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Abstract—In order to save computing power yet enhance safety,
there is a strong intention for autonomous vehicles (AVs) in future
to drive collaboratively by sharing sensory data and computing re-
sults among neighbors. However, the intense collaborative comput-
ing and data transmissions among unknown others will inevitably
introduce severe security concerns. Aiming at addressing security
concerns in future AVs, in this paper, we develop SPAD, a secured
framework to forbid free-riders and promote trustworthy data
dissemination in collaborative autonomous driving. Specifically,
we first introduce a publish/subscribe framework for inter-vehicle
data transmissions. To defend against free-riding attacks, we
formulate the interactions between publisher AVs and subscriber
AVs as a vehicular publish/subscribe game, and incentivize AVs
to deliver high-quality data by analyzing the Stackelberg equi-
librium of the game. We also design a reputation evaluation
mechanism in the game to identify malicious AVs in disseminating
fake information. Furthermore, for lack of sufficient knowledge
on parameters of the network model and user cost model in
dynamic game scenarios, a two-tier reinforcement learning based
algorithm with hotbooting is developed to obtain the optimal
strategies of subscriber AVs and publisher AVs with free-rider
prevention. Extensive simulations are conducted, and the results
validate that our SPAD can effectively prevent free-riders and
enhance the dependability of disseminated contents, compared
with conventional schemes.

Index Terms—Publish/subscribe, cooperative autonomous driv-
ing, secure, game theory, reinforcement learning.

I. INTRODUCTION

W ITH the advance of self-driving technologies, au-
tonomous vehicles (AVs) are shifted from a fiction to an

exciting practice with the promise to build future transportation
systems with much-reduced traffic jams, much-improved road
safety, and more intelligent vehicular services. As reported in
[1], AVs are projected to reduce 90 percent of traffic deaths
which are due to human errors and saving 30,000 lives a year.
Nevertheless, the success of AVs heavily relies on a multitude
of onboard sensors to perceive surroundings and make real-time
driving decisions. Due to the intrinsic limitations of onboard
sensors and processing capacity of a single AV, the road to
fully autonomous driving is still fraught with challenges.

Cooperative autonomous driving, which is essentially to
share driving statuses, sensory data, and computing results
among neighboring collaborators and road-side infrastructures,
has become crucial to improve driving accuracy and safety of
single vehicles in the complicated and fast-changing driving
environments [2]–[4]. For instance, cooperative AVs (CAVs)
can construct a leader-follower formation, where a leader
performs as the “eye” of the platoon and shares its sight
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Fig. 1. An example scenario of pub/sub framework in collaborative au-
tonomous driving. (¬: All contents to be shared within a fleet are tagged
with topic strings and classified into various topics which are maintained
by the master vehicle (e.g., topic creation and deletion, and notification of
new contents to all subscribers); : A vehicle registers itself as a data
source in certain topics and publishes individual sensory data (e.g., 3D point
cloud data captured by onboard lidars) or processed results of the sensory
information with tags to the registered topic; ®: Neighboring vehicles use string
matching methods to search their interested topics and send subscriptions to
the master vehicle; ¯: Subscribers continually retrieve their subscribed contents
from the corresponding publisher using inter-vehicular device-to-device (D2D)
communications.)

with the remaining CAVs (i.e., followers), and the followers
can extend their awareness range to blind spots or areas
beyond onboard capabilities with saved computing power [5].
To enhance the communication efficiency under cooperative
autonomous driving, the publish/subscribe (pub/sub) paradigm
is utilized to deliver published information only to CAVs whose
subscribed interests correspond to it [6]. The pub/sub paradigm
has been implemented as the fundamental communication
pattern in robot operating system as well as that in AVs [4],
[7], [8], e.g., Baidu Apollo operating system [9]. By building
a flexible asynchronous communication protocol, the pub/sub
paradigm can efficiently disseminate information among CAVs
with highly dynamic interactions [10], [11]. For instance, by
exploiting the relatively stable vehicle formation in a fleet,
a CAV can continuously perceive its driving surroundings
by subscribing the shared sight of certain neighbors. In a
pub/sub framework as in Fig. 1, a vehicle who is to share
(publish) the sensory data or computing results would register
at certain topics as a data source. Neighboring vehicles who
are interested in the information need to subscribe to the topic
so as to continually receive the published information from
the publisher. As a result, data are retrieved in an on-demand
approach; each vehicle can publish certain topics of content
(sensed data or its processed outcomes) and subscribe to other
topics, leading to a mesh connected collaborative system.

However, the full deployment of pub/sub mechanism in
autonomous driving still faces a series of challenges. On one
hand, resource-limited AVs may be selfish and free-riding.
They will not contribute their content, or they will deliver
meaningless and low-quality content if there is no sufficient
validation or incentive. On the other hand, malicious AVs
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may register as a publisher and publish dishonest or even
harmful contents to mislead and interfere the normal driving
activities of nearby AVs. The absence of security validations
may further reduce the willingness of AVs to participate in the
cooperation. Thus, it is still pressing to design a secure data
pub/sub scheme for CAVs while promoting their cooperation
in data contribution.

Quite recently, a number of research works have been
developed towards efficient and secure autonomous driving. For
example, in [12], a novel authentication and key agreement
mechanism is proposed to ensure secure remote control of
AVs and guarantee secure data exchange between AVs and the
cloud. Besides, a mobile edge computing (MEC) based data
trading scheme with debt-credit is presented in [13], where the
competitive interactions between borrower vehicles and lender
vehicles are formulated as a Stackelberg game to maximize
the profit of both sides. Meanwhile, in [14], a coalitional
game based framework is devised to optimize the cooperative
behaviors of neighboring vehicles and facilitate the popular
content distribution. However, most of the current works cannot
be directly applied for cooperative autonomous driving with the
following aspects. First, AVs in a fleet need to continuously
receive the subscribed information from neighbors until the for-
mation changes, while the implementation of pub/sub paradigm
in AV fleets is seldom considered. Besides, AVs are typically
equipped with diverse types of sensors, whereas the diversified
sensing and processing capabilities and costs are not sufficiently
taken into account in most of the existing works. Second, AVs
commonly exhibit diverse behaviors in the pub/sub process.
For example, free-riding AVs may refuse to pay and con-
tribute data, and aggressive AVs may disseminate forged or
dishonest information. Few works consider the incentives for
AVs’ cooperative behaviors to encourage AVs’ participation
and high-quality data contribution. Third, different from the
assumption in current game-based incentive approaches, it is
not readily available for AVs to accurately obtain parameters
of the dynamic network model and users’ private cost model
in time due to AVs’ high mobility and privacy concerns. A
learning-based incentive scheme to promote AVs’ cooperation
without the full knowledge of network and user parameters is
needed. Therefore, it is still an open and vital issue to safeguard
autonomous driving while motivating AVs’ cooperation under
the pub/sub framework.

In this paper, we develop SPAD, a secured pub/sub frame-
work for collaborative autonomous driving. In specific, we
first apply the pub/sub mechanism for inter-vehicular com-
munications and MEC for vehicle-to-infrastructure (V2I) com-
munications. After that, to stimulate CAVs’ participation and
high-quality content contribution, a vehicular pub/sub game is
formulated by modeling the interactions of CAVs in publish-
ing/subscribing. In the devised game model, each subscriber
CAV is the game-leader to decide the payment strategy of
subscribed content and the publisher CAV is the game-follower
to make the strategy on quality of published content. By analyz-
ing the Stackelberg equilibrium (SE) of the game, competitive
subscriber AVs can determine their optimal payment strategies
to encourage high-quality content services of publisher CAVs,
thereby preventing free-riding threats. Moreover, based on
vehicle behaviors and social roles, a reputation mechanism
is developed in the game model to identify malicious CAVs
which publish dishonest information. Besides, for the lack

of knowledge of accurate network parameters in the highly
dynamic environment, the interactions between publisher CAVs
and subscriber CAVs are formulated as finite Markov decision
processes (MDPs). In the dynamic game, a two-tier policy
hill-climbing (PHC) based reinforcement learning algorithm is
devised to derive the optimal policies of CAVs with accelerated
convergence rate via trials. The hotbooting method is also
exploited in PHC to initialize the Q-tables with experiences
in similar scenarios to avoid random exploration and improve
learning efficiency. The main contributions of this work are
threefold as follows:
• System: We present SPAD, a practical MEC-assisted

pub/sub framework in cooperative autonomous driving
for secure data publishing/subscribing for CAVs with un-
trusted neighbors. We formulate the interactions between
the publisher CAV and subscriber CAVs as a vehicular
pub/sub game and derive the optimal strategy for each
player with maximized individual utility in both static and
dynamic games.

• Scheme: According to CAVs’ social roles and vehicle be-
haviors, we evaluate CAVs’ trustworthiness by reputation
mechanism to defend against false data publishing attacks.
A reputation increase can be regarded as a reward to
motivate CAVs to behave legitimately. Furthermore, the
SE of the static vehicular pub/sub game and its stability
are analyzed, where each publisher CAV is motivated to
offer high-quality content and the selfishness of CAVs is
suppressed. A two-tier hotbooting PHC algorithm is also
developed in the dynamic game to acquire the optimal
payment strategies of subscriber CAVs and the optimal
quality strategies on content services of publisher CAVs
with improved learning efficiency.

• Validation: We evaluate the effectiveness of SPAD through
extensive simulations. It is demonstrated that our SPAD
can attain higher quality of published data, enhanced
dependability of subscribed data for CAVs, improved user
utilities, and faster convergence rate, by comparing with
other existing schemes.

The remainder of this paper is organized as follows. Sec-
tion II outlines the related work. Section III introduces the
system model. We formulate the vehicular pub/sub game in
Section IV, and analyze the SE of the static game in Sec-
tion V. In Section VI, the reinforcement learning-based optimal
strategy decision to solve the dynamic game is elaborated.
Performance evaluation is given in Section VII. Section VIII
concludes this paper and points out the future work.

II. RELATED WORKS

A. Incentive of Autonomous Driving

Incentive mechanism is fundamental in a collaborative sys-
tem in general and collaborative autonomous driving in specific.
Fabiani et al. [15] study the automated driving coordination
problem for multiple selfish AVs on multi-lane highways
through generalized mixed-integer potential game approaches.
Su et al. [16] formulate a market-based mechanism to optimally
incentivize AVs to contribute individual computing resources
for autonomous driving decision making. Two dynamic game
paradigms including a Stackelberg game and a zero-sum game
are exploited by Ji et al. [17] to improve the stability and
robustness for path tracking of connected AVs. Tian et al. [18]
formulate an evolutionary game based framework for channel
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access optimization in cognitive radio empowered vehicular
networks, where a delayed pricing mechanism with discretized
replicator dynamics is designed to improve the evolutionary
stability and efficiency of Nash equilibrium. However, existing
works mainly focus on a generic mesh connected vehicular
topology without considering the detailed underlying inter-
vehicular communication scheme. Our work investigates on the
pub/sub mechanism which is widely implemented in real-world
commercial deployments such as Baidu Apollo project [9] and
is more practical in autonomous driving.

