅𝑆𝑈, as shown in (13).  

                𝒓𝑘
𝑅𝑆𝑈 = �̃�𝑘

𝐺𝑃𝑆 − 𝑯𝒙𝑘
𝑅𝑆𝑈 

                𝑺𝑘
𝑅𝑆𝑈 = 𝑯𝑷𝑘

𝑅𝑆𝑈𝑯𝑇 + 𝑹𝑅𝑆𝑈  
(12) 

                 𝑟𝑘
𝑅𝑆𝑈 =  ‖𝒓𝑘

𝑅𝑆𝑈‖  

                𝑆𝑘
𝑅𝑆𝑈 = |𝑺𝑘

𝑅𝑆𝑈| 
(13) 

Here, ‖•‖ and |•| compute the L2 norm of a vector and the determinant of a matrix, respectively. 

 

2) Building an Isolation Forest as the detector 

The attack detection is treated as a real-time anomaly detection problem, for which we apply an unsupervised 

machine learning model to learn anomalies from the data. Specifically, we detect GPS spoofing by building an Isolation 

Forest (iForest) that takes all the above features 𝑨𝑘= (𝑁𝐸𝐸𝑆𝑘
𝐺𝑃𝑆 , 𝑟𝑘

𝑅𝑆𝑈 , 𝑆𝑘
𝑅𝑆𝑈) at time k as the input. Note that though 

𝑁𝐸𝐸𝑆𝑘
𝐺𝑃𝑆 may be corrupted due to GPS spoofing and thus not a reliable feature alone, valuable information can be 

generated by comparing it with the other features, providing additional dimensions of inconsistency (anomaly) check.  

iForest produces binary outputs: 𝛿𝑘 = 1indicates being under attack and 𝛿𝑘 = −1 indicates otherwise. Compared 

with other unsupervised learning methods, iForest has multiple advantages [54]. First, it has shown superior 

performance in detecting anomalies in extensive empirical studies. Second, iForest is easy to train in terms of selecting 

hyperparameters and can scale up to massive applications due to its linear time complexity and low memory 

consumption, making it suitable to run on vehicles with constrained resources.  

The intuition behind iForest is that anomalous (or malicious) samples are easier to separate (i.e., isolate) from others 

compared with benign samples. In order to isolate a sample, the algorithm recursively generates partitions on all the 

samples by randomly setting a split (e.g., a threshold with a random feature) until all samples are separated. The 

recursive partitioning process is represented by growing a tree structure named Isolation Tree (iTree), with the leaves 

(or terminating nodes) being separated samples and intermediate nodes being attribute splits. Then, the length of the 

path to reach a sample starting from the root of an iTree approximates the number of partitions required to isolate the 

sample; a short length suggests a sample suspicious to be anomalous (as it is easier to separate). By constructing a large 

number of (random) iTrees based on the training dataset, we build an iForest. Using this iForest, we can identify 

samples that tend to have shorter path lengths in iTrees than others as anomalous. Anomaly detection with iForest 

consists of two stages: 1) a training dataset is used to build a forest of iTrees (i.e., iForest), and 2) each testing sample 

is passed through these iTrees, and an average anomaly score is assigned to the sample, which is further classified as 

a binary value. Readers are referred to [54] for more details. 

An unsupervised learning method, the iForest can be trained without labeling the data; thus, the training data can be 

easily prepared. In this study, we generate training samples by running vehicles and collecting the features at each time 

step. It is worth noting that iForest works in scenarios where the training dataset does not contain any anomalies. 



  

Therefore, we could prepare training samples using historical data, which may or may not be attacked. In this study, 

the training data is collected by running vehicles without GPS spoofing. The trained iForest can then be applied to 

detect GPS spoofing attacks in real-time. As expressed by (14), to check whether the GPS measurement at time k is 

spoofed, we compute a set of real-time features 𝑨𝑘 and input them to the trained iForest. An attack is detected if 𝛿𝑘 =1.  

