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Abstract— The optimization-based energy management strategy (EMS)
enables expertise to improve the performance of fuel cell vehicles (FCVs).
Ongoing efforts are mostly focused on optimizing a centralized EMS using
a variety of high-computing technologies without offering appropriate
scalability and modularity for the onboard powertrain components. In
real-time applications, the time-accomplishment capability of EMSs is
crucial; hence, decentralized EMSs with low-cost components and limited
processing capability are necessary. Local units handle the computation
load on a modular platform. In addition, the decentralized system's plug-
and-play functionality minimizes the total cost. This paper presents a
decentralized model predictive control (D-MPC) based on the consensus-
based alternating direction method of multipliers (C-ADMM) that
explicitly considers the coordination of the dynamic reactions of
powertrain components and future driving profiles. In addition, a
decentralized learning method is proposed to seek the optimal policy for
the moving horizon dimensions in the D-MPC using the federated
reinforcement learning (FRL) algorithm in order to improve processing
time. Due to the deployment of a fully modular system in the proposed
learning technique, agents are restricted from sharing their trajectories.
Using a highly dynamic module-to-module communication layer in a fully
decentralized arrangement, the powertrain components utilize the multi-
step method to attain the global optimum. The performance of the
proposed framework is evaluated with regards to its precision,
convergence speed, and scalability. The results of numerical simulation
and implementation demonstrated that the proposed method is superior to
the centralized and fixed-horizon MPC approaches.

Index Terms— Alternating direction method of multipliers (ADMM),
federated reinforcement learning (FRL), proton exchange membrane fuel
cell (PEMFC), distributed optimization algorithms, energy management
strategy (EMS), fuel cell vehicle (FCV), model predictive control (MPC),
multi-agent system.

Abbreviation
Abbreviation Description
ADMM Alternating direction method of multipliers
C-MPC Centralized MPC
C-ADMM Consensus-based alternating direction method of
multipliers
D-MPC Decentralized MPC
DOD Depth of discharge
DCO Distributed convex optimization
EMS Energy management strategy
FRL Federated Reinforcement Learning
FL Federated learning
FC Fuel cell
FCS Fuel cell system
FCV Fuel cell vehicle
ICE Internal combustion engine
MDP Markov decision process
MPC Model predictive control
MES Modular energy system
PEMFC Proton exchange membrane fuel cell
RL Reinforcement learning
SoC State of charge
SoH State of health
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Nomenclature
Symbol Description
A, and C  Powertrain and coupling constraints.
A Action set.
Af Front area (m?).
ap,j Action.
a, Vehicle acceleration (m/s?).
Cnj Total cost.
c, Coefficient of rolling friction.
Cq Coefficient of drag.
C. Polarization capacitor (F).
Chppir Hydrogen cost.
Cy, Hydrogen price ($/Kg).
Cdpy Total degradation costs.
Crc, FCS price ($/kW).
Cg Battery price ($/kWh).
Csocy Punishment cost to consider the SoC error.
Cptir Battery degradation cost.
Dy Control signal of the boost converters.
dh Low load degradation.
dh High load degradation.
E Number of local learning updates.
Fy Wheel force (N).
Fot Power of FCSs (W).
g Gravitational constant (m/s?).
i Iterations number of D-MPC.
Iy Battery pack current (A).
I, Current of FC,, (A).
] Iteration number of FRL.
L, Smoothing inductor inductance (mH).
My Modulation ratio of the converters.
Mot Total weight with payload (kg).
m, Mass of all rotating parts (kg).
Mpc Mass of the primary power supply (kg).
Meon Weight of the converter (kg).
Mpar Mass of the FCV's secondary power supply (kg).
m Weight of initial vehicle components (kg).
My Modulation ratio of the converters.
M, Imagined environment.
M, Environments forn = 1, ...,N
ng Total number of cycles during the lifetime of the battery unit.
neN Each PEMFC module.
Npe Cell number of PEMFC.
prom Nominal power of the modules (W).
Piosst Auxiliary power of FCSs (W).
P™n and  Minimum and maximum values of P, , (W).
Py{nax
Pp: Power of FC,, (W).
P, Power of battery (W).
P Requested power from the propulsion system (W).
PMin and  Minimum and maximum limits of Pg ; (W).
Pénax
Pyt Wheel power (W).
pnr";f Reference power for the modules.

Iy avg

Average requested power for the maximum horizon.

{:Pn}¥=1
Qs

S r D=

j=v =+
R

down
Ry

up
and R,

down
Rp

and Rg"?

SoC
Socmin
Socmax

SoC,
Sonin
SoH;_,
SoG;
tn,j
t
th
2]
T
Ut
Vo

Vg
Va
Vnom,n
Wn,t
An,15 A2,
and a3
Buas Bnzs
ﬁn,3
6
Pa
SO
nﬂ
&

&t

ni
rIE
Na
Nn

AVeen

Probability of state transitions.
Battery capacity (Ah).

Length of the moving horizon.
Maximum horizon length
Reward function

Smoothing inductor resistance (mJ2).
Polarization resistance ().

Series ohmic resistance ({2).
Boundaries of the slew rate.

Slew rate boundaries of Pg .

State space.

State of charge.

Minimum SoC.

Maximum SoC.

Initial SoC level.

Minimum value.

Initial SoH level.

Current SoC

Computational time of module n

Current optimization time step (s).

Duration that the FC works at the high load condition (s).
Duration that the FC works at the low load (s).
Computational burden

Vehicle speed (m/s).

Open-circuit voltage (V).

Terminal voltage (V).

Voltage of FC,, (V).

Nominal FC,voltage drop (V).

Global power

Coefficients of hydrogen curve.

Coefficients of degradation curve.

road grad.
Air density (kg/m?).

. uv
Start-stop coefficient (—Cycle).
Number of start-stop cycles.

Low load coefficient (%).

o . v
load transition coefficient (“T)

Efficiency of the inverter (%).
Efficiency of the electric motor (%).
Efficiency of the final gear (%).
Efficiency of the boost converters (%).
Average efficiency (%).

