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On the Joint Optimisation of Energy Harvesting and
Sensing of Piezoelectric Energy Harvesters: Case

Study of a Cable-Stayed Bridge
Patricio Peralta-Braz, Mehrisadat Makki Alamdari, Elena Atroshchenko, Mahbub Hassan

Abstract—Piezoelectric Energy Harvesters (PEHs) are typically
employed to provide additional source of energy for a sensing
system. However, studies show that a PEH can be also used as a
sensor to acquire information about the source of vibration by
analysing the produced voltage signal. This opens a possibility
to create Simultaneous Energy Harvesting and Sensing (SEHS)
system, where a single piece of hardware, a PEH, acts as both, a
harvester and as a sensor. This raises a question if it is possible
to design a bi-functional PEH device with optimal harvesting and
sensing performance. In this work, we propose a bi-objective PEH
design optimisation framework and show that there is a trade-
off between energy harvesting efficiency and sensing accuracy
within a PEH design space. The proposed framework is based on
an extensive vibration (strain and acceleration) dataset collected
from a real-world operational cable-stayed bridge in New South
Wales, Australia. The bridge acceleration data is used as an input
for a PEH numerical model to simulate a voltage signal and
estimate the amount of produced energy. The numerical PEH
model is based on the Kirchhoff-Love plate and isogeometric
analysis. For sensing, convolutional neural network AlexNet
is trained to identify traffic speed labels from voltage CWT
(Continuous Wavelet Transform) images. In order to improve
computational efficiency of the approach, a kriging metamodel
is built and genetic algorithm is used as an optimisation method.
The results are presented in the form of Pareto fronts in three
design spaces.

Index Terms—Piezoelectric Energy Harvester, Simultaneous
Energy Harvesting and Sensing, Cable-stayed Bridge, Multi-
objective Optimisation, Kriging Surrogate Model

I. INTRODUCTION

While the primary function of piezoelectric energy har-
vesters (PEHs) is to produce electricity from various vibration
sources, there is a growing interest to use the same device
as a sensor to detect various environmental contexts. For
example, researchers have recently demonstrated that attaching
a PEH to a wearable device can not only generate electricity
from human activities, but the generated electrical signal
can also be directly used as a signature to characterise the
activity, i.e., running, walking, jumping [1]–[3]. Similarly,
attaching the PEH device under a vibrating bridge not only
generates electricity from the bridge vibrations, the generated
voltage responses can be used to characterise events of interest
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such as detecting times of vehicle’s entry and exist of the
bridge [4], identifying train passages [5] or even identifying
bridge damage [6]. A key benefit of using a PEH as a sensor is
that it eliminates the need for a separate dedicated sensor, such
as an accelerometer or strain gauge, and hence the produced
energy can be utilised to more efficiently power other parts
of the system, e.g. a transciever, which can be used to send
data to the cloud. This concept was coined as Simultaneous
Energy Harvesting and Sensing (SEHS) system in [2].

For a PEH device to act as an effective sensor, it has
to be designed with the dual purpose of achieving efficient
energy harvesting as well as high sensing accuracy. Although,
significant progress has been made in designing efficient PEH
from the energy harvesting point of view [7]–[9], little is
known about the impact of PEH design parameters, such as
its geometrical shape, on its sensing performance.

In this work, we explore various PEH design spaces to
understand the impact of design configurations on both energy
harvesting as well as sensing accuracy. In the first study, we
consider six different shapes of a cantilever-type PEH fed
by an extensive vibration dataset collected from a large-scale
operating cable-stayed bridge. The parametric study reveals
that both energy harvesting efficiency and sensing accuracy
depend significantly on the shape of the PEH, and there exist a
trade-off between the harvesting and sensing performances. In
the next step, we propose a joint optimisation framework and
show that optimal design configurations form a Pareto front,
which can be used by a designer to compromise between two
objectives in each specific application.

The contributions of this paper can be summarised as
follows:

1) Using real field datasets from an operating cable-stayed
bridge, we make the first attempt in exploring the impact
of PEH geometry on both energy harvesting and sensing
accuracy in the context of a vehicle speed estimation.

2) We present a deep learning framework to evaluate the
vehicle speed sensing performance of PEHs with various
designs.

3) We report evidence, for the first time, that there are
design trade-offs between energy harvesting and sensing,
i.e., PEH designs that provide peak energy do not
provide peak sensing accuracy.

