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Abstract—Mobility-as-a-service (MaaS) is a new transport
model that combines multiple transport modes in a single
platform. Dynamic passenger behavior based on past experiences
requires reinforcement-based optimization of MaaS services.
Deep reinforcement learning (DRL) may improve passenger
satisfaction by offering the most appropriate transport services
based on individual passenger experiences and preferences.
However, this produces a new privacy risk to the MaaS platform
using the centralized DRL method. Information leakage will
occur if the platform is not carefully designed with privacy-
preserving mechanisms. In this paper, we propose a federated
deep deterministic policy gradient (FDDPG) that maximizes pas-
senger satisfaction and MaaS long-term profit while preserving
privacy. We enforce an equally weighted experience sampling
mechanism to prevent sampling bias such that the solution
quality of FDDPG is statistically equivalent to the centralized
algorithm. During the model training and inference, information
is processed locally, and only the gradients are shared, which
prevents information leakage to any semi-honest participants
and eavesdroppers. Secure aggregation protocol in line with the
dynamic property of the mobile agent is also used in the gradient
sharing step to ensure that the algorithm is prevented from
inference attacks. We perform experiments on New York City-
based real-world and synthetic scenarios. The results show that
the proposed FDDPG can improve the MaaS profit and passenger
satisfaction by about 90% and 15%, respectively, and maintain
stable training against agent dropout. Our approach and findings
could enhance MaaS utility as well as facilitate passenger trust
and participation in MaaS and other data-driven transportation
systems.

Index Terms—Privacy-preserving machine learning, federated
reinforcement learning, mobility-as-a-service, passenger behavior,
secret sharing.

I. INTRODUCTION

Mobility-as-a-service (MaaS) is a new mobility concept
aiming to integrate different transport modes by providing
a single platform for passengers. The passengers can access
real-time traffic information, plan the journey, obtain bundle
offers, book the transport service, etc. Besides addressing
the routine transport demand, novel intelligent transportation
systems applications can be integrated together with MaaS.
For example, predicting future traffic information [1], enabling
sharing economy by ride-sharing [2], and increasing utilization
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of idle vehicles by rebalancing [3]. As a promising compo-
nent of intelligent transportation systems, MaaS may provide
various benefits to the modern smart city, such as reducing
traffic congestion, energy consumption, and air pollution [4].
All these features can be consolidated into a single mobile
application. To realize the MaaS concept, a mature software
system connecting the mobility providers and passengers and
managing the traffic information is necessary. The software
system should have an intelligent scheduler to handle and
optimize passengers’ journey queries and system resources.
A successful software system and intelligent scheduler may
significantly enhance the public acceptance of MaaS.

Passengers may query their origin and destination to obtain
all the necessary traffic information, including the planned
journey and offered price. In a complex transportation system
with a tremendous amount of real-time data, the algorithm of
an intelligent scheduler is an essential component to process
their query and recommend the journey. Unlike standard path
planning algorithms, the planned journey of MaaS may be
personalized for each passenger based on their experiences
and preferences. This may be achieved by formulating the
problem as a multi-objective journey planning problem where
each objective term indicates different utilities, including travel
time, discomfort, price, and operation cost. Moreover, the
dynamic passenger experiences process of each travel can
be modeled by Markov decision process and solved by deep
reinforcement learning (DRL) as presented in [5]. Journeys
planned by multi-objective journey planning problem with
the DRL generated weights are expected to be preferred by
passengers. The MaaS with this algorithm may improve the
passenger satisfaction with the journey and overall profit of
MaaS. However, during the training and inference processes,
passengers must provide their personal information and travel
experience as input to the agent, which may cause information
leakage issues at the MaaS central server and communication
channel. This type of centralized system where the server
holding all the information is vulnerable to privacy threats.
Multiple adversaries such as developers, service administra-
tors, and managers may perform various attacks on the system
[6], resulting in information leakage from the centralized
MaaS platform. Furthermore, learning-based system, as the
one discussed, usually vulnerable to inference attacks such as
membership inference attacks [7], model inversion attacks [8],
and property inference attacks [9]. These attacks may obtain
certain information from the system such as to determine
whether a data belongs to the training dataset or not. As a
system containing massive amount of passenger information,
we should mitigate the security loopholes in the algorithmic

h.binning
Text Box
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

h.binning
Text Box
IEEE Transactions on Intelligent Transportation Systems, Volume 25, Issue 2, February 2024, pp. 1882-1896DOI: 10.1109/TITS.2023.3317358



2

level.
Motivated by the potential privacy risks [10] and research

gap in the centralized MaaS platform, we explore the possible
technologies for building a privacy-preserving MaaS. Among
the technologies, federated learning is a distributed machine
learning technique that allows the training to be performed
in distributed client agents by their private and local dataset.
Each data owner may train their client model and securely
share the learned gradient to update the server model without
invasion of data privacy. It could be integrated into deep
deterministic policy gradient (DDPG) [11], where it trains a set
of client agents in a distributed manner, and the trained models
are securely aggregated to the server agent. Federated DDPG
(FDDPG) is privacy-preserving since it restricts the interaction
between the local environment and agents other than the
environment owner [12]. Therefore, a federated MaaS platform
could be a promising solution to address the aforementioned
privacy issues.

In this paper, we aim to build a privacy-preserving MaaS
by the federated architecture. To do this, we first integrate
the multi-objective MaaS journey planning problem for pas-
senger behavior and the Markov decision process-based pas-
senger satisfaction problem into a bi-level problem. Then,
we transform the centralized MaaS problem into a federated
version so that each passenger is responsible for their own
sub-problem. A FDDPG algorithm is presented to securely
solve the problem without sharing sensitive information. To
maintain the solution quality compared to centralized version,
we enforce an equally weighted experience sampling mecha-
nism. Also, we integrate a secure aggregation protocol to the
FDDPG algorithm to ensure the information is secure from
inference attacks. Detailed experiments on New York City-
based real-world and synthetic datasets are conducted to study
the solution quality of the FDDPG algorithm with secure ag-
gregation protocol. The results show that the proposed FDDPG
can improve the MaaS profit and passenger satisfaction by
about 90% and 15%, respectively, while preserving privacy
and maintaining stable training against agent dropout. Our
approach and findings could enhance MaaS utility as well as
facilitate passenger trust and participation in MaaS and other
data-driven transportation systems. The current MaaS system
faces several key challenges, which include:

1. Security threat from centralized server: The centralized
server that stores passenger information poses a risk of
potential information leakage, thereby compromising the
security of the system.