Besides, reinforcement learning, as a branch of machine
learning technique, has been widely applied to offer incen-
tives in vehicular networks. To improve driving efficiency and
safety at signalized intersections, Zhou et al. [19] propose an
intelligent car following mechanism based on reinforcement
learning for connected AVs to schedule driving behaviors in
real-time by exploiting the shared information of neighbors.
Zhao et al. [20] utilize deep reinforcement learning techniques
to acquire the optimal long-term sensing strategy of vehicles
under sensing budget in dynamic vehicular social networks.
Q-learning is a typical model-free reinforcement learning al-
gorithm. By considering future network states in the learning
phase, Zhou et al. [21] devise a Q-learning based algorithm for
efficient resource allocation and adaptive time division duplex
configuration in 5G vehicular networks. However, few works
consider the use of reinforcement learning techniques to defend
against free-riders in incentive mechanism design under highly
dynamic autonomous vehicular networks for enhanced security
of publication/subscription services.

B. Cyber Security for Autonomous Driving

Recent works on cyber security of autonomous driving
mainly focus on cryptographic mechanisms. Parkinson et al.
[22] review the applications of cryptographic systems to guar-
antee information security and privacy for connected AVs.
Through cryptographic protocols, Karnouskos et al. [23] study
data integrity and privacy issues for real-world deployment of
hyper-connected AVs with vehicle-to-everything (V2X) sup-
port. Lai et al. [24] present a secure cooperative content down-
loading scheme in highways by rewarding proxy neighboring
vehicles to collect data fragments to obtain the complete data
via asymmetric encryption and integrity verification. Nonethe-
less, cryptographic mechanisms cannot cope with the threats
arisen from inside attackers well (i.e., the attacks targeting at the
inside nodes). For example, legitimate AVs with malfunctioning
sensors may send incorrect data such as fake warnings to
neighbors. Moreover, legitimate AVs may be compromised to
disseminate false information.

Reputation and trust model is another efficient tool to
safeguard vehicular networks. Existing reputation models can
be mainly divided into two kinds: data-centric and entity-
centric. In data-centric reputation models, it concentrates on
computing the trustworthiness of data according to the context
of events (or behaviors), event types, reports of the same
event, etc. In the literature, the Bayesian inference model has
been widely adopted to build data-centric reputation models in
vehicular networks [25], [26], where the probability distribution
of binary events (e.g., bad or good) is assumed to follow the
beta distribution. Entity-centric approaches focus on evaluating
the trustworthiness of entities (e.g., vehicles) based on multi-
faceted methods [27] (e.g., local experience, priority, and role),

recommendation-based methods [28] (e.g., votes given from
vehicles and infrastructures), etc. By contrast, we build a hybrid
reputation model which considers both the trustworthiness of
vehicles and the data they exchange, by dynamically updating
vehicles’ trust to evaluate the trustworthiness of their deliv-
ered data. Thereby, the phenomenon that trustworthy vehicles
may deliver false data in the presence of adversaries can be
mitigated. Besides, we further design an improved Bayesian
inference model to improve the accuracy and robustness of our
proposed reputation mechanism.

Other works also exploit blockchain and physical control
methods to safeguard cooperative autonomous driving. Xing
et al. [6] propose a secure pub/sub scheme with the assis-
tance of truck platoons in autonomous vehicular networks,
where truck platoons act as distributed brokers (i.e., mas-
ter vehicles) of the pub/sub system. Besides, they deploy
a vehicular blockchain network to resist deception, denial-
to-pay, and denial-to-forward-content misbehaviors by offing
decentralized, transparent, and immutable ledgers. By using an
adaptive control method, Petrillo et al. [3] develop a secure
and resilient leader tracking strategy for a homogeneous AV
platoon to mitigate cyber threats including spoofing, message
falsification, denial-of-service (DoS), and burst transmission.
The effectiveness of the proposed strategy in [3] is analytically
proved by the Lyapunov-Krasovskii approach under reasonable
assumptions. Different from the above works, we mainly focus
on the defense of free-riding misbehaviors of AVs, which can
impede the practical deployment of cooperative autonomous
driving and is absent in most of the existing works.

In the light of existing works, our work studies the secure
data transmissions in cooperative autonomous driving by ex-
ploiting the feature of CAV networks, i.e., distributed pub/sub
and MEC communications. In addition, a reputation mechanism
and learning-based incentive mechanism are investigated to
stimulate trusted and high-quality data contribution of AVs with
better adaptation to the fast-changing network environment.

III. SYSTEM MODEL

In this section, we introduce the system model by discussing
on the network model, mobility model, content model, pub/sub
model, and security model, respectively. A summary of nota-
tions used in the remaining of this paper is presented in Table I.

A. Network Model

Fig. 2 shows the scenario of cooperative autonomous driving
considered, which includes fleets of neighboring CAVs, MEC
nodes, and 5G base stations.

CAVs. In a given investigated area, each CAV in the set
N = {1, · · · , n, · · · , N} is equipped with a 5G-V2X integrated
onboard unit device (OBU) to support both vehicle-to-vehicle
(V2V) communications and V2I communications [23]. For
improved safety, driving accuracy, and fuel efficiency, a group
of neighboring CAVs can form a CAV fleet1 through vehicle
formation controlled by self-driving programs (e.g., cooperative
adaptive cruise control). Within a CAV fleet, CAVs can drive
collaboratively on the road by exchanging sensory information
with each other via OBUs. The set of CAV fleets is denoted
by K = {1, · · · , k, · · · ,K}, and the set of CAVs in fleet k is

1In this work, we mainly focus on the security of data publishing/subscribing
for generalized collaborative autonomous driving in the pub/sub framework,
where the dynamic formation of CAV fleets can be seen in [2], [5], [29].
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TABLE I
SUMMARY OF NOTATIONS

Notation Description
K Set of CAV fleets.
Nk Set of CAVs in fleet k ∈ K.
M Set of MEC nodes.
T Set of time slots.
Ok Set of topics in fleet k within time horizon T .
G Set of sensors mounted on CAVs.
hk Master CAV (i.e., broker of pub/sub system) in fleet k.
Ik Set of publisher CAVs in fleet k.
Jk Set of subscriber CAVs in fleet k.

Ci
Set of published contents of publisher CAV i ∈ Ik

at time slot t ∈ T .
Jc Subscriber CAV group of a specific content c.
scn,g Sensing capacity of CAV n∈N on sensor of type g∈G.
pcn Processing capability of CAV n.
rawc The raw sensory part of content c.
resultc The processed outcome part of content c.

βj,c
Binary preference variable of subscriber CAV j in

subscribing rawc or resultc of content c.
Q1
i,c, Q

2
i,c Quality of sensory data rawc

/
processed result resultc.

qi,c
Quality of content service (QoCS) vector of publisher

CAV i in sharing content c.

pi,c
Payment vector of subscriber CAV group Jc for attaining

content c.
fc Popularity degree of content c ∈ Ck .

MulticastAddc
Multicast group address assigned by master CAV hk to

multicast content c to all subscriber CAVs in Jc.
Rn Reputation value of CAV n.
αi,c Satisfaction coefficient of subscriber CAVs of content c.

ε1i,πc
Cost parameter of publisher CAV i with the highest QoCS

in contributing rawc using type-πc sensor.

ε2i
Cost parameter of publisher CAV i with the highest QoCS

in computing resultc.
Ui (qi,pi) Utility function of publisher CAV i in content sharing.

UJc (qi,c,pi,c) Utility function of subscriber CAV group Jc.
zti,c QoCS state of publisher CAV i on content c at time slot t.

Q(zti,c,p
t
i,c) Q-function of subscriber CAV group Jc.

π(zti,c,p
t
i,c) Mixed-strategy table of subscriber CAV group Jc.

z̃ti,c Payment state of subscriber CAV group Jc at time slot t.
Q̃(z̃ti,c,q

t
i,c) Q-function of publisher CAV i.

π̃(z̃ti,c,q
t
i,c) Mixed-strategy table of publisher CAV i.

Topics

5G link

V2V link Subscriber CAV

Publisher CAV

Coverage of 5G 
base station

Master CAVCAV fleet

MEC node

5G base station

Free-riding 

False data publishing

Fig. 2. System model of SPAD.

Nk = {1, · · · , n, · · · , Nk}. According to works [3], [6], we
make a similar assumption that neighboring CAVs with the
same destination and driving route can drive cooperatively and
form a CAV fleet. Thereby, the vehicle formation and topology
within each CAV fleet is relatively stable in a certain time
periods. There exist the following three kinds of CAVs in the
pub/sub system within a CAV fleet:
• Master CAVs. As the broker of pub/sub system2, each

master CAV hk maintains all topics within fleet k ∈ K.
For all contents to be published in fleet k, master CAV
hk generates the metadata for each of them and classifies
them into different topics. Let Ok = {1, · · · , o, · · · , Ok}
and Ck = {1, · · · , c, · · · , Ck} denote the sets of topics
and published contents in CAV fleet k within time slots

T = {1, · · · , t, · · · , T}, respectively. Each master CAV
hk maintains the publish/subscription information for ev-
ery topic o ∈ Ok, notifies all subscribers about the new
content published in their subscribed topics, and assists
to establish V2V connections between publishers and
subscribers for content delivery. The buffering capacity
of master CAV k is denoted by Bk. Note that in the fast-
changing driving environment, subscriber CAVs intend to
receive the fresh published data instead of the old one.
Therefore, the master CAV k only needs to store the latest
published data within a fixed time window Wo,k for topic
o instead of storing all published data, where the value
of Wo,k depends on specific applications. Besides, master
CAVs only store the metadata of published contents in
topics to decrease communication and storage costs.

• Publisher CAVs. The set of publisher CAVs in fleet k is
defined as Ik = {1, · · · , i, · · · , Ik}, where Ik ⊆ Nk. Each
publisher CAV i ∈ Ik registers as a data source at master
CAV hk and publishes individual contents to registered
topics. The set of published contents of publisher CAV i
at time slot t ∈ T is denoted as Ci = {1, · · · , c, · · · , Ci}.
Let Di be the caching capacity of publisher CAV i, and
sc be the data size of each published content c. Here,∑
c∈Ci sc ≤ Di.

• Subscriber CAVs. The set of subscriber CAVs in fleet k
is defined as Jk = {1, · · · , j, · · · , Jk}, where Jk ⊆ Nk.
Each subscriber CAV j ∈ Jk subscribes to its interested
topics which are registered at master CAV hk to continu-
ally acquire desired contents, which is transmitted through
V2V multicasting. To mitigate the cost of acquiring con-
tent c ∈ Ci contributed by publisher CAV i, subscriber
CAVs of content c can form the subscriber CAV group
Jc = {1, · · · , j, · · · , Jc} and evenly dividing the payment.