4) We propose a design optimisation framework to ef-
ficiently tackle the selection of PEH geometries that
address the trade-off between their energy harvesting and
sensing performances. This multi-objective formulation
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ultimately leads to a manifold of geometries (Pareto
front).

The rest of the paper is organised as follows. The cable-
stayed bridge studied in this work is presented in Section II.
In Section III, the theoretical framework of the PEH model
is explained. Next, the deep learning framework to infer the
vehicle speed on a bridge using a PEH is presented in Section
IV, and its implementation and analysis are shown in Section
V. Next, results are presented in Section VI to evaluate the
trade-off between energy harvesting and sensing performances
of a PEH. Finally, a bi-objective optimisation framework is
presented and implemented on an illustrative case in Section
VII before concluding the paper in Section VIII.

II. CASE STUDY: A CABLE-STAYED BRIDGE

The study will be carried out on a cable-stayed bridge
located over the Great Western Highway in the state of New
South Wales (NSW), Australia (Fig. 1). The bridge has one
traffic lane and one pedestrian lane with a maximum loading
capacity of 30 tons. Although vehicles can travel in both
directions, only traffic flow in the south-north direction is
considered in this work. The bridge’s deck is supported by
four longitudinal girders, which are internally attached by
seven cross girders (CGs), see Fig. 2. The bridge has an array
of sensors installed under the deck, including accelerometers
and strain gauges. For the purpose of this study, one ac-
celerometer sensor (A1) and two pairs of strain gauge sensors
(SS1:SS4), as shown in Fig. 2, are adopted. These sensors
continuously measure the bridge’s dynamic response at a
sampling frequency of 600 Hz. The data collected from the
accelerometer A1 will be employed to estimate the potential
harvested energy from the passing traffic, and further infer
the corresponding traffic speed. Additionally, the two pairs
of strain gauge sensors are used to estimate the ground-truth
velocity and consequently label samples in the training and
testing database used for the Neural Network (NN) model. The
vehicle speed is independently estimated from strain gauge
sensors SS1-SS2 and SS3-SS4. As the sensors are installed at
known distances under the bridge span, the time difference
that one vehicle’s axle travels from one sensor to another
allows for estimating the vehicles’ speed (see [10] for more
details). Although, only one pair of sensors can be used for
speed estimation, in this work, we use the average between
two pairs to improve the reliability of the results.

III. PEH IGA MODEL

Several models to estimate the dynamic response of a
cantilever-type piezoelectric harvester exist in the literature. In
this work, we use the model based on the Kirchhoff-Love plate
theory and Hamilton’s principle for electro-mechanical bodies,
solved numerically by the IsoGeometric Analysis (IGA). The
model was proposed in [8] and was shown to be highly
accurate at reasonable computational cost. A schematic of a
PEH is shown in Fig. 3. The device is assumed to have a
rectangular shape with width W and length L, consisting of
a substructure layer of thickness hs and two piezo-electric
layers of thickness hp (such configuration is called bimorph),

Fig. 1. Cable-stayed bridge located in the state of NSW, Australia [11].
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Fig. 2. Illustration of the sensors under the deck. The length and width of
the deck are 46.22 [m] and 5.5 [m], respectively. The distance between the
strain sensors is 3.975 [m]

mounted on a vibrating base. To simplify all the subsequent
studies, only the impact of the parameters L and W on energy
harvesting and detection accuracy will be analysed. This
means that these parameters are considered design variables,
while the material parameters and thicknesses hs and hp are
assumed to be constant.
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Fig. 3. Illustration of the piezoelectric energy harvester, modeled as a
cantilever plate, consisting of two piezoelectric layers and one substructure
layer.

According to the IGA, B-Splines NI are used to pa-
rameterise the device’s domain and approximate the relative
deflection w. We further use Modal Order Reduction approach,
which consists of approximating w by a truncated expansion
of the first K mode shape vectors w ≈ wo = Φoη. Here,
Φo ∈ RN×K is the matrix which contains the K first mode
shape vectors φi and η ∈ RK×1 denotes the modal coordi-
nates. Therefore, the procedure leads to a coupled system of
differential equations of the form

η̈ + coη̇ + koη − θov(t) = foab(t) (1)



3

Cpv̇(t) +
v(t)

Rl
+ ΘTΦoη̇ = 0 (2)

where the equation (1) corresponds to the reduced mechanical
equation of motion with electrical coupling, while the equation
(2) corresponds to the reduced electrical circuit equation with
mechanical coupling. Here, ko ∈ RK×K is the reduced
stiffness matrix, co ∈ RK×K is the reduced mechanical
damping matrix, fo ∈ RK×1 is the mechanical forces vector,
Θ ∈ RN×1 is the reduced electro-mechanical coupling vector,
θo ∈ RK×1 is the electro-mechanical coupling vector; Cp

is the capacitance and Rl is the external electric resistance;
ab(t) is the base acceleration and v(t) is the output voltage;
dots denote derivatives with respect to time t. This model was
studied in detail in [12].