2. Privacy concerns and inference attacks: The utilization
of passenger information for journey planning introduces
privacy vulnerabilities, such as inference attacks. These
attacks involve extracting sensitive information from the
model training process, thereby jeopardizing the privacy
of the passengers.

3. Dropout issue in dynamic transportation systems: In
highly dynamic transportation systems, passengers fre-
quently move around, and their client devices may ex-
perience disconnections from the server. This poses a
challenge during the training procedure, as dropouts can
occur, leading to interruptions in the training process.

To address these challenges, the proposed approach offers
appropriate solutions:

1. Adoption of distributed architecture: To enhance system
security and robustness, the proposed approach trans-
forms the MaaS system into a distributed architecture.
This decentralization helps to avoid centralizing informa-
tion and instructions, thereby mitigating security risks.

2. Implementation of federated learning: To address privacy
concerns during model training, the proposed approach
incorporates federated learning. This approach ensures
that each client passenger is responsible for their own
sub-problem, and only intermediate information is shared
in order to prevent information leakage.

3. Resilience to dropouts: The model training algorithm in
the proposed approach is designed to allow dropouts
during any step of the training process. It can handle
such disruptions without affecting the functionality of
the algorithms, provided that the number of passengers
exceeds a predefined threshold value.

The main contributions of this paper can be summarized as
follows:

1. We formalize and integrate the multi-objective MaaS
journey planning problem for passenger behavior and
the Markov decision process-based passenger satisfaction
problem into a bi-level problem.

2. Motivated by the information leakage issue in the formu-
lated problem and classic DDPG method, we present an
FDDPG solution approach that can achieve similar solu-
tion quality compared to the centralized algorithm while
preserving passenger privacy. Since each client agent only
explores their local space, an equally weighted experience
sampling mechanism is enforced in the FDDPG algorithm
to avoid bias in the experience sampling process.

3. Besides the information leakage issue, the method is vul-
nerable to inference attacks. Also, agent in MaaS is highly
dynamic and they may dropout from the system during
the algorithmic steps. Therefore, a secure aggregation
protocol that allows dynamic dropout from the system is
integrated into the FDDPG algorithm to further enhance
the system security and stability.

The rest of this paper is organized as follows. Section
II reviews the related work of MaaS, DRL approaches in
transportation, and privacy-preserving technologies. Section
III illustrates the problem formulation of privacy-preserving
MaaS and the threat models. The privacy-preserving FDDPG
algorithm for MaaS is presented in Section IV. Experiments
and results are presented in Section V. Finally, Section VI
concludes this paper.

II. RELATED WORK

A. Multimodal Journey Planning Problems

MaaS contains multiple mobility providers for a set of pas-
sengers to be transiting over the multimodal transport network.
Most of the existing methods of determining the optimal path
consider the transport characteristics only. For example, refer-
ence [13] formulated a dynamic shortest path problem using
historical and real-time information and solved the problem by
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a clustering-based hybrid approximate dynamic programming
algorithm that combines a deterministic lookahead policy and
a value function approximation. However, prices are not the
only factor affecting passenger route choices. Individual pas-
senger may have their own preference related to the passenger
profiles such as the reference [14] studied the correlations
between loyalty and passengers’ profiles, experience, and
values for different transport services. The study indicates that
those factors are influencing their choice of transport mode.
Therefore, there are research works considering the passen-
ger profile and preference to plan a customized journey for
each individual passenger. Reference [15] proposed a design
framework for multi-modal transportation systems integrating
multiple mobility services that consider travelers’ choices for
describing travelers’ behavior and estimating agencies’ costs,
so that the total cost of mobility providers and passengers
can be minimized by the formulated optimal design problem.
Therefore, a problem formulation considering the passenger
experiences and preferences for maximizing their satisfaction
and MaaS profit is desired.

B. Cybersecurity Threats of MaaS

MaaS faces various cybersecurity threats and attacks, and
there is existing literature studying the vulnerable component
of MaaS [16]. Reference [6] identified the potential threats
of individual coordinators and markets of mobility providers.
The study indicates that the information of the user profile
can be stolen from a poorly managed system. Reference
[17] built a privacy-preserving data publishing algorithm for
trajectory data using differential privacy with a prefix tree
structure, an incremental privacy budget allocation model, and
a spatial-temporal dimensionality reduction model to improve
the data utility and run-time efficiency. In [18], the authors
aimed to eliminate the need for a central MaaS coordinator
and proposed a blockchain-based MaaS that improves the
trust and transparency of all stakeholders in a decentralized
way. However, there is no existing literature focusing on the
information leakage issue and the potential threat of inference
attacks for the journal planning problem of MaaS.

