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Single Traffic Image Deraining via
Similarity-Diversity Model

Youxing Li, Rushi Lan, Huiwen Huang, Huiyu Zhou, Zhenbing Liu, Cheng Pang and Xiaonan Luo

Abstract—Single traffic image deraining technology based
on deep learning is a vital branch of image preprocessing,
which is of great help to intelligent monitoring systems and
driving navigation system. It is well understood that established
deraining methods are derived based on one specific imaging
model, neglecting the underlying correlations between different
weather models and thereby limiting the applicability of these
standard methods in real scenarios. To ameliorate this issue,
in this work, we first explore the inherent relationship between
a rain model and the haze one established up to date. We
discover that these two models experience similar degradations
in the low-frequency components (i.e., similarity) but diverse
degradations in the high-frequency areas (i.e., diversity). Based
on these observations, we develop a Similarity-Diversity model
to describe these characteristics. Afterwards, we introduce a
novel deep neural network to restore the rain-free background
embedding the similarity-diversity model, namely deep similarity-
diversity network (DSDNet). Extensive experiments have been
conducted to evaluate our proposed method that outperforms
the other state of the art deraining techniques. On the other
hand, we deploy the proposed algorithm with Google Vision API
for object recognition, which also obtains satisfactory results both
qualitatively and quantitatively.

Index Terms—Deep Learning, Single Traffic Image Deraining,
Imaging Model, Similarity, Diversity.

I. INTRODUCTION

ONE of the great challenges faced by Intelligent Trans-
portation Systems is how to work efficiently under rainy

conditions. However, traffic images captured in rainy days
largely suffer from visual degradation effects that have a severe
impact on outdoor vision tasks such as small object detection
[1] and license plate recognition [2]–[4]. To alleviate this
adverse outcome, removing rain streaks from the degraded
images (single image deraining) become very important. Re-
search studies on single image deraining have attracted large
attention in recent years.
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In the past decade, a number of approaches have been
proposed to address this challenge. Early approaches generally
regard single image deraining as an optimization problem of
layer separation, mainly focusing on separating the rain streak
and the rain-free background layers employing technologies
such as sparse coding [5], low-rank representation [6] and
Gaussian mixture models [7]. In recent years, promising
progress has been achieved on the single image deraining task
due to the rapid growth of using deep learning, especially deep
convolutional neural networks (CNNs). Several CNNs-based
methods [8]–[13] have been constructed to use various feature
extraction modules for learning the distinctive characteristics
of rain streaks, and then restore the rain-free counterparts. For
example, in [8], a multi-scale fusion network is presented,
utilizing a pyramid architecture as backbone to capture rain
streaks with different appearances and scales. In [9], [14],
dilated convolution has been employed, which captures large-
scale contextual information to facilitates rain removal and
detail recovery. To handle the entanglement of rain streaks
and haze, in [15], a heavy rain removal method is proposed to
integrate physics-based restoration and generative adversarial
learning for image deraining. In [16], an attention mechanism
is utilized to highlight the effect of rain streaks and haze with
different scene depths.

Although the existing deraining methods have achieved
promising performance, most of them are developed based
on one particular imaging model to describe the degradation
process on rainy days, which cannot cover diverse situations
in real world, and thereby limits the applicability of these
approaches on real rainy traffic images. One solution is to
design a model-free framework [17], [18] for image derain-
ing. However, such framework lacks the interpretability on
the physics level and easy to over-fit the training samples,
hindering the development of the following work.

To overcome the above problem while maintaining the
interpretability on the physics level, we first explore the
underlying correlations between the rain and the haze models,
and discover that they share similar degradations in the low-
frequency components, both of which can be approximated by
a mixture of the atmospheric light and the transmission map.
On the contrary, they have diverse degradations in the high-
frequency components, among which the rainy model gener-
ates severe shading of rain streaks, as shown in Fig. 1. Driven
by this discovery, we construct a Similarity-Diversity model
in this paper to describe their relationship. Furthermore, we
put forward a novel network that contains three subnetworks
to restore the rain-free background from the rainy images
according to their similarity and diversity. To better reflect the
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Fig. 1. Rain-free/Rainy patch pair and haze-free/haze patch pair have similarity degradation effect in the low-frequency components (blue arrow), but diversity
degradation effects in the high-frequency details (red arrow).

similarity, two subnetworks TLNet and ALNet are proposed
to estimate the atmospheric light and the transmission map,
respectively, in the low-frequency components of the image
and then restore the corresponding rain-free components. To
better handle this diversity, a subnetwork HNet is proposed to
directly reconstruct the high-frequency details of the image.

To summarize this work, our main contributions are:
• We discover that the rain and the haze models share

similar degradations in the low-frequency components but
diverse degradations in the high-frequency areas, and then
develop a similarity-diversity model to describe these
correlations, through which, alleviating the problem that
the applicability of the specific imaging model is weak
in practice.

• We propose a novel network for single traffic image
deraining according to the similarity-diversity. Our net-
work takes full advantage of the underlying correlations
between the rain and the haze models, thus can deal with
diverse rain streaks and their entanglements with haze.

• We undertake extensive experiments to demonstrate that
our method is superior to the other state-of-the-art meth-
ods on the image deraining task. Moreover, our method
effectively promote the recognition rates of vehicle and
pedestrian with Google Vision API on rainy images.