Each CAV n ∈ N is equipped with various types of sensors
to perceive its surroundings, e.g., cameras, lidars, radars, etc.
Assume that there exist G types of sensors mounted on CAVs,
the set of which is denoted as G = {1, · · · , g, · · · , G}. Since
CAVs have different sensing capacities on the same type of
sensors, we set scn,g ∈ [0, 1] to indicate the sensing capacity
of CAV n on sensor of type g. Specifically, scn,g = 1 means
that CAV n has the highest sensing capacity on sensor of type g,
while scn,g = 0 indicates that the sensing capacity of CAV n on
type-g sensor is the lowest. Here, if CAV i is not equipped with
type-g sensor, its sensing capacity on that type of sensor is zero,
i.e., scn,g = 0,∀n ∈ N ,∀g ∈ G. Additionally, CAVs can have
diversified processing capabilities in performing computation
tasks. Let pcn ∈ [0, 1] be the processing capability of CAV n.
Here, pcn = 1 and pcn = 0 imply that CAV n has the highest
and lowest processing capability, respectively.

MEC Nodes. The set of MEC nodes is denoted by M =
{1, · · · ,m, · · · ,M}. Each MEC node is deployed at a 5G
base station to provide edge computing, edge caching, and V2I
communication capacities for CAVs in its coverage to facilitate
vehicular content services. The communication coverage of
each MEC node m ∈ M is a circle with radius radiusm.
Additionally, MEC node m can serve as a publisher (e.g.,

2Due to the high deployment cost of road-side infrastructures such as MEC
nodes, not all roads are in the coverage of MEC nodes especially for highways
and rural roads. Besides, due to the high mobility of CAVs, the dwell time of
a CAV fleet in a MEC node can be very limited, resulting additional time costs
in frequent data/service handover between MEC nodes. Therefore, we utilize
the master CAV as the broker of pub/sub system.
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Fig. 3. Illustration of the kinematic bicycle model for CAVs. A, B, and O are
the center of front axle, center of rear axle, and center of gravity, respectively.
ς is the heading angle. ψ is the slip angle. πf is the front wheel steering angle.

publish on-road traffic events) or a subscriber in certain topics
of CAV fleets in its coverage to facilitate inter-fleet data
exchange. For instance, MEC node m can receive security-
critical contents by subscribing to related topics in a CAV fleet
and delivering them to other CAV fleets that are in need of.

B. Mobility Model

Let ts and te = ts + δ be the start and end time of time slot
t ∈ T , respectively. Since δ can be small enough, the instant
status of CAV n ∈ N can be approximately fixed within each
time slot t but varies over different time slots, i.e.,

ln(t) = [xn(t), yn(t), vn(t), ςn(t)] ,∀n ∈ N ,∀t ∈ T , (1)

where xn(t) and yn(t) are the horizontal coordinates of CAV
n, vn(t) is the velocity of CAV n, and ςn(t) is the inertial
heading of CAV n. Once a CAV fleet k is formed, all CAVs
in this fleet will drive at the same velocity v∗k(t) to maintain
desired formation shape and inter-vehicle safe distance D∗k. For
all CAVs in a fleet k, we have vn(t) = v∗k(t). According to the
kinematic bicycle model [30], as shown in Fig. 3, the motion
dynamics of CAV n can be characterized by the following
equations:

xn(t+ 1) = xn(t) + vn(t) cos(ςn(t) + ψn(t))δ, (2)

yn(t+ 1) = yn(t) + vn(t) cos(ςn(t) + ψn(t))δ, (3)

vn(t+ 1) = vn(t) + an(t)δ, (4)

ςn(t+ 1) = ςn(t) +
vn(t) sin(ψn(t))

Lr
δ. (5)

Here, an(t) is CAV n’s acceleration. an(t) > 0 means stepping
on the accelerator, an(t) > 0 means stepping on the brake, and
an(t) = 0 means that the vehicle moves at the same speed.
ψn(t) is the slip angle of CAV n, which is determined by

ψn(t) = tan−1

(
Lr tan(πf (t))

Lr + Lf

)
, (6)

where Lf and Lr are the distances from front and rear axles to
CAV’s center of gravity, respectively. πf (t) is the front wheel
steering angle. As the rear wheels cannot be steered in most
AVs, we assume that only the front wheel can be steered [30].
Based on Eqs. (2)–(6), given the inputs (i.e., an(t) and πf (t)) at
current time slot t, the status of any CAV in Eq. (1) at the next
time slot t + 1 can be predicted for automatic vehicle control
in a fleet.

C. Content Model

In CAV fleet k, each published content c ∈ Ck in topic
o ∈ Ok has two parts, i.e., the raw sensory data rawc and the
corresponding processed results resultc. For instance, rawc
can be the 3D point cloud data [31] captured by onboard
lidars in real-time autonomous driving, while resultc can be
the relevant classification results through object recognition
methods. Hence, each content c can be formulated as c =
{rawc, resultc}. Commonly, subscriber CAV who disbelieves
the processed results resultc computed by the publisher CAV,
prefers to request the raw sensory data rawc and process it
locally to improve driving safety. Here, each subscriber CAV
of content c can either request the raw sensory data rawc or the
processed results resultc from the publisher CAV. Let βj,c =
{0, 1} denote the binary preference variable of subscriber CAV
j on content c. If βj,c = 1, it indicates that subscriber CAV j
prefers requesting the raw sensory data of content c. Otherwise,
βj,c = 0 means that subscriber CAV j prefers the computing
results of content c. We define J 1

c = {1, · · · , j, · · · , J1
c } and

J 2
c = {1, · · · , j, · · · , J2

c } as the sets of subscriber CAVs of
the raw sensing data rawc and the computing result resultc of
content c, respectively, where J 1

c ∪ J 2
c = Jc.

Let Qi,c =
[
Q1
i,c, Q

2
i,c

]
be the quality vector of content c

published by CAV i, where Q1
i,c and Q2

i,c are the quality of
sensory data rawc and computing result resultc, respectively.
Intuitively, Qi,c indicates the quality of CAV i’s sensory data
or processing results. The meaning of content quality varies
for different types of onboard sensors. For instance, it refers to
the sensing quality (e.g., resolution, sharpness, and contrast) of
camera sensors, and the computing accuracy (e.g., the accuracy
of image classification) of in-built processors. Higher quality
of delivered data can help subscribers obtain high-accurate
information about their driving surroundings. Here, Qi,c is
affected by the type of used sensor and the sensing/processing
capacity of CAV i in generating content c, namely,

Qi,c =
[
q1
i,csci,πc , q

2
i,cpci

]
, (7)

where πc ∈ Q is the sensor used in contributing rawc, and
sci,πc is the sensing capacity of CAV i on type-πc sensor.
Here, qi,c =

[
q1
i,c, q

2
i,c

]
represents the quality of content service

(QoCS) of CAV i in sharing content c. In specific, q1
i,c means

the ratio of utilized sensing resource in contributing rawc to
the total sensing capacity of type-πc sensor of CAV i, and q2

i,c

indicates the ratio of utilized computing resource in generating
resultc to CAV i’s overall processing capacity pci.

Different content can have different popularity degrees. Here,
the popularity distribution among all published contents in CAV
fleet k is denoted by fk = [f1, · · · , fc, · · · , fCk ], which can be
modeled by the Zipf distribution [32], i.e.,

fc =
1

(τ (c))
κ∑Ck

l=1 l
−κ
, (8)

where τ (c) ∈ [1, Ck] is the index of content c with the
decreasing order of the number of subscriber CAVs among all
contents in the set Ck. κ is a positive value to characterize
the content popularity. If κ = 0, it means that the popularity
of contents follows the uniform distribution. The larger κ
implies that fewer popular contents account for the majority
of requests. Eq. (8) also indicates that a content with a larger
τ (c) corresponds to a smaller popularity degree.
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D. Publish/Subscribe Model

The metadata of each published content c ∈ Ck in each topic
o ∈ Ok is elaborated as:

metac = 〈IDi, tc, πc,MulticastAddc,

H(rawc), H(resultc), H(metac), Sigi〉 , (9)

where IDi is the unique identity (i.e., public key) of publisher
CAV i who publishes content c, tc is the publish time of content
c, πc is the type of sensor for generating rawc, MulticastAddc
is the multicast group address [33] assigned by master CAV hk
to multicast content c from publisher CAV i to all subscriber
CAVs in the set Jc. H (.) is the secure hash function, and Sigi
is the signature of publisher CAV i on message H (metac).

E. Security Model

In our security model, we define the following two kinds
of attacks that may threaten CAVs’ security during content
transmission in the pub/sub framework.

1) Meaningless and Low-quality Content Publishing Attack.
Due to the selfishness and autonomy of CAVs’ nature, free-
riding CAVs may publish meaningless and low-quality vehicu-
lar content to save cost if there is not sufficient compensation
for their costs in contributing contents, which may impede the
spread of safety-critical information among CAVs.

2) Dishonest and Harmful Content Publishing Attack. Ma-
licious CAVs may publish false and even harmful vehicular
content (e.g., injected with malwares and viruses) to multiple
subscribers to threaten the normal driving activities of nearby
CAVs and gain benefits. For instance, a malicious publisher
CAV may disseminate forged traffic congestion messages to
keep the road open for itself.

IV. VEHICULAR PUB/SUB GAME

For motivating publisher CAVs to deliver high-quality con-
tent, each subscriber CAV j ∈ Jc with content preference
βj,c selects the payment strategy pi,j,c =

[
p1
i,j,c, p

2
i,j,c

]
to

compensate the publisher CAV i ∈ Ik for the cost in contribut-
ing content c ∈ Ci. Here, p1

i,j,c and p2
i,j,c are payments for

acquiring the raw sensing data rawc and the processed result
resultc of content c, respectively. Given payment strategies,
each publisher CAV i determines the QoCS strategy, i.e.,
qi,c =

[
q1
i,c, q

2
i,c

]
, on contributing content c. The criteria for

evaluating the QoCS of content are given by the system and are
known for all CAVs. In the process of pub/sub, each subscriber
CAV desires high-quality content services with low payment,
whereas each publisher CAV hopes the payment can be as
high as possible. Accordingly, a competition exists between the
publisher CAV and every subscriber CAV. Based on [13], the
competitive interactions between publisher CAV and subscriber
CAVs can be formulated as a two-stage Stackelberg game,
as shown in Fig. 4. In the game, all players are assumed to
be rational and selfish, whose targets are to maximize their
utilities. To analyze the optimal strategy of each player, the
utility functions of subscriber CAVs and publisher CAV need
to be designed, respectively.