Tuning value.

Lagrangian multipliers

Positive coefficient.

Discounting factor

Weighting variable of the reward function
Time step.

Voltage drops of the FCS




I. INTRODUCTION

Due to concerns over fossil fuel usage, transportation is
shifting from internal combustion engine (ICE) cars to fuel
cell vehicles (FCVs) [1]. Proton exchange membrane fuel cells
(PEMFCs) are used in FCVs due to their power density, low-
temperature working range, low noise, and high-efficiency [2].
FCVs have a fuel cell system (FCS) and a battery pack. Energy
management strategies (EMSs) improve the performance and
service life of FCV powertrain components [3, 4]. Since heavy-
duty FCVs require high power, a large FCS is needed.
Multilayer fuel cell (FC) stacks reduce powertrain safety and
reliability. These drawbacks motivate a shift to the modular
energy systems (MESs) [5]. [6] provides an overview of
modular FCSs with different fluidic and power conditioning
topologies.

EMSs have been designed using power point tracking [7],
optimization [8, 9], hierarchical [10], hysteresis [11], and droop
control [12]. When integrating dynamic component responses,
multiple-time steps must be minimized. Standard [13-17],
nonlinear [18, 19], hierarchical [20], mixed-integer [21], and
multi-mode [22] model predictive control (MPC) approaches
are suggested. In an MPC scheme, the moving window size
determines how far into the future the optimization scheme

evaluates control actions. Centralized MPC (C-MPC)
implementation is limited by computation. C-MPC
hyperparameters require tuning and lack plug-and-play

(modularity) and scalability. In rule-based and optimization-
based EMSs, the time-varying behavior of powertrain
components and their performance in diverse driving profiles
are not considered, resulting in erroneous optimal solutions.

To address these flaws, different reinforcement learning (RL)
algorithms [23] are recommended, such as standard [24-26],
hierarchical [27, 28], and recursive [29] in FCV. RL has also
been suggested for the gaming [30], robotics [31], and
healthcare [32]. Poor sample efficiency hinders RL's adoption
in real-world applications despite its simulation performance
[33, 34]. FC module data can prepare advanced EMSs. Massive
amounts of data can cause computational overhead and
divergent optimization results in data-driven EMSs. Attackers
may access centralized data. These centralized learning-based
EMSs need durability, modularity, and computational burden
improvements.

Decentralized EMS with cooperative subproblems makes
sense. Local subproblems have fewer share variables,
constraints, and control variables than centralized EMS.
Decentralized EMS handles anomalies and offers plug-and-
play. This plug-and-play feature enables manufacturers to
include a reconfigurable controller, reducing the cost of
installing new components. Decomposing MPC and using
multi-agent RL to build a decentralized EMS method optimizes
each. Distributed convex optimization (DCO) algorithms are
new [35, 36]. The alternating direction method of multipliers

(ADMM) [37] is a popular DCO that combines the convergence
of multipliers with Lagrangian relaxation decomposability. In a
multi-agent system, it's logical to encourage RL agents to share
their trajectories to make better decisions collectively than
individually. Multi-agent RL has many benefits [38-40].
Parallel processing allows multi-agent RL to learn quickly.
Second, local analysis reduces the amount of data sent. This
reduces network costs, synchronization, and latency issues.
Third, if one agent stops working due to an electrical failure or
cyberattack, the others can compensate. This structure makes
adding new agents easily, giving it flexibility and scalability.

Numerous obstacles must be considered when implementing
RL in real-world situations. For instance, when action and state
space are abundant, agents' performance is susceptible to
collected samples. Another RL issue is overcoming the divide
between simulation and the real world. Moreover, multiple RL
algorithms need more sample efficiency. Through the exchange
of information between agents, learning can be significantly
accelerated. However, one of the most important concerns is
that specific duties must secure agent privacy. Federated
learning (FL) preserves data privacy by training models using
decentralized, multi-agent data [41]. Not only can FL complete
information exchange without compromising privacy, but it can
also adapt various agents to their unique environments [42].
Therefore, switching to FL may be the more reasonable option.
For instance, BrainTorrent [43] is a serverless peer-to-peer
method where all agents interact with each other. Federated
Reinforcement Learning (FRL) [44, 45] tries to federatively
construct a better policy from several agents without forcing
them to exchange raw trajectories. Unlike FL, FRL needs every
agent to interact with the environment while learning. FRL is
attractive for resolving RL's real-world inefficiencies.
Traditional RL assumes a fixed state transition. In real-world
applications, modules with various behaviors may be seen as
environments with separate state transitions, meaning they may
respond differently to the same operation [46]. Moreover, real
data is usually inadequate for a powertrain application to design
a reliable policy. Thus, module policy training works in
heterogeneous FRL environments. The unsharring architecture
in FRL for the MES application can give a fully decentralized
system with less communication and more modularity.

To achieve optimal results for the FCV control problem, it is
essential to use a long fixed-horizon optimization window.
However, this may lead to longer computational times and
accurate future-driving predictions may not always be possible.
Conversely, using a short fixed-horizon optimization window
may result in less efficient outcomes but requires fewer
computational resources. This paper contributes to a
decentralized MPC (D-MPC) EMS framework and investigates
how the FRL algorithm helps decide the prediction moving
horizon in an FCV. Our article presents a learning method that
selects the best optimization window by minimizing a reward
function, considering both computational time and total cost.



In contrast to [47] and [48], the previously developed single-
step DCO-based techniques are extended into a multi-step
decentralized approach with parallel moving horizons. The
proposed strategy reduces total system costs by identifying
preventive control responses for future driving profiles.
Integrating the receding prediction horizon into the
decomposition technique improves initial points, optimization
convergence time, modularity, and fault robustness. Since the
prediction horizon length affects D-MPC's performance, a
learning technique integrating FRL with D-MPC is proposed.
The FRL structure learns a shared horizon control policy
without a central unit. FC modules trained locally to find the
control policy on their data for a few epochs, and then they
shared their policies to make an aggregated and fine-tuned
model. To the best of our knowledge, no study has been
performed to build a D-MPC approach with fully decentralized
learning capabilities for a modular FCV.

