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Robust Metric Localization in Autonomous Driving
via Doppler Compensation With Single-Chip Radar
Pengen Gao , Shengkai Zhang , Member, IEEE, Wei Wang , Senior Member, IEEE, and Chris Xiaoxuan Lu

Abstract— Metric localization is vital to autonomous driving
where it corrects cumulative errors in a long-term run. Such
errors are inevitable in real scenarios where GPS signals or
some other drift-free exteroceptive measurements are not avail-
able, e.g., when an automobile goes through a tunnel. Using
FMCW-based mmWave radars is an attractive metric localization
technique with improved robustness as RF signals can traverse
small particles in harsh weather conditions like snowing, foggy,
and storming, but it faces a fundamental challenge of Doppler
distortion. Existing works take spatial constraints to mitigate
the Doppler distortion of point clouds from mechanical radars
with limited accuracy. Modern single-chip mmWave radars that
provide dynamic estimates, i.e., radial velocities, bring new
opportunities to develop more accurate approaches. This paper
presents DC-Loc++, a robust metric localization framework by
compensating Doppler distortions using a single-chip mmWave
radar. It consists of an explicit velocity-assisted Doppler com-
pensation module for each radar sub-map, an uncertainty-aware
metric registration algorithm, and a failure recovery method that
validates measurement constraints to generate a more confident
pose graph for optimizing vehicle poses. Extensive experiments
on both nuScenes dataset and a synthetic CARLA dataset show
the effectiveness of DC-Loc++, achieving 99.2% success rate
and more than 20.0%, 30.2% error reductions in terms of
translation and rotation estimates, respectively, compared with
existing approaches.

Index Terms— Automotive radar, metric localization, Doppler
effect.

I. INTRODUCTION

METRIC localization maps a vehicle’s position to one
in a pre-built map based on its exteroceptive obser-

vations. It plays a vital role in obtaining accurate and
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Fig. 1. Metric localization with automotive radar: a vehicle maps its pose
to a pre-built map by previous radar frames. The transformation between the
current frame (highlighted in blue) and the reference radar frame (highlighted
in red) can be derived from radar sub-map registration (top row) without
considering illumination conditions. The middle and bottom rows show the
same location taken by cameras in the daytime and night. Such a process can
effectively reduce cumulative errors.

drift-free positions for autonomous driving [1]. The main-
stream autonomous driving solutions use optical sensors,
e.g., camera and LiDAR [1], [2], to observe a vehicle’s
surroundings with their rich and reliable sensing features.
However, the nanometre-scale wavelength of optical signals
makes them unable to traverse small particles like smoke,
fog, raindrops, and snowflakes, preventing them from see-
ing obstacles effectively in adverse weather. Complementary
to optical signals, millimeter-wave (mmWave) radar signals
can easily traverse through small particles and sense solid
objects behind. Thus, mmWave radar based metric localization
(c.f. Fig. 1) has attracted strong interests in both industry and
academia [3], [4], [5], [6].

Doppler distortion is one of the fundamental challenges
for mmWave radar-based approaches. mmWave radar emits
Frequency-Modulation Continuous Wave (FMCW) signals
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(c.f. Section III-B) from an antenna array to measure ranges
and angles to objects which bounce back the signals. A slight
frequency shift caused by the Doppler effect will result in a
non-negligible drift of ranging measurements [7], distorting
the generated point cloud. Such a distortion is dominated
by the relative velocity between the radar and its target.
It will result in a large mismatch of the locations where a
vehicle goes through at different speeds, failing to associate
a sub-map to the position. Existing works [8], [9] focus on
mechanical spinning radars that take spatial constraints to
infer the Doppler shift so as to compensate for the map
distortion coarsely. They have inferior accuracy due to the
lack of radial velocity measurements, making the impact of
Doppler distortion still exist in data association, as shown in
our study in [10].

Recently, compact single-chip mmWave radars (a.k.a. auto-
motive radar) have been widely deployed in automobiles [11].
Although the field of view is limited to a certain degree
through beamforming, it enables the estimation of radial
velocities associated with spatial points. The radial velocity is
more related to the Doppler effect, bringing new opportunities
for developing more accurate approaches. However, as shown
in our study in Section III, single-chip mmWave radars are
not immune to Doppler distortion and have large metric
localization errors. In this paper, we propose DC-Loc++,
a single-chip radar metric localization framework that can
robustly estimate the vehicle’s pose by addressing the Doppler
distortion, radar measurement uncertainties, and localization
failures. Specifically, DC-Loc++ exploits the radial velocity
estimates from radar signals to restore the range shift from the
Doppler effect. Such a restored radar sub-map can significantly
boost localization accuracy, especially when a vehicle visits
the same place at different speeds. In addition, we propose
an uncertainty-aware registration algorithm to align the live
radar sub-map with a pre-built one. In particular, DC-Loc++
tracks the range, angle, and Doppler uncertainties to formulate
the information matrix, which dynamically adjusts the weight
of each point correspondence to yield more accurate results.
Furthermore, we devise a pose graph truncating scheme to
filter out metric localization failures caused by outlier radar
frames. Such outliers are inevitably produced due to the
specular reflection and multipath of RF signals. This module
substantially improves the robustness of DC-Loc++.

To evaluate the performance of DC-Loc++, we con-
duct extensive experiments on both nuScenes [11] and
synthetic CARLA [12] dataset. The results demonstrate
that DC-Loc++ outperforms existing approaches by reducing
more than 20% and 30.2% errors in terms of translation and
rotation, respectively.

Our contributions can be summarized as follows.
• We elaborate on the adverse Doppler effect in the FMCW

ranging process and propose an efficient compensation
method to correct the Doppler distortion in each radar
sub-map for metric localization of single-chip mmWave
radars.