C. Privacy-preserving Machine Learning

A large and growing body of literature has studied privacy-
preserving machine learning. The long pipeline of general
machine learning has provided lots of potential threats in
the process-chain in the system, including data preparation,
model training and evaluation, model deployment, and model
inference [19]. Most of the privacy issues are about data and
model privacy. One of the architecture-based approaches to
preserve data and model privacy is federated learning (FL)
[20], [21]. FL was proposed to enable joint training of a
machine learning model using the client data samples in each
client without revealing the data to others [22]. FL can be
classified as vertical and horizontal FL depending on whether
the feature or sample spaces of the datasets across the clients
are different. For vertical FL, the sample spaces of datasets
across the clients are the same but differ in feature space.
For horizontal FL, the feature spaces are the same but not

the sample spaces, which is similar to the problem case in
this paper. To preserve data privacy, as proposed in [23], each
client trains a client machine learning model using the client
data sample and uploads the trained models or gradients to the
server. The server then updates the server model by calculating
the average of the models or gradients and broadcasts the
updated server model to the clients in each iteration. Using
this method, the server model is seamlessly trained by the
data samples in the client, while the data is stored locally
without sharing it with the server or other clients. On the
other hand, the shared model may be vulnerable to attacks
focused on inferring private information from it, such as
membership inference attacks [7], model inversion attacks [8],
and property inference attacks [9]. To preserve model privacy
from these inference attacks, secure aggregation can be used
to ensure the server only gets the aggregated information but
not the information from an individual client. The authors
in [24] proposed a practical secure aggregation method for
federated learning. The method leverages secret sharing in
secure multiparty computation to compute sums of model
parameter updates from the individual client. Compared to
existing methods, it can still be functioning if clients dropout,
and it avoids transmitting lots of data.

D. Federated Reinforcement Learning
Federated learning can be integrated into reinforcement

learning to form federated reinforcement learning (FRL).
Many recent research of federated reinforcement learning
have been conducted in various engineering domains. Refer-
ence [25] use an FRL architecture and a knowledge fusion
algorithm for navigation in cloud robotic systems, which
effectively use prior knowledge and quickly adapt to new
environments. In smart grid research, the authors in [26]
enhance the scalability and privacy by transforming the voltage
control problem into a decentralized problem in FRL architec-
ture. The secure communication and data resource allocation
problem in cyber-physical systems was formulated in [27] as
FRL architecture to address the non-stationary issue caused
by the heterogeneity of cyber-physical systems devices. For
unmanned aerial vehicles, the FRL algorithm was proposed in
a semi-distributed framework to solve the power minimization
problem in the multi-access edge computing system [28]. FRL
was also introduced into vehicular communication to speed up
the training process across vehicles [29]. However, no one has
developed privacy-preserving federated reinforcement learning
specifically for the operation of MaaS that addresses privacy
issues, which is the research gap that we aim to bridge in this
paper.

III. SYSTEM MODEL

In this section, we introduce the threat models first. Then,
we present the multi-objective journey planning problem and
passenger satisfaction problem in MaaS. Table I summarizes
the notation used in this section.

A. Threat Model
We assume all the participants, including the MaaS coor-

dinator, mobility providers, and passengers, are semi-honest,



4

TABLE I
NOTATION SUMMARY.

Notations Meaning
G(N ,A) Graph of the transport network

F Set of mobility (service) providers

f Mobility (service) provider f ∈ F
N Set of nodes in the network

A Set of links in the network

Af Subset of A operated by f ∈ F
N+(i) Set of incoming locations of i

N−(i) Set of outgoing locations of i

K Set of passengers

k Passenger k

ok Origin node of passenger k ∈ K
dk Destination node of passenger k ∈ K
βf
ij Travel time cost of link (i, j) ∈ Af

δfij Discomfort index of link (i, j) ∈ Af

ρfij Price of link (i, j) ∈ Af

µf
ij Operating cost of link (i, j) ∈ Af

Wk Utility weights of passenger k

wk
β Weight of βf

ij

wk
δ Weight of δfij

wk
ρ Weight of ρfij

wf
µ Weight of µf

ij

Cf
ij Capacity of link (i, j) ∈ Af

xk
ij

Binary variable for link (i, j) ∈ Ãs that
recommends to passenger k ∈ K

yfij Binary variable for a coordinator to serve a link (i, j) ∈ Af

θπ Parameters of actor local

θQ Parameters of critic local

θπ
′

Parameters of actor target

θQ
′

Parameters of critic target

which is a commonly defined adversary model in privacy-
preserving computation [30]. Some literature also refer it as
honest-but-curious [31]. In this model, the participants are
honest in following the protocol merely, but they are curious
about extracting any data and information. For example, in our
case, the participants will not perform a data poisoning attack
[32] to cheat the system, but they may infer information using
membership inference attacks [7] with the obtained model
from an individual passenger. Therefore, any unpremeditated
information leakage can be prevented by achieving this level
of security.

B. Problem Formulation

In a MaaS, there are two main components. The first
component is the mobility coordinator, which is responsible
for coordinating resources and planning the journey. The coor-
dinator plays a critical role in arranging various transportation
services to ensure efficient mobility for passengers. There
exist multiple mobility providers that offer diverse transport
services, including those provided by bus companies and
railway operators. These mobility providers function as service
providers, handling the transportation needs of passengers

within the MaaS ecosystem. Together, these components work
together to facilitate seamless mobility solutions and enhance
the overall MaaS experience. We consider the scenario in
MaaS where passengers query their origin and destination to
the MaaS coordinator for obtaining an optimal planned journey
based on their individual behaviors and characteristics. We
will introduce the multi-objective journey planning problem
and passenger satisfaction problem. Then, we will present the
integrated bi-level problem.

1) Multi-objective Journey Planning Problem:
Consider a MaaS transport network modeled by a directed

graph G(N ,A) where N and A is the set of nodes and links
in the network, respectively. One can interpret the node and
link as the station and road, respectively, for a bus service for
example. We denote the set of mobility providers by F and
each mobility provider f ∈ F provides transport services over
their transport network Af ∈ A. A transport service from i
to j is provided on link (i, j) and the time cost, discomfort
index, price, and operation cost of each service provided by f
are represented by βf

ij , δfij , ρfij , and µf
ij , respectively. Based

on the service utility cost, passenger’s origin ok and dk, and
passenger behavior, the MaaS scheduler computes an optimal
journey to be offered to the passenger. Noted that the journey
may be a combination of services from more than one mobility
provider in MaaS. The optimization model MaaS problem can
be referenced in the literature [33].