II. RELATED WORK

A. Single Image Deraining

A rainy image Ir is usually simplified as the linear superpo-
sition of a rain streak layer R and a rain-free background layer
B. Early methods rely on diverse image priors to separate the
layers from the degraded image. For example, Chen et al. [6]
take advantage of a low-rank prior to capture rain streaks
from the rainy image. Luo et al. [5] propose discriminative

sparse coding (DSC) to separate the rain streak and the
rain-free background layers from the degraded images. Li et
al. [7] report a patch-prior based on Gaussian Mixture Models
(GMM), used to model the rain streak layer and the clean
background image from its rain-polluted version.

Recently, CNNs-based methods are prevailing in image
restoration, including single image deraining. For instance, Fu
et al. [19] produce a deep detail network (DDN) for image rain
removal. DDN adopts the ResNet [20] structure as backbone
and introduce negative residual learning to reduce the mapping
range from the input to the output. Wang et al. [21] develop
a SPatial Attentive Network (SPANet) that employs four-
directional IRNN [22] for image deraining in an local-to-
global manner. Jiang et al. [8] design a network (MSPFN) to
estimate rain streaks and restore the clean background from
multi-scale images and features, aiming to capture the rain
streaks with different appearances and scales. Considering the
veil effect caused by accumulated rain streaks in the images,
a novel rain model [9] is formed as:

Ir = T ∗ (B+R) + (1−T) ∗A, (1)

where T is the transmission map, A is the global atmospheric
light, 1 is a matrix of ones, and * represents the element-
wise multiplication. Li et al. [15] introduce a heavy rain
removal method (HRGAN), where they first restore the clean
background using Eq. (1), and then combine the model-free
framework (i.e. conditional generation adversarial learning) to
further improve the details and color of the background. To
better describe the entanglement of rain streaks and haze, Hu
et al. [16] construct a depth-attentional feature network (DAF-
Net) which utilizes scene depths to estimate the effect of rain
streaks and haze at different positions on the degraded image.
Wang et al. [23] investigate the rain streaks’ properties, and
regard rain streaks as vapor and reformulate Eq. (1) to facilitate
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image deraining.

B. Single Image Dehazing

In comparison, a hazy image Ih can be modeled [24], [25]
as follows:

Ih = T ∗B+ (1−T) ∗A. (2)

Traditional methods usually estimate T and A utilizing var-
ious empirical priors such as Maximum Contrast [26], dark
channel prior [27] and color attenuation [28]. Deep learning-
based approaches for haze removal are somehow similar to the
deraining methods, which restore the haze-free background by
designing various networks according to Eq. (2). For example,
Li et al. [29] present a new AOD-Net considering all the
degradation factors, which directly generates a clean image
from a hazy image. Dong et al. [30] design a multi-scale
dehazing network MSBDN-DFF, employing a Strengthen-
Operate-Subtract (SOS) boosting strategy [31] to facilitates
haze removal and a dense features fusion module based on the
back-projection technique [32] to effectively preserve spatial
information of different scales.

Overall, established methods are based on one specific
imaging model. Different from these methods, our approach
focuses on the traffic image deraining task, taking full ad-
vantage of the correlation between different weather models,
and therefore significantly improves the applicability of the
proposed method in real scenarios.

III. SIMILARITY-DIVERSITY MODEL

We observe that rainy and hazy patches share similar
degradation effects in the low-frequency components, and
considerably diverse effects in the high-frequency details, as
shown in Fig. 1. To explore this further, we decompose specific
rain and haze models respectively from the perspective of
frequency in order to explore possible correlations between
them.

To begin the analysis, we decompose a degraded color
(RGB) image I as:

I = IL + IH , (3)

where (·)L and (·)H represent the low- and the high-frequency
components of (·), respectively. Based on this form, the rain
model (Eq. (1)) can be re-written as:

Ir = TL ∗ (BL +RL) + (1−TL) ∗AL

+TH ∗ (BH +RH) + (1−TH) ∗AH .
(4)

Similarly, the haze model can be split into the following form:

Ih = TL ∗BL + (1−TL) ∗AL

+TH ∗BH + (1−TH) ∗AH .
(5)

Using the assumptions made in the previous methods [19],
[27], we understand that rain streaks mainly exist in the
high-frequency details while it can be neglected in the low-
frequency components (i.e., RH 6= 0 and each element in
RL is approximately equal to zero, among which 0 is a
matrix of zeroes). The intensities of atmospheric light are
equal between any two positions through the image, therefore
the corresponding change rate is equal to zero, that is, the

atmospheric light belongs to low-frequency information (i.e.,
AL 6= 0 and AH = 0). In the transmission map, each
element value is attenuated exponentially with the scene depth.
Therefore, the transmission map exists in both the low- and
the high-frequency components, and each element values are
greater than zero (that is, TL 6= 0 and TH 6= 0). Therefore,
the rain model can be converted to the following form:

Ir = TL ∗BL + (1−TL) ∗AL +TH ∗ (BH +RH). (6)

The haze model can be updated as follows:

Ih = TL ∗BL + (1−TL) ∗AL +TH ∗BH . (7)

We notice that the rain model (Eq. (6)) and the haze model
(Eq. (7)) share similar degradations in the low-frequency
components, both of which can be represented by a mixture of
TL and AL (i.e., TL ∗BL+(1−TL)∗AL). On the contrary,
they demonstrate diverse degradations in the high-frequency
details, and the rain model produces certain shading of rain
streaks. Based on this observation, we design a Similarity-
Diversity model combining Eqs. (6) and (7) as follows:

I = TL ∗BL + (1−TL) ∗AL + F−1(BH), (8)

where

F−1(BH) =

{
TH ∗ (BH +RH), if I = Ir,

TH ∗BH , if I = Ih,
(9)

where F−1(·) represents the diverse degradation of (·).
F−1(BH) is equal to TH ∗ (BH +RH) when the degraded
image is a rainy image, and F−1(BH) is equal to TH ∗BH

when the degraded image is a hazy image.
Combining Eqs. (3) and (8), we can restore the low- and

high-frequency details of the rain-free background respectively
as:

BL =
IL − (1−TL) ∗AL

TL
, (10)

and
BH = F(IH), (11)

where

F(IH) =

{
(IH/TH)−RH , if I = Ir,

IH/TH , if I = Ih,
(12)

where F(·) stands for the diverse restoration process in the
high-frequency section and / is the sign of element-wise
division. Finally, the clean background can be reconstructed
as:

B =
IL − (1−TL) ∗AL

TL
+ F(IH). (13)

To sum up, we construct similarity and diversity between
the rain and the haze models, and develop a new background
reconstruction method (Eq. (13)), which plays an important
role in the subsequent network design.

IV. NETWORK DESIGN

According to the analysis of similarity-diversity in the
previous section, our network is mainly composed of two-stage
work. The first stage includes the similarity reconstruction
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Fig. 2. The proposed network architecture. We adopt the Residual Block [20] combined with Squeeze-and-Excitation [33] (RBSE) as the basic block for
feature extraction. Down and up sampling in our network are achieved with convolution (Conv) and transposed convolution (TConv) respectively. RO represents
up sampling by repeating features.

process and the diversity reconstruction process is discussed
in the second stage. The overall architecture of our network
is shown in Fig. 2.

We first decompose the input I using the guided filter [34] to
obtain the low-frequency information IL, where the guidance
image is the residual channel result [35] of I. IL is then
subtracted from I to get the corresponding high-frequency
details IH . We use this kind of residual channel images for
guided filtering, aiming to decompose the rain streaks into
the high-frequency details as much as possible. We further
perform the similarity restoration process to reconstruct the
rain-free component BL from IL, and then implement the
diversity reconstruction process to reconstruct the clean high-
frequency details BH from IH . Finally, the restored BL and
BH are combined to generate the clean background B.

A. Similarity Restoration Process

In this stage, we restore the low-frequency content of the
clean background BL. To reflect the similarity between the
rain and the haze models, we introduce two subnetworks
TLNet and ALNet to estimate the low-frequency components
of transmission map TL and atmospheric light AL respec-
tively from input IL, and then restore BL by Eq. (10). A
crucial problem is how we can produce TL and AL in the
presence of only the input IL. In this paper, we utilize the pre-
training strategy reported in [23] to address the above problem.
Therefore, there are two options to derive TL and AL: (1) Pre-
train ALNet to estimate AL and then train TLNet to estimate
TL; or (2) Pre-train TLNet to estimate TL and later train
ALNet to estimate AL. It should be noted that we need to
calculate a priori result to approximate TL when pre-training
ALNet in option (1) or to approximate AL when pre-training

TLNet in option (2). To minimize the priori errors during the
pre-training, we choose the latter option because AL, which
is constant through the image, can be calculated easier than
scene depth-related TL.

1) TLNet: As shown in Fig. 2, TLNet uses the standard U-
NET structure [36] as backbone and the Residual Block [20]
is combined with Squeeze-and-Excitation [33] (named RBSE)
to form the basic feature extraction module because of its
simplicity and efficiency. We do not apply any complex mod-
ule (e.g. dilated convolution [37], self-calibrated convolutions
[38], or multi-scale fusion [39]) to the network due to the
computational overhead. To accurately estimate TL, we first
calculate the average value Ap using top 0.1 percentage of
the bright pixels in the input IL to approximate AL (i.e.,
AL ≈ Ap):

Ap =
1

0.001N(IL)

∑
Top0.1%(IL), (14)

where N(·) is equal to the total number of elements in (·).
We then estimate TL through TLNet:

TL = TLNet(IL). (15)

where TLNet(·) represents the trainable TLNet. The coarse
low-frequency components of the clean background BL c is
then restored by:

BL c =
IL − (1−TL) ∗Ap

TL
. (16)

In the pre-training phase, we use the negative SSIM loss [40]
to optimize TLNet(·):

LT = 1− SSIM(BL c,BL gt), (17)

where (·) gt is the ground-truth of (·).
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2) ALNet: We further put forward a subnetwork ALNet to
improve the estimation of AL, composed of the RBSE and
FC layers. AL is then estimated as follows:

AL = ALNet(IL). (18)

where ALNet(·) represents the trainable ALNet. At the same
time, we use the pre-trained TLNet to predict TL and then
restore the fine low-frequency components of the clean back-
ground:

BL =
IL − (1−TL) ∗AL

TL
. (19)

The loss function we used to train ALNet(·) is described as:

LTA = 1− SSIM(BL,BL gt). (20)

In the meantime, we fine-tune the pre-trained TLNet(·) to
maintain the accuracy of the predicted TL. We understand
that ALNet further reduce the error, introduced by Eq. (14),
in an attempt to restore the background color. Comparison
details will be presented in the ablation study of Section 5.