In a particular case when the base acceleration is a harmonic
signal, i.e. ab(t) = Abe

iωt, one can show that the output volt-
age is also harmonic, i.e. v(t) = Vo(ω)eiωt (where i =

√
−1),

and the Frequency Response Function (FRF), H = H(ω), can
be defined to relate the amplitudes of the output voltage Vo(ω)
and the excitation acceleration Ab for a specific frequency ω
from the equations (1) and (2):

H = H(ω) =
Vo(ω)

Ab
= iω

(
1

Rl
+ iωCp

)−1
ΘTΦo×(

−ω2Io + jωco + ko + iω

(
1

Rl
+ iωCp

)−1
θoΘ

TΦo

)−1
fo

(3)

From the differential equations (1) and (2), it is also possible
to estimate the voltage signal in time when the piezoelectric
device is subjected to an arbitrary base acceleration ab(t),
which in this study represents the acceleration measured from
a vibrating bridge as a result of passing traffic. The system of
differential equations can be written in its state-space form as

Ż = A · Z + b · ab(t) (4)

where

Z =

ηη̇
v

 ,A =

 0 1 0
−ko −co θo

0 −ΘT Φo

Cp
− 1

Cp·Rl

 ,b =

0
fo
0


Simulink ode45 solver is used to solve this system for v(t).

In what follows, we will investigate how the solution of system
(4) depends on the geometric parameters: length L and width
W . To emphasise that the output voltage v(t) is obtained for a
specific geometry x, where x = {L} or x = {L,W}, we use
notation v(t) = v(t,x). The corresponding electrical energy,
E(x), generated in time interval t ∈ [t1, t2], can be calculated
from the following equation:

E(x) =

∫ t2

t1

v2(t,x)

Rl
dt (5)

Therefore, based on the framework detailed in this section,
one can obtain the voltage generated by a PEH in response
to the passage of a vehicle over the bridge, characterised by
the base acceleration ab(t). In the next section, a procedure

to obtain the speed of a moving vehicle from the acquired
voltage signal v(t) is presented.

IV. DEEP LEARNING APPROACH

In this section, a deep-learning-based framework is pre-
sented to infer a passing vehicle’s speed from the voltage
signal generated by a PEH installed under the bridge. In
previous work, Zhou et al. [13] presented a methodology
to infer vehicle speed using the acceleration signal response
of bridges purely. In the present work, this methodology is
adapted and validated, incorporating the generated voltage
signal from a PEH as the primary information source to infer
the vehicle’s speed.

As indicated in Fig. 4, two main parts can be identified in
this framework: sample generation and Convolutional Neural
Network (CNN) training and testing. Sample generation pro-
cedure consists of the following four steps:
1. From the continuous bridge response database, the time
window corresponding to a passing vehicle, which we call an
event, is extracted. An event is defined based on the threshold
criteria, i.e. the acceleration magnitude exceeding 0.15 m/s2

indicates the presence of an event. The cases with multiple
vehicles are not considered. Each event is taken to be 25
second. This selection is based on the span length of the
bridge under investigation, and the min-max speed range on
this bridge. An event is extracted in such a way, that the peak
is always located at 10 seconds, i.e. the peak is identified first,
then the time window starting 10 second before the peak and
ending 15 second after the peak is considered. For each event,
we extract the acceleration and strain signals.
2. The acceleration signal of an event is then used as a base
acceleration input ab(t) in the PEH IGA model, described
in Section III and the corresponding voltage signal v(t) is
obtained.
3. For each event, the vehicle speed label is assigned from
the strain measurements following the procedure explained in
[10].
4. The raw time signal of the voltage v(t) is post-processed
using the time-frequency analysis. Continuous Wavelet Trans-
formation (CWT) with Morlet Wavelet is employed, following
the recommendation in [13], and the corresponding CWT
image is generated.