Two binary decision variables, xkf
ij and yfij , are defined in

the formulation of the problem. xkf
ij are used to represent the

mobility service to be offered to the passenger:

xkf
ij =

{
1 if link (i, j)operated by f offers to k,

0 otherwise.
(1)

yfij represent the transport service operation status:

yfij =

{
1 if link (i, j) is operated by f,

0 otherwise.
(2)

The objective of the problem is to determine the optimal
xkf
ij and yfij such that the total utility cost of passengers and

mobility providers are minimized:∑
(i,j)∈Af ,k∈K,f∈F

(wk
ββ

f
ij+wk

δ δ
f
ij+wk

ρρ
f
ij)x

kf
ij +wf

µµ
f
ijy

f
ij , (3)

where βf
ij , δfij , ρfij , and µf

ij are the travel time, discomfort in-
dex, price, and operating cost of link (i, j) ∈ Af , respectively,
and wk

β , wk
δ , wk

ρ , wf
µ are the weighting of the corresponding

utility terms.
Let N−(i) and N+(i) be the sets of outgoing and incom-

ing locations of i, respectively, such that N−(i) = {j ∈
N|(i, j) ∈ A} and N+(i) = {j ∈ N|(j, i) ∈ A}. To ensure
the flow conservation in the transport network, the following
equation requires to be imposed in the problem.

∑
j∈N−(i)

xkf
ij −

∑
j∈N+(i)

xkf
ji =


1 if i = ok,

−1 if i = dk,

0 otherwise,

∀i ∈ N , k ∈ K, f ∈ F , (4)
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TABLE II
SAMPLE RELATIONSHIP BETWEEN SATISFACTION LEVEL AND ADMISSION

RATE.

Satisfaction level, Hk Admission rate, P (Hk)

5 1

4 0.75

3 0.5

2 0.25

1 0

Since the capacity of the transport service is limited, an
equation is included to restrict the total number of passengers
in the transport service:∑

k∈K

xkf
ij ≤ Cf

ijy
f
ij , ∀(i, j) ∈ Af , f ∈ F (5)

where Cf
ij is the capacity of transport service from i to j that

operated by f ∈ F .
As a whole, the multi-objective journey planning problem

is given as follows:
Problem 1 (Multi-objective Journey Planning Problem):

min
xkf
ij ,yf

ij

(3)

s.t. (4)–(5).

To solve this problem which is formulated as an integer linear
program, a standard solver can be used given that the weight of
the objectives, W k = [wk

β ;w
k
δ ;w

k
ρ ;w

f
µ] , are set. However, the

utility weight W k that represents the preference for different
objectives is hard to be defined, and it is the difference for
each passenger who has different behaviors, experiences, and
preferences. Therefore, another problem, namely, the passen-
ger satisfaction problem, for determining the utility weight is
formulated.

2) Passenger Satisfaction Problem:
The passenger satisfaction problem aims to determine the

utility weight based on passenger characteristics so that the
passenger satisfaction and admission rate to the transport
service is increased, thus increasing the MaaS profit.

We model the passenger admission process to the MaaS as
a 4-tuple Markov decision process ⟨S,A, P,R⟩, where S , A,
P , and R are the set of states and actions, state transition
and reward function, respectively. The state skt ∈ S is the
concatenation of passenger satisfaction and the passenger
characteristics. The action akt ∈ A is the utility weight
introduced in Problem 1, i.e., akt :=

[
wk

β ;w
k
δ ;w

k
ρ ;w

f
µ

]
for time

t and passenger k. P (skt+1|skt , akt ) represents the satisfaction
variation from states skt ∈ S to skt+1 ∈ S for acting action
akt ∈ A. R(skt , a

k
t , s

k
t+1) represents the total profit due to the

transition from skt to skt+1 after acting akt .
The passenger satisfaction level in the state can be repre-

sented by a N -level integer value, which also indicates the
admission rate proportionally. A sample relationship between
the satisfaction with N = 5 and admission rate is shown in
Table II.

Fig. 1. Satisfaction transition representation.

Let Hk be the satisfaction level of passenger k. It is a
variable depending on the transport service offered by the
MaaS. In general, the satisfaction increases if the passenger is
satisfied with the offered journey and decreases otherwise. The
passenger satisfaction change is a function of the expectation
difference on each utility:

Hk :=


Hk + n if Ek ≥ E

k
,

Hk − n if Ek ≤ Ek, ∀k ∈ K,
Hk otherwise,

(6)

where E
k

and Ek is the upper and lower expectation differ-
ence threshold, n is the step size of the satisfaction level, and
the expectation difference is defined as

Ek = w̃k
β(β̃

k
okdk − βk

okdk) + w̃k
δ (δ̃

k
okdk − δkokdk)+

w̃k
ρ(ρ̃

k
okdk − ρkokdk), ∀k ∈ K. (7)

where W̃ k = [w̃k
β ; w̃

k
δ ; w̃

k
ρ ] is the utility weight of passenger

k, β̃k
okdk , δ̃

k
okdk , ρ̃

k
okdk are the utility expected implicitly by

the passenger, and ok and dk are the origin and destination
of passenger k, respectively. Expected utility is the utility
of an ideal best journey for the passenger. It can be deter-
mined by solving the planning problem as if the passenger is
traveling alone in the system. The actual utility is the utility
of the journey planned by MaaS, which may be deviated
from the expected utility with an incompetent planner and
limited capacity. Therefore, an incompetent planner may have
a negatively large expectation difference on average.

A sample state transition representation of n = 1 is given
in Fig. 1. The passenger experience of each journey may lead
to satisfaction increases, decreases or unchanged, which affect
the status and admission of the next journey. Similar consumer
satisfaction models can be found in other field of studies such
as supply chain [34] and product management [35].

Therefore, the passenger satisfaction problem can be for-
mulated as:

Problem 2 (Passenger Satisfaction Problem):

max
ak
t

∑
k,t

R(skt , a
k
t , s

k
t+1)

s.t. (6)–(7).