The rest of this paper proceeds as follows: Section II describes
FCV powertrain modeling, and Section III formulates the multi-
step EMS optimization problem. Section IV derives the
suggested D-MPC framework using the consensus-based
alternating direction method of multipliers (C-ADMM).
Section V provides an FRL framework for learning the optimal
length of the D-MPC's receding prediction horizon. Sections VI
and VII present comprehensive numerical simulations and
experimental results. Section VIII summarises the proposed
decentralized approach and its prospects.

II. CONFIGURATION AND MODELING OF THE MODULAR FCV
PROPULSION SYSTEM

As depicted in Fig.1, a modular small-scale test bench was
built at the Hydrogen Research Institute of the University of
Quebec in Trois-Riviéres (UQTR) to investigate transforming
the centralized power sharing problem into D-MPC and
integrating it with FRL. The test bench was constructed on the
foundation of a low-speed electric vehicle [49]. This setup
includes two FC modules, a battery pack, a programmable DC
electronic load (8514 BK Precision), and a programmable DC
power supply. Each FC module has a 500-W open-cathode
PEMFC (Horizon, model: H-500), a smoothing inductor, and
an adjustable boost DC-DC converter (Zahn ElectronicsTM,
model: DC5036-SU). Six 12-V 18-Ah batteries power the DC
bus. In a semi-active design, the battery pack is directly
connected to the DC bus, and the modules are coupled using
converters. Each FC module has a controller in an NI
CompactRIO (N19022) by LabVIEW program. CompactRIO
consists of an FPGA, a real-time controller, a programmable
I/O, and an Ethernet chassis. Microprocessors are used to
control real-time control units, and FPGAs measure and process
data efficiently. Each FC module's control signal is set at 10 Hz.
The programable load and power supply generate the desired
FCV power.
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Fig. 1. (a) the schematic of the powertrain system involving two PEMFC
modules and one battery unit, (b) the established small-scale modular test
bench.

A. Longitudinal Fuel Cell Vehicle Dynamics Formulation

The modular FCV is a rigid body with a constant mass.
Throughout the article, n refers to each PEMFC module, t is
the current optimization time step, i denotes the iteration
number of
D-MPC and j is the iteration number of FRL. Using Newton's
equation of motion, the required wheel force, F,, ., can be
expressed as

Fye = (Mgor + mp)ay + ¢;Myo g cOSE O + Moy g Sin 6 (1)
+ 0.5 pacq Ap v,

where m,,, is the total weight with payload, m,. represents the
mass of all rotating parts, ¢,., g, 0, pa, ¢4, and Ay represent the
coefficient of rolling friction, the gravitational constant,
road grad, air density, coefficient of drag, and

front area, respectively, v, is the car speed and a, is the vehicle
acceleration. The FCV is on a horizontal surface, with constant

friction and drag resistance.
The overall modular FCV mass is calculated by
Meor = 2 (Mpe + Meon) + Mpge + My, (2

where my is the mass of the primary power supply, m.,, is
the weight of the converter, mg,, and m, represent,
respectively, the mass of the FCV's secondary power supply



and the remaining components. Table I presents complete
information of the electric vehicle parameters [49].

Table I
Technical details of the low-speed electric vehicle [49]
¢,=0.015 M= 896 kg Ap = 4m?
f=0° pa =12 kg/m3 ¢y = 042

The demanded power P, , = F,, v, can be calculated using
modular FCV longitudinal dynamics, where P, , is the required
wheel power, F,, is the required wheel force, and v, is the
preferred modular FCV speed. A standard driving cycle
determines car speed. An electric machine powers the wheels
via a differential. The electric machine can act as a generator to
recover regenerative braking energy. The PEMFC modules and
battery pack power the vehicle's electric machine for the desired
driving cycle. A DC-to-AC inverter is used between the
converters and the electric machine. Modeling the modular
FCV powertrain is formulated by considering the efficiency of
the electric motor, boost converter, inverter, and final gear.
When P, , is negative, n; 1,1, multiplies P, , and divides when
P, . is positive. 71;,7,, and 1, denote the efficiency of the
inverter, electric motor, and final gear, respectively. Figure 2
displays an efficiency map for a 24-kW electric motor provided
by ADVISOR software, scaled in this study [50].
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Fig. 2. Electric motor efficiency map.
The power balance equation of the modules and the battery unit

on the DC bus at each step of the optimization window is
formulated in (3)

Z Pn,t+PB,t=PL,tr
n

- Ploss,t)r

(3.2)

Pn,t = nn(Fn,tDn,t (3b)

where P, ; denotes the power by each one of the modules FC,,
Pg . denotes the power provided by the battery unit, P, , is the
requested power from the propulsion system, F,, ; indicates the
generated power of each of the 500-W FCSs, n,, and D,, , are
the efficiency and the control signal of the boost converters,
respectively, Py, denotes the consumed power by the
auxiliary of FCSs.

B. Fuel Cell System Modeling

PEMFC stands for polymer electrolyte membrane fuel cell and
is an electrochemical device that directly converts chemical
energy into electrical energy.

1) Polarization curves

The 500-W FCSs, FC,, are modelled as voltage sources. Table
IT lists PEMFC stack technical specifications. Figure 3 shows
the polarization curves and generated powers versus requested
currents. The CompactRIO transmits each Horizon 500-W
PEMFCS's voltage, current, and hydrogen consumption to the
PC via Ethernet to extract these curves. To make the PEMFC
profiles, the programable load is used.

Table I
Technical specification of the open-cathode PEMFC stacks (H-500)

Number of cells= 24

Hydrogen pressure= 0.45-0.55 bar
Rated power=500 W External temperature= 5-30 °C

Rated performance= 14.4 V, 35 A Max stack temperature= 65 °C

Output voltage range= 12 V-24 V. Humidification= Self-humidified

Reactants= Hydrogen and Air Flow rate at max power= 6.5 L/min
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Fig. 3. The characteristic curves of PEMFCs: the polarization curves (blue)
and the power curves (red).

