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A Novel Class-Imbalanced Ship Motion Data-Based
Cross-Scale Model for Sea State Estimation

Xu Cheng™, Member, IEEE, Kexin Wang ", Xiufeng Liu™, Qian Yu, Fan Shi*, Member, IEEE,
Zhengru Ren, and Shengyong Chen™, Senior Member, IEEE

Abstract— Sea state estimation (SSE) is significant to the
development of autonomous ships, which can enhance the sus-
tainable development of maritime transportation. Traditional
model-based methods are limited by their drawbacks, such as
high costs and inaccurate estimations. The deep learning model
shows superior performance, but it requires that the sample
quantity for each sea state should be almost the same. Since the
occurrence probability of each state is different, the ships mainly
work in low sea states, and the collected ship motion data for
different sea states are highly imbalanced. This work proposes a
novel class-imbalanced ship motion data-based cross-scale model
for SSE. The model consists of three major components: a
multi-scale feature learning module, a cross-scale feature learning
module, and a prototype classifier module. The multi-scale
and cross-scale feature learning modules are designed to learn
abundant coarse and fine-level features from the ship motion
data. The prototype classifier is utilized to overcome the limitation
of the conventional softmax classifier to produce better estimates.
Our research highlights our model’s remarkable scalability and
versatility with 30 publicly available datasets in time series
classification, demonstrating superior performance over baseline
methods in 21 cases. Notably, it outperformed ShapeNet by 5.72%
and EDI by 26.3%. We further validated our model’s proficiency
using ship motion datasets, consistently surpassing eight state-
of-the-art baselines and five class-imbalanced learning methods.
Ablation and sensitivity studies, emphasize the critical role of
each model component. Our findings underscore the model’s
robustness and its potential to advance time series classification
in diverse domains.

Index Terms— Autonomous ship, sustainable development, sea
state estimation, class imbalance, time series classification.

I. INTRODUCTION

HE rapid development of the marine economy presents
huge pressure and impact on the environment [1],
and sustainable development becomes an important issue to
respond to the international call. But sustainable sea devel-
opment faces many challenges, including pollution caused
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by ships and frequent ecological and environmental disas-
ters. On the basis of ever-stricter environmental laws and
the increasing demand for ship transportation with economic
and social development, autonomous ships are more suitable
for the strategic requirements of sustainable development.
Nevertheless, autonomous ships are highly susceptible to sea
states. Thus, a real-time and accurate estimation of sea state
is needed to support ship driving, optimal path plan, and
intelligent decision-making [2].

The sea state is the situation of wave and wind in the open
sea for a certain location and moment [3]. A sea state is
characterized by statistics, including the wave height, period,
and spectrum. The sea state varies with time, as the wind
and swell conditions change. Traditional techniques for iden-
tifying sea states include manual observations, wave-buoys,
meteorological remote sensing satellites, and X-band radar [4].
The advantage of manual observations is that the data are
highly persistent and are not dependent on external sensors,
but the drawback is that they are very subjective and can
be influenced by the observer’s experience and biases. Wave
buoys have the advantage of high reliability and comparability
of the observed data, but the disadvantage is that they are
weak in resistance to wind and require manual installation
and placement, so they can only be used near the coast and
for long-term use. Meteorological remote sensing satellites are
not limited by geographical location, weather conditions, and
human factors, and can cover remote geographical locations.
However, its disadvantage is that it is susceptible to cloudy
weather, while weather forecasts often have a time delay of
several hours, which can limit their usefulness for real-time
applications. Wave radars can provide accurate and real-time
estimates of the sea state, but they are expensive to install and
require frequent calibration, so they can only be equipped on
a limited number of ships.

Due to the limitations of conventional methods, researchers
have begun to consider using ship motion data to estimate
the sea state. There are two main research directions in this
area: model-based and model-free approaches [5], [6], [7].
The model-based approach involves building mathematical
models of ship motion using domain knowledge and physical
principles [8], [9], [10]. However, this approach is prone
to produce incorrect estimates due to the complexity and
randomness of the waves, and it requires a deep understanding
of the relationship between sea states and ship motion [11],
[12], [13]. In contrast, the model-free approach uses machine
learning or deep learning techniques to automatically learn the
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complex patterns and relationships between sea states and ship
motion from the data. This approach provides a novel solution
to estimate sea states without the need for extensive domain
knowledge or complex mathematical models and has obtained
significant attention recently [2], [14].

Model-free approaches can be grouped into two categories:
shallow machine learning-based and deep learning-based. The
difference between them is the way of knowledge learning.
Shallow machine learning-based methods use signal anal-
ysis techniques and shallow neural networks, while deep
learning-based methods extract features through their unique
structure. In the literature, wavelet analysis, spectral analysis,
and temporal analysis are popular machine learning-based
methods for sea state estimation [4], [11]. The drawbacks
of shallow machine learning-based methods are that manual
feature extraction is time-consuming and labor-intensive, and
it is more challenging to extract effective features if the ship
motion data contains noise.

In contrast, deep learning-based methods use deep neural
networks to automatically learn complex patterns and relation-
ships from the ship motion data. These methods have been
shown to produce more accurate estimates of the sea state
compared to traditional methods and machine learning-based
approaches [15]. The emergence of deep learning techniques,
such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), has enabled the development of pow-
erful and effective models for sea state estimation (SSE). These
models can learn complex features from the ship motion data
without the need for manual feature engineering or domain
knowledge and can produce accurate and reliable estimates of
the sea state in real time.

However, there are still some challenges of using deep
learning-based methods for SSE.

« Limited feature learning capability. Ship motion data typ-
ically consists of complex, fluctuating, and time-varying
time series. The extraction of deep intrinsic features
from raw data is a challenging task due to the presence
of strong noise. Furthermore, ship motion data exhibit
multi-scale characteristics under various sea states, adding
complexity to the analysis. Numerous existing method-
ologies attempt to address these challenges by increasing
the depth of networks to enhance their feature learn-
ing capabilities. However, such augmentation of neural
network depth may inadvertently lead to overfitting,
a situation in which the model becomes excessively
specialized in the training data, resulting in sub-optimal
performance.