With the Markov decision process model, this problem
can be solved by a reinforcement learning-based method that
learns the transition and optimal action for the passengers.
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3) Bi-level problem:
Problems 1 and 2 are connected via the utility weights since

the actions in Problem 2 are defined as utility weights, i.e.,
akt :=

[
wk

β ;w
k
δ ;w

k
ρ ;w

f
µ

]
. We can integrate the problems into

a bi-level problem, where problems 1 and 2 is the upper-level
and lower-level optimization task, respectively. As a whole,
the bi-level problem is formulated as:

Problem 3 (Bi-level Multi-objective Journal Planning and
Passenger Satisfaction Problem):

max
xkf
ij ,yf

ij

(3)

s.t. (4)–(5),

akt ∈ argmax{
∑
k,t

R(skt , a
k
t , s

k
t+1) : (6)–(7)}.

We can determine the action (utility weights) first by solving
Problem 2 with a reinforcement learning-based method, and
then solve Problem 1 with integer optimization method.

IV. PRIVACY-PRESERVING FEDERATED DEEP
DETERMINISTIC POLICY GRADIENT

In this section, we present the privacy-preserving FDDPG
algorithm and the components of the system.

A. System Components

1) Environment: The environment represents the state tran-
sition of the set of passengers and the MaaS platform. Given
the journey xkf

ij offered by the MaaS coordinator, the environ-
ment proceeds to a new state skt+1 and returns a reward rkt to
the client agent at each time t, which is also represented by
transition probability P (st+1|st, at).

2) State: The state st represents the static and dynamic
information of the passenger, including the passenger’s charac-
teristics and satisfaction level, respectively. The characteristics
are composed of the passenger’s personal information, such as
income and age. The satisfaction level of the transport service
is also sensitive. Therefore, we consider the state as the major
private information that must stay in the passenger’s property,
such as mobile applications, and cannot be transmitted to other
applications.

3) Action: The action akt represents the utility weight[
wk

β ;w
k
δ ;w

k
ρ ;w

f
µ

]
which indicates the weight of the terms of

objective function: time, discomfort, price, and operation cost
in Eq. (3). The weight affects the optimal journey as defined
in Problem 2.

4) Reward: The reward rkt represents the profit of the
mobility service of passenger k at time t, which is equivalent
to the price minus the operating cost, i.e,

rkt =
∑

i,j,k,f

(ρfij − µf
ij)x

kf
ij . (8)

The MaaS coordinator aims to maximize profit by offering
journeys that maximize passenger satisfaction and admission
rate.

5) Agent: The agent represents the component for deter-
mining the action based on a given state. The agent aims to
maximize the reward with an optimal action. Since the action
is the utility weight, different actions affect the offered journey
and thus the passenger satisfaction. Hence, the agent should
learn to output utility weights that can increase the long-term
reward. There are two types of networks in an agent: actor
and critic. The actor network is used to output action based
on the input state. A critic network is used to evaluate the
performance of the state and action pairs.

6) Actor and Critic Networks: Neural networks are used to
learn and perform the transition functions of states, actions,
and rewards. To preserve the generality of the proposed
approach, we use deep fully-connected neural networks as the
neural network structure in this paper. The reason is that the
input and output of the neural network are numeric features
and values where deep fully-connected neural networks might
be able to model the relationship already, unlike other data
types such as images and time series data that usually use
convolutional neural networks and recurrent neural network,
respectively. The deep neural networks have to be designed
to match the problem nature. For example, the action is an
array ranging from 0 to 1 and thus we use the sigmoid as the
activation function.

B. Federated Deep Deterministic Policy Gradient

As discussed in Section III, the FDDPG algorithm is mainly
used to solve Problem 2, which is equivalent to the lower-
level optimization task of Problem 3. The privacy-preserving
MaaS focuses on preventing personal information leakage
during the model training and inference. The MaaS scheduler
is responsible for solving the Problem 2. For the centralized
architecture, the MaaS scheduler would require the passenger
to submit their characteristics and satisfaction level as the
state skt ∈ S for the computation. This information may
leak to semi-honest participants in MaaS or hackers who
perform eavesdropping attacks. Hence, we present the privacy-
preserving FDDPG algorithm to avoid information leakage
under the semi-honest threat model assumption.

To avoid information leakage, the architecture is designed
to be a federated architecture, as shown in Fig. 2 where
the information and experience are stored locally within the
passenger’s device during the model training. An example
sequence of the information flow is as follows:

1. The client agents transmit the weights to the MaaS
coordinator based on the current models.

2. The MaaS coordinator plans the journey and offers it to
the passengers.

3. Passengers decide whether to accept the journey offered,
which obtains the experience, new state, and rewards.

4. The experience is transmitted to the client agent for stor-
ing in the replay buffer and performing model updates.

5. The client agents transmit the updates to the server.
6. The MaaS coordinator broadcasts the server models to

clients.
The FDDPG algorithm is based on the deep deterministic

policy gradient [11] which is a model-free off-policy algorithm
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for determining the continuous utility weight. In the federated
architecture, each passenger owns a client agent responsible
for the individual utility weight. The agents in client and server
have the same structure as presented in Section IV-A. The
conventional terminology of “server” and “client” is adopted
in this paper to denote the hierarchical difference between the
involved parties. The designation of “server” can be associated
with the MaaS coordinator, while the term “client” can be
associated with the passenger.

In each iteration, a different set of client agents may
participate in the model inference and model update. As any
passenger may go offline at any moment, we do not restrict
the participation of clients. However, the server will sample
the experience based on the buffer indices on behalf of clients
to ensure unbiased sampling. The algorithm is designed to be
robust on random dropouts, given that there are at least K0

clients throughout the algorithm. The algorithm aborts when
the number of participating clients is smaller than K0. To
simplify the discussion and presentation, we assume at least
K0 clients participating in each iteration.