2) Hydrogen Consumption Modeling and Constraints

The hydrogen consumption curves, h,, ;, are approximated by
means of a second-order polynomial technique, b, , =
an_an‘tz + an Py + @y3. The coefficients of the FC;
hydrogen curve are a;; = 0.1862 e — 08, a;, = 0.1292 e-04,
and a;53 = 0.7613 e-05 and the coefficients of FC, hydrogen



curve are a,; =0.1128 ¢-08, a,, =0.1506 e-04, and a,; =
0.6249 e-04. A comparison between the measured hydrogen
consumption flows and the convex models is presented in Fig.
4, where Data FC; and Data FC, represent the hydrogen
consumption measurements of FC; and FC,, respectively. And
Model FC; and Model FC, are convex models that were used
to approximate their behaviours. The graphs shown in Fig.3 and
Fig.4 illustrate that there are differences in the polarisation
curves and hydrogen consumption between the two FCs, and
this is because FC; is older than FC,.
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Fig. 4. The measured hydrogen flow curves and the convex approximation
models.

Equation (4) demonstrates the upper, lower, and slew rate limits
on instantaneous powers P,,

PMM < Py, < PO, (4.2)

REOWIMAL < Py — Ppyeq < RV AL, (4.b)

where P™™ and P™%* are the minimum and maximum values
of P, 1, R4°¥™ and R,,” are boundaries of the slew rate, and At
indicates the time step.

3) Degradation mechanism Modeling

Throughout typical PEMFC operation, degradation occurs.
The maximum power of an FCS drops by 10% during its
lifespan, and this value is not attained with the same current at
the beginning and end of its life [51]. Several physical
parameters, including, temperature, pressure, and membrane
water content, affect the process of PEMFC degradation. Due
to the fact that each PEMFC component degrades differently
and has an effect on other components, it is difficult to quantify
component-level degradation [52]. Consequently, the stack

level is typically considered when predicting PEMFC
degradation [52]. Membrane electrode assembly degradation,
which is mostly attributable to the degradation of the catalyst
layer [53-55], proton exchange membrane [56], and gas
diffusion layer [57, 58], have been identified as the most
important factor affecting performance and longevity. The
degradation of a PEMFC is highly related to the power demand
and operating conditions, which are categorized into four
groups, including start-stop, extra high, extra low, and
transition [59-62]. Degradation of the PEMFC can result in a
voltage decrease, AV,,;;, and the level of PEMFC degradation is
defined as the summation of the entire voltage degradation rate
(uV) of a cell under each one of the four load profile conditions.
The degradation voltage droop rate for start-stop cycle is
calculated by ¢,n,, where ¢, represents the start-stop

coefficient (13.7965:16) and n, denotes the number of start-stop

cycles. The rate of voltage droop for the extra-high load is
calculated by ¢, ﬁ, where &, represents the extra high load

coefficient (10.00 %) and t; denotes the duration that the
PEMFC works at the extra-high load condition. The voltage

droop rate for the extra low load is calculated by &; ﬁ’ where
g, represents the extra low coefficient (8.662 %) and t; denotes
the duration that the PEMFC works at the extra low load. The
PEMFC degradation voltage droop due to the transition load is

calculated by &, n;, where & denotes the transition load
coefficient (0.04185 %) and &, is the amount of the load change

[63]. In this work, since the main influence on the voltage
degradation of PEMFC is due to the start-stop condition, the
PEMFC modules are always operational, and the related
degradation rate is disregarded. The extra low load and extra
high-power constraints are defined as 20% and 80% of the
maximum power of the PEMFC modules, respectively. To
avoid PEMFC degradation because of inadequate
humidification caused by gas starvation or water, PEMFC
output power variations are restricted to 10% of maximum
output when rising and 30% of maximum output when
decreasing. The extra low load degradation, d!;, and the extra

high load degradation, d, terms for a stack can be calculated
by

Nec€1lin h Nrc€nllnn

_ _ (5.2)
3600 0.1V0mn’ " 3600 0.1V,

dn

where ng, represents cell numbers, p; ,, and py, , are equal to

iy = {1 if PP < P, < 0.2B7°™ (5.0
'n 0 otherwise. ’

U = {1 if 0.8P°™ < P, < P* (5.d)
hn = o otherwise. ’



where V,,,, ,, 18 the nominal FC, voltage drop and P"°™ is the
nominal power of the modules. Usually, it is 80 % of the
maximum power of the FCS. Due to the nonconvex
characteristics of the extra low-power and extra high-power
degradation rates, these terms are approximated with the
convex second-order polynomial approach,d,,, = Bn_an’tz +
Brn2Pnt + Bns. The coefficients of FC; are f;; = 0.3861 e —
09, By, = -0.1942 e-06, and f;3 = 0.2217 e-04 and the
coefficients of FC, are ff,; = 0.2415 e-09, f,, =-0.1480 e-06,
and f,53 = 0.2058 e-04.

C. Battery modeling and constraints

The battery pack primarily supplies peak power and stores
energy in the event of regenerative braking.

1) Standard Modeling and Constraints
The first-order RC model of the battery pack is formulated by

Vot —Rslg e —V, 6
Iy = ot SRB,t Bt | (6)
c

d
C_ , ) ) ’
C dt(VOt_RsIBt_VBt)

where I is the battery pack current, V,, is the open-circuit
voltage, R, is the series ohmic resistance, Vy is the terminal
voltage, R, denotes the polarization resistance, and C, is the
polarization capacitor. A liner approximation of the battery
model was used for the optimisation purpose. Equation (7)
presents the state of charge (SoC) calculation formula along
with the constraints on the battery SoC level

_ __ Ppeft 7.a
§0Ce41 = SoC, — o2, (7.2)
SoC™™" < SoC, < SoC™?*, (7.b)

where SoC™" and SoC™** denote the minimum and
maximum limits of SoC, respectively, the initial SoC level
SoC;_y is SoC,, and Qp represent the battery capacity.
Equation (8) imposes power and slew rate limits for the battery
unit Pp .