The second part of the methodology is the Convolutional
Neural Network (CNN) for training and testing. To this aim,
the first step is to build a database following the procedure
of sample generation. The data is divided into two sets for
training and testing, respectively. The selected architecture for
CNN in this paper is AlexNet [14] due to its excellent ability to
extract local and multilevel features in different applications,
and its successful implementation in vehicle classification in
earlier work [13]. AlexNet consists of eight layers, where the
first five are convolutional layers, (some of them followed by
max-pooling layers), and the last three are fully connected
(FC) layers, as shown in Fig. 5. AlexNet requires a vast
database for its training; for this reason, in [13] a Transfer
Learning method [15], [16] was proposed to reduce the size
of the required databases. In this method, an alternative data
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Fig. 4. Overview of deep learning framework comprised of two main parts:
sample generation, and Convolutional Neural Network (CNN) training and
testing.

is used to train lower-level layers, which are responsible for
extracting the generic features of the input data. While the
real data is used to train the last layers, which carry out
the classification task. Finally, the trained model accuracy is
estimated using the testing dataset.

V. SENSING ACCURACY

In this section, the methodology proposed in section IV is
implemented and analysed. In order to use a PEH as a sensor,
we expect its sensing accuracy (i.e. the accuracy of traffic
speed labelling based on voltage signal v(t)) to be compara-
ble with the accuracy of acceleration-based sensing (i.e. the
accuracy of traffic speed labelling based on bridge acceleration
signal ab(t)). Hence, we first conduct a preliminary study (A),
where the proposed sensing framework is applied to bridge
acceleration events directly, and its accuracy is assessed. In
the next study (B), we consider six configurations of PEHs,
corresponding to six various values of length L, while all other
parameters are kept constant, and label the speed of passing
traffic based on the voltage signals produced by the PEHs.

For each event, time-frequency analysis using CWT is
performed to obtain two-dimensional time-frequency images,
either for acceleration signal in case (A) or for voltage signal in
case (B). For the sake of consistency, all images are produced
considering a time limit of [5, 25] seconds and a frequency
limit of [0, 200] Hz.

In each implementation, the database is divided randomly
into two sets for training and testing processes, containing 70%
and 30% of the data, respectively. Also, the training-testing
process is performed multiple times to reduce the stochastic
factors. A total of 1265 samples are considered, which are
classified into three different labels, as presented in Table I.

A. Benchmark Case: acceleration-based sensing

In this section, we present results for the acceleration-based
sensing, which will serve as a benchmark for the voltage-based
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Fig. 5. The architecture of the adopted CNN AlexNet [14].

TABLE I
DEFINITION OF THE CLASSIFICATION LABELS

Label Definition # Samples
30 km/h speed∈[30, 38] km/h 649
40 km/h speed∈[42, 48] km/h 490
50 km/h speed∈[50, 60] km/h 126

sensing. The results obtained from this study are compared
with counterpart results reported in the literature performed
on an experimental setup in a laboratory [13].

An example of an event and the corresponding CWT image
are shown in Fig. 6a and 6b, respectively.

The training process is carried out five times, to reduce the
impact of random factors, where, each time, 70% of the data is
randomly extracted for training. In Fig. 7a and 7b, the accuracy
and loss curves for five training processes are, respectively,
presented. From these figures, it can be seen, that the loss
continuously decreases across the epochs, and the accuracy
tends to converge to 100% at about 50 epochs. Furthermore,
Fig. 7c presents the accuracy obtained from the testing dataset.
The average accuracy of the five testing sets is 92.1%, which
is quite good compared to 92.9% - 98.8%, reported in [13]
using experimental data in contrast to field data used in the
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Fig. 6. (a) An arbitrary acceleration time window induced on the bridge by
a passing vehicle. (b) The corresponding CWT image.

present work. Additionally, the confusion matrix of the testing
set 5 is presented in Fig. 7d.