𝛿𝑘 = 𝑖𝐹𝑜𝑟𝑒𝑠𝑡(𝑨𝑘) ,   𝛿𝑘 ∈  {−1, 1} . (14) 

In applications where GPS noise is large, we improve the robustness of the iForest-based detector by accounting for 

the temporal pattern of the features. Specifically, we apply a sliding window to use not only the features at time k but 

also the ones at the previous time steps. In our experiment study where GPS noises are assumed large, features at the 

previous two steps (i.e., 𝑨𝑘−2, 𝑨𝑘−1) are incorporated to detect attacks at time k, as it is not common to observe three 

outliers consecutively (15). One may adopt a wider sliding window at the cost of a higher false-negative rate.  

𝛿𝑘 = 𝑖𝐹𝑜𝑟𝑒𝑠𝑡(𝑨𝑘−2, 𝑨𝑘−1, 𝑨𝑘) ,   𝛿𝑘 ∈  {−1, 1} . (15) 

Note that using the new features calculated from RSU data, similar machine learning methods, such as OCSVM (see 

Section II), can also be used to develop the detector, with their specific challenges addressed properly (e.g., choosing 

proper kernel functions and associated parameters for OCSVM [55]). 

C. Infrastructure-enabled Correction 

Measurements from RSUs can also be used to correct vehicle positions, which is triggered either (a) when RSU data 

is received, or (b) when the detector detects GPS spoofing; see Fig. 2. In (b), the RSU-based location predictions will 

be used for correction if a vehicle is outside of the service range of RSUs. We introduce each case in detail in the 

following.  

1) When RSU data is received 

When a vehicle enters the service range of an RSU, the vehicle periodically obtains measurements from the RSU, 

which can be used to correct the location estimation. The correction is done by directly initializing the state of EKF 

(�̂�𝑘, �̂�𝑘) following (16).  

�̂�𝑘 =  𝒙𝑘
𝑅𝑆𝑈  

�̂�𝑘 =  𝑷𝑘
𝑅𝑆𝑈 

(16) 

Here, (𝒙𝑘
𝑅𝑆𝑈 , 𝑷𝑘

𝑅𝑆𝑈 ) is the secure location estimation from RSU data in Error! Reference source not found.). An 

alternative way to correct vehicle position using RSU data is to follow the EKF’s update step as introduced in Section 

III-C. However, this may not be reliable in stealthy attacks, which may bypass the attack detector and gradually corrupt 

the EKF [1]. The proposed method can effectively remove an attack’s negative effects via direct initialization. 

2) When GPS spoofing is detected 

When the detector detects an attack, besides isolating the GPS sensor, it corrects the EKF estimator as well. If RSU 

data is available, (16) is followed to correct the EKF location estimator; if not, the predicted location from the RSU-

based prediction model is used. Specifically, when GPS spoofing is detected starting at 𝑘 + ∆𝑘 but RSU data is not 

available, the predicted position 𝒙𝑘+∆𝑘
𝑅𝑆𝑈  and its covariance matrix 𝑷𝑘+∆𝑘

𝑅𝑆𝑈  in (10) are used by directly initializing the 

EKF state.  

Since the RSU-based prediction model does not involve GPS measurements that may have been spoofed, the 

predicted location is able to correct errors resulting from a delayed detection, where the EKF estimator may have been 

compromised already. We show in Section VI-B that this brings benefits in defending stealthy attacks that are often 

detected with a delay. This is distinctively different from existing spoofing defense methods without RSU data: without 

removing the negative effect of the spoofed GPS measurements, they tend to generate deviated location estimation 

even if the vehicle successfully detects and isolates falsified GPS measurements. 

VI. EXPERIMENTAL STUDY 

A. Experiment Settings 

1) General settings 

We test the proposed IED framework using both simulation data and real-world data. Simulation data is from the 

Downtown Seattle simulation model (Fig. 3a) built in Simulation Urban Mobility (SUMO). Fifty-three passenger 

vehicles are randomly selected for testing. Their trajectories allow us to capture diverse driving scenarios, including 

highways and local streets, where road geometries and vehicle dynamics vary considerably. The real-world GPS data 

contains trajectories from 15 vehicles, including both delivery trucks and passenger cars. Passenger car trajectories 

were collected from two field experiments conducted in Albany, NY, which were originally for measuring traffic 

performance [56]. Truck trajectories were provided by several anonymous logistic companies. Each vehicle trajectory 



  

comprises a sequence of time, location and speed reports, collected every 1 s.  