« Imbalance ship motion data. According to [3], the likeli-
hood of various sea states occurring differs significantly,
with a higher concentration of occurrences in specific
sea states, such as sea states 3 and 4. Furthermore, the
probability distribution of sea state occurrence is not
uniform across geographical locations. For instance, the
global probability distribution contrasts with that of the
North Atlantic region. It is also crucial to note that during
extreme weather conditions, most vessels remain docked
at port, resulting in an inability to gather data for extreme
sea states. This data imbalance can adversely impact the
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model’s performance, leading to results that are skewed
toward sea states with a higher volume of available data.

To address the aforementioned challenges, this paper
presents a novel deep learning model for SSE based on
class-imbalanced ship motion data. To capture the multi-scale
characteristics of the data, multi-scale and cross-scale feature
learning modules are designed to extract abundant coarse and
fine-level features from ship motion data, while facilitating
information interaction among different scales. To tackle the
class imbalance inherent in ship motion data, a prototype clas-
sifier is employed. The prototype classifier module is designed
to overcome the limitations of conventional softmax classifiers,
yielding improved estimates for imbalanced datasets.

In summary, the main contributions of this work are:

« A novel deep learning model is presented for SSE based
on class-imbalanced ship motion data. The proposed
model integrates a multi-scale and cross-scale feature
learning module with a prototype classifier module to
effectively address the feature representation and data
imbalance.

o« A prototype classifier module that incorporates the
concept of clustering for class imbalance learning is
introduced. The centroid of each cluster is learnable, and
a distance-based loss function is employed to generate
improved estimates tailored for class-imbalanced ship
motion data.

« We conduct a comprehensive evaluation of our proposed
model on a variety of public datasets and two ship motion
datasets, demonstrating its good scalability, generalizabil-
ity, and superiority over state-of-the-art baselines and
imbalance learning methods.

The rest of this work is organized as follows: Section II
introduces the review of the related work. The details of the
proposed model are presented in Section III. The evaluation
of the proposed model is illustrated in Section IV. Section V
gives the conclusion and future work of this paper.

II. RELATED WORK
A. Model-Based Approach

Due to the limitations of traditional sea state estimation
methods, there is a research trend that considers a ship as a
big sensor [6], [7], i.e., wave buoy. More and more advanced
methods for estimating sea states have been developed, usu-
ally including model-based and model-free methods. Among
others, Nielsen et al. [8] propose the brute-force spectral
approach, which uses a simple but efficient calculation. It pro-
vides wave spectrum estimation in seconds, which can be
applied to real-time, shipboard control, and decision support
systems. However, only waves in the same direction can be
estimated, and its application is only limited to estimating the
wave components in a certain frequency band. Subsequently,
Ren et al. propose a novel model-based method for SSE using
Bezier surface and L1 optimization [5]. However, there are
several drawbacks to this method: the Response Amplitude
Operator (RAO) cannot be calculated accurately, the vessel
response may not be sensitive enough to the high-frequency
tail of the wave spectrum, and the method cannot be applied
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to ships with forward speed. Han et al. [14] propose a
vessel hydrodynamic seakeeping model based on onboard
vessel motion measurements. They tried to improve the RAO
accuracy by modifying key parameters, but the complex sea
state and environmental loads are not considered sufficiently
in their experiments, which may not be feasible in field
practice. Recently, Dirdal et al. [16] propose a nonlinear
Parametric Time Domain (PTPD) model for shipboard sensor
arrays and an unscented Kalman filter algorithm to estimate
wave direction and wave number. Their method addresses the
disadvantages of the array being expensive, difficult to install,
and fixed in place. The method is currently limited to the study
of wave patterns, such as conventional harmonics, while the
Unscented Kalman Filter (UKF) operation in more complex
marine environments remains an issue.

B. Machine Learning Approach

In recent years, machine learning and deep learning have
been applied in many fields with the popularity of artificial
intelligence. However, the efforts in sea state estimation are
still very limited. Machine learning and deep learning methods
are data-driven methods that do not rely on prior knowledge
and are also considered model-free methods. For the machine
learning approaches, Han et al. [4] propose the following two
methods for sea state estimation. The first method is to build
a model based on the ship motion response and has been
validated with real data. According to the authors, the model
will be validated in the future using data from far from the
coast, and that uncertainty will be considered for practical use
of the model. The second method [17] is a hybrid approach
that combines machine learning and the wave buoy analogy.
If the training data does not contain information about the
sea state, the machine learning will fail. In this case, the
wave buoy analogy will be used to estimate the sea state.
However, machine learning methods not only require a large
amount of training data, but also often require manual feature
identification, which is a tedious task.

C. Deep Learning Approach

Deep learning methods for SSE have received increasing
attention in recent years, due to the strong feature extrac-
tion capability. Among others, Cheng et al. [18] propose a
sea state estimation method based on deep neural networks,
namely SeaStateNet. The method consists of a recurrent neural
network with a long short-term memory, a convolutional
neural network, and a fast Fourier transform block. It can be
applied directly to process raw time series data with minimal
manual feature design and only slight data pre-processing
required. In addition, they propose SSENET [15], which is a
network built on a superimposed convolutional neural network
block, a channel attention module, and a feature attention
module. It can estimate not only the wave height but also the
wave direction. In addition, they propose SpectralNet [19],
a spectral-based deep learning sea state estimation model.
Unlike other methods, this model combines the spectrograms
of each sensor into a new image by a short-time Fourier
transform. Then, a two-dimensional convolutional neural net-
work is built as a classifier to identify the ocean state.