Each agent maintains an experience replay buffer ERk that
stores the transition tuple (skt , a

k
t , r

k
t , s

k
t+1) for updating the

actors and critics. The reason for using an experience replay
buffer to store transition for mini-batch sampling is to ensure
the samples are independently and identically distributed. If
the transitions are used to update the models immediately after
being recorded, it would be sequential transitions, and thus
the training is unstable. Noted that the mini-batch refers to
the number of training samples that are processed together
in each iteration of the algorithm. Having a mini-batch rather
than training the sample one by one could speed up the training
and stabilize the convergence in general. In our federated case,
the training samples are sampled from individual replay buffer,
which belongs to the same passenger. If it is in the centralized
case, the replay buffer is mixed with training samples from
different passengers, and thus the mini-batch could belong to
different passengers.

We use the epsilon-greedy action selection method instead
of adding Ornstein-Uhlenbeck (OU) noise for exploration. The
reason is that the action space in our problem is normalized
to between 0 and 1, so the OU noise may not guarantee that
the actions are within the range. Uniformly random actions
are selected by the probability ϵ. ϵ gradually decreases from
the beginning episode with a decay factor ϵ̄ smaller than one.

The following update rules of the four models, namely, actor
local, actor target, critic local, and critic target network, are
applied to update the actor and critic based on a mini-batch
sample. The parameters of critic local θQ are updated based
on the loss, L:

L =
1

B

∑
i

(ri+γQ′(si+1, π
′(si+1|θπ

′
)|θQ

′
)−Q(si, ai|θQ))2

(9)
where B is the mini-batch size, i is the index of sample in
the mini-batch, and γ is the discount factor. The parameters of

actor local θπ are updated by computing the policy gradient:

∇θπJ ≈
1

B

∑
i

∇aQ(s, a|θQ)|s=si,a=π(si)∇θππ(s|θπ)|si .

(10)
Critic target θQ

′
and actor target θπ

′
are updated softly

by assigning the parameters from the corresponding local
networks with a factor of τ :

θQ
′
:= τθQ + (1− τ)θQ

′
, (11)

and
θπ

′
:= τθπ + (1− τ)θπ

′
. (12)

Each participating client computes the gradients of actor and
critic based on the update rules in each iteration. The mini-
batch sample of each participating client is randomly selected
by the server on behalf of the clients to enhance unbiased
sampling. Each client selects samples according to the random
indices instructed by the server and computes gradients from
their client experience replay buffer only to preserve privacy.
To further ensure no information leakage from the gradient,
the gradients are aggregated in the server using the secure
aggregation protocol to be present in Section IV-C which
guarantees the server cannot retrieve the gradient of an in-
dividual client except the aggregated gradient. The aggregated
gradient is then used to update the actor and critic of the
agent in the server. Notice that in some federated learning
algorithms, the server aggregates the model parameters instead
of the gradient. However, aggregating the model parameters
is not applicable to our problem as we use Adam [36] as the
optimizer, which contains a momentum term during the model
update. Aggregating the model parameters updated by Adam
using client experience makes the training unstable.

The detailed algorithm is shown in Algorithm 1. Lines 1 –
6 are parameter initialization. In line 9, the server samples a
set of passengers. From lines 10 – 17, each passenger (client)
decides their corresponding action. After executing the actions
in line 18, the passengers store the experience in their replay
buffer in lines 19 – 21, which occurs on the client side. Lines
22 – 24 occur on the server side to ensure that the sampling
is randomly sampled. Based on the sampling instruction, the
clients sample and compute the gradients in lines 25 – 28. Line
30 is the secure aggregation, which is shown in Algorithm
2. Finally, the server models are updated accordingly on the
server side in lines 31 – 34 and broadcast the updated models
to clients in line 35. There are two major communications
between server and client in Algorithm 1, which are the model
broadcast from the server to clients in lines 6 and 35, and the
secure aggregation for the gradients from clients to the server
in general if the key and mask communications in Algorithm
2 are excluded for simplicity.

C. Secure Aggregation

Although the states are not shared during the model training
due to the federation, semi-honest users can still perform
inference attacks to the shared gradient to get information
about the training data. Moreover, agents in MaaS are highly
dynamic and they may disconnected from the server at any
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Fig. 2. Interaction between the environment, passengers and the MaaS coordinator.

moment. However, FDDPG requires contribution of gradient
for training. Therefore, the system must be robust to the
random dropout. A secure aggregation protocol that allow
dynamic dropout from the system is required for gradient
sharing to prevent information leakage and instability. The
secure aggregation [24] used in this paper is based on secret
sharing [37] and Diffie-Hellman (DH) key agreement [38].
The core of this protocol is to enable learning from aggregated
input rather than individual input. The protocol involves five
rounds of operations between the server and the clients:

• First, each client generates DH key pairs (ckPK , ckSK) and
(skPK , skSK), and a signature ωk based on a signing key
dkSK and the public keys ckPK and skPK . The keys are
sent to the server as an acknowledgment of participation.
After the server collected at least K0 messages from the
|Kup

t | participating clients, the server broadcasts the keys
to the clients k ∈ Kup

t . This round is mainly for key
generation and collection. Only keys are shared in this
round.

• Second, the clients validate the signatures and generate
and send encrypted secret shares of a random element bk

and skSK to the server. Specifically, the bk and skSK is for
active and dropped client for later secret reconstruction.

• Third, the server broadcasts the secret shares to the
clients. The clients use the secret shares to compute a
masked input yk and send it to the server. Since the
masked input yk is computed based on the secret shares,
the aggregated masked input should be equal to the
original aggregated input as if without the mask. In other
words, the masks will be canceled out with each other.

Therefore, the information is secure with the mask.
• Fourth, the clients check if the client list contains at least

K0 clients and return a signature ω′
k. This is to ensure

that the secret reconstruction process can be carried out
for the k-out-of-n redundant condition.

• Finally, the server broadcasts the signature to the clients
for validation. The clients send a list of shares consisting
of bk for active client k or skSK for dropped client k
to the server for secret reconstruction. This round is
for handling the dropped clients. Without the masks of
dropped clients, the aggregated masked input cannot be
reconstructed to the original aggregated input since the
masks are not canceling out each other. Therefore, for
dropped clients, the server will recover the key skSK for
dropped client k so that the masks are computed and
included in the aggregation to cancel out the masks of
other active clients.