PPM™ < Py, < PP, (8.2)

Rg™"™At < Py, — Pg,_, < Rg"PAt, (8.b)

where PF¥™ and PJ*%* are the minimum and maximum limits
of Py, , respectively, Rz%"™ and R;*" are the slew rate
boundaries of Py, and At indicates the time step.

2) Degradation Modeling

The battery lifetime is affected by the depth of discharge
(DOD) and is defined as an initial capacity drop (reaching 80%
of the initial battery capacity). The state of health (SoH) is
calculated by

|Pg | AL (9.a)
SoHyy; = SoH, — —L 2=
e = O T 04V 13600°
SoH™™ < SoH,, (9.b)

where SoOH™™ is the minimum value and SoH,_ , is the initial
SoH level, ng denotes the total number of cycles during the
whole lifetime of the battery unit, and At indicates the time
step. The parameters of the battery unit obtained from
experimental tests are listed in Table III, where v;, is the open-
circuit voltage of the battery pack.

Table IIT
The approximated battery unit parameters.
Vo =12.21V R; =0.014 Q Vgp = 73.26 R.=0.017Q
Cc=1792F Qs =182 Ah  SoC™™ = 0.65 SoC™™ = 0.75

D. Boost converter modeling and characteristics
The two converters are modeled as follows:

(10.2)

Ln Eln,t = Vn,t - th,t - rnln,tv

Vpe = mh,tVB,tthn_t = mhn,tln,tnh: (10.b)

where I, and V, are the current and voltage of FC, ,
respectively, L, = 1.1 mH presents the smoothing inductor
inductance, 1, =23.9mf is the smoothing inductor
resistance, 17, = 96.21% is the average efficiency, and m, ; is
the modulation ratio of the converters.

E. Driving Cycle Specifications

Five driving cycles, including one real diving cycle [64], and
four standard driving cycles [65] are used to compare and
evaluate the proposed EMS. Figure 5 depicts the driving cycles,
including the probability distribution of their speed profiles.
Table IV displays detailed information for the four-standard
light-duty cycles. Table IV provides specific information
regarding the driving cycles.

III. THE GENERAL MATHEMATICAL FORMULA OF THE PRIMARY
POWER SHARE OPTIMIZATION PROBLEM

In this section, the mathematical equation for the primary
centralized EMS optimization problem for the multi-stack FCV
is presented. Since the goal of this study isn't to predict future
driving speeds, the proposed technique assumes that the power
profile is already known. Figure 6 provides a general



description of combining the D-MPC approach with the FRL
algorithm. The cost function takes into account several factors,
including the penalty for battery SoC, the costs of two FC
modules' hydrogen and degradation, and the cost of battery
degradation. In this form, all the expenses are considered with
the same gain. This way of describing the cost function is
widespread in the literature. Since the optimisation used is an
MPC framework, r is applied to the whole set.
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Fig. 5. The driving cycle speed profiles and their distributions [64, 65].

Table IV
The specifications related to the utilized driving cycles [65].

Driving  Time Distance Maximum Average Average Stops
cycle (min) (mile) Speed Speed Driving
(mph) (mph) Speed
(mph)
Real 20.10 4.57 28.5 13.7 14.8 6
Profile
IM-240 4 1.96 56.7 29.3 30.8 2
USo06 9.93 8.01 80.3 48.3 51.9 5
HWFET 12.75 10.26 59.9 48.2 48.6 1
FTP75  31.28 11.04 56.7 21.2 26.2 22

The centralized multi-objective problem can be formulated in
the following sequence.

argmin Csocypp T pismn ) Yo Cnt+r T CBt+r (1l.a)
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N —
s.t Zn:lAnPn,t+r -

(). (4).(6)-(9)
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Fig. 6. The comprehensive overview of the fully decentralized design
achieved by integrating the D-MPC framework with the FRL strategy in the
modular powertrain system.

where n € N refers to each module, t is the current
optimization step time, € R denotes the length of the moving
optimization horizon, cs,¢ is the SoC penalty cost, ¢, 1 =
Chpeir T Cdppyr denotes the sum of hydrogen and degradation
costs of FC,,, Cp 1, is the battery unit degradation cost, P, ,
and Pp ,stand for the power of FC, and the battery pack. A,, and
c apply the powertrain and the coupling constraints. The
hydrogen cost Chopir is computed by hyy,Cy,At, where
hoptir = anyan_Hrz + a2 P ey + @y 3 is a convex function,
Cy, = 3.92 $/Kg is the hydrogen price [66], and At indicates
the time step. Cdpy incorporates both extra low-power and extra
high-power degradation costs, calculated by d, ¢y, Crc,At,
where dn,t+r = ﬁn,lpn,t+r2 + ﬁn,ZPn,t+r + ﬁn,S is a convex
function and Crc, = 93 $/kW is the FCS price [67]. As stated
previously, the start-stop and transitional degradation costs are
disregarded in this analysis by assuming that all modules are
constantly active and restricting the module power dynamic.
The battery degradation cost, ¢ ¢, is determined by

Cg,t+r = Cp(SOHp 1y — SoHp ), (11.b)

where Cp = 189 $/kWh is the battery price [68], csoc,is @

punishment item to consider the SoC level error, which is
defined by

CsoCesp = @(SoC g — S0Cy)?, (11.0)



where SoC, is the initial SoC, and ¢ is a significant positive
coefficient. The constrained finite-time optimization problem
(11) is solved at each sampling time ¢t to establish a strategy
Py tt+1,.c+ry for the fixed time horizon R. The first optimal
input is applied to the powertrain system. At the next
optimization step t + 1, the optimization problem is solved
again over the shifted horizon based on new state measurements
[69, 70].