• We present an uncertainty-aware registration algorithm
that tracks measurement uncertainties to obtain more
accurate pose estimates.

• We devise a pose graph truncating scheme that detects
and filters out problematic measurement constraints to
improve the robustness of DC-Loc++.

• We conduct extensive experiments on both real-world
and synthetic datasets to demonstrate the effectiveness
of DC-Loc++.

The rest of the paper is organized as follows. Section II
reviews the related works on metric localization for mmWave
radars. The design of DC-Loc++ is presented in Section III.
Section IV reports the experimental results of DC-Loc++
over two datasets. Section V concludes the paper.

II. RELATED WORK

The mainstream research relies on optical sensors such
as cameras and LiDARs for metric localization. However,
their performance heavily degenerates under challenging envi-
ronments, e.g., foggy or rainy weather. On the contrary,
mmWave radars have robust sensing performance with the use
of large wavelengths. Moreover, the recent advances in FMCW
radar technology significantly improve the sensing accuracy
and range, making the radar a promising sensor for metric
localization.

A. Optical Sensor Based Metric Localization

Camera is a primary sensor for vehicles’ metric localization
due to its low cost and general use. Accurate localization
results can be obtained by associating camera images with
already built LiDAR maps [13] or existing street views [1].
Some researchers also explore the use of semantic infor-
mation [14] of landmarks and incorporate multi-level fea-
tures [15] to deal with challenging environments. However,
such methods are still sensitive to illumination changes and
textureless environments.

LiDAR, which emits modulated lasers for perception, also
attracts much attention in academia and industry. Existing
LiDAR systems rely on geometrical constraints of features
in point cloud for motion estimation and metric localiza-
tion [16], [17]. Meanwhile, learning-based methods are also
well studied and achieve decent performance in ideal condi-
tions [18], [19]. These systems, however, are vulnerable to dust
or smoke. They perform poorly in adverse weather conditions.

B. Radar-Based Metric Localization

RF signals can penetrate, reflect, or diffract from obsta-
cles, making mmWave radars robust to visual degradation.
Meanwhile, the signal’s large wavelength poses many funda-
mental challenges of mapping and localization, e.g., multipath
reflections and low-resolution perceptions. Prior works have
made great efforts to tackle such problems. Ward et al. [20]
proposed a two-stage pipeline for metric localization using
radars. They adopt an EKF-based framework that integrates the
Iterative Closest Point (ICP) [21] algorithm with an existing
map. RadarSLAM [22] demonstrated the first radar-based
Simultaneous Localization and Mapping (SLAM) system that
works well in adverse weather, utilizing vision-based schemes
for feature extraction and graph matching. Barnes et al. [3]
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Fig. 2. The system overview of DC-Loc++. Given a pre-built radar map, DC-Loc++ takes multiple radar scans from a single-chip mmWave radar installed
on a vehicle to feed into the Doppler Compensation module. Then, DC-Loc++ aggregates those compensated radar scans into a sub-map, which is aligned
with the pre-built map by adopting an uncertainty-aware registration algorithm. Finally, the truncated pose graph optimization module is used to obtain robust
and accurate vehicle poses.

presented an end-to-end radar localization pipeline, which
predicts features along with their descriptors from raw radar
inputs before feeding into a differentiable Umeyama-style
estimator. Daniele et al. [6] proposed a coarse-to-fine radar
localization algorithm that consolidates the place recognition
and radar pose estimation algorithms into a hierarchical local-
ization process.

Besides developing the pure radar-based sensing, more
efforts explore cross-modality solutions. Yin et al. [23] com-
bined the radar and LiDAR measurements and adopted a
brute force based learning algorithm to localize the vehicles
by maximizing the likelihood between the live radar scans
and an existing LiDAR map. Tang et al. [4] proposed an
unsupervised-learning framework that aligns 2D radar scans
with the geometric structure in satellite images. Although prior
works improved the metric localization performance, they
neglect the impact of the Doppler effect that severely exac-
erbates metric localization errors, especially at high speeds.
Moreover, their methods are vulnerable to large driving envi-
ronment changes, especially in the presence of occlusion and
dynamic objects, which pose difficulties in data association
and degrade their localization accuracy.

The closest work to ours is [8]. It mitigated the Doppler
distortion in the metric localization using spinning radars.
Their Doppler compensation scheme has been the state-of-
the-art (SOTA) solution for radar-based metric localization.
However, due to the limitation of spinning radar, their method
inferred the velocity from the pose estimations, which have
been corrupted by the Doppler shift. In practice, we find
that their metric localization error still grows larger with the
increase of velocities between radar scans.

In this paper, our work focuses on explicitly eliminating
the Doppler effect in metric localization using single-chip
automotive radars. It compensates for the Doppler distortion
of radar sub-maps and better deals with the noise floor of the
measurements from low-cost automotive radars by uncertainty
estimation and pose graph optimization.

III. RADAR METRIC LOCALIZATION WITH
DOPPLER COMPENSATION

A. System Overview
In this work, we propose a metric localization system using

a single-chip mmWave radar, termed DC-Loc++. We address
the Doppler distortion and localization failures that highly
degrade the radar localization performance by three modules
(as shown in Fig. 2).

• Doppler compensation module corrects the Doppler
distortion in each radar scan and creates a dense radar
sub-map to facilitate the registration.

• Uncertainty-aware registration module incorporates
ranges, angles, and radial velocities obtained from radar
scans to combat the high noise level of measurements for
better registrations.

• Truncated pose graph optimization module detects
and corrects localization failures to enhance the system’s
robustness.

In what follows, we first elaborate on the metric localization
issues caused by the Doppler distortion in Sec. III-B and then
dive into the detail of our system design.