10

20

30

40

50

60

70

80

90

100

T
ra

in
in

g 
A

cc
ur

ac
y 

[%
]

0

0.5

1

1.5

2

2.5

3

3.5

4

Tr
ai

ni
ng

 Lo
ss

Epoch

10

20

30

40

50

60

70

80

90

100

T
es

tin
g 

A
cc

ur
ac

y 
[%

]

Training 1 Training 2 Training 3 Training 4 Training 5

187

8

0

5

136

6

0

3

35

95.9% 92.5% 92.1% 94.2%

97.4%

92.5%

85.4%

30
 km

/h

40
 km

/h

50
 km

/h

True

30
 km

/h

40
 km

/h

50
 km

/hPr
ed

ic
t

0 20 40 60 80 100

Epoch
0 20 40 60 80 100

Epoch
0 20 40 60 80 100

(a) (b)

(c)
(d)

Fig. 7. (a) Accuracy in the training process. (b) Loss in the training process.
(c) Accuracy on the testing data across the training process. (d) Confusion
matrix in the testing set 5.

B. Study Case: voltage-based sensing

In this section, the full framework proposed in section IV
is employed for six different PEH designs. The materials of
the devices are PZT5A and bronze [8]. Although materials
affect the dynamic behaviour of devices and could affect
detection performance, the focus of this research is to study the
impact of device shape. The devices share the same geometric
parameters, except for the length L, which is taken as 5, 10,
15, 20, 25, and 30 cm. Meanwhile, the width W , piezoelectric
thickness hp and substructure thickness hs are 5 cm, 0.25 mm
and 0.50 mm, respectively. Other important considerations for
the PEH model is that the external electrical resistance is taken

as Rl = 100Ω, and the damping coefficients are assumed to
be α = 14.65 rad/s and β = 10−5 rad/s [8].

Fig. 8 presents the FRFs of the six studied devices, where
the effect of varying the length L on the dynamic response
can be seen, i.e. the resonant frequencies vary as function of
the length L. Moreover, as L increases, the device tends to be
more flexible with more modes appearing in the range of 0 -
200 Hz. In fact, the selection of the six PEHs for this study is
based on the significant differences in their FRFs, which, as
will be discussed later, result in variations in the CWT images
that are directly related to sensing accuracy.
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Fig. 8. Frequency Response Functions of the six devices with length of (a)
5 cm (b) 10 cm (c) 15 cm (d) 20 cm (f) 25 cm (g) 30 cm.

The neural network is trained fifty times for each case in
order to estimate the average accuracy with greater reliability.
Fig. 9 presents the mean value and error bars for the six
devices considered in this study, and the benchmark accuracy,
corresponding to the acceleration-based sensing, shown in the
dotted black line. The PEH’s accuracy varies with L, reaching
the highest value for the device with L = 25 cm, which is,
interestingly, higher than the benchmark accuracy. We can see
that the accuracy for L = 20 cm and L = 30 cm is also
comparable with the benchmark case and for L = 5, 10, 20
cm, the accuracy of voltage-based sensing is lower than the
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accuracy of acceleration-based sensing. To interpret these re-
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Fig. 9. Bar plot of accuracy from five different training processes for the
six devices studied and the benchmark accuracy 92.1% based on acceleration
signal (shown in black dotted line)

sults, it is necessary to consider that CNN extracts information
from the time-frequency images. Fig. 10 presents the CWT
images of the voltage signals generated from the reference
acceleration window, previously presented in Fig. 6, by the six
PEHs considered in this study. The pink dashed lines represent
the resonance frequencies of each device identified from the
FRFs, presented in Fig. 8. As shown in Fig. 10, the highest
values of the wavelet coefficients, and consequently the most
informative parts of these images, are centred close to some
resonant frequencies of each PEH device, also influenced by
the resonance frequencies of the bridge. Further, since devices
with different length are associated with different resonance
frequencies, the information they provide will differ, which
consequently leads to different sensing performances.

Next, a question arises on how the sensing accuracy and
power generation are correlated. This issue will be addressed
in the next section.

VI. SIMULTANEOUS ENERGY HARVESTING AND SENSING

In this section, the electrical energy harvested from each
of the six PEH devices is studied to establish a correlation
between the optimal design in terms of sensing and energy har-
vesting performances. Five 12-hour continuous time windows
of acceleration response, between 8 am and 9 pm, are used
to estimate the six candidates’ average energy generated from
five separate days. The energy is estimated using equation (5).

Fig. 11a presents the harvested energy, and the correspond-
ing variation. From this figure, it is evident that the highest
energy generation corresponds to the device with a length of
15 cm. This is explained by analysing Fig. 11b, where the
acceleration frequency spectrum of one 12-hour acceleration
window from the bridge is compared with the FRFs of the six
PEH devices. It can be seen that the resonance frequency of
the optimal device with a length of 15 cm coincides well with
dominant parts of the base excitation with frequencies around
21 Hz, which results in a higher energy generation compared
to the other geometries.