B. Diversity Reconstruction Process

In this stage, we focus on the restoration of the high-
frequency details of the clean background BH . To effectively
handle the diversity between the rain and the haze models
while avoiding the priori errors about the high-frequency
details, we introduce a subnetwork HNet to directly restore
BH by adaptively learning the diverse restoration process F(·)
in Eq. 11.

1) HNet: HNet also utilizes the U-Net structure as back-
bone and RBSE as basic feature extraction block but it
is deeper than TLNet, which can extract more high-level
semantic information to facilitate the detail restoration of the
image. We then restore the clean high-frequency details as:

BH = HNet(IH). (21)

where HNet(·) stands for the trainable HNet. In the training
phase, we use the L1 loss to optimize HNet(·):

LH = ‖BH ,BH gt‖1 . (22)

At the same time, we fine-tune the trained TLNet(·) and
ALNet(·) by Eq. 20 to maintain the accuracy of the restored
BL.

C. Deep Similarity-Diversity Network

We add the reconstructed BL and BH to generate B. In
order to ensure the quality of the final prediction, we use the
hybrid loss function [40], L1 loss plus negative SSIM Loss,
to jointly optimize all subnetworks in DSDNet:

LTAH = L1(B,Bgt) + LSSIM (B,Bgt). (23)

The overall training strategy of our proposed network is
shown in Alg. 1.

D. Discussion

The established methods such as [15], [16], [23], which
attempt to handle rain streaks and haze simultaneously, are

Algorithm 1 DSDNet training algorithm
Data: Degraded color image I, ground-truth Bgt, decompose
I into IL and IH , Bgt into BL gt and BH gt by the guided
filtering [34], iteration numbers iters.
Train TLNet:
1: Initialize TLNet(·) using Glorot initialization [41].
2: for i=1 to iters do
3: Calculate Ap by Eq. (14) to approximate AL.
4: Calculate TL by Eq. (15).
5: Reconstruct BL c by Eq. (16).
6: Update TLNet(·) by Eq. (17).
7: end for
8: Saving the params from TLNet(·) as WTL.

Train ALNet and fine-tune TLNet:
1: Initialize ALNet(·) as in [41], TLNet(·) using WTL.
2: for i=1 to iters do
3: Calculate AL by Eq. (18).
4: Calculate TL by Eq. (15).
5: Reconstruct BL by Eq. (19).
6: Update ALNet(·) and fine-tune TLNet(·) by

Eq. (20).
7: end for
8: Saving the params from TLNet(·) and ALNet(·) as

WTL and WAL respectively.

Train HNet, fine-tune TLNet and ALNet:
1: Initialize HNet(·) as in [41], TLNet(·) using WTL,
ALNet(·) using WAL.

2: for i=1 to iters do
3: Calculate BH by Eq. (21).
4: Calculate TL by Eq. (15).
5: Calculate AL by Eq. (18).
6: Reconstruct B by Eq. (13).
7: Update HNet(·) by Eqs. (22) and (23), fine-tune

TLNet(·) and ALNet(·) by Eqs. (20) and (23).
8: end for
9: Saving the params from TLNet(·), ALNet(·), and
HNet(·) as WTL, WAL, and WH , respectively.

Return: WTL, WAL, and WH .

mainly designed on the basis of Eq. (1) or its variants.
Assuming rain streaks and haze are entangled each with other,
they mainly focus on how to describe this entanglement with
individual imaging models. However, this entanglement is
affected by different factors such as scene depth, environment
brightness, and the resolution and motion state of imaging
equipment. Therefore, it is difficult to describe such compli-
cated process with a simple set-up.

Different from these methods, we analyze the rain imag-
ing process and the haze imaging process respectively, and
integrate them into our proposed similarity-diversity model to
guide the network design, thus enable our network not only to
effectively deal with rain streaks, haze and their mixing, but
also to maintain highly interpretability on the physics level.
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TABLE I
QUANTITATIVE COMPARISION ON TWO SYNTHETIC RAINY DATASETS (RAIN100H AND RAIN100L) AND ONE REAL DATASET (SPA-DATASET). THE

BEST AND THE SECOND BEST PERFORMANCE VALUES ARE SHOWN IN HIGHLIGHTED AND UNDERLINED RESPECTIVELY.

Dataset Methods DSC GMM DDN RESCAN SPANet JORDER-E BRN MSPFN KPN DSDNet (Ours)

Rain100H PSNR 14.01 14.52 25.93 26.84 27.08 29.08 28.63 27.97 27.93 32.82
SSIM 0.4474 0.5609 0.7932 0.8195 0.8579 0.8716 0.8869 0.8501 0.8632 0.9442

Rain100L PSNR 25.81 28.05 35.39 36.52 35.46 37.42 37.82 37.77 36.28 41.89
SSIM 0.8726 0.8978 0.9638 0.9695 0.9642 0.9771 0.9803 0.9760 0.9712 0.9833

SPA-dataset PSNR 32.15 31.62 35.30 35.90 36.06 38.41 36.10 35.93 40.28 41.15
SSIM 0.9245 0.9180 0.9449 0.9506 0.9510 0.9626 0.9594 0.9512 0.9784 0.9818