B. Doppler Shift in FMCW Ranging

1) Principles for FMCW Radar Measurement: Automotive
mmWave radars usually adopt FMCW signals for measur-
ing the range (i.e., the point cloud in a scan) and relative
radial velocity between the vehicle and a target object.
Here we briefly introduce the principle of FMCW radar
measurement [24].

When the radar receives a reflected signal from a target,
it performs a dechirp operation by mixing the received signal
with the transmitted signal, which produces an Intermediate
Frequency (IF) signal s(t), i.e.,

s(t) = Ae j (2π fbt+φ), (1)

where A denotes the signal attenuation, fb and φ are the
frequency and the phase corresponding to the central frequency
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Fig. 3. The process of FMCW-based range and velocity measurements. The
Doppler frequency shift occurs when the radar and objects in the environment
have relative velocities. The frequency shift transforms into a biased range
measurement (shaded square) for each radar target.

of s(t), respectively. The range r and radial velocity v between
the radar and its target can be calculated as:

r =
c fb

2K
, vr =

λ fv
2Tc

(K = B/Tr ), (2)

where c is the speed of light, B, Tr , and λ denote bandwidth,
signal duration, and signal wavelength. fv and Tc denote the
phase change rate and the time separation between IF signals.

2) Doppler Effect in Radar Measurement: The above rang-
ing operation of FMCW radars works well when a vehicle’s
ego-velocity is low. However, for autonomous driving scenar-
ios where the ego-velocity changes fast from time to time, the
Doppler effect dominated by the radial velocity will impose
a Doppler frequency shift on the IF signals. As a result,
it will incur a non-negligible knock-on effect on the range
measurements. As shown in Fig. 3, the Doppler effect causes
an apparent frequency shift on the FMCW signal, eventually
resulting in the Doppler distortion to the point cloud from a
radar scan.

The Doppler distortion has varying impacts on different
radar-based localization tasks. Specifically, radar odometry
adopts successive radar scans for ego-pose estimation, and
the Doppler effect typically has minor impacts on radar
odometry. This is because vehicles usually travel at consistent
speeds within short intervals. Therefore, the Doppler effect
will impose similar impacts on successive radar scans. The
spatial relationships between radar targets in successive radar
scans will not change dramatically. As a result, the radar
scan registration procedure in radar odometry is resilient to
the Doppler effect [8]. However, the Doppler distortion will
significantly degrade the performance of metric localization.
This is due to the fact that metric localization aims to align live
radar scans to a pre-built map, while vehicles usually revisit
places at different speeds. Thus the Doppler effect will incur
inconsistent distortions to mapping results, which introduces
difficulties in creating accurate pose estimation.

In the FMCW radar measurement model, the Doppler
frequency shift can be modeled as fd =

2vr
λ [7], where vr

denotes the radial component of the relative velocity and λ
denotes the signal wavelength. Thus, given the measured IF
signal frequency f̂b, the real IF signal frequency fb can be

formulated as [8]:

fb = f̂b − fd , (3)

which means a range shift rd has been imposed to the real
range r . Substituting (3) into (2), we can get:

r = r̂ −
c fd

2K
, (4)

where r̂ is the radar range measurement, K represents the
ramp rate of the chirp. We can observe that the latter term of
(4) is the very range shift caused by the Doppler effect, i.e.,

rd =
c fd

2K
=

fc

K
vr , (5)

where fc denotes the frequency of the transmitted chirp signal.
It is noted that the range shift rd is proportional to the
radial velocity vr , indicating that approaching a target in
environments shortens the range and vice versa. Although rd
is also inversely proportional to K , mmWave radars typically
keep a low ramp rate to guarantee its range resolution [24],
making velocity vr the dominant factor distorts a radar’s range
scan.

Although Burnett et al. [8] also discuss the Doppler effect in
radar measurements, their algorithm is designed for spinning
mmWave radars. Since spinning radars cannot measure the
radial velocity due to its progressive data collection mecha-
nism, the velocity is derived from the vehicle’s ego-motion,
whose accuracy has been affected by the Doppler distortion.

C. Doppler Compensation in Radar Sub-Maps

The key idea behind our Doppler compensation method
is that the radial velocity measured by automotive mmWave
radars is resilient to the Doppler frequency shift. Recent
work [7] concludes that the Doppler effect can only shift the
frequency peaks in the range bin rather than their phases.
And the phases are essential to estimate the radial velocity.
Specifically, as shown in Fig. 3, the Doppler FFT utilizes the
phases of the range bins to estimate the velocity. The FFT
outputs provide the phase change rate of the range bins, having
no relationship with the frequency of the IF signals. Thus, the
Doppler effect has no impact on the velocity measurements,
indicating that we can correct the Doppler distortion in each
radar scan by using the radial velocity of each target.

1) Doppler Compensation: Specifically, let p̂ ∈ R3 be
a radar target in Cartesian coordinates, where

(
·̂
)

denotes
the measured data. Given the radar measurements m̂ =(

r̂ , v̂r , φ̂, θ̂
)

, where each variable represents for the range,
radial velocity, azimuth angle, and elevation angle of the
radar target, the Doppler compensated radar target p̂c can be
expressed as:

p̂c
=

(
r̂ −

fc

K
v̂r

)
[cos θ̂ cos φ̂, cos θ̂ sin φ̂, sin θ̂ ]

T. (6)

Therefore, the Doppler-compensated radar scan at time t can
be obtained by compensating the Doppler shift for each radar
target, i.e., P̂c

t = {p̂c
1, p̂c

2, · · · , p̂c
n}, where n is the target

number in the radar scan. Fig. 4 shows such a compensation
process and illustrates the range shift for each radar target.
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Fig. 4. This diagram shows the Doppler compensation operation with
a zoomed-in view. The Doppler compensation is performed in each radar
scan to restore the Doppler distortion. The radar scan after compensation is
highlighted in red. The orange lines represent the range shift rd .