Taking a trajectory as the input, the MATLAB Navigation Toolbox (MNT) is used to simulate necessary sensor 

measurements along the trajectory, including local (e.g., IMU), global (e.g., GPS data) and range measurements (e.g., 

RSU data). GPS data are manipulated following the attack models (Section IV) to simulate GPS spoofing attacks. The 

parameters of the IMU and GPS sensors (e.g., accuracy levels and resolutions) are set as MNT’s default values, which 

reflect real-world sensor properties to a large extent. See details of MNT’s sensor models in MATLAB documentation 

[57]. IMU and GPS measurements are sampled at 10Hz and 1Hz, respectively. RSUs are located along the road at an 

equal distance, and the service range of an RSU is represented by a circle with a radius of 500 meters centering at the 

RSU. Under the service range of an RSU, radio signal-to-noise ratio (SNR) in dB is simulated using the ground-truth 

range (i.e., the distance between the vehicle and the RSU) and following the measurement model 𝑆𝑁𝑅 =
10 log10(|𝒛𝑅𝑆𝑈|2/(𝜎𝑅𝑆𝑈)2) as in [50] (essentially the reverse of the ranging method). Here, |𝒛𝑅𝑆𝑈| is the Euclidean 

distance between the vehicle and RSU and 𝜎𝑅𝑆𝑈  represents the uncertainty (see Section V-A), which will be 

investigated further in our sensitivity analysis. The encryption, decryption and transmission process for data security 

is simulated via an AES scheme assuming a 100ms latency as noted earlier.  

 

Fig. 3. (a) ROAD NETWORK OF DOWNTOWN SEATTLE IN SUMO; (b) SENSOR MEASUREMENTS ALONG A TRAJECTORY. 

 

Fig. 3b illustrates an example of a ground-truth trajectory together with IMU, GPS and RSU measurements to help 

understand the sensor data. The measurements are visualized at where they are received/computed. It can be observed 

that GPS measurements are periodically received along the trajectory while RSU measurements are not spatially 

continuous but clustered around where RSUs are installed. 

To simulate GPS spoofing, we randomly select the start time and duration of an attack (a uniform distribution ranging 

from 5 to 35 seconds). The attack modifies the true GPS data and passes the modified data to the vehicle for location 

estimation. We simulate the two types of attacks in Section IV. For constant bias attacks, GPS measurements are 

modified to deviate them by four meters, which is roughly the lane width. For stealthy attacks, m=1.0 and n=1.07, 

respectively. We choose the two values so that the maximum deviation is comparable with the one in the constant bias 

attack (e.g., four meters) for an average attack duration of 20 seconds. These values also approximate the ones used in 

the original study [1].  

2) Overview of the experiments and key metrics 

We compare the iForest-based IED method with benchmark methods (see Section II) that include the 𝜒2-test-based 

detector, the CUSUM detector, the OCSVM detector implemented following [13] without using RSU data, and the 

OCSVM detector that uses the RSU data (hereafter referred to as the “OCSVM-based IED method” as it uses the same 

set of features as the iForest method). For a detector that requires tuning parameters, we search around the parameters 

suggested in the original work and take the ones that yield the best performance in our experiments. The performance 
is averaged over all tested trajectories with random attack times (i.e., random attack starting time and attack duration). 

1000 meters

North

Seattle 

Downtown

(a) (b)



  

The similarities and differences of results from simulated and real-world trajectories are summarized. Lastly, we 

present results from sensitivity analysis of the iForest-based IED method under three influential factors, i.e., RSU 

spacing 𝐷𝑅𝑆𝑈, hyperparameter of iForest 𝛼, and the error in RSU-assisted localization 𝜎𝑅𝑆𝑈. 