A. Transforming Centralised Model Predictive Control into
Decentralised Model Predictive Control Using C-ADMM

This section explains how to reformulate C-MPC (11) using C-

ADMM. Each subproblem is assigned to an FC module control
unit. Since the modules are coupled through (3) on the DC bus,
the general problem (11) is not inherently decomposable. To
tackle this issue, as demonstrated in Fig. 7, P,i,{t +1,.. t+R) 1S
duplicated into its neighboring module value as a virtual power
and coupled with a global power vector, W,iy{t +1,.,t+R)> Where i
denotes the number of optimization iterations. Equation (12) is
added to guarantee that the duplicated variables for FC; are
equal and the modified optimization problem converges to the
same optimal result [71]. Similarly, these equations can be
formulated for FC,.

(12.2)

Pll,{t+1,...,t+R} - Wll,{t+1,...,t+R} =0

(12.b)

i i —
Pioert,t+r) — Wiges1,t+r) = O

W1 {t+1, .. t+R}

P12,{t+1, ..,t+R}

P21,{t+1, ..,t+R}
ﬂ..

P
B,{t+1, .. t+R
+1, - 4R} PL,{t+1, ..,t+R}

Fig. 7. Visual representation of the employed decomposition technique.

To improve the convergence performance and ease the
communication burden, the number of the optimization
variables is reduced by assuming that the virtual variables are
equal to the previous global variables. For instance,

Pf;%t+1 ''''' ¢+r} 18 equal to Wli,{t+1,...,t+R}' In this way, the main
EMS problem can be transformed into two decentralized
subproblems functions of P yy cipy @nd Wypy ripy -

During the decentralized optimization, the two modules
exchange candidate output powers through module-to-module
communication. This iterative process continues until local
control units agree on the stopping condition. The optimization
procedure is then repeated and shifted, as seen in Fig. 8.
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Fig. 8. The sequence operation of the D-MPC framework.

The decentralized optimization process of (11) and (12)
includes a three-step procedure, where p is a positive tuning
value, i denotes the number of iterations, and A, are
Lagrangian multipliers [71]. The equations related to FC, are
given in (13). The equations for FC, can be expressed in the
same way.

argmin IR (13.2)
pitl Csociyr T Z Z Cnt+r T Cpt+r

‘ 1,{t+1,..t+R} 77=0 n=1
A gean,erryPrieen ooy T 5 (Prees,erry —
W{,{t+1,...,t+R})2}’

i+1 _ Pt Wi eer) (13.b)
Wi {t+1,..,t+R} = 2 ’

i+1 Y i+l

ll.{t+1,...,t+R} = /111.{t+1.---.t+R} + p(Pll'{HL---'“R} (13.)

i+1
- Wl,{t+1,...,t+R})r

The detailed procedure of D-MPC is presented in Fig. 9. First,
a cold-start initialization of Ay 141, t4r}s Prges1,.c4r)> and
Wi tt+1,...c+r) are required for each module n. The local D-
MPC problem are solved to determine P, 11, ¢4g}- Then,
Wi gt+1,...0+r) are calculated and sent to the neighbor module in

parallel. After that, A, 41 c+r) updates. If || 251 — /1;”2 <

py and p||PiHt — P,‘””; < Up, where p;and p, are the limiting



values, as the stopping criteria are fulfilled, the optimization
processes stop and P,/{'send to the converters as P, °f . After

that, the optimization windows shift for one time step. If not,
the optimization process goes back to Step 3.
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Fig. 9. The step-by-step flowchart of the D-MPC algorithm for the FC;.

IV. GENERAL DESCRIPTION OF THE HYPER-PARAMETERS
TUNING ALGORITHM BASED ON FEDERATED REINFORCEMENT
LEARNING ALGORITHM

In the FRL algorithm, agents are part of an FRL model that
can enhance their behaviour through interaction with an
external environment. The agents follow policies to perform a
series of actions in the environment to achieve a particular
objective. The state reflects the agents' observations of the
environment. Agents evaluate the environment, make
decisions, and perform specific environmental actions. The
environment provides the agents with their current state and the
rewards for their previous actions. The rewards represent the
agents' evaluations of their actions. Unlike RL algorithms, FRL
agents do not share their actions with others but instead share
their models after internal learning processes [42].

The length of the moving window significantly impacts the
optimization accuracy and speed. Enabling agents to share their
models, the model-free FRL method QAvg [46], which is a
federated variant of Q learning [72], is used to develop a
uniformly great strategy for determining the optimization
horizon length. Through repeated local updates and iterative
global aggregation, this tabular FRL method obtains a value
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function. It is prohibited for the n agents to share their
trajectories due to the architecture of a fully modular system.

Assume that n agents communicate with environments that are
distinct from one another. These environments are described
using Markov decision processes (MDPs), M, =
(S, AR, y,P,), forn=1,..,N where § denotes the set of
states S €S = {Pavg‘j,Son}, Py and SoC are the average
requested power for the maximum horizon length and the
current SoC value, respectively, A represents the action set
ayj €EA= {1,...,R}, where R is the maximum prediction
horizon length, ¥,, ; € R, ¥, ; = —wt,; — (1 — w1)¢y ; is the
normalized reward value obtained when an action a,, ; € A is
taken, w; is the weighting variable, t, ; denotes the D-MPC
computational time of module n and c,, ; is the sum of the cost
of module n and the battery unit, y € [0,1] presents a
discounting factor, {PP, }N_; are the probabilities of transitioning
into sj,4 € § at step j + 1 when the D-MPC agents take action
a; € A, in the state s; € § at step j. The environments share
the same state space S, action space A, and reward function R,
but their state transitions are different. QAvg acquires
knowledge of an |S| X |A]| table by oscillating between local
updates and global aggregations [46].

In this work, the action space chooses different optimisation
horizons for the MPC approach. We are using the state
transition function to determine how likely agents are to move
from one state to another. This function is considered
deterministic, meaning that the agents will always move to the
same next state if they are in the same current state and taking
the same control action. The process of decentralized learning
based on FRL is indicated in Algorithm 1.