Fig. 5. This diagram shows the radar sub-map construction pipeline. We can
obtain a dense radar sub-map M by aggregating radar scans P̂c

i between
t0 and tk . The transformation matrix Tk

t can be obtained by integrating
instantaneous ego-velocities ϖi in a short period 1ti .

2) Radar Sub-Map Construction: Due to the sparsity of
the point cloud produced by a mmWave radar, it is difficult to
provide sufficient radar targets for metric localization with a
single radar scan. Specifically, in order to get the relative pose
between two radar scans, a data association process is required
to match the repetitive targets in both radar scans. However,
the sparsity of radar measurement deteriorates this process,
making it challenging to attain accurate pose estimations of the
vehicle. To address this issue, we concatenate k consecutive
Doppler-compensated radar scans to get a denser radar sub-
map M by transferring all radar scans sampled between t0 to
tk into the same coordinate (c.f., Fig. 5):

M =

k−1⋃
t=0

Tk
t · P̂c

t , (7)

where Tk
t ∈ SE(3) represents the relative transformation from

radar frame at time t to radar frame at time tk . We denote
such a superposition of point clouds as a Doppler-free radar
sub-map, which is more informative for registration.

In order to get Tk
t , we adopt a progressive scheme by

integrating radar instantaneous ego-velocity1 ϖ introduced
in [25] as follows:

Tk
t =

(k−1∏
i=t

exp (ϖi1ti )

)−1

, t = {0, 1, · · · k − 1} (8)

where 1ti represents the time interval between i th and
i + 1th radar scans. It is noted that when t = 0, Tk

0 is
the transformation between two radar keyframes, which is
regarded as a coarse prediction of the localization result as
discussed in Sec. III-E.2.

1We use the velocity profile (radial velocity over azimuth angles) of the
radar targets to estimate the ego-velocity of the vehicle. Please refer to [25]
for more details.

Fig. 6. The uncertainty estimation for each point (red) with their 5 standard
deviation uncertainty ellipse (gray). The points further away from the radar
(image center) have larger uncertainty ellipses.

D. Uncertainty-Aware Registration

Although the Doppler distortion has been corrected in the
above compensation method, the measured velocities and
ranges still have significant uncertainties due to low-quality
radar measurements, especially when targets are far away
from the radar. These low-quality measurements significantly
reduce the accuracy of metric localization. Uncertainty-aware
registration module addresses this problem by taking the
uncertainty into an optimization framework to find the best
alignment between the live radar sub-map and a pre-built radar
map with minimum matching residuals.

1) Uncertainty Estimation: We first convert the radar’s
raw measurements from spherical coordinates to Cartesian
coordinates for ease of problem formulation. Every point p̂c

k
in radar sub-map M can be formulated as a function of
radar measurements mk =

[
rk, vr,k, φk, θk

]T, in addition with
additive Gaussian noise nk =

[
nr , nvr , nθ , nφ

]T
p̂c

k = f (mk, nk)

≈ f (mk) + Jnk, nk ∼ N (0, 6) , (9)

where f is the coordinate transformation function. 6 = diag
(σ 2

r , σ 2
vr

, σ 2
θ , σ 2

φ ) is the covariance of radar measurement m̂k
in spherical coordinates. In Equation (9), linearization is
conducted to approximate the non-linear function, and J is the
Jacobian matrix of the function f w.r.t. the radar measurements.
The detailed expression of J is demonstrated as follows:

J =
∂f(m, 0)

∂ [r, vr , θ, φ]T

= R

 cθcφ −β · cθcφ −rc · sθcφ −rc · cθsφ
cθsφ −β · cθsφ −rc · sθsφ rc · cθcφ.

sθ −β · sθ rc · cθ 0

 (10)

where c and s represent for cos(·) and sin(·) for brevity. β =
fc
K is the Doppler compensation coefficient and rc = r − βvr
stands for the Doppler compensated radar range measurement.
R ∈ SO(3) is the rotation part of the transformation matrix
in Equation (8). Thus, the uncertainty of the radar target in
Cartesian coordinates can be derived as:

6̂ = J · 6 · JT. (11)

Fig. 6 showcases the uncertainty estimation results of two
radar scans. The gray areas around the measured radar targets
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Fig. 7. The matching results between two radar sub-maps using RSD [26]:
The green and red dots represent the points in the current and previous
radar sub-maps respectively. The Doppler-effect-free radar sub-maps (bottom
row) can achieve more robust matching compared with those with Doppler
distortion (top row).

represent the possible uncertainty areas where the real targets
may appear. As expected, those points further away from the
sensor have larger uncertainties. Our system will punish these
uncertain points by taking the Mahalanobis norm as part of
the optimization objective.

2) Registration: Data association is the primary process for
metric localization. In order to get good association results,
we apply the state-of-the-art Radial Statistics Descriptor
(RSD) [26] designed for radar point cloud to create a unique
descriptor for each point in the sub-map. Then we take the
K-Nearest Neighbor (KNN) algorithm to find coarse associa-
tions based on the RSD. Furthermore, RANSAC [27] excludes
false matches from the initial associations. Fig. 7 shows that
our Doppler-compensated radar sub-maps lead to more robust
associations. The performance gain can be attributed to the
Doppler compensation as the distortion destroys the geometric
relationships between features, leading to inconsistent RSD to
the same point in different sub-maps.