A. Utility function of subscriber CAVs

Since there is only one copy of the published content
c = {rawc, resultc} in topic o to be transmitted to multiple
subscriber CAVs in the set Jc through V2V multicasting [33],

Publisher CAV i

published content set {1,…, c,…, Ci}

Stage I:

Stage II:

Subscriber 

group J1

... Subscriber

group Jc

... Subscriber

group JCi

pi,1 qi,1 pi,c qi,c pi,Ci qi,Ci

Fig. 4. Structure of the proposed vehicular pub/sub game model.

the QoCS of content c provided by publisher CAV i for all
subscriber CAVs with the same βj,c are identical. Therefore,
the payment vectors for each published content c are assumed
to be the same, i.e., pi,c =

[
p1
i,c, p

2
i,c

]
= pi,j,c,∀j ∈ Jc. For

ease of expression, we define λj,c = [βj,c, 1− βj,c]T, where T
is the transpose symbol. The utility function of subscriber CAV
j ∈ Jc with content preference βj,c on consuming content c can
be defined as the difference between its satisfaction and cost
(i.e., payment and transmission delay) in each content service.
As such, we have

Uj (qi,c,pi,c) = Ω (qi,c)−
[

ϑ1
c βj,c

ϑ2
c (1− βj,c)

]T
× (10)

(pi,c)
Tqi,cλj,c −

[
γ1βj,c

γ2 (1− βj,c)

]T
Tdelay
i,j,c ,

where q1
i,c, q

2
i,c ∈ [0, 1]. For any u ∈ {1, 2}, qui,c = 1 implies

the highest QoCS, while qui,c = 0 means that the QoCS is the
lowest. Ω(qi,c) is the satisfaction function of subscriber CAV j
with the QoCS vector qi,c. ϑ1

c , ϑ
2
c are positive price adjustment

parameters. γ1, γ2 are positive adjustment factors. Tdelay
i,j,c is the

transmission delay vector of content c and is calculated by

Tdelay
i,j,c =

1

ri,j

[
s1
c , s

2
c

]T
, (11)

where s1
c , s

2
c are the data size of rawc and resultc, respectively.

ri,j is the transmission rate between publisher CAV i and
subscriber CAV j ∈ Jc. Full-duplex V2V multicasting com-
munications [34], [35] are employed for each CAV to support
simultaneous data publications and/or subscriptions over the
same or different subchannels. The path-loss of V2V link
between CAV i and CAV j can be described by the large scale
fading channel model [35], and the channel gain is given by

Φi,j = |µ0|2(di,j)
−=, (12)

where µ0 is the Rayliegh fading channel coefficient, = > 0 is
the path-loss exponent of a V2V link, and di,j is the Euclidean
distance between two CAVs i and j. All channels are supposed
to be reciprocal [36], i.e., Φi,j = Φj,i. According to [35], to
ensure a desirable SINR threshold SINRλ at subscriber CAV
j, the transmit power of publisher CAV i over an intra-fleet
V2V link satisfies:

PTri = P 0
i +

SINRλ

|µ0|2
·< · (di,j)=, (13)

where PTri is the transmit power of CAV j in the presence of
both additive white Gaussian noise (AWGN) and co-subchannel
interference. P 0

i is CAV j’s transmit power with the presence
of AWGN. < is the interference of using the same subchannel3.
Hence, we have ri,j = BTri log2 (1 + SINRλ), where BTri is
the subchannel bandwidth.

3The self-interference of CAVs in data transmission over the same subchan-
nel can be efficiently mitigated via existing self-interference cancellation (SIC)
models [34] and subchannel allocation models [35].
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Based on [6], [13], the natural logarithmic function, which is
widely adopted in modeling the utilities of content consumers,
is employed to model the satisfaction function Ω(qi,c). We have

Ω(qi,c) = αi,cfcRi log (1 + Qi,cλj,c)

= αi,cfcRi log

(
1 +

[
sci,πc q

1
i,c

pci q
2
i,c

]T
λj,c

)
, (14)

where αi,c > 0 is the satisfaction coefficient of subscriber
CAVs on content c, fc is the popularity degree of content c
defined in Eq. (8), and Ri is the reputation value of publisher
CAV i defined in Sect. IV-C.

Accumulating utilities Uj (qi,c,pi,c) over all j ∈ Jc, the
overall utility function of subscriber CAV group Jc can be
obtained as:

UJc (qi,c,pi,c) =
∑

j∈Jc
uj (qi,c,pi,c)

= αi,cfcRi
∑

j∈Jc
log

(
1 +

[
sci,πc q

1
i,c

pci q
2
i,c

]T
λj,c

)

−
∑

j∈Jc

[
ϑ1
c p

1
i,cq

1
i,c

ϑ2
c p

2
i,cq

2
i,c

]T
λj,c −

∑
j∈Jc

[
γ1s1

c

γ2s2
c

]T
× λj,c

(
BTri log2 (1 + SINRλ)

)−1
. (15)

B. Utility function of publisher CAVs

The utility function of publisher CAV i ∈ Ik on contributing
contents {1, · · · , Ci} can be defined as the revenue minus its
cost in all content services, which can be expressed as:

Ui (qi,pi) =
∑

c∈Ci

(∑
j∈Jc

[
ϑ1
c p

1
i,cq

1
i,c

ϑ2
c p

2
i,cq

2
i,c

]T
λj,c (16)

−φi,c(qi,c)− I× φenergyc − φ0) ,

where qi = [qi,1, · · · ,qi,c, · · · ,qi,Ci ] is the QoCS vector
of publisher CAV i, pi = [pi,1, · · · ,pi,c, · · · ,pi,Ci ] is the
payment vector of all subscriber CAV groups on content set Ci,
and φi,c(qi,c) is the content generation cost of publisher CAV i
with QoCS qi,c. I = [1{J 1

c 6=∅}, 1{J 2
c 6=∅}] is a vector, where 1x

is an indicator function if the event x it true; otherwise it equals
to zero. φenergyc is the energy consumption cost in transmitting
content c and is calculated by

φenergyc = PTri Tdelay
i,j,c . (17)

In Eq. (16), φ0 is the content management fee paid to
master CAV hk for each published content. Here, the cost in
contributing content c, i.e., φi,c(qi,c), is associated with the
type of sensor, the sensing or processing capacity, and the
QoCS of publisher CAV. Based on the quadratic cost model
[37], φi,c(qi,c) can be formulated as the quadratic function of
the service quality, i.e.,

φi,c(qi,c) = I×

[
ξ1
c ε

1
i,πc

sci,πc ·
(
q1
i,c

)2
ξ2
c ε

2
i pci ·

(
q2
i,c

)2
]
, (18)

where ξ1
c , ξ

2
c are positive adjustment coefficients, ε1

i,πc
is the

cost parameter of publisher CAV i with the highest QoCS
in contributing rawc using type-πc sensor, and ε2

i is the
cost parameter of publisher CAV i with the highest QoCS in
computing resultc.

C. Reputation Evaluation

The reputation value Rn of each authorized CAV node n ∈
N is constructed from the combination of vehicle’s social role
dimension and vehicle’s behavior dimension. We have

Rn = λRf(rolen) + λBf (behaviorn) , (19)

where λR and λB are positive normalization coefficients to
guarantee that Rn ∈ [0, 1]. f(rolen) and f (behaviorn) are
role and behavior effects of CAV n, respectively. Commonly,
CAVs with different social role types hold different levels of
trustworthiness, e.g., the police cars are more trustworthy than
private cars. Let A = {1, · · · , a, · · · , A} denote the set of
registered vehicle role categories of CAVs, e.g., police cars,
ambulances, private cars, etc. When a new CAV n joins the
network, it needs to submit its type of social role (i.e., a ∈ A)
by binding with its real identity (e.g., vehicle license number)
in the registration phase at the trusted authority (TA), such as
the certificate authority. Here, the effect of CAV n’s vehicle
role in reputation assessment is formulated as:

f (rolen) = bn · vT =
∑

a∈A
bn,a · va, (20)

where bn=[bn,1, · · · , bn,a, · · · , bn,A] is the binary social role
vector of CAV n. If bn,a = 1, it means that the registered
social role of CAV n at TA is a ∈ A. Otherwise, bn,a = 0.
v = [v1, · · · , va, · · · , vA] is the trustworthiness degree vector
of CAVs with different types of registered vehicle roles.

Subscriber CAVs who doubt about the authenticity of the
processed results resultc or receive harmful sensory data rawc
can report the corresponding publisher CAV i ∈ Ik to the
master CAV hk. Then, master CAV hk collects the evidence
by acquiring the raw sensory data rawc of content c from
the publisher CAV i, and decides whether publisher CAV i
misbehaves or not via digital forensics. The detailed forensics
procedure for source identification and evidence collection can
refer to [38], [39]. The behavior effect f(behaviorn) of CAV
n in reputation calculation is related to the positive behavior
effect (i.e., zPn ) and negative behavior effect (i.e., zNn ). The
positive behavior effect of CAV n can be expressed as:

zPn = w1

∑Nreportn

b=1
e−η1(t−tb) + w2T

recent
n , (21)

where w1 and w2 are positive adjustment parameters, Nreport
n

is the number of successful report times of CAV n, and T recentn

is the duration without misbehavior in recent time of CAV
n, i.e., time interval from the occurrence time of the latest
recorded misbehavior till the current time t. e(.) is the time
decay function to describe the feature that latest behaviors are
more important than older ones, η1 > 0 is the decay factor,
and tb is the occurrence time of b-th behavior. By considering
time fading effects, the impact of old behavior records can be
gradually reduced. The negative behavior effect of CAV n is
associated with its number of recorded malicious behaviors and
the occurrence time of each misbehavior, i.e.,

zNn = w3

∑Nmisn

b=1
e−η2(t−tb), (22)

where w3 is a positive adjustment parameter, Nmis
n is the

number of CAV n’s recorded misbehaviors, and η2 > 0 is
the decay factor.

Based on the standard Bayesian inference model [25], the
behavior effect can be defined in the form of beta distribution,
i.e., f(behaviorn) ∼ beta(αn, βn), where αn = zPn + 1 and
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βn = zNn + 1. The beta probability density function (PDF)
g(θ|α, β) can be expressed by using a gamma function Γ as:

g(θ|α, β)=
θα−1(1− θ)β−1∫ 1

0
µα−1(1−µ)

β−1
dµ

=
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1−θ)β−1

,

(23)

where 0 ≤ θ ≤ 1. Then, f(behaviorn) can be formulated as
the expectation of beta PDF, i.e.,

f(behaviorn) = E [g(θ|αn, βn)] =
αn

αn + βn
. (24)

Initially, due to the absence of direct observations, each CAV
has the same prior knowledge beta(1, 1). For improved ac-
curacy and robustness in reputation evaluation, we devise an
improved Bayesian inference model. Commonly, the reputation
of each CAV node grows slowly, whereas it can be destroyed
quickly when CAV misbehaves. Here, a punishment factor
γ > 1 is introduced to punish CAVs’ misbehaviors with the
following advantages. On one hand, it can significantly lower
the reputation value of a malicious CAV if its misbehavior is
detected. On the other hand, the reputation value of a malicious
CAV will recover slowly even if it behaves legitimately in next
time slots. The modified behavior effect of CAV n in Eq. (24)
can be rewritten as:

f(behaviorn) =
αn

αn + γβn
. (25)

Besides, in contrast to the standard Bayesian model which
assigns the same weight regardless of occurrence time of the
observed behaviors, a CAV may change its behavior over time
owing to the network dynamics. A time fading mechanism is
adopted to address this issue by allowing CAVs to gradually
forget old observations and assigning higher weights for recent
observations, as shown in Eqs. (21)–(22). Here, η1, η2 are decay
factors for CAVs’ positive behavior effect and negative behavior
effect, respectively.