Several common metrics are adopted to evaluate the performance of the methods, including the F1 score, precision, 

recall, detection lag, and Rooted Mean Square Error (RMSE) of location estimations. The first three evaluate detection 

accuracy, ranging from 0 to 1. Precision calculates the ratio of true positives (TP) over all the identified positives, and 

recall, also termed as the correct detection probability, is the ratio of true positives (TP) to all ground-truth positives. 

A higher precision and recall mean a lower false-positive (FP) rate and a higher TP rate, respectively. A higher F1 

means better detection performance in terms of balancing FP and TP. 

𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (17) 

Starting from the beginning of a spoofing, detection lag counts the number of GPS measurements (at 1Hz) missed 

by the detector before the attack is detected. If GPS measurements are spoofed but not detected timely, the victim 

vehicle assimilates them for location estimation, leading to a deviated trajectory. RMSE measures the location 

estimation error along a trip by computing the distance between the estimated locations �̂�𝑘 and true locations 𝒙𝑘: 

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ ‖�̂�𝑘 − 𝒙𝑘‖2

𝐾
𝑘=0   (18) 

Here, ‖�̂�𝑘 − 𝒙𝑘‖2 is the distance between the true location and estimated location at time k. K is the duration of the 

trajectory.  

B. Testing Results using Simulated Trajectories 

We first evaluate the proposed method using the simulated trajectories; the results are reported in Table I.  

Under the constant bias attacks, it can be found that all the methods can detect the start of attacks with no lag. Yet, 

given its strength in balancing FP and false negatives (FN) errors, the IED methods give F1 scores of 0.86 and 0.83, 

respectively, which are much better than the other three non-IED methods. The precision and recall of the IED methods 

indicate that they could nearly identify all the spoofed GPS measurements while generating some FPs possibly due to 

noises in GPS sensors. As shown later in the sensitivity analysis, we can reduce FNs while curbing FPs by tuning the 

hyperparameter. On the other hand, the low precisions by the three non-IED methods suggest that they produce many 

FPs. The conventional OCSVM has high recalls with low precisions, as it tends to produce FPs. The performance of 

OCSVM-based IED method, by utilizing RSU data, can be boosted significantly, which is similar to the performance 

of the iForest-based IED method. OCSVM has a lower F1 score due to its sensitivity to outliers as discussed in Section 

II-B. The results, especially the similar performances between iForest-based and OCSVM-based IED methods, suggest 
it is the new features computed from infrastructure data, not the specific learning methods, that lead to the improved 

performances of the IED methods. With effective detection and correction, the IED methods can dramatically reduce 

location errors compared to non-IED methods.  

Under stealthy attacks, the IED methods give F1 scores of 0.78 and 0.72 respectively, again much better than the 

TABLE I  

PERFORMANCE OF THE PROPOSED AND BENCHMARK METHODS ON SIMULATED TRAJECTORIES   

𝝌𝟐-test-based  CUSUM 

Conventional 

OCSVM 

(No RSU 

data) 

OCSVM-

based IED 

iForest-based 

IED  

Constant bias 

attack 

F1 Score  0.56 0.69 0.70 0.83 0.86 

Precision  0.52 0.60 0.55 0.72 0.77 

Recall  0.69 0.86 0.95 0.98 0.99 

Detection lag 0 0 0 0 0 

RMSE 5.74 4.53 5.02 0.36 0.43 

Stealthy 

attack 

F1 score  0.47 0.21 0.48 0.72 0.78 

Precision  0.53 0.30 0.45 0.62 0.76 

Recall  0.49 0.22 0.57 0.86 0.84 

Detection lag  3 14 4 2 2 

RMSE 5.69 4.58 5.01 0.36 0.42 

 



  

three non-IED methods. These findings suggest that the IED methods can effectively detect the attacks, despite the fact 

that the measurements from RSUs are not always available. Some interesting findings can be observed by comparing 

the performance under the two types of attacks. First, it is reasonable to observe that all the tested methods perform 

worse under stealthy attacks. Noteworthy is that though being downgraded, the IED’s performance under stealthy 

attacks is still promising: the recall of 0.84 (or 0.86 for OCSVM-based IED) suggests that 84% (or 86%) of spoofed 

GPS measurements can be successfully detected. Second, unlike constant bias attacks, all the tested methods experience 

detection lags under stealthy attacks. Both IED methods miss two spoofed GPS measurements, as indicated by the 

detection lag in Table I. This is due to the attacks’ stealthy design, where added perturbations are small at the early 

stage of attacks. Although missed by the detector, the two spoofed GPS measurements only bring small deviations to 

the location estimation, which are corrected once attacks are detected. 