TABLE I
DEFINITION OF SEA STATE [3]

Sea Description Wave World wide | North Atlantic
state height probability probability
0 Calm (glassy) 0 — —
1 Calm (ripples) 0-0.1 11.2486 8.3103
2 Smooth 0.1-0.5 — —
3 Slight 0.5-1.25 31.6851 28.1996
4 Moderate 1.25-2.5 40.1944 42.0273
5 Rough 2.5-4.0 12.8005 15.4435
6 Very rough 4.0-6.0 3.0253 4.2938
7 High 6.0-9.0 0.9263 1.4968
8 Very High 9.0-14.0 0.1190 0.2263
9 Extreme > 14.0 0.0009 0.0016

Despite the increasing interest in deep learning-driven SSE,
to the best of the author’s knowledge, all existing methods
necessitate a class-balanced dataset for model training, and
their performance declines when the data is class-imbalanced.
Consequently, this study aims to develop a deep learning
model for SSE that effectively addresses the challenges posed
by class-imbalanced data.

III. CLASS-IMBALANCED LEARNING
FOR SEA STATE ESTIMATION

In this section, we describe the proposed model for
class-imbalanced learning for sea state estimation. We first
present an overview of the model, followed by a detailed
description of each module.

A. Problem Statement for SSE

SSE is the task of identifying the wave and wind conditions
at a certain location and time on the open sea. It is an important
problem for autonomous ships, as it can affect their navigation,
safety, and performance. In this work, we formulate SSE
as a time series classification problem, where the input is
the ship motion data and the output is the sea state class.
The ship motion data are collected from inertial measurement
units (IMUs) installed on the ship, which measure the heave
velocity, pitch angle, pitch velocity, and yaw angle of the
ship. The sea state class is determined by the wave height,
according to the definition in TABLE I. We consider seven sea
states (0-6) in this work, as they account for more than 98%
of the probability of occurrence in both worldwide and North
Atlantic regions. For sea states 7 ~ 9, the vessel is not suitable
to go out to work. Additionally, we consider the first three sea
states (0 ~ 2) to be similar, and thus we consider them as one
state in this study.

Let X € RY*T denote the ship motion data, where N is
the number of input parameters (i.e., 4) and 7T is the length
of the time series. Let y € {0,...,C} denote the sea state
class corresponding to X. It is important to acknowledge that
the number of samples for each sea state class varies, further
contributing to the complexity of the analysis. Our goal is to
learn a function f : X — y that can accurately predict the
sea state class from the class-imbalanced ship motion data.
To achieve this goal, we propose a novel class-imbalanced
ship motion data-based deep learning model for SSE, which
is described in the following subsections.
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Fig. 1. TIllustration of the imbalanced probability distribution of sea states
for worldwide and north Atlantic.

B. Overview

Deep learning-based SSE is challenging due to the imbal-
anced distribution of sea states in the data, which means
that some sea states are more frequent than others [20]. For
example, in Fig. 1 we can find that the probability of the
sea state is generally imbalanced, with the highest probability
being sea state 4. This can lead to biased results that favor the
majority classes (e.g., sea state 4) over the minority classes
(e.g., sea state 1 or 6) [21]. Existing solutions to this problem
can be categorized into data-level and algorithm-level meth-
ods [20]. Data-level methods involve preprocessing of the raw
data, such as resampling or enriching the data to balance the
class distribution [21], [22]. Algorithm-level methods involve
modifying the training loss algorithm itself [23], [24] or tuning
the model parameters during learning. However, both types of
methods have some limitations such as requiring additional
information about the data distribution or relying on specific
hyper-parameters.

To address this challenge, we propose a novel class-
imbalanced model for SSE that consists of three modules: data
preprocessing, multi-scale dense neural network, and classifier.
Fig. 2 shows the architecture of the proposed method. This
model structure consists of four consecutive modules: data
preprocessing, multi-scale feature learning (MSFL), cross-
scale feature learning (CSFL), and prototype classifier (PC).

The data preprocessing module aims to reduce sensor noise
present in raw ship motion data and enhance the overall data
quality. This module also plays a crucial role in data normal-
ization and segmentation into fixed-length windows, which can
contribute to further noise reduction and diminished variability
in the data. By applying these preprocessing techniques, the
underlying structure and patterns in the dataset become more
evident, facilitating more accurate and reliable modeling and
analysis of ship motion data [22]. The data preprocessing in
this work includes fixing outliers, correlation analysis, and data
segmentation. Fixing outliers can reduce the influence on the
model; correlation analysis to explore the relationship between
time series from different sensors, Pearson correlation analysis
is used in this study, and segmentation divides the time series
with the sliding window technique. The sliding step is half of
the window size, so half of the resulting data overlap, as shown
in Fig. 3.

The multi-scale feature learning module is employed to
extract fine-grained features from various scales of ship motion
data. By capturing information at multiple resolutions, this
module can effectively differentiate between similar sea states,
providing a more comprehensive representation of the data.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

The multi-scale approach enables the model to recognize and
exploit subtle distinctions in the data, ultimately leading to
improved performance in SSE.

The cross-scale feature learning is specifically designed to
study the interactions among different scales. By capturing and
integrating information from multiple resolutions, it facilitates
a more comprehensive understanding of the underlying data
patterns. This module enables models to learn and exploit rela-
tionships between various scales, which can lead to enhanced
performance in tasks that require recognizing complex patterns
in the ship motion data.

The prototype classifier is a method designed to address the
class-imbalance problem in ship motion data. By assigning
a learnable prototype vector to each class, which represents
its centroid in the feature space, the classifier can effectively
capture the essence of each class. During the classification pro-
cess, the distance between each sample and its corresponding
prototype is computed, providing a basis for determining sea
states.

C. Multi-Scale Feature Learning

Assuming that there are K scales in the multi-scale feature
learning module and the ship motion data are denoted as
X e RNXT| the k™ scale feature representation can be
represented as Xk e RNX%L*‘XF,{, where N is the number
of input parameters, 2,{% denotes the feature length of the
k™ scale and F* means the channel size.