D. Optimization Problems

The proposed vehicular pub/sub game between the publisher
CAV and subscriber CAVs in content transmission can be
formulated as:

G =
{

(i,J1≤c≤Ci) ; (qi,pi) ;
(
Ui,UJ1≤c≤Ci

)}
, (26)

which can be regarded as a multiple-leaders and one-follower
Stackelberg game. As shown in Fig. 4, each subscriber CAV
group Jc, as the leader of the game G, first chooses its optimal
payment strategy pi,c

∗ in stage I to maximize its utility defined
in Eq. (15). Then the publisher CAV i, as the follower of
the game, determines its optimal QoCS strategy qi

∗ in stage
II to maximize its utility defined in Eq. (16). As such, two
optimization problems are formulated.

Problem 1. The objective of each subscriber CAV group Jc
is to maximize its utility function by determining its payment
strategy pi,c, whereby the optimization problem P1 is:

P1 : max
pi,c
UJc (qi,c,pi,c) , ∀Jc ⊆ Jk,

s.t.

{
0 ≤ pui,c ≤ pmax, ∀u ∈ {1, 2} ,∀c ∈ Ci,
Ri ≥ θJc , ∀i ∈ Ik,

(27)

where pmax is the price budget of subscriber CAVs which
indicates the highest payment in a content service, and θJc
is the reputation threshold of subscriber CAV group Jc.

Problem 2. The objective of each publisher CAV i ∈ Ik is
to maximize its utility function by selecting its QoCS strategy
qi, whereby the optimization problem P2 is:

P2 : max
qi,1,qi,2,··· ,qi,Ci

Ui (qi,pi) , ∀i ∈ Ik,

s.t. 0 ≤ qui,c ≤ 1, ∀u ∈ {1, 2} ,∀c ∈ Ci.
(28)

The solution of the game G is to find the Stackelberg
equilibrium (SE), from which neither the publisher CAV nor
the subscriber CAVs can deviate to improve their utilities.

Definition 1. The SE of game G is denoted by (pi
∗,qi

∗),
where pi

∗ = [pi,c
∗]1≤c≤Ci is the solution for P1, and qi

∗ =

[qi,c
∗]1≤c≤Ci is the solution for P2. Here, pi,c∗ =

[
p1
i,c
∗
, p2
i,c
∗]

and qi,c
∗ =

[
q1
i,c
∗
, q2
i,c
∗]. Then a SE of the proposed game (if

one exists) can be given by:{
pi,c
∗ = arg maxpi,c UJc (qi,c

∗,pi,c) ,∀Jc ⊆ Jk, (29)

qi
∗ = arg maxqi Ui (qi,pi

∗) , ∀i ∈ Ik. (30)

V. STATIC VEHICULAR PUB/SUB GAME ANALYSIS

In this section, we analyze the SE of the static vehicular
pub/sub game with one interaction to attain the optimal strate-
gies of both publisher CAVs and subscriber CAVs. Here, all
the parameters in the game model (e.g., satisfaction coefficient,
cost parameter, and sensing/processing capacity) are public
knowledge to all players. To obtain the SE, the backward
induction approach [13] is exploited, where the optimal strategy
of the follower (i.e., publisher CAV) is first analyzed followed
by the optimal strategy analysis of the leader (i.e., subscriber
CAV group).

A. Optimal Strategy of Publisher CAV

In stage II, publisher CAV i decides its optimal QoCS
strategy qi

∗ to maximize its utility based on Theorem 1.
Theorem 1. The optimal QoCS strategies of publisher CAV i

on contributing the sensing data rawc and the processing result
resultc of content c ∈ Ci are

q1
i,c
∗

=


1, if

2ξ1cε
1
i,πc

sci,πc
J1
cϑ

1
c

≤ p1
i,c ≤ pmax;

J1
c ϑ

1
c p

1
i,c

2ξ1cε
1
i,πc

sci,πc
, if 0 < p1

i,c <
2ξ1cε

1
i,πc

sci,πc
J1
cϑ

1
c

.

(31)

q2
i,c
∗

=

 1, if
2ξ2cε

2
i pci

J2
cϑ

2
c
≤ p2

i,c ≤ pmax;

J2
c ϑ

2
c p

2
i,c

2ξ2cε
2
i pci

, if 0 < p2
i,c <

2ξ2cε
2
i pci

J2
cϑ

2
c
.

(32)

Proof: Please refer to Appendix A.

B. Optimal Strategy of Subscriber CAV

In stage I, given the optimal QoCS strategy qi,c
∗ in Eqs.

(31)–(32), each subscriber CAV group Jc decides its optimal
payment strategy pi,c

∗ for content c to maximize its utility
UJc (qi,c

∗,pi,c) according to the following theorem.
Theorem 2. The optimal payment strategies of subscriber

CAV group Jc for the sensing data rawc and the processing
result resultc of content c ∈ Ci are

p1
i,c
∗

=


2

J1
cϑ

1
c
ξ1
cε

1
i,πc

sci,πc , if Ψ1 ≥ 0;

1
J1
cϑ

1
c

(√
Υ1 − ξ1

cε
1
i,πc

)
, if Ψ1 < 0.

(33)
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p2
i,c
∗

=


2

J2
cϑ

2
c
ξ2
cε

2
i pci, if Ψ2 ≥ 0;

1
J2
cϑ

2
c

(√
Υ2 − ξ2

cε
2
i

)
, if Ψ2 < 0,

(34)

where 
Υ1 =

(
ξ1
cε

1
i,πc

)2
+ J1

cαi,cfcRiξ
1
cε

1
i,πcsci,πc ,

Υ2 =
(
ξ2
cε

2
i

)2
+ J2

cαi,cfcRiξ
2
cε

2
i pci,

Ψ1 = J1
cαi,cfcRi − 4ξ1

cε
1
i,πc (sci,πc + 1) ,

Ψ2 = J2
cαi,cfcRi − 4ξ2

cε
2
i (pci + 1) .

Proof: Please refer to Appendix B.
According to the above analysis, the SE of the proposed

game can be attained, which is shown in the following theorem.
Theorem 3. The SE of the static vehicular pub/sub game G

is given by:

(
pui,c
∗, qui,c

∗)=


(

2
Juc ϑ

u
c

Λu, 1
)
, if Ψu≥0;(√

Υu−Ωu

Juc ϑ
u
c

,
√

Υu−Ωu

2Λu

)
, if Ψu<0,

(35)

where u ∈ {1, 2}, Ω1 = ξ1
cε

1
i,πc

, Ω2 = ξ2
cε

2
i , Λ1 = Ω1sci,πc ,

and Λ2 = Ω2pci.
Proof: Please refer to Appendix C.

Remark. In the competitive pub/sub process, subscriber
CAVs with different subscription preferences βj,c’s and pub-
lisher CAVs with different sensing/processing capacities can
determine their strategies for each content service by obeying
the SE in Eq. (35) to obtain their maximized utilities in a
distributed manner.

VI. DYNAMIC VEHICULAR PUB/SUB GAME WITH
TWO-TIER HOTBOOTING PHC-BASED LEARNING

In this section, we analyze the dynamic vehicular pub/sub
game with repeated interactions between publisher CAVs and
subscriber CAVs. Different from the static vehicular pub/sub
game where the parameters of both publisher and subscriber
CAVs’ utility functions are public knowledge, in a practical
network, these parameters are typically private and cannot
be readily available for all participants. Alternatively, both
publisher CAVs and subscriber CAVs can apply reinforcement
learning techniques to search their optimal strategies via trial
and error under multiple interactions. The strategy-making
processes of both publisher CAVs and subscriber CAVs can
be modeled as finite Markov decision processes (MDPs) in the
dynamic game [40], [41].

A. Hotbooting PHC-Based Payment Strategy

A high payment for requested data decreases the immediate
utility of the subscriber CAV, whereas it stimulates the higher
quality of contents shared by publisher CAV in the future.
Hence, the current payment strategies of subscriber CAV groups
influence the long-term quality of subscribed contents and their
future payoffs. By formulating the pricing decision-making
process as a finite MDP, each subscriber CAV group can apply
the hotbooting PHC (as an extension of Q-learning) to search
its optimal payment strategy without explicitly knowing the
private parameters of the publisher CAV’s utility model. At
each time slot t, the system state vector zti,c =

[
(z1
i,c)

t, (z2
i,c)

t
]

for subscriber CAV group Jc consists of the previous QoCS of
publisher CAV i in contributing content c, i.e., zti,c = qt−1

i,c .
Here, (zui,c)

t = (qui,c)
t−1, ∀u ∈ {1, 2}. For simplicity, the

payment strategy of each subscriber CAV group is uniformly

quantized into X+1 levels, i.e., pui,c ∈ X = { xX ·pmax}0≤x≤X ,
∀u ∈ {1, 2}. In the learning process, the reward of subscriber
CAV group Jc is defined as its scaled utility λ1UJc

(
qti,c,p

t
i,c

)
,

where λ1 is a positive scale factor.
Let Q

(
zti,c,p

t
i,c

)
denote the Q-function of state zti,c and

action pti,c =
[
(p1
i,c)

t, (p2
i,c)

t
]
, which indicates the expected

long-term discounted utility of the state-action pair
(
zti,c,p

t
i,c

)
.

The Q-function of subscriber CAV group Jc can be updated
based on iterative Bellman equation as follows:

Q
(
zti,c,p

t
i,c

)
← Q

(
zti,c,p

t
i,c

)
+ ψ1

{
λ1UJc

(
qti,c,p

t
i,c

)
+χ1V

(
zt+1
i,c

)
−Q

(
zti,c,p

t
i,c

)}
, (36)

where ψ1 ∈ (0, 1] is the learning rate implying the weight
of current experience, and χ1 ∈ [0, 1] is the discount factor
indicating the myopic view regarding the future reward. zt+1

i,c

is the new state vector of publisher CAV i on content c at time
slot t+1, which is transformed from state zti,c with action pti,c.
Besides, V

(
zti,c
)

denotes the value function, which maximizes
the Q-function at state zti,c over the action set, i.e.,

V
(
zt+1
i,c

)
← max

pi,c
Q
(
zt+1
i,c ,p

t+1
i,c

)
. (37)

To speed up the convergence time in traditional Q-learning,
the proposed hotbooting PHC algorithm makes two improve-
ments: 1) hotbooting preparation for efficient system initial-
ization, and 2) PHC-based mixed-strategy table update for
balancing the exploration and exploitation. In specific, in PHC,
the mixed-strategy table π

(
zti,c,p

t
i,c

)
is updated by increasing

the probability of behaving greedily (i.e., opt the payment
strategy with the highest Q-function) by a small value δ1,
0 < δ1 ≤ 1, and decreasing the other probabilities by − δ1X .
We have

π
(
zti,c,p

t
i,c

)
← π

(
zti,c,p

t
i,c

)
+

{
δ1, if p∗i,c = arg maxpi,c Q

(
zti,c,pi,c

)
;

− δ1
X+1 , otherwise.