Given the query radar sub-map MQ , and a pre-built radar
sub-map MK , we seek to find the best state x = {q, t}, which
can align the MQ to MK , where q is quaternion, and t ∈

R3 represent rotation and translation, respectively. Assuming
we have N associated radar point pairs, for every point p̂i
in MQ and its corresponding point q̂i in MK , we adopt
Generalized-ICP (GICP) [28] algorithm to get the optimal
x∗. The reason for using the GICP algorithm is that GICP
extends the classical ICP algorithm by utilizing a distribution-
to-distribution [29] matching approach, allowing it to account
for the uncertainty of individual radar targets and weights each
residual in Mahalanobis distance forms, i.e.:

x∗
= arg min

x

1
2

N∑
i=1

eT
i

(
6̂Ki + R {q} 6̂Qi R {q}

T
)−1

ei ,

ei = q̂i −
(
R {q} p̂i + t

)
. (12)

6̂Ki , 6̂Qi are uncertainties of p̂i , q̂i , derived from
Sec. III-D.1. R {q} denotes the rotation matrix corresponding
to q. We solve Equation. (12) using the Levenberg-Marquardt
approach [30]. A Huber robust loss function [31] is also

Fig. 8. Truncated pose graph structure: Each node represents the vehicle’s
state at a time or a sub-map observation at that time, and each edge represents
a loop closure/odometry constraint. After estimating the relative pose of the
current radar sub-map w.r.t.the pre-built map and the previous radar sub-map,
a new state will add to the pose graph. To enhance the robustness, we filter
out those localization results that significantly violate the pose prediction.

integrated to make the loss less sensitive to outliers [32]. The
transformation of the current body frame w.r.t.world frame (the
coordinate when taking the first radar scan) xw

= {qw, tw}

can be expressed as xw
= xw

r ⊞ x∗, with ⊞ denoting the
additive operation between two states, and xw

r is the reference
sensor’s state in the world frame (i.e., the state of the radar
when constructing the pre-built map). For radar localization
uncertainty modeling, we follow the method introduced in [33]
to get the pose uncertainty WQ,K of x, i.e.,

WQ,K ≈

(
∂2 J
∂x2

)−1 (
∂2 J
∂z∂x

)
cov(z)

(
∂2 J
∂z∂x

)T (
∂2 J
∂x2

)−1

,

J =

N∑
i=1

∥q̂i −
(
R {q} p̂i + t

)
∥

2, (13)

z =
[
p̂T

1 , q̂T
1 , · · · , p̂T

n , q̂T
n
]T is a vector consists of point corre-

spondences between Q and K , and its covariance cov(z) is

cov(z) =


6̂K1 0 · · · 0

0 6̂Q1 · · · 0
...

...
. . .

...

0 0 · · · 6̂Qn

 . (14)

E. Truncated Pose Graph Optimization

The above registration process assumes that the input data
is reliable to perform the metric localization. Unfortunately,
due to the dynamic and complex scenes in practice (e.g., in
the presence of dynamic and occlusion objects), there exists
less informative sensing data whose features are erroneous in
space, causing wrong feature associations in radar maps and
leading to large errors in localization. Such occasional but
sudden performance degradation may result in fatal accidents
in safety-critical applications such as autonomous driving.
To improve the robustness of our system, we employ a trun-
cated pose graph optimization scheme and devise a constraint
validation criterion to detect and recover registration failures
when there are less informative data.

1) Pose Graph Optimization: As illustrated in Fig. 8,
we construct a local pose graph by incorporating loop closure
and odometry constraints. Specifically, odometry constraints
represent the relative transformation between two consecutive
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radar frames, while loop closures represent the transformation
between live radar scans and a pre-built radar map. All of
the transformations are obtained according to Equation (12).
We define the full state vector in the pose graph as:

X = [x0, x1, · · · xn] ,

xi =
{
qw

i , twi
}
, i = {0, 1, 2, · · · , n} , (15)

where each state in the pose graph is expressed in the world
frame. The relative pose estimation between states xi and x j

is denoted as
{

q̂i
j , t̂i

j

}
, which is derived from Sec. III-D.2.

We denote the uncertainty of this relative pose as Ŵi, j .
Given the states xi , x j in the pose graph, and their relative
pose estimates, we can add a factor into the pose graph by
calculating the following residual:

ri, j

(
twi , qw

i , twj , qw
j

)
=

 R
{
qw

i
}−1

(
twj − twi

)
− t̂i

j

2
[(

qw
i
)−1

⊗ qw
j ⊗

(
q̂i

j

)−1
]

xyz

 ,

(16)

where [·]xyz indicates the vector part of a quaternion. We incor-
porate all the edges in the pose graph to construct the pose
graph as shown in Fig. 8. Here we denote all the edges between
consecutive states xi−1, xi in X as O, with 0 < i ≤ n.
We put the edges between state xi and its corresponding loop
closure state xk into a set denoted as L. It is noted that loop
closure state xk is a constant vector and does not change in the
subsequent calculations. All the states in the pose graph can
thus be optimized by solving the following objective function:

X = arg min
X

∑
i∈O

ωi−1,i
∥∥ri−1,i

∥∥2
Ŵi−1,i

+

∑
(k,i)∈L

ωk,i
∥∥rk,i

∥∥2
Ŵk,i

, (17)

where ω ∈ {0, 1} is a binary state, denoting the validity of
each factor in the pose graph.