In this work, the convolutional neural network (CNN) is
used to learn local patterns along the time dimension. The
kernel size is larger in the first layer and decreases in the
subsequent layer. However, the flexibility of using only one
CNN layer is constrained because the granularity of temporal
correlations captured in the feature representation of two
successive layers is sensitive to hyperparameter settings, such
as kernel size and stride size. To improve CNN’s flexibility in
preserving underlying temporal dependencies at different time
scales, we design two parallel CNN layers with kernel size
1 x 1 and a pooling layer with kernel size 1 x 2. After that,
a point-wise addition operation is performed to generate the
feature representations on each scale.

It should be noted that the learned multi-scale feature rep-
resentations are versatile and comprehensive, allowing for the
preservation of different kinds of temporal dependencies. Due
to the fact that convolutional operations are carried out only
along the time dimension, there is no interactivity between
variables during learning processing.

D. Cross-Scale Feature Learning

First, the feature representation of each scale is fed into
a CNN layer with the filter number of 128 and kernel size
of 1 x 3. Next, we concatenate the feature representations
from different scales to enable information exchange. The
concatenated features are then sent to a CNN layer with
the filter number of 128 and kernel size of 1 x 3 as well.
As the CNN layers in the multi-scale feature learning module
put their attention on the local area, this might lose the
global dependencies in the learned feature representations.
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To alleviate this issue, we employ a self-attention layer to
capture the global temporal dependencies in the end.

The self-attention layer is inspired by the Transformer
model proposed by Vaswani et al. [25], which uses a
multi-head attention mechanism to compute the relevance of
inputs to outputs. In our model, we use a scaled dot-product
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attention function, which is defined as

KT
Vi
where dj is the dimension of the key vectors. The query
vectors are from the previous layer, and the K and V are
initialized as the same value as Q. In real-world applications,
we simultaneously compute the attention on a collection of
query vectors that are packed into a matrix Q, along with
keys and values that are packed into matrices K and V.

We first transform Q, K, and V to dj dimensional subspaces
using linear transformations:

Attention(Q, K, V) = softmax( A% (D)

Kj=QWjVv;=0W!Q; = oW/! 2)

where WX, WY, W¢ e R?*% gre trainable matrices. Then,
we apply scaled-dot product attention to each subspace:

T
) J K j
Vdy
We also use H parallel attention heads in order to jointly

attend to the data from various representation sub-spaces at
various points. We express the multi-head attention as follows:

Attention(Q, K, V) ; = softmax V; 3)

MultiHead(Q, K, V) = Concat({head; L HhW*  (4)
where head; = Attention(Q, K,V);, WA e RH&>d and
dy =d/H.

The output of the attention function is then passed through
a feed-forward module, which consists of two linear transfor-
mations with a ReLLU activation in between. The feed-forward
module helps to learn non-linear dependencies among the
features.
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E. Relation to Other MSFL and CSFL Module

The idea of the multi-scale and cross-scale feature learning
has been used in many domains, such as time series [26],
[27] and semantic segmentation [28], [29]. In the domain
of time series, many works generate multiple feature scales
through pooling and downsampling techniques or other tech-
niques such as wavelet analysis. However, to the best of my
knowledge, these works only produce multi-scale features, but
the interaction of different scales is not widely explored. In the
domain of semantic segmentation, multi-scale feature learning
aims to capture features at different levels of granularity
and resolution, while cross-scale feature learning aims to
fuse features across different scales and enhance the feature
representation. However, our work distinguishes itself from
these papers in several aspects. First, we address the problem
of sea state estimation from ship motion data, which is a
novel and challenging application that poses specific require-
ments and difficulties for the network design. Unlike semantic
segmentation, where the input is an image with rich visual
information, our input is a time series of ship motion data with
high noise, low resolution, and class imbalance. Therefore,
we need a network structure that can effectively extract and
fuse features from the ship motion data and produce accurate
and robust estimates of the sea state. Second, we devise a
novel cross-scale feature learning module that can effectively
learn and fuse coarse and fine-level features from the ship
motion data. We concatenate the feature representations from
different scales to enable information exchange. The con-
catenated features are then sent to a convolutional network
for feature learning. Moreover, a self-attention mechanism is
utilized to enhance feature representations. Third, we integrate
the proposed multi-scale, cross-scale network structure, and a
prototype classifier to form a complete end-to-end model for
class imbalanced sea state estimation. The prototype classifier
module consists of a set of learnable prototypes that represent
the centroids of each sea state class in the feature space, which
can overcome the limitations of the conventional softmax
classifier and produce better estimates for imbalanced datasets.

F. Prototype Classifier

Conventionally, a softmax classifier is employed to produce
the probability for each class. Given h(x) € RM*F and
W e RF*k which represent the features learned by the two
previous modules and the parameters of softmax classifier,
respectively, the classification operation can be formulated as
follows:

I=WTh(x) = [w{ h(x); w]h(x): - s wl k()] (5)
where w; is the weight vector of the i-th class.

Then, a cross-entropy loss function, £, is applied to opti-
mize the learning by minimizing the discrepancy between the
estimated probability and the ground-truth values, defined as:

k.
L= Z #E(Di) (6)
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where N; is the training sample size of the i-th class, N is
the total sample size and D; is the samples belonging to the
i-th class.

According to the Eq. (6), if the class imbalance exists
and N < Np < < N, we can derive £ < L <

- < L. The decision boundary will be biased towards the
minority class. In this work, we seek another solution, called
prototype classifier, in which each class has an equal number
of prototypes, and the estimated probability of each class can
be generated based on the class matching according to the
Euclidean distance.

Essentially, prototype learning can be expressed as the
clustering of the learned features. For the imbalanced ship
motion data, the learned features by the multi-scale feature
learning module and the cross-scale feature learning module
are also class imbalanced. Through the prototype learning, the
class imbalanced features are clustered into several clusters
(or prototypes). Note that the number of prototypes for each
class is equal and the classifier established using these pro-
totypes can produce a fair classification towards the minority
classes.