21.90/0.7906
SPANet

1.0/Inf
Ground Truth

21.90/0.7576
RESCAN

29.31/0.9451
DSDNet (Ours)

21.94/0.7509
DDN

23.76/0.8088
KPN

10.38/0.4403
GMM

22.40/0.7750
MSPFN

10.04/0.4453
DSC

23.07/0.8204
BRN

9.09/0.4275
Rainy

23.81/0.8020
JORDER-E

PSNR/SSIM
Rainy Image

27.29/0.8747
SPANet

1.0/Inf
Ground Truth

27.55/0.8488
RESCAN

33.50/0.9451
DSDNet (Ours)

26.31/0.8286
DDN

27.90/0.8604
KPN

16.61/0.6173
GMM

27.74/0.8497
MSPFN

15.41/0.4528
DSC

29.15/0.9012
BRN

13.42/0.4547
Rainy

29.42/0.8918
JORDER-E

PSNR/SSIM
Rainy Image

1.0/Inf
Ground Truth

29.47/0.9235
Rainy Image

34.58/0.9529
JORDER-E

30.61/0.9264
BRN

35.22/0.9387
MSPFN

33.53/0.9356
DDN

35.97/0.9642
KPN

33.22/0.9230
RESCAN

36.76/0.9705
DSDNet (Ours)

31.57/0.9040
SPANet

12.12/0.4524 36.30/0.9707 37.64/0.9780 32.65/0.9587 37.56/0.9775 37.86/0.9802 38.31/0.9793 37.24/0.9757 43.75/0.9929 1.0/Inf

Fig. 3. The qualitative deraining results on four common scences from Rain100H (the first and second scences), Rain100L (the third scence), and SPA-dataset
(the fourth scence).

V. EXPERIMENTAL WORK

A. Settings

Datasets and Evaluation. We perform experiments on
a diverse range of datasets, including synthetic rainy and
rain-haze images, real rainy images, heavy-rain images, and
rain-haze images, to comprehensively evaluate the rain and
haze removal effectiveness of our DSDNet. We first conduct
experiments on two synthetic rainy datasets Rain100H and
Rain100L [9], and one real dataset SPA-dataset [21]. Both
of Rain100H and Rain100L contain 1800 pairs of training
samples (synthetic rainy image/ground-truth) and 100 pairs
of testing ones. SPA-datasets includes 638492 pairs of train-

ing samples (real rainy image/ground-truth) and 1000 pairs
of testing ones. Moreover, we randomly select 4200 hazy
images from [42] and superimpose them with the existing
rain streaks noise [18] to synthesize a rain-haze dataset called
Rain-Haze200 for experiment, which contains 4000 pairs of
training samples (synthetic rain-haze image/ground-truth) and
200 pairs of testing ones. On labeled datasets, PSNR and
SSIM [43] are used as our performance evaluation metrics.
In addition, we collect unlabeled real traffic rainy images
of various scenes for qualitative evaluation, from monitored
overpasses, crossroads, sidewalk images to driving shots, and
use Perceptual Index (PI) [44] as blind quantitative evaluation
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TABLE II
QUANTITATIVE COMPARISION ON RAIN-HAZE200 DATASET. “ *” REPRESENT JOINT DEHAZING METHOD MSBDN-DFF [30] FOR COMPARISION.

Methods DDN DDN∗ RESCAN RESCAN∗ JORDER-
E

JORDER-
E∗ BRN BRN∗ HRGAN KPN DSDNet

(Ours)

PSNR 23.52 24.84 25.10 25.24 26.67 26.47 26.07 25.51 15.17 27.31 28.05
SSIM 0.7882 0.8124 0.8195 0.8425 0.8806 0.8748 0.8986 0.8935 0.4227 0.8933 0.9030

PSNR/SSIM
Rain-Haze Image

16.73/0.7324
DDN

22.15/0.7803
DDN*

17.16/0.7501
RESCAN

22.30/0.8114
RESCAN*

23.07/0.8484
JORDER-E

9.31/0.4527
Rain-Haze

21.51/0.8404
KPN

23.81/0.8782
DSDNet (Ours)

22.56/0.8547
JORDER-E*

23.82/0.8770
BRN*

19.60/0.8688
BRN

Inf/1
Ground Truth

19.52/0.7201
DDN*

14.95/0.6433
DDN

7.46/0.3239
Rain-Haze

Inf/1
Ground Truth

19.59/0.7185
RESCAN

20.25/0.7749
RESCAN*

21.64/0.7767
JORDER-E

19.98/0.7898
JORDER-E*

19.10/0.8182
BRN

21.00/0.8336
BRN*

19.51/0.8051
KPN

23.94/0.8689
DSDNet (Ours)

PSNR/SSIM
Rain-Haze Image

11.99/0.4352 Inf/124.67/0.8638 27.64/0.8791 24.79/0.8709 26.49/0.8918 19.09/0.5806 25.31/0.8774 27.32/0.8939

13.76/0.5976
Rain-Haze Image

Inf/1
Ground Truth

27.20/0.8904
JORDER-E

28.13/0.8973
JORDER-E*

27.06/0.9028
BRN

28.11/0.9043
BRN*

17.69/0.6538
HRGAN

28.12/0.9016
KPN

28.68/0.9180
DSDNet (Ours)

Fig. 4. The qualitative deraining results on four common scences derived from Rain-Haze200.

metrics. We also collect 50 images of traffic transportation and
pedestrians on rainy days, respectively, and joint Google API
for traffic target recognition to reflect the effectiveness of our
method.