2) Truncate Outliers: The key idea to improving the robust-
ness of the system is to truncate invalid edges from the pose
graph so that the pose graph will not optimize in the wrong
direction. The basic idea to determine the validity of an edge
is that the problematic radar scans will result in large pose
estimation errors, denoted as T̂i−1

i , in Sec. III-D.2. They are
very likely to exhibit an obvious violation to the predictions
of ego-velocity integration, denoted as T̄i−1

i , in Sec. III-C.2.
Below is the formulation for determining the validity of a mea-
surement constraint. With ego-velocity integration estimation
T̄i−1

i from Sec. III-C.2 and GICP estimated transformation
T̂i−1

i , (i − 1, i) ∈ O and T̂k
i , (k, i) ∈ L from Sec. III-D.2,

we have

1ξi−1,i = log
((

T̂i−1
i

)−1
T̄i−1

i

)∨

,

1ξk,i = log
((

T̂w
k

)−1
T̂w

i−1T̄i−1
i

(
T̂k

i

)−1
)∨

,

(18)

where ∨ means converting skew-symmetric matrix to vector,
and

{
1ξi−1,i , 1ξk,i

}
∈ se(3) represents relative pose devia-

tions in Lie Group. We can further determine the validity of

both odometry and loop closure constraints by adopting the
Chi-Squared test [34]:

De = (1ξe)
T W−1

e (1ξe) ,

ωe =

{
1 if De < Te

0 if De ≥ Te
, (19)

where We represents the uncertainty of each registration result
introduced in Sec. III-C.2. ωe denotes the validity of each
constraint. Te is the acceptance threshold based on the Chi-
Squared test with a significance level of 95%, which is a
widely accepted threshold [35] because it enables effective
filtering of localization anomalies while avoiding excessive
false positives. The logic behind this criterion is that we
expect that the pose estimation from a decent registration
should not disagree with the pose prediction from ego-velocity
integration too much. If some nodes lose edge connections
after truncating, we use the integration of ego-velocities
for compliments. Such a failure rejection mechanism makes
DC-Loc++ resilient to single registration failures.

IV. EVALUATION

Two datasets are used to evaluate the performance of
DC-Loc++, including the real-world nuScenes dataset [11]
and a synthetic dataset generated from the CARLA simula-
tor [12]. In Sec. IV-A, we compare DC-Loc++ with other
mmWave radar-based metric localization methods. Then we
perform an ablation study to reveal the functionality of each
module and discuss the selection of the radar scans for the sub-
map construction. In Sec. IV-B, we investigate the robustness
of DC-Loc++ under different velocity and noise settings on
the synthetic CARLA dataset. In Sec. IV-C, we assess the real-
time performance of the system by evaluating the efficiency
of each module in DC-Loc++.

A. Performance Evaluation on nuScene

1) nuScenes Dataset: The nuScenes is an autonomous driv-
ing dataset collected by a 32-beam lidar, 5 cameras, 5 radars,
and a GPS/IMU. The dataset has 242 km driving data in
total at an average speed of 16 km/h. The radar used in
this collection is the Continental ARS408-21 LRR automotive
radar. This radar has a sampling rate of 13 Hz, 250 m sensing
range, 0.39 m range resolution, 4.4◦ horizontal beamwidth,
and 3.2◦ azimuth resolution. These settings are representative
of today’s automotive radars operating in the frequency band
76 ∼ 77 GHz. To obtain the sub-map pairs for evaluation,
a place recognition process is typically required for loop
closure detection. The optional place recognition algorithms
include M2DP [36], AutoPlace [37], etc. However, since the
place recognition algorithm is not our contribution, we resort
to a simplified implementation, i.e., the k-nearest neighbors
algorithm, that uses the ground truth locations for the loop
closure detection.

Besides, since the “Truncated Pose Graph Module”
(c.f. Sec. III-E) needs multiple states and observations for
pose graph construction, we only select the scenes with at
least 3 sub-map pairs for testing.
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Fig. 9. Performance comparisons on the nuScenes dataset. Top row: mean
translation and orientation error. Bottom row: cumulative distribution function
(CDF) of localization results.

In total, 11, 995 pairs of radar sub-maps are found valid for
our purpose of metric localization.

2) Overall Performance on nuScenes: We compare our
approach with 4 SOTA radar metric localization methods,
including direct methods (convention ICP [21] and submap
NDT [38]), and feature-based method (MC-RANSAC [8] and
DC-Loc [10]). Note that the SOTA joint-Doppler-based NDT
approach [39] is designed for odometry rather than metric
localization. Thus we implement a grid-based NDT [38] for a
fair comparison. Besides, since automotive radars do not have
motion distortion, hence we only take the Doppler compensa-
tion module in MC-RANSAC for comparison. All methods use
the radar sub-maps constructed by 10 consecutive radar scans.
We set the same threshold of the translation error (2.0 m)
and rotation error (5◦) to distinguish inliers and outliers for
each method and only keep those inliers overall methods for
performance analysis.

For ease of visualization, we present the results by group-
ing the velocity differences between two sensors and their
corresponding translation and rotation errors on average.
We compute the relative translation error (RTE2) and the
relative rotation error (RRE3) for every method. In addition,
we regard the pose as a successful estimation only if the RTE
and RRE are below 2.0 m and 5◦, and we use success rate
(SR4) [2] to evaluate the stability of each method.

Fig. 9 shows that the RTE of ICP and NDT tends to
grow larger as the velocity difference between the two

2RTE =

(
1
m
∑m

i=1 ∥trans(Ei )∥
2
) 1

2 , where Ei is the relative transforma-
tion errors.

3RRE =

(
1
m
∑m

i=1
̸ (rot (Ei ))

)
, where ̸ (·) represents for the degree of

the rotation part in Ei .
4SR = Results_wi thin_thresholds/All_results.

TABLE I
LOCALIZATION RESULTS ON THE NUSCENES DATASET

sensors increases. We attribute their poor performance to the
lack of addressing Doppler distortion and sparse radar outputs.