During the process, the server maintains at least K0 active
clients. Otherwise, the process will be aborted. The aggrega-
tion can still proceed when clients dropout as the masks of
that clients can be reconstructed by the secret shares in other
clients. As in our problem, the aggregation of gradients is
not a simple summation but a weighted sum with the number
of transitions. Therefore, each client is required to multiply
the gradient with the number of transitions and send it to
the server for aggregation. The server will then divide the
aggregated gradient by the total number of transitions for
the model parameters update. A high-level pseudo-protocol of
the secure aggregation is given in Algorithm 2. This protocol
can be integrated into line 30 of Algorithm 1 for the set of
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Algorithm 1 Privacy-Preserving Federated Deep Deterministic
Policy Gradient

1: Initialize server actor local π(s|θπ) and critic local net-
works Q(s, a|θQ) with parameters θπ and θQ

2: Initialize parameters of server actor target π′(s|θπ′
) and

critic target networks Q′(s, a|θQ′
) with parameters θπ

′ ←
θπ and θQ

′ ← θQ

3: for k = 1 to |K| do
4: Initialize passenger k parameters
5: end for
6: Broadcast θπ , θQ, θπ

′
, and θQ

′
to clients

7: for episode = 1 to M do
8: for iteration t = 1 to T do
9: Admit a set of participating passengers Kin

t ⊆ K
participating model inference

10: for passenger k ∈ Kin
t do

11: jk ← random number between 0 and 1
12: if jk < ϵ then
13: akt ← random vector between 0 to 1
14: else
15: akt ← π(skt |θπ)
16: end if
17: end for
18: Execute action at = [a1t , . . . , a

|Kin
t |

t ] to obtain new
state st+1 = [s1t+1, . . . , s

|Kin
t |

t+1 ] and reward rt
19: for passenger k ∈ Kin

t do
20: Store (ski:i+N , aki:i+N , rki:i+N , ski:i+N+1) to re-

play buffer ERk

21: end for
22: Admit a set of passengers Kup

t ⊆ K participating
model update

23: if transitions in
⋃

k∈Kup
t

ERk ≥ mini-batch size B
then

24: Random select a mini-batch transitions with
size B from

⋃
k∈Kup

t
ERk

25: for passenger k ∈ Kup
t do

26: Compute critic gradient based on Eq. (9)
for transitions in ERk

27: Compute actor gradient based on Eq. (10)
for transitions in ERk

28: end for
29: end if
30: Perform secure aggregation for the gradients ac-

cording to Algorithm 2
31: Update critic local based on the aggregated critic

gradient
32: Update actor local based on the aggregated actor

gradient
33: Update critic target based on Eq. (11)
34: Update actor target based on Eq. (12)
35: Broadcast θπ , θQ, θπ

′
, and θQ

′
to clients

36: end for
37: ϵ := ϵϵ̄
38: end for

passengers Kup
t .

Algorithm 2 Secure Aggregation Protocol
Round 0:
Clients:

1: Generate DH key pairs (ckPK , ckSK) and (skPK , skSK), and
signature ωk

2: Send signed public keys ckPK , skPK , ωk to server
Server:

3: Broadcast received keys to all clients
Round 1:
Clients:

4: Validate signatures
5: Generate secret shares of bk and skSK to server
6: Send secret shares of bk and skSK to server

Round 2:
Server:

7: Broadcast secret shares to client
Clients:

8: Compute masked input x̃k

9: Send x̃k to server
Round 3:
Server:

10: Broadcast the list of active clients
Clients:

11: Check if the list contains at least K0 clients
12: Send signature ω′

k to server
Round 4:
Server:

13: Broadcast signature to clients
Clients:

14: Send the list of shares consisting bk for active client k or
skSK for dropped client k to the server
Server:

15: Reconstruct secrets

D. Discussion and Analysis

1) Equivalent solution quality:
Proposition 1: Consider the bi-level multi-objective journal

planning and passenger satisfaction problem of the MaaS
platform (Problem 3). The quality of the agent trained by
Algorithm 1 is statistically equal to that of the agent trained
by centralized training, given that the set of passengers is the
same.

Proof 1: The actors in both federated and centralized
algorithms are updated based on the policy gradient ∇θπJ
defined in Eq. (10) except the policy gradient in Algorithm
1 combines the individual policy gradient of client agents
while the policy gradient in centralized algorithm is obtained
from the mini-batch samples of the experience replay buffer.
Since we ensure that the distribution of samples in Algo-
rithm 1 is the same as that of the centralized algorithm,
i.e. DKL(P (

⋃
k ERk)|P (ER)) = 0 where P (

⋃
k ERk) and

P (ER) is the probability distribution of the union of client
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experience replay buffer and server buffer, respectively. One
has

1

B

∑
k

Bk∇θπJ
k

≈ 1

B

∑
i

∇aQ(s, a|θQ)|s=si,a=π(si)∇θππ(s|θπ)|si

≈ ∇θπJ,

where Bk is the sampled size of k. Therefore, the actor
parameters have the same distribution if the initialization
processes are the same.

2) Convergence:
Proposition 2: Consider the bi-level multi-objective journal

planning and passenger satisfaction problem of the MaaS
platform (Problem 3). The policy obtained in Algorithm 1
will be converged, given that the critic and actor networks
are updated based on Eqs. (9) – (12).

Proof 2: For the critic network, it updates each value func-
tion according to the supervision signal (reward) in Eq. (9). Let
the optimal value function be Q∗(s, a|θQ∗

) =
∑∞

0 γtrt+1. In
the training, minimizing the loss L focuses the value function
Q(s, a||θQ) tend to the target (left-hand side in the loss,
ri + γQ′(si+1, π

′(si+1|θπ
′
)|θQ′

)), i.e.,

Q(s, a||θQ)→ ri + γQ′(si+1, pi
′(si+1|θπ

′
)|θQ

′
).