Training and Fine-tuning Details. Our method is per-
formed using the Pytorch framework on NVIDIA GeForce
RTX 2080Ti GPU. All the subnetworks are trained using
Adam optimizer [45] with the batch size of 6 and all the
training datasets are resized to 384×384 as input. The initial
learning rate is set as 1 × 10−4 for training and the cosine
annealing strategy [46] is adopted with a total of 6 cycles for
training with 43200 iterations per cycle. The learning rate in
the fine-tuning is 1× 10−6 without any other adjustment.

Network Details. In the proposed DSDNet, the kernel

radius r and regularization ε of guided filter [34] are set as 30
and 1 respectively. Furthermore, we adopt 4 × 4 covolution
with stride of 2 for down sampling and 4 × 4 transposed
covolution with stride of 2 for up sampling. The LReLU [47]
with a negative slope of 0.2 is used as activation function in
all subnetowrks. In addition, TLNet, ALNet and HNet include
7, 4 and 10 RBSE respectively.

B. Experiment on common scence

We compare our proposed DSDNet with a total of ten
state-of-the-art image deraining methods, including eight rain
streaks removal methods (DSC [5], GMM [7], DDN [19],
RESCAN [48], SPANet [21], JORDER-E [9], BRN [49],
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2.5143 2.3631 2.5141PI 2.1860 2.3712 2.3245 2.4825 2.0821

PI
Rainy Image

3.9216
DDN

4.1062
RESCAN

3.6361
SPANet

3.5351
JORDER-E

3.4422
BRN

2.9021
MSPFN

3.8418
KPN

3.7600
DSDNet (Ours)

2.3942

3.3986
DSC

Rainy Image

2.8823
DDN

2.8506
RESCAN

2.6846
SPANet

2.8205
JORDER-E

2.5702
BRN

3.1839
MSPFN

3.0793
KPN

2.6483
DSDNet (Ours)

2.6578
DSC

PI
Rainy

2.3566
DDN

2.0137
RESCAN

2.2101
SPANet

3.3328
DSC

PI
Rainy

2.0270
JORDER-E

1.8927
BRN

2.3727
MSPFN

2.4846
KPN

1.8698
DSDNet (Ours)

Rainy Image

Fig. 5. Image deraining results on unlabeled real rainy images.

I IL TL AL IH BBHBL

Fig. 6. Visualized the intermediate results of our method, where AL is a three-dimensional matrix with the same channel and spatial dimension as the input
rainy image I , and each element value in this matrix is equal to 248.

MSPFN [8]), one heavy rain removal method (HRGAN [15])
and one model-free method (KPN [18]).

TABLE III
COMPARISONS OF MODEL PARAMETERS AND TEST RUNNING TIME. “M”

REPRESENTS MILLION. IMAGE SIZE INDICATES THE RESOLUTION OF
TESTING IMAGE.

Methods HRGAN KPN DSDNet (Ours)

Image Size\Params 40.6M 27.4M 14.2M

256× 256 0.0502s 0.0076s 0.0243s

384× 384 0.0911s 0.0161s 0.0438s

512× 512 0.1418s 0.0271s 0.0748s

Quantitative Comparison. The quantitative results are
shown in Tables I and II. Compared with the other state
of the art deraining methods, our approach has a significant
improvement both in PSNR and SSIM, where the average
PSNR by our method boosts 3.70+dB than the second best
performance on the Rain100H and Rain100L datasets, and

0.80+dB on SPA-dataset. Moreover, the average PSNR by our
DSDNet is also 0.70+dB higher than the model-free method
KPN [18] on the Rain-Haze200 dataset.

Qualitative Comparison. The qualitative results are shown
in Figs. 3 and 4. We observe that the competing methods tend
to under-derain and blur the details of distant background,
especially on the extremely rainy image dataset Rain100H.
Furthermore, these competing methods can hardly handle im-
age areas with dense haze in the Rain-Haze200 dataset as they
fail to incorporate the degradation process of hazy imaging
into their physical models. Although combining the dehazing
methods enhance the ability of haze removal, it is easy to cause
severe artifacts. In contrast, our DSDNet not only effectively
removes rain streaks and haze but also successfully restores
details and colors in the background. This result is attributed to
the guidance of the similarity-diversity physical model, which
enables our DSDNet to distinguish rain streaks and haze ef-
fectively, and then combine corresponding inverse degradation
processes to remove these noises. This advantage improves
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TABLE IV
ABLATION STUDIES WITH DIFFERENT SUBNETWORKS, INCLUDING COMPARISONS OF MODEL PARAMETERS, TEST RUNNING TIME, AND DERAINING

PERFORMANCE.

HNet TLNet ALNet Params\Image Size 256× 256 384× 384 512× 512 Dataset Rain100H Rain-Haze200

V1
√

9.78M 0.0138s 0.0223s 0.0243s PSNR 30.66 27.06
SSIM 0.9062 0.9012

V2
√ √

13.6M 0.0302s 0.0428s 0.0438s PSNR 29.22 27.61
SSIM 0.9279 0.8993

DSDNet
√ √ √

14.2M 0.0532s 0.0722s 0.0748s PSNR 32.82 28.05
SSIM 0.9442 0.9030

Inf/1

PSNR/SSIM: 12.75/0.3931 33.22/0.9466 28.62/0.9575 35.02/0.9667 Inf/1

27.88/0.925527.89/0.921123.01/0.910211.19/0.3365
�2Rainy Image Ground TruthDSDNet�1

Fig. 7. Image deraining results with different subnetworks on two common scenes.