C. Testing Results using Real-world Trajectories 

We further evaluate the proposed methods using real-world GPS trajectories, and the results are reported in Table 

II. It can be found that the IED methods still outperform the other three methods under both types of attacks. The F1 

scores under stealthy attacks decrease, suggesting that all the methods are less effective compared with detecting 

constant bias attacks.   

The F1 scores are close to those of the tests using simulated trajectories, suggesting the IED methods are also 

effective in dealing with real-world data. In detecting stealthy attacks, the IED methods have smaller recalls while 

larger precisions, compared with results from those on simulated data. The smaller recalls also lead to longer detection 

lags. In the following sensitivity analyses, we show that the trade-off between precision and recall can be adjusted 

according to the practical needs by varying hyperparameters of attack detectors.  

D. Sensitivity Analysis 

Multiple factors may impact the performance of the IED methods, such as the distance between two consecutive 

RSUs, the hyperparameters, and the accuracy of RSU-assisted localization. Here we conduct sensitivity analyses on 

how these factors influence the iForest-based IED method. Simulated data are used for the analysis unless noted 

otherwise. 

1) Distance between two consecutive RSUs 

Given its reliance on RSU data, the IED method is expected to be influenced by RSU’s deployment strategy. 

Specifically, out of the RSU service range, the vehicle relies on RSU-based location prediction for attack detection and 

correction. Table III shows the performance of varying RSU distance 𝐷𝑅𝑆𝑈 under attacks. Note that we stop at 2000m 

as most of the trajectories are shorter than 2000m and a larger 𝐷𝑅𝑆𝑈  does not reduce the performance further. As 

expected, the performance (such as F1 score and RMSE) downgrades as 𝐷𝑅𝑆𝑈  increases. Yet, the iForest-based IED 

method still maintains an advantage over the benchmark methods as 𝐷𝑅𝑆𝑈 increases. 

Fig. 4 and Fig. 5 show the sensitivity of the false alarm rate and recall (correct detection probability) with 𝐷𝑅𝑆𝑈 (and 

TABLE II 

PERFORMANCES OF THE PROPOSED AND BENCHMARK METHODS ON REAL-WORLD TRAJECTORIES   

𝝌𝟐-test-based  CUSUM 

Conventional 

OCSVM 

(No RSU 

data) 

OCSVM-

based IED 

iForest-based 

IED  

Constant bias 

attack 

F1 Score  0.54 0.66 0.64 0.80 0.93 

Precision  0.64 0.61 0.48 0.67 0.88 

Recall  0.52 0.75 0.95 1.00 1.00 

Detection lag 0 0 0 0 0 

RMSE 2.52 1.90 2.04 0.12 0.17 

Stealthy 

attack 

F1 score  0.44 0.22 0.45 0.69 0.73 

Precision  0.64 0.54 0.38 0.67 0.83 

Recall  0.38 0.14 0.58 0.76 0.67 

Detection lag  6 16 6 4 6 

RMSE 2.02 1.19 1.90 0.17 0.17 

 



  

the other two factors as well). It can be observed that a larger 𝐷𝑅𝑆𝑈 leads to a larger false alarm rate for both attacks. 

Under constant bias attacks, the recall stays close to 1, and the detection lags are zero, suggesting that these attacks can 

be easily and timely identified regardless of 𝐷𝑅𝑆𝑈 Under stealthy attacks, increasing 𝐷𝑅𝑆𝑈 from 1000m to 1500m does 

not affect recall significantly, while a larger 𝐷𝑅𝑆𝑈 (at 2000m) drops it. 