As discussed above, the ship motions in different sea states
may have similar behaviors. Therefore, it is necessary to
maximize the margin between classes to improve learning
capability. Surprisingly, we found that prototype learning can
not only solve the class imbalance problem but also help opti-
mize the learned features, which makes them more separable.

Let H(x;) represent the learned latent features, the proba-
bility of the j-th class can be calculated as follows:

e—@ED(H(x)).p;)

ZM : efolED(H(Xj),pk)

p(xepjlx) = (7)

where E D is the Euclidean distance between the latent feature
and the prototype p;, and « is the steepness parameter.

G. Loss Function

There are two loss functions used in the model: distance-
based cross-entropy loss and discriminant loss. The first one is
used to optimize the parameters for prototype learning while
the second one is used to enhance the intra-class compactness
and obtain the discriminative learned features in the latent
space. They are described as follows.

1) Distance-Based Cross-Entropy Loss (DCE): DCE is
used for the prototype learning, which learns prototypes iter-
atively from the training data in an end-to-end fashion. This
loss function is defined as

M
Joce(®,P) == > 1{j = yHogp (xep;lx) (8
j=l1
where 1{j = y} means that if j is equal to the ground-
truth label, its value will be set to 1; otherwise, 0. From this
equation, we can know that the interclass distance is enlarged
by minimizing the DCE.

2) Discriminant Loss: We use the discriminant loss (DL)
function to obtain discriminative features for sea state estima-
tion. It is a cross-entropy loss function with a softmax classifier
at the end of the feature extraction module. We combine it with
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the DCE function to form a new loss function called DCEL,
which balances between interclass and intraclass distances.
The DL function is defined as

M
JoL(0,P) = =" yo.clog(po.c) ©)
c=1
where 6 are the parameters of the feature extraction module,
P are the probabilities of each sea state class, and y, . are the
true labels. The DCEL function is defined as

JpceL (@, P) = Jpce@, P) + y JpL(6, P)

where Jpcg is the DCE function that measures the distance
between the true and predicted labels. The DCEL function
combines both DCE and DL to optimize the feature extraction
and classification tasks.

The regularization coefficient y controls the weight of DL
in the DCEL function. A larger y means more regularization
and less overfitting. A smaller y means more fitting and more
details. The optimal value of y depends on the data and the
model complexity. We can use cross-validation and grid search
to find the best value for y. Algorithm 1 summarizes the main
steps of our class-imbalanced ship motion data-based deep
learning model for SSE.

(10)

Algorithm 1 Training Algorithm of the Class-
Imbalanced Ship Motion Data-Based Deep Learning
Model for SSE
Input: Ship motion data X € RV*7 | sea state class
y € {0, ..., 6}, number of scales K, number of
prototypes M, steepness parameter o,
regularization coefficient y
Output: Sea state class prediction y
1 Preprocess X
2 Initialize parameters of MSFL, CSFL, and PC modules

3 repeat

4 X1,...,Xg < MSFL(X)

5 H(X) <« CSFL(Xy, ..., Xk)

6 po, ---,pe < PC(H(X))

7 Compute Jpcg and Jpp using Eqgs. (8) and (9)
8 Compute Jpcgr using Eq. (10)

9 Update parameters using gradient descent

10 until convergence

11 y < argmax pg, ..., P6

IV. EXPERIMENTS

The model is implemented using the deep learning frame-
work, Pytorch (v.1.8.0). To find the optimal parameter settings
for our model, we used a grid search method with different
values for the number of layers, the filter size, the learning rate,
and the regularization coefficient. We evaluated each parameter
combination on the validation set and selected the one that
achieved the highest F1 score. All experiments are performed
on a server equipped with a 32 GB Tesla v100. The number of
layers in the multi-scale features is set to 3 and the filter size
is set to [11, 7, 5]. The learning rate of the Adam optimizer

is set to le — 4. The number of learning epochs is set to 500.
All experiments are repeated five times with different random
seeds.

A. Datasets and Evaluation Metrics

1) Benchmark Datasets: The public time series classi-
fication dataset UEA [30] was selected for performance
comparison. The UEA dataset contains data for various
domains, such as human activity recognition, EEG/ECG clas-
sification, and numerical recognition. The dimensions and
categories of each dataset are different. Due to the complexity
of the UEA dataset, it is ideal to use it to evaluate the proposed
model.

2) Ship Motion Datasets: The ship motion dataset is gener-
ated using the well-known Marine Systems Simulator (MSS)
toolbox [31] for simulating dynamic operations in different sea
states. According to TABLE I, the probability of Worldwide
and North Atlantic sea states 0-6 accounts for more than 98%.
Thus, we simulate these seven sea states, the first three of
which are very similar, and they are merged into one sea
state. To simulate the occurring probability of each sea state,
we make the sample size of each sea state consistent with
the probability. Since the highest probabilities occurred in sea
states 3 and 4, the sample size was higher for these two sea
states. Sea state 6 has the lowest probability of occurrence,
resulting in the lowest number of samples. Considering that
the occurring probability is in different locations, we generate
two datasets: World-wide and North Atlantic based on their
historic probabilities. In addition, according to [15], we use
heave velocity, pitch angle, pitch velocity, and yaw angle as
inputs. The ship motion data are partitioned into training,
validation, and test sets with a ratio of 70% 10%, and 20%,
respectively.

3) Evaluation Metrics: For the public dataset, the widely
used metric “accuracy” was used since most of the datasets are
class balanced. For the ship motion dataset, since the dataset
is class imbalanced, the following three metrics, recall, F1,
and Matthews correlation coefficient (MCC), are utilized.

. TP
Precision = —— (1D
TP + FP
TP
Recall = —— (12)
TP + FN
2 x Precision x Recall
Fl = (13)

Precision + Recall

where TP, FP, FN, and TN represent true positive, false
positive, false negative, and true negative, respectively.