(38)

Then, subscriber CAV group Jc selects its payment strategy
pti,c based on the mixed-strategy table π

(
zti,c,p

t
i,c

)
, i.e.,

Pr
(
pti,c = p̂i,c

)
= π

(
zti,c, p̂i,c

)
,∀p̂i,c ∈ X . (39)

To avoid inefficient random explorations in traditional Q-
learning with all-zero Q-value initialization, a hotbooting tech-
nique (as shown in lines 7–13 in Algorithm 1) is utilized for
subscriber CAV groups by exploiting the experience from sim-
ilar scenarios to initialize the Q-value and mixed-strategy table.
In specific, W vehicular pub/sub experiments are conducted in
similar scenarios before the game and each of them lasts T
time slots. The output of Algorithm 1 through W experiments
(i.e., Qh and πh) is utilized as the input of Algorithm 2, with
Q = Qh and π = πh. The hotbooting PHC-based optimal
payment strategy decision process for subscriber CAV groups
is summarized in lines 6–13 in Algorithm 2.

B. Hotbooting PHC-Based QoCS Strategy

Each publisher CAV i utilizes hotbooting PHC to search
its optimal QoCS strategy on each shared content c ∈ Ci in
the dynamic game through trial and error. The state vector
z̃ti =

[
z̃ti,1, · · · , z̃ti,c, · · · , z̃ti,Ci

]
for publisher CAV i consists

of the previous payment sequences of subscriber CAV groups,
i.e., z̃ti,c = pt−1

i,c . Here, z̃ti,c =
[
(z̃1
i,c)

t, (z̃2
i,c)

t
]
, and (z̃ui,c)

t =
(pui,c)

t−1, ∀u ∈ {1, 2}. For simplicity, the QoCS strategy of



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 10

Algorithm 1 Hotbooting Preparation
1: Input: ψ1, ψ2, χ1, χ2, δ1, δ2, z0i,c, z̃

0
i,c, X , Y

2: Output: Qh, πh, Q̃h, π̃h
3: Initialize: Qh = 0, πh = 1

X+1
, Q̃h = 0, π̃h = 1

Y+1
4: for w = 1, 2, · · · ,W do
5: for t = 1, 2, · · · , T do
6: for c = 1, 2, · · · , Ci do
7: # run on the subscriber CAV group Jc #
8: Set zti,c = qt−1

i,c .
9: Choose pti,c via Eq. (39) and send it to publisher CAV i.

10: Observe and evaluate the QoCS qti,c.
11: Obtain utility UJc

(
qti,c,p

t
i,c

)
via Eq. (15).

12: Update Qh
(
zti,c,p

t
i,c

)
via Eqs. (36) and (37).

13: Update πh
(
zti,c,p

t
i,c

)
via Eq. (38).

14: # run on the publisher CAV i #
15: Set z̃ti,c = pt−1

i,c .
16: Choose qti,c via Eq. (43) and send it to subscriber CAV

group Jc.
17: Observe the payment pti,c.
18: Obtain utility Ui

(
qti,c,p

t
i,c

)
via Eq. (16).

19: Update Q̃h
(
z̃ti,c,q

t
i,c

)
via Eqs. (40) and (41).

20: Update π̃h
(
z̃ti,c,q

t
i,c

)
via Eq. (42).

21: end for
22: end for
23: end for

Algorithm 2 Two-Tier Hotbooting PHC-Based Optimal
Strategy Decision

1: Run Algorithm 1 for hotbooting.
2: Initialize: ψ1, ψ2, χ1, χ2, δ1, δ2, z0i,c, z̃

0
i,c, X , Y

3: Q = Qh, V = 0, π = πh, Q̃ = Q̃h, Ṽ = 0, π̃ = π̃h
4: for t = 1, 2, · · · , T do
5: for c = 1, 2, · · · , Ci do
6: Tier 1: Hotbooting PHC-Based Payment Strategy.

# run on the subscriber CAV group Jc #
7: Set zti,c = qt−1

i,c .
8: Choose pti,c via Eq. (39) and send it to publisher CAV i.
9: Observe and evaluate the QoCS qti,c.

10: Obtain utility UJc
(
qti,c,p

t
i,c

)
via Eq. (15).

11: Update Q
(
zti,c,p

t
i,c

)
via Eq. (36).

12: Update V
(
zti,c

)
via Eq. (37).

13: Update π
(
zti,c,p

t
i,c

)
via Eq. (38).

14: Tier 2: Hotbooting PHC-Based QoCS Strategy.
# run on the publisher CAV i #

15: Set z̃ti,c = pt−1
i,c .

16: Choose qti,c via Eq. (43) and send it to subscriber CAV group
Jc.

17: Observe the payment pti,c.
18: Obtain utility Ui

(
qti,c,p

t
i,c

)
via Eq. (16).

19: Update Q̃
(
z̃ti,c,q

t
i,c

)
via Eq. (40).

20: Update Ṽ
(
z̃ti,c

)
via Eq. (41).

21: Update π̃
(
z̃ti,c,q

t
i,c

)
via Eq. (42).

22: end for
23: end for

each publisher CAV i is uniformly quantized into Y +1 levels,
i.e., qui,c ∈ Y = { yY }0≤y≤Y , ∀u ∈ {1, 2}. The reward of
publisher CAV i is defined as its scaled utility λ2Ui (qti,p

t
i),

where qti =
[
qti,1, · · · ,qti,c, · · · ,qti,Ci

]
and λ2 is a positive

scale factor.
Let Q̃

(
z̃ti,c,q

t
i,c

)
denote the Q-function of state z̃ti,c and

action qti,c =
[
(q1
i,c)

t, (q2
i,c)

t
]
. According to iterative Bellman

equation, the Q-function can be updated as follows:

Q̃
(
z̃ti,c,q

t
i,c

)
← Q̃

(
z̃ti,c,q

t
i,c

)
+ ψ2

{
λ2Ui

(
qti,p

t
i

)
+χ1Ṽ

(
z̃t+1
i,c

)
− Q̃

(
z̃ti,c,q

t
i,c

)}
,∀c ∈ Ci, (40)

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value
τ(c) 1 κ 0.9

X,Y,W 16, 10, 5 δ1, δ2 0.01
sci,πc [0, 1] pci [0, 1]
λR 0.05 λB 0.5
η1, η2 0.001 w1, w2, w3 1
γ 1.2 θJc 0.45

ϑ1, ϑ2 0.75 γ1, γ2 0.01
ε1i,πc , ε

2
i [0.4, 2.0] cents va [1, 10]

αi,c [25, 45] ξ1c , ξ
2
c 1

s1c [0.1, 0.5] MBytes s2c [1, 20] KBytes
BTri 2 MHz [35] =, SINRλ 4, 100 [35]
PTri 23 dBm [42] σ2 −110 dBm [42]
an 0 m/s2 Lf , Lr 1.105, 1.738 m
φ0 0.1 cents pmax 5 cents
p̃1, p̃2 1.2 cents βj,c random in {0, 1}

where ψ2 ∈ (0, 1] is the learning rate, and χ2 ∈ [0, 1] is the
discount factor. z̃t+1

i,c is the new state vector of subscriber CAV
group Jc at time slot t+1, which is transformed from state z̃ti,c
with action qti,c. The value function Ṽ

(
z̃t+1
i,c

)
which maximizes

the Q-function at state z̃ti,c over the action set is updated by

Ṽ
(
z̃t+1
i,c

)
← max

qi,c
Q̃
(
z̃t+1
i,c ,q

t+1
i,c

)
. (41)

Similarly, the mixed-strategy table π̃
(
z̃ti,c,q

t
i,c

)
in PHC is

updated by increasing the probability of behaving greedily by
a small value δ2, 0 < δ2 ≤ 1, and decreasing the other
probabilities by − δ2Y . We have

π̃
(
z̃ti,c,q

t
i,c

)
← π̃

(
z̃ti,c,q

t
i,c

)
+

{
δ2, if q∗i,c = arg maxqi,c Q̃

(
z̃ti,c,qi,c

)
;

− δ2
Y+1 , otherwise.

(42)

Then, the publisher CAV i selects its QoCS strategy qti,c on
content c based on the mixed-strategy table π̃

(
z̃ti,c,q

t
i,c

)
, i.e.,

Pr
(
qti,c = q̂i,c

)
= π

(
z̃ti,c, q̂i,c

)
,∀q̂i,c ∈ Y. (43)

A hotbooting technique (as shown in lines 14–20 in Algo-
rithm 1) is also utilized by publisher CAVs to initialize the Q-
value and mixed-strategy table to speed up the learning process
by exploiting the historical experience. The output of Algorithm
1 through W experiments (i.e., Q̃h and π̃h) is utilized as the
input of Algorithm 2, with Q̃ = Q̃h and π̃ = π̃h. The two-tier
hotbooting PHC-based optimal strategy decision algorithm for
both publisher CAVs and subscriber CAVs is summarized in
Algorithm 2, where lines 14–21 shows the hotbooting PHC-
based optimal QoCS strategy decision process for publisher
CAV i.

VII. PERFORMANCE EVALUATION

In this section, we carry out extensive simulations to evaluate
the performance of SPAD by using Matlab. The simulation
setup is first introduced, followed by the numerical results and
discussions.

A. Simulation Setup

We consider a simulation scenario with 100 road segments in
an actual urban area of San Francisco with about 11.03× 7.06
km2 [43]. The length of each segment follows the uniform
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distribution and lies in [20, 200]m. MEC nodes are evenly
deployed along road segments every 200m and have the same
coverage radius 100m [16]. The vehicle density of each road
segment is randomly picked within [10, 120] veh/km. All CAVs
in a CAV fleet drive at the constant velocity. The minimum
and maximum velocities of a CAV fleet are set as 50 and 110
km/h, respectively. As referenced in 3GPP LTE-V2X standard
[42], the transmission power and the noise power are set as 23
dBm and −110 dBm, respectively. Each CAV publishes a raw
sensory content with its processed results in its fleet per time
slot. Each CAV randomly selects to subscribe to a published
content or not in its current fleet. All subscriber CAVs of each
published content randomly subscribe to its raw sensing part
or the processed results part. Based on [32], the large Zipf
parameter (i.e., κ = 0.9) is adopted for better content caching
performance. The punishment factor and reputation threshold
are set as 1.2 and 0.45, respectively. The cost parameter of
each publisher CAV follows the uniform distribution ranged
from 0.4 to 2.0 cents. In the hotbooting PHC, the learning rates
are set as ψ1 = ψ2 = 0.7, and the discount factors are set as
χ1 = χ2 = 0.7. Parameters in the simulation are summarized
in Table II.