 

TABLE III 

INFLUENCE OF RSU SPACING ON IFOREST-BASED IED METHOD 

𝑫𝑹𝑺𝑼 = 1000m 1500m 2000m 

Constant bias 

attack 

F1 Score 0.92 0.86 0.82 

Precision 0.86 0.77 0.72 

Recall 0.99 0.99 0.99 

Detection lag 0 0 0 

RMSE 0.10 0.43 0.54 

Stealthy attack 

F1 score 0.83 0.78 0.62 

Precision 0.83 0.76 0.64 

Recall 0.83 0.84 0.65 

Detection lag 3 2 6 

RMSE 0.10 0.42 0.60 
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Fig. 4. INFLUENTIAL FACTORS AND FALSE ALARM RATE. 
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Fig. 5. EFFECTS OF INFLUENTIAL FACTORS ON RECALL. 

 

2) Hyperparameter of the attack detector 

In the iForest-based IED method, one key hyperparameter associated with iForest is contamination (denoted as 𝛼) 



  

which specifies the proportion of spoofed samples in the data set. Table IV summarizes the performance of the IED 

method with different 𝛼, ranging from 0 to 0.5. 0 means no anomalies and 0.5 means that half of the data samples are 

anomalies. A range from 0.1 to 0.3 in Table IV captures a fairly large range of 𝛼.  

TABLE IV 

IMPACTS OF IFOREST HYPERPARAMETER  

𝜶 =  0.1 0.2 0.3 

Constant bias 
attack 

F1 Score 0.91 0.86 0.8 

Precision 0.86 0.77 0.69 

Recall 0.99 0.99 0.99 

Detection lag 0 0 0 

RMSE 0.25 0.43 0.31 

Stealthy 

attack 

F1 score 0.71 0.78 0.71 

Precision 0.8 0.76 0.62 

Recall 0.65 0.84 0.86 

Detection lag 6 3 2 

RMSE 0.35 0.42 0.45 

Under the constant bias attacks, recalls remain unchanged (near 1), suggesting that the method can robustly detect 

spoofed GPS data under such attacks for a wide range of 𝛼 (Table IV and Fig. 5). Meanwhile, a sensitive detector with 

a large 𝛼 tends to reduce the detection lag. Yet, under both constant bias and stealthy attacks, a larger 𝛼 leads to more 

FPs, as indicated by the increase in the false alarm rate (Fig. 4) and the decrease in precision (Table IV). On the other 

hand, a larger 𝛼 brings benefits to detecting stealthy attacks, since i) more spoofed GPS measurements can be detected 

(as indicated by the larger recall), and ii) the detection lag is shorter.  

In summary, a proper 𝛼 can help balance precisions and recalls. The proper 𝛼 depends on the types of attacks: a 

small 𝛼 is good for detecting constant bias attacks but encourages FNs in stealthy attacks, reducing recalls. Given the 

high threat of stealthy attacks, it would be beneficial to set a relatively large 𝛼 to effectively detect such attacks. In our 

experiments, a balance between precisions and recalls under the stealthy attack can be reached around 𝛼=0.2. 

3) Accuracy of RSU-assisted localization 

Vehicle localization assisted by the RSU can be more accurate (in centimeters) than GPS measurements (in meters). 

In practice, the accuracy of RSU-assisted localization could depend on factors such as the ranging method applied, 

how RSUs are configured, and the real-time driving environments. Here, we check how the accuracy of RSU-assisted 

localization may impact the performance of the proposed method. 

TABLE V 

IMPACTS OF THE ACCURACY OF RSU-BASED LOCALIZATION 

𝝈𝑹𝑺𝑼 =  0.1 0.25 0.5 

Constant bias 

attack 

F1 Score  0.86 0.86 0.71 

Precision  0.75 0.77 0.55 

Recall  0.98 0.99 0.99 

Detection lag 0 0 0 

RMSE 0.41 0.43 0.81 

Stealthy 

attack 

F1 score  0.77 0.78 0.72 

Precision  0.71 0.76 0.59 

Recall  0.85 0.84 0.94 

Detection lag 3 3 0 

RMSE 0.42 0.42 0.54 

Table V shows three accuracy levels of RSU-based localization obtained by tuning the uncertainty parameter 𝜎𝑅𝑆𝑈 