B. Comparisons With the State-of-the-Art Methods on UEA
Dataset

We compare the proposed model with the following eight

baseline methods:

« EDI, DTWI, and DTWD: They are three widely used
benchmark classifiers for time series classification. They
were named based on how to calculate the distance. For
example, ED means the Euclidean distance and DTW
represents dynamic time warping [30], [32].
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TABLE I
PERFORMANCE EVALUATION WITH STATE-OF-THE-ART METHODS IN 30 PUBLIC TIME SERIES CLASSIFICATION DATASETS

Dataset EDI DTWI | DTWD | MLSTM-FCNs | WEASEL+MUSE | Negative samples | TapNet | ShapeNet | Ours
ArticularyWordRecognition | 0.970 | 0.980 0.987 0.973 0.990 0.987 0.987 0.987 0.993
AtrialFibrillation 0.267 | 0.267 0.220 0.267 0.333 0.133 0.333 0.400 0.667
BasicMotions 0.676 | 1.000 0.975 0.950 1.000 1.000 1.000 1.000 1.000
CharacterTrajectories 0.964 | 0.969 0.989 0.985 0.990 0.994 0.997 0.980 0.997
Cricket 0.944 | 0.986 1.000 0.917 1.000 0.986 0.958 0.986 1.000
DuckDuckGeese 0.275 | 0.550 0.600 0.675 0.575 0.675 0.575 0.725 0.400
EigenWorms 0.549 | N/A 0.618 0.504 0.890 0.878 0.489 0.878 0.931
Epilepsy 0.666 | 0.978 0.964 0.761 1.000 0.957 0.971 0.987 0.986
ERing 0.133 | 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.30

EthanolConcentration 0.293 | 0.304 0.323 0.373 0.430 0.236 0.323 0.312 0.331
FaceDetection 0.519 | N/A 0.529 0.545 0.545 0.528 0.556 0.602 0.589
FingerMovements 0.550 | 0.520 0.530 0.580 0.490 0.540 0.530 0.580 0.670
HandMovementDirection 0.278 | 0.306 0.231 0.365 0.365 0.270 0.378 0.338 0.460
Handwriting 0.200 | 0.316 0.286 0.286 0.605 0.533 0.357 0.451 0.624
Heartbeat 0.619 | 0.658 0.717 0.663 0.727 0.737 0.751 0.756 0.785
InsectWingbeat 0.128 | N/A N/A 0.167 N/A 0.160 0.208 0.250 0.179
Japanese Vowels 0.924 | 0.959 0.949 0.976 0.973 0.989 0.965 0.984 0.987
Libras 0.833 | 0.894 0.870 0.856 0.878 0.867 0.85 0.856 0.939
LSST 0.456 | 0.575 0.551 0.373 0.590 0.558 0.568 0.590 0.635
MotorImagery 0.510 | N/A 0.500 0.510 0.500 0.540 0.590 0.610 0.640
NATOPS 0.850 | 0.850 0.883 0.889 0.870 0.944 0.939 0.883 0.988
PEMS-SF 0.705 | 0.734 0.711 0.699 N/A 0.688 0.751 0.751 0.873
PenDigits 0.973 | 0.939 0.977 0.978 0.948 0.983 0.980 0.977 0.994
Phoneme 0.104 | 0.151 0.151 0.110 0.190 0.246 0.175 0.298 0.316
RacketSports 0.868 | 0.842 0.803 0.803 0.934 0.862 0.868 0.882 0.915
SelfRegulationSCP1 0.771 | 0.765 0.775 0.874 0.710 0.846 0.652 0.782 0.901
SelfRegulationSCP2 0.483 | 0.533 0.539 0.472 0.460 0.556 0.550 0.578 0.611
SpokenArabicDigits 0.967 | 0.959 0.963 0.990 0.982 0.956 0.983 0.975 0.996
StandWalkJump 0.200 | 0.333 0.200 0.067 0.333 0.400 0.400 0.533 0.667
UWaveGestureLibrary 0.881 | 0.868 0.903 0.891 0.916 0.884 0.894 0.906 0.919
Average accuracy 0.585 | 0.668 0.651 0.621 0.691 0.669 0.657 0.699 0.739
Wins/Ties 0 1 1 0 6 2 2 5 21

« MLSTM-FCN: It is a novel deep-learning model which
combines the LSTM and FCN. In addition, the squeeze-
and-excitation attention module is utilized to enhance
feature learning [33].

« WEASEL-MUSE: It is a famous model using the bag-
of-pattern. To better obtain useful features, the model can
perform feature selection adaptively and can be suitable
to variable window lengths [34].

« Negative samples: This model introduced the concept of
negative samples. And these negative samples are helpful
for model training. Notably, the model uses SVM as a
classifier [35].

« TapNet: It is a recently proposed model for time series
classification. It uses the distance-based classifier rather
than the conventional softmax classifier [36].

o ShapeNet: It is a recently proposed shapelet-based
time series classification model. The model can embed
shapelets of different lengths into a unified space for
selection, and the model is trained using a customized
cluster-wise triplet loss function [37].

TABLE 1II shows the experimental results. As shown,
our model wins the baselines on 21 out of 30 datasets.
Based on the average accuracy, our method performs the
best, followed by ShapeNet. More specifically, our method
improves by 5.72% over ShapeNet and by 26.3% over the
least EDI. Another interesting finding is that our method
performs particularly well on certain datasets, for example,

on the ERing, AtrialFibrillation, and HandMovementDirection
datasets, where it improves 125.6%, 66.8%, and 21.7% over
the second best method, respectively. Nevertheless, this does
not mean that our method outperforms all baseline meth-
ods on all datasets. For example, for the DuckDuckGeese
and EthanolConcentration datasets, ours ranks 8th and 3rd,
respectively.

Based on these experimental results, we can conclude that
the classification performance of the proposed model is the
best in general, thus proving its applicability to classification
tasks. The remarkable performance is mainly due to the
fact that our model is equipped with a specially designed
multi-scale feature learning module and a cross-scale feature
learning module, which allows it to achieve a stronger learning
capability. In addition, the two loss functions make the learned
features more differentiable, thus improving the classification
ability.