In the simulation, we consider three types of CAVs with dif-
ferent security levels, i.e., legitimate CAVs, speculative CAVs,
and malicious CAVs. Legitimate CAVs always provide secure
and true content for subscriber CAVs, while malicious ones
may conduct attacks by delivering false or harmful content.
Speculative CAV randomly opts to be legitimate or malicious.
Let rl, rs, and rm be the ratios of legitimate, speculative, and
malicious CAVs, respectively. The following security metrics
are utilized to indicate the performance of SPAD in defending
against attacks defined in Sect. III-E.

• To evaluate the dependability of shared content, the fol-
lowing metric is employed. Secure pub/sub ratio: the
proportion of successfully published/subscribed secure and
true content to the total number of published/subscribed
contents among CAVs. The performance of SPAD in
defending the dishonest and harmful content publishing
attack can refer to Figs. 5 and 6 in the next subsection.

• High-quality published data can help subscriber AVs attain
high-accurate information about their driving environment.
As analyzed in Sect. III-C, the notation qi,c is utilized to
measure the quality of content service (QoCS) of publisher
CAV i in contributing the raw sensory data c and its
processed results. The performance of SPAD in defending
the meaningless and low-quality content publishing attack
can refer to Figs. 8 and 12 in the next subsection.

The performance of the proposed SPAD scheme is evaluated
by comparing with the following conventional schemes:

• Traditional Bayesian inference-based trust (BIT) scheme
[26]. In BIT scheme, the trustworthiness of each vehicle
is predicted based on its historical behaviors by using the
well-founded standard Bayesian inference mechanism, as
shown in Eqs. (23)–(24), whereas vehicle’s social role
effects, time fading effects, and punishment for misbe-
haviors are not taken into account. Besides, the proposed
static game G is applied in BIT scheme for publish-
ing/subscribing of CAVs. Here, λR = 0, λB = 1, w2 = 0,
and other parameters keep unchanged.

• Stackelberg game-based scheme without reputation eval-
uation (SWR). In SWR scheme, the interaction between

TABLE III
COMPUTATION AND COMMUNICATION OVERHEADS OF SPAD

Reputation
mechanism

Static game
model Dynamic game model

Computation
complexity O(N) O(C) O(C · T )

Execution time 28 ms 11 ms 135 ms (Hotbooting
with W = 400)

Communication
complexity O(N) O(C) O(C · T )

Communication
cost 20.5 MB 32 B 384 B (Hotbooting

with W = 400)

publisher CAV and subscriber CAVs is modeled by the
two-stage Stackelberg game G while the reputation as-
sessment is not considered.

• Two-tier Q-learning scheme [44]. In this scheme, the
traditional Q-learning with ε–greedy policy is employed
for both publisher CAVs and subscriber CAVs to seek
their optimal strategies in the dynamic game. Here, both
the learning rate and discount factor remain unchanged.

• Greedy scheme. In this scheme, both publisher CAVs and
subscriber CAVs behave greedily to seek their optimal
strategies in the dynamic game based on Q-learning.

• Fixed price (FP) scheme. In FP scheme, all subscriber
CAVs pay content contributors with fixed content price
vector p̃ = [p̃1, p̃2] in the static game, where p̃1, p̃2 are the
fixed prices of rawc and resultc of content c, respectively.

B. Numerical Results

Table III shows computation and communication overheads
of our SPAD scheme in terms of reputation model, static
pub/sub game model, and PHC-based dynamic pub/sub game
model. For the reputation model, the computation and commu-
nication complexities at each time slot yield to O(N), where
N is the total number of CAVs. Besides, the reputation of
CAVs can be evaluated and updated in parallel, thereby further
reducing the running time. For the static game model, both
publisher CAV and subscriber CAV calculate their optimal
strategies by obeying the SE in a distributed manner. Both
the computation and communication complexities for each
CAV yield to O(C), where C is the number of contents to
be published/subscribed. Besides, for each publisher/subscriber
CAV, it can compute the optimal strategies for different contents
in parallel, thereby further reducing the execution time. For
the PHC-based dynamic pub/sub game model, both publisher
CAV and subscriber CAV calculate their near-optimal strategies
by employing the policy hill-climbing (PHC) in a distributed
manner. Similarly, both the computation and communication
complexities for each CAV yield to O(C · T ), where T is the
number of convergent time slots. Here, the hotbooting tech-
nique is employed to speed up the convergence time by learning
from historical experience. Thereby, both the running time and
signaling overhead can be reduced. As seen in Table III, both
the communication and communication overheads for CAVs are
very small. Thereby, the consumed bandwidth and computation
resources of CAVs by employing our SPAD scheme can be very
small, which validates the practicality of our SPAD scheme.

Fig. 5 depicts the evolution of average reputation values
over time for three types of CAVs in two schemes. Here,
we set rl = 0.6, rs = 0.2, and rm = 0.2. As seen in Fig.
5, in both two schemes, the average reputation values of
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Fig. 7. Optimal payment strategy of subscriber
CAV vs. cost parameter of publisher CAV in static
vehicular pub/sub game.

speculative CAVs and malicious CAVs decline over time, while
that of legitimate CAVs ascents. The reason is that legitimate
CAVs always behave honestly and cooperatively to gradually
increase their reputation values. In opposite, the misbehaviors
conducted by malicious CAVs will be recorded for reputation
calculation, resulting in low reputation values of malicious
CAVs. Moreover, the average reputation value of speculative
CAVs is relatively higher than that of malicious CAVs, since
speculative CAVs can randomly choose their actions to be
legitimate or malicious.

Furthermore, as seen in Fig. 5, in the proposed SPAD
scheme, the average reputation value of legitimate CAVs is
larger than that in the BIT scheme, while the average reputation
values of speculative or malicious CAVs converge faster and
are smaller than that in the BIT scheme. Moreover, in our
SPAD scheme, the initial average reputation value of legitimate
CAVs (i.e., 0.6496) is higher than that of speculative CAVs
(i.e., 0.3937) and malicious CAVs (i.e., 0.3137); while in the
BIT scheme, the initial average reputation values of three
types of CAVs are identical (i.e., 0.5). It can be explained
as follows. Firstly, in our SPAD scheme, CAVs are featured
with diversified social roles A. Consequently, legitimate CAVs
are assigned to social role types with higher trustworthiness
degree va, while speculative and malicious CAVs correspond
to those with smaller trustworthiness degrees. Secondly, as
SPAD additionally considers time fading effects in reputation
evaluation, it leads to the fading weights of historical behaviors
in determining the current reputation value and thereby faster
convergence speed for speculative CAVs’ reputation. Thirdly,
a punishment factor is further incorporated in reputation eval-
uation, causing a larger reputation drop for both speculative
and malicious CAVs when their misbehaviors are detected and
higher difficulty in recovering their reputation by behaving
honestly in following time slots. As a consequence, the average
reputation values of both speculative and malicious CAVs in
our SPAD scheme are smaller than that in the BIT scheme. To
summarize, the proposed SPAD scheme can attain improved
accuracy and robustness in reputation evaluation.

Fig. 6 illustrates the comparison of SPAD scheme with the
other two baselines on the secure pub/sub ratio, where the ratio
of legitimate CAVs varies from 0.4 to 0.8. In this simulation, rs
is fixed and equals to 0.2. Other settings keep unchanged. We
can see that the proposed SPAD scheme attains a higher secure
pub/sub ratio than both BIT and SWR schemes, given different
values of rl. The reason is that in the BIT scheme, without
considering both the time decay effect and punishment factor
for misbehaving CAVs, malicious and speculative publisher

CAVs may contribute false data in older time slots and quickly
recover their reputation values by behaving honestly in recent
time. Meanwhile, the dimension of vehicle’s social role is
not considered in reputation computing in the BIT scheme,
which may result in a degradation of accuracy in reputation
evaluation results. In the SWR scheme, due to the absence
of reputation assessment, the selected publisher CAVs may
deliver false content to cheat subscriber CAVs, resulting in
a low secure pub/sub ratio. In opposite, our SPAD scheme
builds a hybrid reputation model by considering the effects of
vehicle’s social roles, behaviors, time fading, and misbehavior
punishment during reputation evaluation process, resulting in a
more accurate reputation assessment result for different types
of CAVs. Thereby, the dependability of disseminated vehicular
contents can be improved in SPAD even if the ratio of legitimate
CAVs is low.

Fig. 7 and Fig. 8 demonstrate the optimal payment strategy
of subscriber CAV and optimal QoCS strategy of publisher
CAV on raw sensory data rawc in the static vehicular pub/sub
game, respectively, where the cost parameter of publisher CAV
changes from 0.4 to 2.0. Here, the satisfaction coefficient is set
as αi,c = 28. Other settings are unchanged. From Figs. 7 and 8,
it can be seen that with the increase of cost parameter ε1

i,πc
, the

optimal payment of subscriber CAV increases, while publisher
CAV’s optimal QoCS is in a decline. The reason is that, since
a higher cost parameter indicates a higher cost in contributing
content, each publisher CAV prefers to decrease the QoCS to
reduce its cost, while subscriber CAVs have a high willingness
to pay more to stimulate high-quality content services. Besides,
as smaller content index τ(c) means higher content popularity
and higher reputation value R implies higher trustworthiness,
both the payment and QoCS in pub/sub services attain a higher
value given a smaller τ(c) and a higher R, i.e., τ(c) = 1 and
R = 0.8. The above observed results are in accord with the SE
of the vehicular pub/sub game obtained in Eqs. (31)–(35).

Fig. 9 shows the comparison of SPAD scheme with the FP
scheme on the utility of subscriber CAV in the static game,
where the satisfaction parameter of publisher CAV changes
from 25 to 45. Fig. 10 compares SPAD scheme with the FP
scheme on the utility of publisher CAV, where the number of
published contents of publisher CAV varies from 2 to 10. Here,
τ(c) = 1 and R = 0.8. Other settings keep unchanged. From
Figs. 9 and 10, it can be observed that our SPAD scheme
outperforms the FP scheme by attaining higher utilities for
both subscriber CAV and publisher CAV. The reason is that,
as the content price p̃ is fixed and unalterable in the FP
scheme, both subscriber CAV and publisher CAV can only
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compared with the FP scheme.
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Fig. 11. Evolution of average payment of subscriber
CAVs in dynamic game, compared with two exist-
ing schemes.
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Fig. 13. Evolution of average utility of pub/sub
CAVs in dynamic game, compared with two-tier Q-
learning scheme.

achieve local optimal utilities given p̃, but not the global ones
with the optimal content price. In the proposed SPAD scheme,
content consumers and content contributors can determine the
optimal payment and optimal quality strategies during publish-
ing/subscribing process to maximize their utilities by obeying
the SE in Eq. (35), respectively.