(Section V-A). 𝜎𝑅𝑆𝑈=0.5 means that about 95% of location errors are within one meter, which is often considered as 

the worst scenario for RSU-assisted localization [48]. It can be observed that compared with the baseline (𝜎𝑅𝑆𝑈=0.25), 

the higher accuracy in RSU-assisted localization (𝜎𝑅𝑆𝑈=0.1) has nearly no effect on detecting constant bias attacks but 

does improve the performance of detecting stealthy attacks that add tiny deviations at the beginning of an attack. A 

lower location accuracy (𝜎𝑅𝑆𝑈=0.5) reduces the performance in both types of attacks, with a higher false alarm rate 

(Fig. 4) and leading to larger location estimation errors (in RSME).  



  

VII. CONCLUSION AND DISCUSSIONS 

In this paper, we proposed an infrastructure-enabled defense (IED) framework that utilizes secure RSU data for 

detecting GPS spoofing and correcting location errors from the spoofing. Timely detection is achieved by designing 

and training an iForest model using real-time features computed from both RSU data and (possibly spoofed) GPS data. 

Once spoofing is detected, GPS data is isolated and the compromised vehicle locations are corrected using RSU data. 

Experimental results using both simulation and real-world GPS data demonstrated that the IED framework enhances 

timely detection and correction even when RSU data is not spatially continuous. We showed that the IED framework 

is effective in defending against state-of-the-art stealthy GPS spoofing models. Furthermore, sensitivity analyses 

produced insights into how RSU deployment, hyperparameters, and the accuracy of RSU-assisted localization impact 

the IED’s performance.  

The IED framework for GPS spoofing distinguishes itself from non-IED methods in three major aspects. First, it 

relaxes the requirement of vehicular sensors, making detectors more robust when dealing with spoofing attacks. 

Second, enabled by the secure RSU data, a relatively simple detector based on an unsupervised learning algorithm 

(e.g., iForest or OCSVM) can effectively detect GPS spoofing attacks. The advantage stems from the fact that the 

features computed from secure RSU data for attack detection are “protected”, relieving the challenges of developing 

attack-resilient algorithms. This advantage could be exploited to defend against false data injection attacks in general 

since the GPS spoofing setting adopted in this paper is general and can represent other false data injection attacks [1], 

[9]. That is, if the observation deviates too much from “the expected value” that is computed using secure infrastructure 

data, the observation is likely under attack.  

Several limitations of the proposed IED framework call for future research. First, the detection and correction 

methods may be enhanced by more advanced learning approaches (such as deep learning) to further improve their 

performances. Second, more research efforts are needed to design optimal strategies for deploying the RSUs. In this 

study, we assumed RSUs are deployed evenly on the roadside and conducted sensitivity analyses to understand the 

impact of the distance between two consecutive RSUs on the IED’s performance. For future research, the optimal RSU 

deployment problem may be studied to produce RSU deployment strategies that systematically consider the 

deployment cost, traffic environments, road geometry, and the performance of the spoofing defense method. Third, 

future investigations are needed to test the IED’s performance in real-world driving scenarios where GPS spoofing 

attacks, infrastructure (RSU and implementation of the ranging method in Section V-A), and the IED framework are 

implemented and tested. Fourth, the IED framework may be enhanced by incorporating additional (and easily obtained) 

data sources for more robust location estimation and/or attack detection. This is particularly so for scenarios where the 

distance between RSUs is large. For instance, the geometric outlines of roads may be used as constraints to improve 

location estimation/prediction, which may further improve detection accuracy. Last but not least, as infrastructure is 

becoming more important in transportation, the idea of the proposed IED framework may be applied to other 

applications. This may include vehicular computer vision systems that are vulnerable to data attacks, e.g., adding 

adversarial images to onboard cameras [58], or spoofing attacks on LiDAR data [4]. The proposed IED framework 

may be applied to these applications by i) designing specific secure infrastructure data including what data to collect 

and how to secure data transmission, ii) computing new features from the infrastructure data to help develop effective 

attack detection methods, and iii) correcting possibly corrupted data by using infrastructure data. The authors will 

pursue these research directions, and results may be reported in subsequent papers.  
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