Further, Fig. 12 shows the sensing performance of the six
PEH devices together with the corresponding energy harvest-
ing performance. From this figure, it is implied that there
is no correlation between the optimal geometries in terms
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of sensing performance and energy harvesting performance,
i.e. we cannot identify a device, which is optimal for both,
energy harvesting and sensing. This observation opens up
an opportunity for joint optimisation of sensing/harvesting
performances of PEH devices.
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from five separate days. (b) Acceleration frequency spectrum of one 12-hour
acceleration window (shown in black), and the FRFs of the six PEH devices
considered (shown in red).
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VII. JOINT OPTIMISATION FRAMEWORK

The study presented in section VI reveals that energy
harvesting efficiency and sensing accuracy significantly de-
pend on the shape of the PEH. Based on the results already
discussed, it is possible to state that the design of a bi-
functional PEH is not a trivial task because no single configu-
ration simultaneously maximises both. In this regard, a multi-
objective optimisation framework is proposed to efficiently
tackle the selection of PEH geometries that address the trade-
off between its energy harvesting and sensing performances.
This multi-objective formulation ultimately leads to a manifold
of geometries (on the boundary of the feasible objective space)
called the Pareto front. When no additional information is
available from the context, all the Pareto front solutions are
considered equally good, despite some being better in one
objective but at the same time worse in the other objective,
than the other Pareto front points. The proposed optimisation
framework adopts a Genetic Algorithm (GA) employing sur-
rogate metamodels to quantify the energy harvesting perfor-
mance and sensing accuracy of different geometries. Details
of this optimisation scheme are given next.

A. Kriging Surrogate Modeling

One of the main challenges of the present optimisation
problem is the long computational times to estimate the
sensing accuracy and the energy harvesting performance of
a single PEH. In order to estimate the sensing accuracy, it is
necessary to build the complete training and testing database
to subsequently carry out the training process on multiple
occasions to estimate the expected average accuracy. While
in order to quantify the energy harvesting efficiency, it is
necessary to perform the numerical integration over numerous
long time windows to estimate a representative expected value.
When the number of design variables increases, the space
of possible geometries also increases, and the optimisation
problem quickly becomes computationally unfeasible.

Surrogate modelling techniques are an attractive alternative
to deal with this problem. A surrogate model (also known
as a metamodel) consists of an efficient approximate rela-
tionship between the input and output of a system, using
only a limited call to the original high fidelity model. Among
surrogate techniques, the Kriging model [17] stands out over

other approaches due to its ability to indicate the level of
prediction confidence at the un-sampled point, and its good
performance using a reduced number of sample points [18].
In this study, two Kriging models are implemented following
the guidelines discussed in [8]. The input of each model
corresponds to the design variables x of a PEH device. We
consider three design spaces, consisting of either L or {L,W},
as will be defined later. The output corresponds to one of the
objective functions: the amount of produced energy, denoted
by E(x) or sensing accuracy, denoted by S(x). Since the
Kriging metamodels provide highly accurate approximations
of quantities E(x) and S(x), in what follows we will not
distinguish if the energy/sensing accuracy is obtained from the
Kriging metamodel or from the original high fidelity model,
and use a single notation: E(x) or S(x).

B. Illustrative Implementation

Three optimisation cases are performed to evaluate the
effectiveness of the proposed framework and understand the
trade-off between the power generation and sensing accuracy
of a PEH. These cases are based on three different design
spaces for the parameters L,W for a bimorph PEH. The
layers’ thicknesses are fixed (hp = 0.25 mm and hs = 0.50
mm). The materials of the devices are PZT5A and bronze
(properties are given in Ref. [8]), the electrical resistance
Rl = 100Ω and the damping coefficients α = 14.65 rad/s
and β = 10−5 rad/s. The three design spaces are given by:
• Design Space 1, x = {L}: L ∈ [10, 55] cm, W = 5 cm
• Design Space 2, x = {L}: L ∈ [10, 55] cm, W = L
• Design Space 3, x = {L,W}: L ∈ [10, 55] cm, W ∈

[10, 55] cm
Two kriging metamodels are trained for each design space

to perform low computational cost output predictions for
{E(x), S(x)}. In the case of Design Spaces 1 and 2, 50
support points are sampled uniformly. On the other hand, as
the number of design variables in Design Space 3 is two,
1000 samples are considered, which are generated with a
Latin hypercube sampling algorithm. The energy harvesting
performance of each sample is estimated as the average
harvested energy of five 12-hour continuous time windows of
acceleration response on the bridge. The sensing performance
is estimated as the average accuracy obtained in fifty training-
testing processes of the framework presented in Section IV.
For illustration, Fig. 13 shows the data of the support points
and the surrogate approximation for E(x) and S(x) in Design
Space 1.