TABLE V
ABLATION WITH DIFFERENT LOSS ON RAIN100 DATASET.

S D
BL BH BLT , LTA LH

V3 LSSIM LSSIM
PSNR 33.00 36.31 30.59
SSIM 0.9857 0.9434 0.9352

V4 L1 L1
PSNR 30.19 34.49 31.72
SSIM 0.9785 0.8925 0.9390

DSDNet LSSIM L1
PSNR 32.75 35.65 32.82
SSIM 0.9856 0.9171 0.9442

TABLE VI
PI SCORES OF DERAINING RESULTS ON REAL TRAFFIC RAINY IMAGES.

Dataset\Methods RESCAN JORDER-E MSPFN KPN DSDNet (Ours)

Rainy Vehicle 3.2632 3.0108 3.4624 3.6602 3.0208

Rainy Pedestrian 2.7987 2.6241 3.0194 3.0739 2.5644

the efficiency of subsequent tasks in intelligent transportation
systems, making them more reliable and accurate. Therefore,
our approach has significant potential in advancing the field
of computer vision for intelligent transportation systems.

We further perform comparisons on the unlabeled real rainy
images and visualize the deraining results of four typical traffic

88.26%

87.90%

88.14% 87.42%

86.14%

88.54%

87.28%

87.96%

88.32%

88.28%

88.80% 88.36%

84.50%

85.00%

85.50%

86.00%

86.50%

87.00%

87.50%

88.00%

88.50%

89.00%

Rainy Image RESCAN JORDER-E MSPFN KPN DSDNet (Ours)
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Google API Object Recognition Results

top-1 vehicle top-1 pedestrian

Fig. 8. The average confidence of top-1 vehicle and pedestrian recognition
tested on the Google Vision API. We test 50 sets of traffic and pedestrian
images in real rainy days respectively, as well as deraining images of ours and
four deep learning-based methods. Note that the confidence of mis-recognized
or un-recognized target is set to 0.

images in Fig. 5. The corresponding PI [44] is below each
visualized result, and a lower PI represents better subjective
perceptual quality. It can be seen that our DSDNet can
effectively remove rain streaks while maintaining a lower PI
as much as possible. One fact is that rain streaks in unlabeled
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(f) DSDNet (Ours)(e) KPN

(d) JORDER-E(c) MSPFN

(b) RESCAN(a) Rainy image

Fig. 9. The recognition results of Case 1 by the Google Vision API. (a) is the recognition result on the rainy image; (b)-(e) represent the recognition result on
the deraining image of RESCAN, JORDER-E, MSPFN, and KPN, respectively; (f) is the recognition result on the deraining image of our DSDNet. The left
of each result is the visualization of detected objects, and the right is a list contains the types of detected objects and corresponding recognition confidence.
The bold box indicates detected vehicle, which have the highest confidence in the corresponding classification.

real rainy images have diverse forms, including heavy rain
streaks, mist accumulated by rain streaks, and a mixture of
rain and haze. Therefore, it is difficult to accurately describe
the degradation process of these rainy images using a single
physical model, thus affecting the generalization ability of the
competing methods. In contrast, our similarity-diversity model
combines multiple physical degradation processes, enabling
the proposed DSDNet to adaptively handle various degradation
phenomena on these unlabeled real rainy images. Moreover,
we display the intermediate results of our method in Fig. 6 to
understand what predict in each subnetwork.

Overall, our method can not only remove rain streaks of
different scales, motion states and densities, but also well re-
store natural color and brightness, compared to the competing
deraining methods, which indicates the effectiveness of our

method in real scenes.

Parameters and Test Running Time. Furthermore, we
compare the parameters and test running time of the pro-
posed network DSDNet against one representative heavy rain
removal method HRGAN [15] and one model-free method
KPN [18], the details are shown in Table III. In terms of net-
work parameters, our DSDNet contains fewer parameters than
HRGAN and KPN. Moreover, our DSDNet takes less running
time than HRGAN when removing rain streaks from rainy
images with different resolutions. Although the time cost is
higher than that of KPN, our DSDNet joint three subnetworks
to simulate the inverse process of imaging, therefore it has
better physics interpretability. These analyses indicate that our
approach is more practical.
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(f) DSDNet (Ours)(e) KPN

(d) JORDER-E(c) MSPFN

(b) RESCAN(a) Rainy image

Fig. 10. The recognition results of Case 2 by the Google Vision API. (a) is the recognition result on the rainy image; (b)-(e) represent the recognition result
on the deraining image of RESCAN, JORDER-E, MSPFN, and KPN, respectively; (f) is the recognition result on the deraining image of our DSDNet. The
left of each result is the visualization of detected objects, and the right is a list contains the types of detected objects and corresponding recognition confidence.
The bold box indicates detected vehicle, which have the highest confidence in the corresponding classification.

C. Ablation Studies

Network Architectures. We comprehensively analyze each
subnetwork to demonstrate the effectiveness of the proposed
DSDNet in terms of model parameters, test running time,
physics interpretability, and deraining effect.
• V1: HNet for deraining.
• V2: Joint TLNet and HNet for deraining, among which

AL is approximated by Eq. (14).
• Ours: Joint TLNet, ALNet and HNet for deraining.
The comparison results are shown in Table IV and Fig. 7.