Algorithm 1: FRL-based updating procedure for optimum horizon allocation
for decentralized controllers.
1. Initialize local Q,, aggregated Q,, iteration number, learning parameters,
state and action lists, and probability of actions of each agent
%% Learning an optimal horizon policy for each D-MPC's agent
2. for n= 1, ..., N training data in parallel for N agents do
3 for local learning episode E= 1, Max local training episode do
4 for j=1, Maximum value for the load profile do
5. & Select an action a,, ; with P, for each state s, ;
6. & Compute the chosen action and observe Ry, ;
7 o update Q,, by
Qn,j+1(5n,jnan,j) « (1 - 77]‘) X Qn,j(sn,j' an,j) + 77]‘ X
[ﬁ(sn,jﬂ an,j) + Y Zs,i,] Pn(srlt,] |sn,j! an,t)maxa’eﬂQn,j(Sr/L,p a;l,])]'
8. end

9. end
10. o After local updates, each agent shares its partially trained Q,,
N
_ 1
Qn < ﬁz Qn Vs,a
n=1
11. end

Figure 10 depicts the basic functioning of the FRL-based
method for determining the appropriate hyperparameter. The
upper layer is depicted in detail in Figure 9, while the bottom
part is based on Algorithm 1. In a discrete action space, FRL



agents efficiently distribute FC module output powers. First,
each control module sends the optimal action based on the
aggregated model and receives a reward. Second, each FC
module conducts multiple local control policy adjustments
using the reward value. The agents trade their learned models
and average the aggregated model to generate a consistently
approved policy. Repeat training until all module control
policies converge. Each agent has a highly tuned aggregated
local control strategy for unseen states after learning.
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Fig. 10. The general operation of the FRL-based approach to seeking the
optimal hyperparameter based on the current powertrain states.

Based on the convergence proof presented in [46], the QAvg
algorithm with E > 1 not only converges but also approaches

the Q function of 7] in an imagined environment M, when

2
(A-V)G+E)
and j is the iteration number. Authors in [46] have demonstrated
that

considering the number of local updates as E, n; =

16yE
TA-yPU+EY

(14)

-],

when E = 1, the agents exchange information after each local
update of their Q functions. However, this process can be time-
consuming and impractical. On the other hand, when E = oo,
the algorithm never involves communication [46].

V. RESULTS AND DISCUSSIONS ON NUMERICAL CASE STUDIES

This section explains the D-MPC and FD-MPC optimization
results. DP and MPC both solve the same EMS problem. DP is
the optimal global solution. The MPC answer is used to assess
the accuracy, convergence speed, and communication
performance of DCO-based MPCs. To quantitatively test
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proposed methods, processing times are compared on the same
system (processor: Apple M1 Pro, RAM: 32 GB, MATLAB:
R2021b). The learning parameters are based on learning
sequences and system requirements [73, 74].

A. Regular Operation Optimized Results

Figure 11 shows the MPC, D-MPC, and FD-MPC optimum
output powers by means of the real driving profile. The 10-step
prediction horizon is chosen. The battery pack charges during
deceleration and discharges during acceleration. Also, the
battery pack has a strong power fluctuation propensity that
follows load changes. The FC modules' minimal power
fluctuation rates make PEMFC models' powers very steady.
PEMFC modules' output power is minimal. D-MPC and FD-
MPC power profiles and SoC curves match MPC with minimal
errors. D-MPC and FD-MPC SoC curves track MPC with
0.0571 and 0.0597% errors, respectively.
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Fig. 11. Optimized results of the MPC-based approaches: (a) the powers
based on D-MPC (Pload: the power profile, Pfc: the total power provided by
the modules, and Pb: the battery power), (b) the powers based on FD-MPC,
(c) the comparison between the total output modules powers of the FC
modules, and (d) the comparison between SoC levels.

Table V compares the computational burden, T, and final
operational costs, c,, of decentralized algorithms to DP and
MPC. The suggested approaches' final prices are very close to
DP's. D-MPC and FD-MPC final costs are $0.0617 and
$0.0628, 5.8997% and 7.7528% higher than DP and
1.7486% and 3.5291% higher than MPC. D-MPC and FD-MPC
hydrogen consumptions contribute $0.0173 and $0.0109 under
D-MPC and $0.0174 and $0.010 under FD-MPC, respectively.
D-MPC and FD-MPC's second-largest expenses are module
degradations, at $0.0096 and $0.0098, respectively. D-MPC
and FD-MPC battery degradation costs are $0.0048 and $0.005,
or 11.3% and 11.6% of final costs.



Figure 12 (a) presents the computational times of C-MPC, D-
MPC, and FD-MPC under the real driving profile. The
computational times of D-MPC and FD-MPC take an average
0f'0.0139 s and 0.0096 s, respectively. The computational times
of D-MPC and FD-MPC are reduced by about 40.4040 % and
58.9062 % compared to MPC (0.0233 s). As shown in Fig. 12
(b), the FD-MPC iteration is reduced by 11.8384 %. In this
study, a high-speed solution was chosen for FD-MPC
convergence. FD-MPC can improve convergence speed if
output power errors can be tolerated. If accuracy is the design
criterion, more iterations are needed.

Table V
The detailed comparison of computational burden and final price
DP MPC D-MPC FD-MPC
T - 25.5914 14.6237 9.2473
[N 0.0583 0.0609 0.617 0.0628
006 ‘ ——C-MPC —— D-MPC FD-MPC
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Fig. 12. (a) The computational burden of the developed MPC-based
approaches and (b) The number of iterations based on the DCO-based
MPCs.

B. Impact of driving cycles on the optimal final cost of
modular powertrain

In addition to the actual driving profile, four additional light-
duty cycles are taken into account here. In Fig. 5 and Table IV,
all information relating to these profiles is shown. This
demonstrates how the driving pattern influences the ideal cost.
Figure 13 depicts the overall costs in $/mile for the four driving
cycles using FD-MPC for a ten-step prediction horizon. The
most severe HWFET is the priciest, costing around $0.055 per
mile. In HWFET, the most significant expenses are the
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hydrogen costs of the two PEMFCs with the largest loads. The
smoothest US06 results in the least expensive battery and two
PEMFC degradations of around $0.034 per mile (38.18 percent
less than HWFET). In FTP75, the PEMFCS and the loss of
battery life have the highest costs of the four driving cycles.
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Fig. 13. Comparison of the hydrogen and degradation costs for the IM240,
US06, HWFET, and FTP75 driving cycles.