Notably, a sharp decrease is observed in RRE when the
velocity differences are large (≥8m/s). This is because ICP
and NDT are sensitive to large transformations between the
coordinate frames of radar scans. In other words, their metric
localization accuracy substantially degenerates in the presence
of large variations between live and pre-built radar maps.
By investigating the transformations over different velocities
in the nuScenes dataset, we find that the variations between
radar sub-maps for high-velocity differences (≥8 m/s) are
substantially more minor, leading to better performance in the
registration process.

MC-RANSAC achieves better performance compared with
ICP and NDT, owing to its attempts to handle the Doppler
effects. However, its accuracy is still inferior because it cannot
completely correct the Doppler distortion without velocity
observations. Thus, distorted radar sub-maps are used by the
MC-RANSAC in metric localization. DC-Loc has the closest
performance to our work. However, it lacks the capability
to handle localization failures, making it vulnerable to less
informative radar measurements. Moreover, when velocity
differences surpass 8m/s, both MC-RANSAC and DC-Loc
experience a deteriorated performance due to degenerated
motions. Specifically, sub-map pairs with a large velocity
difference (≥8 m/s) are often collected at crossroads where a
vehicle can be stationary at traffic lights in one instance and
move at regular speeds in another instance. Since successive
radar scans barely change when the vehicle is stationary,
combining such radar scans will not provide additional infor-
mation, making the sub-map remain spatially sparse. Recall
that MC-RANSAC and DC-Loc are based on a descriptor-
based registration method (RSD descriptor). The sub-map’s
sparsity highly degrades the descriptor’s performance, leading
to an accuracy decline in registration.

As shown in Table I, DC-Loc++ outperforms the compared
methods in terms of all the metrics of interest. It reduces
44.1%, 20.8% average translation errors, and 25.3%, 17.7%
average orientation errors compared with MC-RANSAC and
DC-Loc, respectively. Furthermore, DC-Loc++ achieves a
9.0% improvement in the success rates and a lower variance
compared with other works, as shown in Fig 10, indicating
its ability to handle data association failures. The results
demonstrate the superiority of DC-Loc++ in dealing with the
Doppler effect and less informative radar measurements.

3) Ablation Study: We next investigate the individual con-
tribution of each module in DC-Loc++. Table II shows the
quantitative breakdowns.
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Fig. 10. Quantitative analysis on nuScenes dataset. (a) and (b) are the RTE and RRE of each method. DC-Loc++ has the lowest median error and variance
compared with other methods.

TABLE II
ABLATION STUDY ON NUSCENES DATASET. ABBREVIATIONS: DOPPLER

COMPENSATION (D.), UNCERTAINTY ESTIMATION (U.),
TRUNCATED POSE GRAPH OPTIMIZATION (T)

• Doppler Compensation (c.f. Sec. III-C): We can see
that the proposed Doppler compensation alone can sig-
nificantly improve the average translation and rotation
estimation performance. The mean and median translation
errors have been reduced by 20.8% and 33.9%. Such
performance is slightly better than SOTA Doppler com-
pensation solutions [10]. The barrier that prevents further
accuracy improvement is the unreliability of mmWave
sensing.

• Uncertainty Estimation (c.f. Sec. III-D): To better han-
dle the unreliability of mmWave radar, we estimate the
measurement uncertainty and take it as a confidence
weight to the point cloud. Intuitively, our solution gives
more weight to those points with small uncertainties. This
treatment leads to 9.4% and 6.7% error reductions in
translation and rotation estimation. However, tracking the
measurement uncertainty and the Doppler compensation
above cannot improve the success rate of metric local-
ization. The failure cases (about 9.8% of trials) are due
to the incorrect data associations from less informative
radar scans.

• Truncated Pose Graph Optimization: (c.f. Sec. III-E):
Clearly, the truncated pose graph optimization alone can
raise the success rate to 98.8%, making our system
insensitive to less informative outliers. It is attributed to
the multi-frame constraints and our edge validity determi-
nation schemes, which can mitigate the adverse impacts
of localization anomalies (failure edges) in the pose graph
and use other valid edges to ensure localization reliability.

In a nutshell, the proposed modules have complementary
functionalities. Specifically, the Doppler compensation module
significantly improves localization accuracy by correcting the
Doppler distortions. The uncertainty estimation module can

TABLE III
LOCALIZATION ERRORS ON NUSCENES DATASET WITH DIFFERENT

NUMBERS OF CONCATENATED RADAR SCANS

further improve the accuracy of the system by accounting for
the uncertainty of each radar target. The truncated pose graph
optimization module enhances the robustness by correcting
metric localization anomalies. So there is no doubt that the best
performance is achieved by using three modules in tandem.

4) Choice for the Number of Concatenated Radar Scans:
The number of radar scans used for sub-map construction
affects the accuracy and efficiency of the system. In order
to determine the optimal number of radar scans for sub-map
construction, we test DC-Loc++ with different numbers of
radar scans. As shown in Table III, the optimal performance
can be achieved when concatenating 10 successive radar scans.
When we use fewer than 10 radar scans, the radar sub-maps
cannot provide adequate radar targets required for data asso-
ciation, degrading the performance. In contrast, concatenating
excessive radar scans (≥ 10) will introduce higher cumulative
noise levels and increase the computational cost, leading to a
notable reduction in localization accuracy and efficiency. Thus,
using 10 successive radar scans for sub-map construction is
optimal for both the accuracy and efficiency of the system.

B. Robust Analysis on CARLA

Most of the nuScenes dataset is collected at low ego-
velocities, and the parameters of the onboard radar cannot
be changed either. Therefore, it can hardly comprehensively
demonstrate the robustness of our method in various settings.
To fully understand the robustness under various ego-velocities
and noise models, we synthesize more data by tuning radar
parameters through the CARLA simulator.