It can be found that the deraining results obtained by HNet
(V1) suffer from severe detail distortion, although this network
architecture is friendly in terms of test running time. Joint
TLNet and HNet (V2) for deraining can restore better details
and have better physics interpretability but tends to generate

color distortion. In contrast, our DSDNet, embedding a sub-
network (ALNet) based on V2 to predict AL, restore excellent
details and color, indicating the importance of ALNet and the
effectiveness of our network.

Loss Function. We also perform ablation experiments on
the L1 and the negative SSIM losses to demonstrate the
selection of the loss functions in this paper.
• V3: Apply the negative SSIM loss both in similarity (S)

and diversity (D) reconstruction processes.
• V4: Apply the L1 loss both in similarity (S) and diversity

(D) reconstruction processes.
• Ours: Apply the negative SSIM loss in similarity (S)

process and the L1 loss in diversity (D) reconstruction process.
The results are shown in Table V. We notice that applying

the negative SSIM loss both in similarity and diversity recon-
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(b) RESCAN(a) Rainy image

(c) JORDER-E (d) MSPFN

(f) DSDNet (Ours)(e) KPN

Fig. 11. The recognition results of Case 3 by the Google Vision API. (a) is the recognition result on the rainy image; (b)-(e) represent the recognition result
on the deraining image of RESCAN, JORDER-E, MSPFN, and KPN, respectively; (f) is the recognition result on the deraining image of our DSDNet. The
left of each result is the visualization of detected objects, and the right is a list contains the types of detected objects and corresponding recognition confidence.
The bold box indicates detected pedestrian, which have the highest confidence in the corresponding classification.

struction process (V3) over-restores the low and high frequency
contents, resulting in color distortion of the background. On
the contrary, applying the L1 loss both in similarity and diver-
sity reconstruction processes (V4) under-restores the low and
high frequency components, although this better restores the
final background than the previous case (V3). In comparison,
the selection in this paper helps us to properly restore the
low and high frequency components and the final background,
indicating the effectiveness of the loss function that we select.

D. Traffic Application
An important task of Intelligent Transportation System is to

recognize cars and pedestrians in rainy images. However, the
rain streaks in real scenarios have various shapes and accom-
panied with diverse motion states. These rain streaks will blur

the details and texture of background and create distortion
in image brightness, color and contrast, thus reducing the
recognition efficiency of the intelligent system. To demonstrate
that our approach can facilitate the execution of outdoor traffic
tasks, we utilize the Google Vision API for outdoor target
recognition in order to evaluate the rain removal results.

Specifically, we examine 50 sets of traffic and pedestrian
images acquired in rainy days [50], respectively, and the
deraining images by our DSDNet and four deep learning-based
methods. We evaluate PI for these deraining images and record
the object recognition results of vehicles and pedestrians,
which have the highest confidence values in the corresponding
classification on Google Vision API, respectively, namely top-
1 vehicle and top-1 pedestrian. The comparison results of PI
and object recognition are shown in Table VI and Fig. 8,
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respectively. It can be seen that our DSDNet improves the
average confidence of Google Vision API for top-1 vehicle
and pedestrian recognition on rainy images to 88.54% and
88.36%. The average confidence of Google Vision API for top-
1 vehicle and pedestrian recognition on the deraining images
of our DSDNet boost 0.28% and 1.08%, respectively, than
the performance directly on the rainy images. In contrast,
the competing methods tend to impair the average confidence
of Google Vision API for top-1 vehicle recognition on rainy
images. In addition, our DSDNet achieves better performance
in terms of PI than those of competing methods, where the
average PI by our DSDNet lower 0.0597 than the second best
performance on rainy pedestrian dataset and comparable with
the best performance on rainy vehicle dataset. These com-
parison results illustrate that our DSDNet promotes average
recognition confidence by the Google Vision API better than
other comparison approaches over top-1 vehicle. Although the
improvement over top-1 pedestrian is less than that of KPN,
our DSDNet achieves more satisfactory performance in terms
of PI, indicating that the restored images by our DSDNet
have better perceptual quality. Furthermore, we visualize the
deraining images of three real scenarios and the corresponding
recognition results, as shown in Figs. 9, 10 and 11. It can be
seen that our DSDNet can effectively remove rain and mist
from the real traffic rainy image while preserving important
object information that plays a crucial role in the recognition
by Google Vision API.

VI. CONCLUSION

In order to generalize the applicability of a physics-based
deep deraining architecture, we first explored the underlying
relationships between the rain and haze models, and then
incorporate them into a Similarity-Diversity model to guide
the development of the subsequent work. Furthermore, we
introduced a novel deep network DSDNet for image deraining
based on the similarity-diversity changes. Our network takes
into account the underlying correlations between the rain and
the haze models, thus can effectively remove rain streaks
and their entanglement with haze. Extensive experiments have
shown that our method achieved superior performance against
the other state of the art deraining methods both on synthetic
and real traffic rainy images.

Our future works will focus on improving the efficiency of
these physics-based deep deraining networks from following
perspectives, designing lightweight feature extraction modules,
simplifying the physical process on the single image deraining,
and conducting the physical process on the features with low
spatial resolution.
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