In the next simulations for dynamic games, we set αi,c = 42,
ε1
i,πc

= 0.4, and other settings are unchanged. Figs. 11
and 12 depict the evolutions of learning-based payment and
QoCS strategy-making processes over time, respectively, in
comparison with the two-tier Q-learning scheme and greedy
scheme. Fig. 13 illustrates the evolutions of average utilities
of subscriber CAVs and publisher CAVs over time, compared
with the two-tier Q-learning scheme. As seen from the three
figures, the proposed two-tier hotbooting PHC algorithm can
converge quickly in searching the optimal policies for players
in the dynamic game after about 800 time slots, while the
convergence time in the two-tier Q-learning scheme is about
3000 time slots. Accordingly, our proposed scheme can attain
a much-improved learning speed and faster convergence rate.
The reason is that, our hotbooting PHC utilizes both previous
experiences learned in similar scenarios and the mixed-strategy
policy update to save the initial exploration time and accelerate
the learning speed.

Besides, as shown in Fig. 12, the proposed scheme attains
a slightly higher QoCS than the two-tier Q-learning scheme
and a much-improved QoCS than the greedy scheme. It can
be explained as follows. On one hand, due to the stable high
payment after 800 time slots (as shown in Fig. 11), the publisher
CAV is motivated to contribute contents with higher QoCS
to seek maximized future benefits. Accordingly, the QoCS
resulted from the dynamic game in Q-learning is slightly lower
than our proposed scheme. On the other hand, as CAVs are

behaving greedily to seek the maximized immediate reward
and overlook future benefits, the QoCS (resp. payment) is much
lower (resp. higher) than the other two schemes. In addition, in
Fig. 13, we can observe that our proposed scheme can attain
slightly higher utilities for both subscriber CAVs and publisher
CAVs than the two-tier Q-learning scheme. It can be explained
as below. Due to the high payment and QoCS of delivered
contents in our hotbooting PHC scheme (as seen in Figs. 11 and
12), under current system parameter settings, both subscriber
CAVs and publisher CAVs can attain improved utilities in the
game than the two-tier Q-learning scheme.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed SPAD, a secured cooperative
autonomous driving framework. Firstly, to stimulate CAVs’
participation and high-quality data publishing, the interactions
between publisher CAVs and subscriber CAVs have been for-
mulated as a vehicular pub/sub game. A reputation model has
been also designed to punish CAVs’ dishonest and harmful
content publishing behaviors. Secondly, the SE of the static
vehicular pub/sub game has been analyzed to derive the optimal
strategies and maximize the utilities of both publisher CAV
and subscriber CAVs during content publishing/subscribing.
In addition, a two-tier hotbooting PHC algorithm has been
devised to efficiently search the optimal strategies for each
player in the dynamic game in practical networks, without the
awareness of accurate network parameters and its opponents’
utility model parameters. Finally, simulation results have shown
that the proposed SPAD scheme can achieve free-rider preven-
tion, enhanced dependability for subscribed contents, improved
vehicles’ utilities, and faster learning speed, compared with
conventional schemes.

For the future work, we will extend this work by considering
the blockchain-based digital forensics for CAVs in reputation
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evaluation. In addition, we plan to design the cooperation
mechanism among CAV fleets, as well as MEC nodes, to further
improve the security and efficiency in autonomous driving.

APPENDIX A
PROOF OF THEOREM 1

Proof: Note that the quality parameters qui,c,∀u ∈ {1, 2}
are decoupled. Here, we only consider the case that u = 1, and
the other case that u = 2 can be proved similarly. The first
order differential for Ui (qi,pi) with respect to q1

i,c is

∂Ui (qi,pi)

∂q1
i,c

= J1
c ϑ

1
cp

1
i,c − 2ξ1

cε
1
i,πcsci,πcq

1
i,c. (44)

The second order differential for Ui (qi,pi) with respect to
q1
i,c satisfies ∂2Ui(qi,pi)

∂q1i,c
2 = −2ξ1

cε
1
i,πc

sci,πc < 0, which implies
that the utility function of publisher CAV i is a strict convex
function. Furthermore, we have

lim
q1i,c→0

∂Ui (qi,pi)

∂q1
i,c

= J1
c ϑ

1
cp

1
i,c > 0, (45)

lim
q1i,c→1

∂Ui (qi,pi)

∂q1
i,c

= J1
c ϑ

1
cp

1
i,c − 2ξ1

cε
1
i,πcsci,πc . (46)

Here, we consider the following two cases.
Case 1: High payment. If the payment of subscriber CAV

group J 1
c is high, i.e., pmax ≥ p1

i,c ≥
2ξ1cε

1
i,πc

sci,πc
J1
cϑ

1
c

, we have

lim
q1i,c→1

∂Ui(qi,pi)
∂q1i,c

≥ 0. In this case, Ui (qi,pi) is monotonically

increasing with respect to q1
i,c. Therefore, the optimal QoCS

strategy of publisher CAV i on rawc of content c is q1
i,c
∗

= 1.
Case 2: Low payment. If the payment of subscriber CAV

group J 1
c is low, i.e., 0 < p1

i,c <
2ξ1cε

1
i,πc

sci,πc
J1
cϑ

1
c

, we have

lim
q1i,c→1

∂Ui(qi,pi)
∂q1i,c

< 0. In this case, the optimal QoCS strategy

of publisher CAV i on content c can be derived by solving
∂Ui(qi,pi)
∂q1i,c

= 0, i.e.,

q1
i,c
∗

= r
(
p1
i,c

)
=

J1
c ϑ

1
cp

1
i,c

2ξ1
cε

1
i,πc

sci,πc
, (47)

where r(.) is the optimal response function of publisher CAV
i. Theorem 1 is proved.

APPENDIX B
PROOF OF THEOREM 2

Proof: Note that the price parameters pui,c, ,∀u ∈ {1, 2}
are decoupled. We only consider the case when u = 1, and the
other case when u = 2 can be proved in a similar manner. Here,
if pmax ≥ p1

i,c ≥
2ξ1cε

1
i,πc

sci,πc
J1
cϑ

1
c

, by substituting q1
i,c
∗

= 1 into
UJc (qi,c

∗,pi,c), the utility function of subscriber CAV group
Jc can be rewritten as:

UJc (qi,c
∗,pi,c) =

αi,cfcRi

(
J1
c log (1 + sci,πc) + J2

c log
(

1 + pciq
2
i,c
∗
))

−
(
J1
c ϑ

1
cp

1
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c ϑ
2
cp

2
i,cq

2
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∗
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where

Θ =
1

rvi,J 1
c

J1
c γ

1s1
c +

1

rvi,J 2
c

J2
c γ

2s2
c . (49)

Since the above utility function is a monotonic decreasing func-
tion with respect to p1

i,c, the optimal payment strategy of the

subscriber CAV group J 1
c is denoted as p1

i,c
∗

=
2ξ1cε

1
i,πc

sci,πc
J1
cϑ

1
c

.

If 0 < p1
i,c <

2ξ1cε
1
i,πc

sci,πc
J1
cϑ

1
c

, by substituting q1
i,c
∗

=
J1
cϑ

1
cp

1
i,c

2ξ1cε
1
i,πc

sci,πc
into UJc (qi,c

∗,pi,c), the utility function of sub-
scriber CAV group Jc can be reformulated as:

UJc (qi,c
∗,pi,c) =
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c log
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The first order differential for UJc (qi,c
∗,pi,c) in Eq. (50) with

respect to p1
i,c is

∂UJc (qi,c
∗,pi,c)

∂p1i,c
=

αi,cfcRiϑ
1
c(J

1
c )2
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. (51)

The second order differential for UJc (qi,c
∗,pi,c) in Eq. (50)

with respect to p1
i,c satisfies

∂2UJc (qi,c
∗,pi,c)

∂p1
i,c

2 =− αi,cfcRi(ϑ
1
c)

2(J1
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)2− (J1
c ϑ

1
c)

2

ξ1
cε

1
i,πc

sci,πc

< 0, (52)

which implies that the utility function of subscriber CAV group
Jc in Eq. (50) is strictly convex. Furthermore, we have

lim
p1i,c→0

∂UJc (qi,c
∗,pi,c)

∂p1
i,c

> 0, (53)

lim
p1i,c→+∞

∂UJc (qi,c
∗,pi,c)

∂p1
i,c

< 0. (54)

Therefore, the maximum value of subscriber CAV group Jc’s
utility function can be derived by solving ∂UJc (qi,c

∗,pi,c)

∂p1i,c
= 0

with KKT conditions, i.e.,

p1
i,c
∗

=

√
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2
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1
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Here, we define p1
θ =

2ξ1cε
1
i,πc

sci,πc
J1
cϑ

1
c

and consider two cases.
Case 1: If 0 < p1

i,c
∗
< p1

θ, we can observe that the utility
function UJc (qi,c

∗,pi,c) increases when pi,c ∈
[
0, p1

i,c
∗] while

decreases when pi,c ∈
[
p1
i,c
∗
, pmax

]
. Therefore, p1

i,c
∗ is the

optimal payment strategy, as shown in Eq. (55). In this case,
by solving 0 < p1

i,c
∗
< p1

θ, the constraint can be derived as
below:

J1
cαi,cfcRi − 4ξ1

cε
1
i,πc (sci,πc + 1) < 0. (56)

Case 2: If p1
i,c
∗ ≥ p1

θ, we can derive that the utility function
UJc (qi,c

∗,pi,c) increases when pi,c ∈
[
0, p1

θ

]
while decreases

when pi,c ∈
[
p1
θ, pmax

]
. Hence, p1

θ is the optimal payment
strategy. In this case, by solving p1

i,c
∗ ≥ p1

θ, we have the
following constraint as:

J1
cαi,cfcRi − 4ξ1

cε
1
i,πc (sci,πc + 1) ≥ 0. (57)

Theorem 2 is proved.
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APPENDIX C
PROOF OF THEOREM 3

Proof: According to the backward induction approach, the
SE of the game G can be denoted as(

pui,c
∗,qui,c

∗) =
(
pui,c
∗, r
(
pui,c
∗)) ,∀u ∈ {1, 2}, (58)

where r(.) is the optimal response function of publisher CAV i
defined in Eq. (47). Here, we only consider the case that u = 1,
and the other case that u = 2 can be proved similarly. Next,
we consider the following two cases.

Case 1: Ψ1 ≥ 0. In this case, according to Theorem 1 and
Theorem 2, we have p1

i,c
∗

= 2Λ1

J1
cϑ

1
c

and q1
i,c
∗

= 1.
Case 2: Ψ1 < 0. In this case, from Theorem 1 and Theorem

2, we have p1
i,c
∗

=
√

Υ1−Ω1

J1
cϑ

1
c

and

q1
i,c
∗

= r
(
p1
i,c
∗
)

=
J1
c ϑ

1
c

2ξ1
cε

1
i,πc

sci,πc
p1
i,c
∗

=

√
Υ1 − Ω1

2Λ1
. (59)

Accordingly, the SE of the game G can be attained, as shown
in Eq. (35). Theorem 3 is proved.
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