The optimisation problem is formalised as follows

x∗ = arg max
x∈X
{E(x), S(x)} (6)

In this work, Genetical Algorithm (GA) based on a variant
of NSGA-II [19], [20] is the selected optimisation method due
to its good Pareto front convergence and its diversification of
the candidate solutions.

The optimisation results are presented in Fig. 14. Here,
Fig. 14a shows E(x) for Design Spaces 1 and 2, where the
optimal geometries resulting from the optimisation process
(Pareto front points) are also given. Fig. 14b shows E(x) for
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Fig. 13. Kriging surrogate modeling of (a) harvested energy and (b) sensing
accuracy for Design Space 1.

(two-dimensional) Design Space 3, together with the optimal
designs from the corresponding Pareto front. Functions S(x)
for Design Spaces 1 and 2 with their optimal geometries are
presented in Fig. 14c and 14d, respectively. Function S(x)
for Design Space 3 is presented in Fig. 14e. Finally, Fig.
14f presents the Pareto front for the two objectives E(x) and
S(x) for the three design spaces. The competition between the
objectives is evident in all three design spaces. The extremes
of the Pareto front indicate the optimal designs for E(x) and
S(x). In particular, it is possible to observe the gap between
optimal values. In terms of sensing accuracy, its value varies
insignificantly (within [91, 94.5]%) across all designs. In terms
of energy harvesting performance, the amount of energy varies
considerably between designs, with most energy produced in
Design Space 3. This is an expected results, since the two
design variables in Design Space 3 are independent, so this
design space is larger and contains Design Space 2. Also, the
areas of devices are not comparable between Design Spaces
1, 2 and 3. It can be shown that the higher amounts of energy
are produced by bigger devices in Design Space 3.

In order to make a fair comparison between the design
spaces, another optimisation process is carried out considering
the energy per unit area E(x)/A(x) instead of E(x) as an
objective, i.e. finding

x∗ = arg max
x∈X
{E(x)/A(x), S(x)} (7)

Fig. 15 presents the optimisation results for energy per unit
area E(x)/A(x) and the sensing accuracy S(x). E(x)/A(x)
for Design Spaces 1 and 2 are shown in Fig. 15a, where the
optimal geometries resulting from the optimisation process are
identified. Fig. 15b shows the E(x)/A(x) and optimal designs
for Design Space 3. Fig. 15c presents the Pareto front for
the two objectives S(x) and E(x)/A(x) for the three Design
Spaces. The gap between both objective functions is compara-
ble in the three designs. The best results are obtained in Design
Space 3. This agrees with what was discussed earlier: Design
Space 3 is larger and includes Design Space 2. This result
shows that increasing the number of design variables could
improve both objective functions’ performance; however, the
trade-off between two objectives exists in all design spaces.
Finally, the variation of the optimal geometries in the Pareto
front is also notorious, going from large to small devices,
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hence the final design choice may ultimately depend on other
design requirements.

VIII. CONCLUSIONS

Using real vibration datasets from a cable-stayed bridge,
we studied the performance of six PEH geometries in terms
of both energy harvesting and sensing to correctly label the
travelling speed of vehicles passing over the bridge. We found
that there is no clear correlation between energy harvesting and
sensing performance for a PEH. In other words, an optimum
harvester may not necessarily act as an optimum sensor.

This finding motivated the development of a rigorous design
framework for joint optimisation of dual-function PEH devices
that are expected to provide both energy harvesting and
sensing functionality. A comprehensive study case in a real-
world application was carried out to show the potential of the
framework to obtain a manifold of optimal geometries (Pareto
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front). Ultimately, the designer is the one who decides which
geometry to select based on the design requirements.

Although the optimisation framework is a good tool for
understanding the trade-off between the multi-functionalities
of a PEH, more studies are needed to improve the sensing
performance using PEH, e.g., novel NN models. This work
is the first effort to study the impact of a PEH shape on
simultaneous energy harvesting and sensing and encourages
future works in this direction.
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