In order to assess the statistical differences between our pro-
posed method and baselines applied to the 30 UEA datasets,
we conduct a post-hoc Nemenyi test using the “AVG rank” of
each method across various datasets. To better visualize these
differences, we present a critical difference (CD) diagram.
This diagram organizes 9 multivariate time series classifiers
in ascending order based on their “AVG rank,” as illustrated
in Fig. 5, using a confidence level of 0.95. According to the
results of the post-hoc Nemenyi test, our proposed method
shows statistically significant differences in comparison to
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MLSTM-FCNs WEASEL+MUSE

Negative samples

Fig. 5. CD diagram illustrates the comparative performance of nine
multivariate time series classifiers across 30 UEA datasets, using a confidence
level of 0.95. In the plot, a thick horizontal line indicates that there is no
significant difference between a set of methodologies.

other methods, except for ShapeNet, under the specified level
of statistical significance.

C. Baseline Comparison of Sea State Estimation

To fully verify the performance of the proposed model,
we compare the state-of-the-art (SOTA) works in the domain
of data-driven sea state estimation as well as some baseline
models in the domain of time series classification. The details
of the used baselines are as follows:

« MLP [38]: It is another baseline in the machine learning
and deep learning community. In this work, we follow
Miao’s work but change the model with three layers.
In each layer, the hidden number is set to 100.

o CNN [39]: It is a widely used baseline for deep learning
based sea state estimation. We very the number of the fil-
ters in CNN and select the one with the best performance
for comparison.

o« LSTM-FCN:s: It is a classic model for time series classi-
fication. It uses a parallel structure to learn temporal and
spatial features simultaneously.

o TapNet: It is a recently proposed model for time series
classification. It uses the distance-based classifier rather
than the conventional softmax classifier.

« SeaStateNet [18]: It is the first deep learning based model
for sea state estimation. It has three branches for learning
temporal, spatial and frequency features, respectively.

o SSENET [15]: It is a deep densely connected network
for estimating wave height and wave simultaneously.

o SpectralSeaNet [19]: It is a deep learning model using
the spectrum image as input. Ship motion data needs
to be converted to spectrum images by the fast Fourier
transform for sea state estimation.

o Hybrid model [17]: It is a recently proposed hybrid
model that combines data-driven and ship motion mod-
els. It takes the sea state estimation as a time series
classification problem using ship motion data. For this
comparison, we only need the data-driven model without
the ship motion model.

TABLE III shows the experimental results. As shown in
the table, our model achieves more competitive results than
the baselines in F1 for the World Wide and North Atlantic
datasets. LSTM-FCNs rank second, with the highest precision
in the World Wide dataset and the highest recall in the
North Atlantic dataset. CNNs and MLPs are ranked in the last

TABLE III

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART
METHODS ON SHIP MOTION DATASETS

World Wide North Atlantic

Methods P R FI P R FI

MLP 66.18 | 58.01 59.43 68.95 58.97 | 60.87
CNN 72.05 | 55.85 5794 | 71.72 | 55.72 | 59.77
LSTM-FCNs 80.16 | 71.98 74.31 75.66 | 7547 | 75.09
TapNet 7248 | 62.14 | 64.31 73.76 | 63.25 65.13
SeaStateNet 77.13 | 68.97 71.57 76.23 70.12 | 7243
SSENET 79.02 | 70.14 | 72.75 7746 | 70.74 | 73.03
SpectralSeaNet | 73.46 | 63.76 | 67.89 | 73.58 | 64.93 66.45
Hybrid 75.13 | 65.12 | 68.91 75.57 | 63.87 | 69.32
Ours 78.68 | 78.22 | 78.38 | 77.01 74.46 | 75.46

two places for their limited learning ability. An interesting
finding is that deep learning models specifically designed
for SSE are not expected to perform well. For example, the
performance of SpectralSeaNet and Hybrid is significantly
worse than that of our model. These quantitative results show
that our model can outperform existing SOTA methods.

Analogous to the previous section, we also present the
CD diagram (Fig.6) comparing our proposed method with
STOA approaches when applied to the two sea state datasets.
As depicted in Fig. 6, our proposed method demonstrates
statistically significant differences when compared to CNN,
MLP, and TapNet. However, there is little difference in com-
parison to SpectralSeaNet, Hybrid, SeaStateNet, SSENET, and
LSTM-FCN across both datasets, given the specified level of
statistical significance.

D. Comparisons With Class Imbalance Learning Methods

o Focalloss: It is a well-known loss function proposed for
class imbalance learning [23]. In this work, we set the
weight for each class based on its statistical information.

« Class-balance: It is a variant of focal loss by introducing
the concept of effective number of samples [24]. We use
the same setting as in [24].

o WeightedCE: It is a variant of the CE loss by assigning
different weights to different classes. These weights can
be used to overcome the class imbalance problem.

« LDAM (label-distribution-aware margin): It is a recent
proposed loss function for class imbalance learning.
LDAM can be used to replace the standard cross-entropy
during training. We use the same setting as in [40].

« BalanceSoftmax: It is an elegant and unbiased variant of
softmax for class imbalance learning. The method accom-
modates the label distribution shift between training and
test data sets [41].

To further evaluate the proposed model, we compare it with
four SOTA loss-based methods for class imbalance classifi-
cation using the two ship motion datasets. For comparison,
the proposed prototype-based classifier is replaced by the
traditional softmax classifier. These loss functions are then
employed to optimize the learning of the deep model. It is
worth noting that after removing our prototype-based classifier,
we also remove the two loss functions that accompany it,
namely the DL loss and the DCE loss.
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Fig. 6. CD diagram illustrates the comparative performance of eight methods, using a confidence level of 0.95. In the plot, a thick horizontal line indicates

that there is no significant difference between a set of methodologies.