1) Data Collection: Specifically, a car with a forward-
facing radar is rendered in our experiment to collect data for
localization. The maximum detection range and the radar’s
field of view (FOV) are set to be 100 m and 150◦, respectively.
To examine different noise models of radar measurements,
we generate four datasets with the noise following Gaussian
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Fig. 11. The median translation and rotation errors on the CARLA dataset with different noise models. From left to right: Gaussian noise, Gamma noise,
Student noise, and Rayleigh noise.

TABLE IV
NOISE MODELS IN THE SYNTHETIC CARLA DATASET

distribution, Gamma distribution, Student’s t-distribution, and
Rayleigh distribution, respectively. In particular, the noise to
the range, angle, and velocity measurements are listed in
Table IV. We simulate the Doppler effect with fc

K = 0.04
(c.f. Equation (5)), following the technical parameters of
ARS408-21. We conducted two rounds of radar data collection
to create the sub-map pairs for metric localization. The average
speed of the former is 72 km/h, and the latter is 40 km/h,
featuring a larger ego-velocity difference than that of nuScenes
(around trifold larger). After applying the k-nearest neighbors
algorithm for the loop closure detection, 3,130 pairs of loop
closures are eventually created for evaluation.

2) Robust Analysis: We compare our approach with
MC-RANSAC [8] and DC-Loc [10] on the aforementioned
synthetic dataset and plot the median translation and rotation
errors in Fig. 11. As we can see, the translation and rotation
errors of MC-RANSAC (the baseline second to the best on
nuScenes) have a pronounced tendency to increase as the
differences between ego-velocities become larger. In contrast,
DC-Loc++ is robust to the Doppler effect and achieves
a consistent performance under variant ego-velocities. Fur-
thermore, our method has good stability under the effect
of different types of noise. Specifically, DC-Loc++ can
outperform the MC-RANSAC by reducing 51.9%, 53.4%,

52.7%, 37.5% translation errors and 29.8%, 31.0%, 23.9%,
53.2% rotation errors with Gaussian noise, Gamma noise,
Student’s noise, and Rayleigh noise, respectively. In addition,
compared with our previous work [10], we can achieve 15.1%,
11.8%, 12.3%, 13.4% translation improvement, and compa-
rable orientation performance with noise described above.
A localization trajectory is presented in Fig. 12. We can
observe that DC-Loc [10] and MC-RANSAC [8] produce a
zigzag trajectory and even fail in localization occasionally.
In contrast, DC-Loc++ bounds the localization error within
0.48m, which means our method can achieve a more robust
and accurate localization performance. This can be attributed
to DC-Loc++’s capability of utilizing multi-frame constraints
and correcting localization failures.

C. Efficiency Evaluation

To assess the time cost of our proposed radar localiza-
tion system, we measure the computation efficiency on both
nuScenes dataset and the synthetic Carla dataset. More than
15,000 radar corresponding pairs are fed into our system.
All the experiments are conducted with an Intel i5-10300H
CPU operating at 2.5GHz, and the average time cost of
each module is presented in Table V. The total time cost
for every estimation is 260.1ms, and the whole system runs
at 3.85 Hz on average. Since the ARS408-21 FMCW radar
operates at 13 Hz, our implementation is currently not real-
time capable. However, we can use inter-frame ego-velocities
to predict the poses, leading to an equally real-time perfor-
mance at approximately 17.7 Hz. Although such an operation
may compromise localization accuracy to some extent, the
“Truncated Pose Graph” module (c.f. Sec. III-E) can refine
the results at the arrival of the next radar sub-map.
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Fig. 12. Qualitative results of DC-Loc++ on synthetic Carla dataset, includ-
ing zoomed views at square areas. As the metric localization errors are rela-
tively smaller than other localization tasks (e.g., odometry), we omit the full
trajectory of the compared methods and only plot part of them in the zoomed
views for better visualization. We can observe that DC-Loc++ achieves a
more robust performance than other methods by detecting and recovering
localization failures (top left). Moreover, DC-Loc++ provides a more smooth
and more accurate trajectory by using Doppler compensation and uncertainty
estimation algorithms (top right).

TABLE V
TIME CONSUMPTION ON EACH MODULE

In DC-Loc++, the “Uncertainty-aware Registration” mod-
ule (c.f. Sec. III-D) is the most time-consuming module where
the bottleneck is the iterative process of finding corresponding
inlier pairs between radar scans. We believe a more efficient
implementation can be achieved by adopting some specialized
outlier rejection algorithms e.g., [40]. We leave the imple-
mentation of such algorithms as future work and will not
discuss them further in this paper. It is worth noting that
the truncated pose graph module can significantly enhance the
overall estimation accuracy and robustness with only marginal
time (0.7ms) in computation, which is very cost-efficient for
the whole system.

V. CONCLUSION

In this paper, an automotive radar-based framework
DC-Loc++ is proposed to tackle the fundamental problems
of the Doppler effect and noisy radar measurements in radar
metric localization. We first propose an explicit Doppler
compensation method in the radar mapping process to combat

Doppler distortion in radar scans. Then we model the uncer-
tainty of each radar target, taking into account both range
and Doppler velocity variance to mitigate the impact of radar
artifacts. Finally, a truncated pose graph optimization scheme
is designed to detect and recover individual localization fail-
ures to make our method more reliable. Extensive experiments
using the real-world data from nuScenes and the synthetic data
from CARLA demonstrate the effectiveness of our method in
a variety of scenarios by reducing more than 20.0% and 30.2%
errors in terms of translation and rotation.

In our future work, we will improve the computational
efficiency and localization accuracy of the proposed method.
In addition, we will integrate our method into an automotive
radar-based SLAM system.
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