C. Influence of different driving cycles on the Horizon policy

The moving horizon distribution for each driving cycle is
compared in Fig. 14. The appropriate horizon range is
significantly affected by driving characteristics. FD-MPC
recommends utilizing a distinct prediction horizon for each
zone of state space and determining whether to employ long and
short horizons. On the short horizon, the MPC is unable to
achieve the lowest cost, preferring to use more hydrogen at a
high degradation cost. However, the learning-based policy
mitigates this problem to some extent by simultaneously
evaluating the long and short horizons. This demonstrates that
the FRL approach can determine the range of the optimization
horizon for various driving cycles in an adaptable manner.

D. Impact of prediction horizon length

Figure 15 compares final costs and computational times for
different prediction horizon lengths under the real driving
profile. As the moving optimization window length increases,
final costs and computational burdens decrease. If the
prediction moving window length is too short, the optimized
power values produce unsatisfactory finite horizon
approximations. MPC's execution time increases linearly with
increasing moving window length when compared to others,
but significantly when the optimization horizon dimension
exceeds 12s. FD-MPC has 61.54% less computational burden



and 76.95% fewer sensitivities than D-MPC. It can be
concluded that, as the length of the optimization horizon
increases, the FD-MPC technique incurs a smaller increase in
calculation time than the D-MPC and C-MPC methods. Figure
15 shows that the provided technique costs more than C-MPC.
It must be stressed, however, that this modest increase in the
final price can be accompanied by a substantial reduction in
computational effort.
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Fig. 14. The distribution of the horizon selected by FRL during the driving
cycles.
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Fig. 15. Optimal final cost and computational time of Cen-MPC, Dec-MPC,
and adjustable Dec-MPC as functions of optimization window size.

E. Investigating multi-objective reward functions

The role of rewards is crucial to the success of the designed
learning technique. For the purpose of analyzing the influence
of the reward coefficient, an analysis is performed to
demonstrate the variation of the final cost and the total time
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under the five driving cycles, as shown in Fig. 16. The optimal
function gain, based on the normalized reward function, is

between 0.3 and 0.4.
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Fig. 16: The analysis of the computational burden and total cost fluctuations
of the developed approach, from considering only the final cost (Reward
coefficient = 0) to considering only the computational time (Reward
coefficient = 1).

F. Examination of Module Numbers

To highlight the scalability of the presented design, the
calculation times for four and eight agents are compared to
those of the preceding two-agent system. Figure 17 contrasts
the durations of learning for these two different cases. For FD-
MPC, each case was evaluated ten times, and the mean results
are shown below. D-MPC requires 51.74 percent and 39.22
percent less calculation time with four and eight agents
compared to two agents, respectively. Comparing the four-
agent and eight-agent scenarios to the two-agent scenario, DF-
MPC reveals reductions of 73.26 and 72.16 percent,
respectively. It is mostly due to the fact that the learned Q tables
are utilized to extend the model to new circumstances. Horizon
rules converge faster and attain the same level of precision as
policies developed by integrating all FC module data.

VI. EXPERIMENTAL IMPLEMENTATION

To evaluate D-EMSs, a small-scale experiment is conducted
on a modular test bench using the real driving profile to verify
earlier numerical studies. Fig. 1 displays the developed modular
powertrain test bench and the National Instruments (NI)
Compact RIO device with the model number NI9022, which
were used to implement the proposed strategy. The control
strategy for both modules was programmed in MATLAB
software and then transmitted to NI9022. The optimisation



methods have been meticulously developed to ensure the
efficient performance of the decentralised optimisation
approach.
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Fig. 17. The evolution of the computational times of C-MPC, D-MPC,
and FD-MPC under two-agent, four-agent, and eight-agent cases

Figure 18 depicts the FD-MPC's output powers and SoC level.
Figure 19 shows FC module power distributions. The results
indicate that modules run near efficiency zones to reduce the
hydrogen economy. Module power ramping fulfilled all
requirements. The battery pack charges in low-power zones and
discharges in high-power zones. The battery compensates for
fast-dynamic load variations. The battery SOC oscillation level
shows that the FD-MPC helps its two modules obtain the lowest
departures from the original SOC levels. FD-MPC adds 6.32
percent to the simulation cost ($0.0668). FD-MPC is 50.07
percent faster than C-MPC.
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Fig.18. The experimental results of the suggested FD-MPC: (a) the output
power profiles, (b) the FC modules’ power profiles, and (c) the SoC level
fluctuations.
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Fig.19. The experimental results of the FD-MPC approach: (a) the power
profile of FCy, (b) the distribution of FC;, (c) the power profile of FC,, and
(d) the distribution of FC,.

VII. CONCLUSION

This study proposes a fully decentralized energy management
architecture to provide scalability and adaptability for the
onboard powertrain components in FCV applications. C-
ADMM is utilized to decompose the multiple objective
minimization power-sharing problem, which incorporates
hydrogen consumption and degradation costs, into its
constituent parts. To enhance D-MPC's computing time,
federated reinforcement learning is proposed for
hyperparameter adjustment. Each module interacts with its
neighbor on future power responses in order to agree on the best
solutions, thereby providing a cost-effective and adaptable
power splitting system. Several numerical and experimental
investigations examine optimal solution precisions, data
processing time efficiency, convergence performances, and

scalability. Simulation and implementation outcomes revealed
that the suggested strategy outperformed centralized
approaches. A future study may concentrate on the following:
It is possible to construct a general-purpose, non-linear,
decentralized method for FCV decision-making. The reliability
of decentralized approaches with delays and data loss might be
evaluated. For several FCV applications, it is possible to specify
the size and number of parallel modules. The recommended
method may be simplified to enhance the real-time optimization
of the FCV problem. Traffic data can be analyzed to increase
system performance and decrease hydrogen use.
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