TABLE IV

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS
OF IMBALANCED LEARNING ON SHIP MOTION DATASETS

World Wide North Atlantic
P R F1 P R F1
FocalLoss 60.17 | 69.82 | 62.23 | 62.94 | 70.94 | 65.16
LDAMLoss 75.83 | 74.34 | 74.81 | 76.21 | 73.87 | 74.74
WeightedCE 75.67 | 7438 | 7491 | 68.72 | 73.34 | 70.58
ClassBalanced 60.23 | 69.26 | 61.00 | 63.31 | 69.79 | 63.57
BalancedSoftmax | 80.20 | 72.06 | 73.86 | 73.53 | 65.49 | 67.71
Ours 78.68 | 78.22 | 78.38 | 77.01 | 74.46 | 75.46

TABLE IV presents the results, which shows that our
model performs better in general. The results demonstrate the
applicability of our prototype classifier for class imbalance
classification. LDAMLoss ranks second, which shows good
performance for class imbalance classification. Surprisingly,
the ClassBalanced method does not achieve the performance
as expected. The reason might be that it has many hyperpa-
rameters for tuning.

E. Ablation and Sensitivity Analysis

To evaluate the validity of each component in our proposed
model, we create three variants as follows:

o SA: The self-attention module is removed, but the other

modules are kept.

o CS: The cross-scale feature learning module is not used,
but outputs of different scale are simply concatenated.
Note that when the CS module is removed, SA will be
removed together.

o PC: The prototype classifier is replaced by the softmax
classifier.

The original model is called ‘ORG’ in this section. The
performance of these four models is presented in Fig. 7.
We can observe that there is a large performance drop when
the cross-scale feature learning module is removed (see CS
bar). This confirms the importance of the cross-scale learning
module and its self-attention module, which make a signifi-
cant contribution to the performance of the proposed model.
In addition, according to the results, the SA module is more
important than the prototype classifier in the World Wide
dataset, while only a slight difference is observed for the North
Atlantic dataset.

To delve deeper into the distinctions between each class,
particularly in terms of performance when dealing with smaller

World wide dataset

85 85 North Atlantic dataset

BN Fl = =P =l =R

o
. 74.48% *

©5.29%

0 0
ORG PC SA CS ORG PC SA CS

Fig. 7. Ablation study.
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Accuracy of each sea state with/without prototype classifier.

training samples, we present visualized results in Fig. 8. These
results clearly illustrate a notable decrease in performance for
sea states characterized by limited training samples. Addition-
ally, it’s evident from the results that the prototype classifier
contributes to an enhancement in performance.

To evaluate the impact of the number of scales on the
proposed model, we perform a sensitivity analysis by varying
its value. The results are illustrated in Fig. 9. From the results,
we can see that the model performance increases with the
increase in the number of scales for both datasets. The highest
performance is obtained when the scale number is set to 3 for
both datasets.

F. Discussion

This work proposed a deep learning model for SSE with
the aim of directly learning the imbalanced ship motion
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Fig. 9. Sensitivity analysis.

data. To the best of our knowledge, this work is the first
deep-learning model to address the class imbalance problem
for ship motion data for sea state estimation. The comparison
with 30 public datasets shows the scalability and generality of
the proposed model.

In this paper, two key experimental settings were used
for sea state estimation using ship motion datasets. First,
we only used four parameters for the modeling according to
the previous work [15]. Second, to test the performance of
class imbalance learning models, we generate the smallest
quantity for each sea state. For example, for sea state 6,
there are only around 200 samples in both World Wide and
North Atlantic datasets. Under such settings, we compared
our model with several SOTA baselines and class-imbalanced
learning methods. Since our model is specifically designed to
estimate sea states using imbalanced data, while other methods
are not designed for this specific purpose. This is the main
reason for their inferior performance. Compared with these
class-imbalanced learning methods, our model is more like a
“hard” operation on features than a “soft” operation on the
adjustment of model learning during the training processing.
Thus, our model is more effective than these learning-based
methods.

In this study, although the performance of our model is
the best, close to 80%, this accuracy is still relatively low.
There is still some room for improvement before practical use.
For example, the model can be further improved by means of
data augmentation for rare sea states. The overlapping between
different sliding windows can be increased, such as sea state 6,
which is much less than sea state 3. In this way, the sample
size will become closer. This will be left for our future work.

Another limitation that needs to be addressed for this work
is how to handle incomplete ship motion data for SSE. Ship
motion data can be very sparse due to a lot of unobservable
data, which can affect the performance of our model. In this
paper, we assume that the ship motion data are complete and
do not contain missing values. However, this may not be
realistic in some scenarios, and we should consider how to
deal with incomplete data for SSE. One possible way to deal
with incomplete data is to use imputation methods to fill in the
missing values before applying our model. Another possible
way is to use latent factor models to directly learn from the
incomplete data without imputation. Latent factor models can

use low-rank matrix factorization or tensor factorization to
decompose incomplete data into a product of latent factors that
capture the hidden structure and features of the data. We refer
the reader to [42], [43], [44], [45], [46], and [47] for some
recent studies that use latent factor models for incomplete
data analysis. We plan to explore these methods and extend
our model for SSE using incomplete ship motion data in our
future work.

V. CONCLUSION

Today the world economy heavily relies on maritime
transportation, especially during the COVID-19 epidemic.
Economic development has stagnated due to the epidemic,
so autonomous ships are an effective solution to the crisis.
To develop autonomous ships, it is necessary, for example,
to determine the sea state. In the real world, ships mainly work
in low sea state, which leads to the absence of collecting high
sea state data. This challenge limits the learning capability
of deep learning models for sea state estimation. In this
work, we proposed a novel deep learning model based on
class-imbalanced ship motion data for SSE. The model learns
multi-scale features on the ship motion data and then uses the
obtained features to build a distance-based classifier, which can
effectively improve classification performance compared to the
conventional softmax classifier. A thorough evaluation of the
proposed model has been conducted, and the experimental
results show the model’s effectiveness and superiority over
baseline methods.
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