According to Robbins-Monro algorithm [39], as the reward is
added to the next step value function Q′, the value function
will converge to the true value function Q∗ when t→∞. So
that

|Q∗(s, a|θQ
∗
)−Q(s, a||θQ)| ≤ e,

where Q∗ is the optimal value function and e is a bounded
error value when t → ∞. For the actor network, the policy
objective function is defined as the critic network Q(s, a) as
in Algorithm 1. By optimizing the policy along the policy
gradient of value function ∇aQ(s, a|θQ), the policy improves
by training iteration. One has

θπt+1 = θπt + α∇θπJ,

where α is a positive learning rate. During the training, the
gradient ascent-based equation ensures the increase of J(θπ)
in general to an local optimal point, which can be expressed
as

J(θπt ) ≤ J(θπt+1).

Therefore, the actor network will converge to π(s|θπ∗
) accord-

ing to the gradient ascent-based direction of the loss function,
where π∗ is the optimal policy function.

3) Privacy:
We analyze the privacy of the proposed approach in an

honest but curious setting. In Algorithm 1, the user k ∈ Kup
t

participating model update requires to upload their gradient
to the server for aggregation. As the gradient still contains
the client’s information implicitly, attack methods such as
membership inference attacks [7], model inversion attacks [8],
and property inference attacks [9] can be used to infer that

information1. Both server and clients are assumed to be honest
but curious, and we must ensure the information is not leaked
to any participants. The secure aggregation protocol guarantees
that both the server and clients learn no more information
during the aggregation process.

Regarding the privacy against clients, the pairwise masks
added to the information of clients in Round 2 make the
resulting values appear to be uniformly random if the sum
of masked information is equal to the sum of information.
Based on this condition, the secure aggregation protocol can
guarantee that the clients learn no more information than their
own gradient. Any alliance formed by honest but curious
clients can only learn the information within the group.

4) Cost:
Implementing the secure aggregation protocol induces ad-

ditional costs to the clients. Let K be the number of clients
and M be the data size of each client. Each client has to
compute the key agreements, secret shares of bk and skSK ,
and the pairwise mask, with computation cost O(K2+MK).
The communication of keys exchanging, secret shares of bk

and skSK , masked input x̃k, and secret shares of other clients,
cost it O(K+M). Also, each client must store the keys, secret
shares, and data vector for masking of size O(K +M).

For privacy against the honest but curious server, it may
unite with other honest but curious clients to form a group.
If the number of clients in the group is smaller than K0,
the group cannot learn additional information from the clients
outside the group. The server can only learn the aggregated
gradient with the inputs of the remaining clients.

Although the proposed approach guarantee the system pri-
vacy, there are trade off to the server. Specifically, extra
computation, communication, and storage costs are added
to the server. Reconstruction of the secrets for each client
and generation and removal of the pairwise mask take a
computation cost of O(MK2) to the server. The mediation
of all pairwise communication between clients and the re-
ceipt of masked input x̃k brings a communication cost of
O(K2 +MK) to the server. Also, the server has to store the
secret shares and a data buffer for calculating the aggregation
with a storage cost of O(K2 +M). Table III summarized the
cost of the protocol.

5) Scalability:
Regarding the time complexity and scalability of the algo-

rithms employed, it is worth noting that these algorithms are
executed during the pre-deployment phase. Consequently, both
the server and clients can train their models offline without
affecting the real-time processes. After model training, the
process becomes a feedforward calculation using train models,
which can be done in real-time. Furthermore, due to the
federated architecture, each client is responsible for solving
their sub-problem in parallel. As a result, the time complexity
does not scale with the number of clients, thereby mitigating
potential scalability issues.

1Various inference attack mechanisms are studied in the literature. Detailed
information can be referred to those references.
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TABLE III
COSTS OF THE SECURE AGGREGATION PROTOCOL.

Server Client
Computation cost O(MK2) O(K2 +MK)

Communication cost O(K2 +MK) O(K +M)

Storage cost O(K2 +M) O(K +M)

V. EXPERIMENTS

A. Experiment Setup

We perform experiments on two scenarios, namely New
York City (NYC) and synthetic scenario, using the proposed
approach to evaluate the performance.

1) New York City Scenario: NYC scenario is constructed
based on the taxi zone maps2 in the Manhattan region of
NYC. We follow the terminology and description from the
dataset, wherein the zone and edge represents the node and
link, respectively, as introduced in Section III-B. The map of
the taxi zone structure of the NYC scenario is shown in Fig.
3. There is an edge between the two zones if the zones are
neighbors on the map. Any isolated zones are ignored from the
network and the corresponding data are filtered out. From the
dataset and map, there are 63 zones that form a network with
an irregular graph structure. There are three different types of
vehicles in the dataset, so we consider there are 3 mobility
providers to provide mobility services on each edge and we
assume the three mobility providers are providing transport
services in all zones. After constructing the graph based on
the taxi zone structure, we counted the number of edges and
found that there are 963 edges in total. Each edge is associated
with four utilities: time, discomfort, price, and operation cost.
Their values are uniformly generated between 0 and 1, except
the price become the upper limited when generating the cost.

The set of passengers K is simulated based on the NYC
datasets. Traffic query and passengers’ charateristics processed
in the experiments are sampled from the NYC Taxi and
Limousine Commission Trip Record Data3 and Citywide Mo-
bility Survey4, respectively. In other words, we used the dataset
to model passenger behavior and request transport service.
Noted that the taxi driver in the dataset is responsible for
driving the passenger from the origin to the destination, not
requesting the journey. The expected utility weight vector
is calculated based on the characteristics for Eq. (7) only,
which is unknown to the intelligent scheduler throughout the
experiments. Initial passenger satisfaction levels are at level 3.
Problem 3 is solved by a standard optimizer in CVXPY [40]
after the utility weights are obtained from the agent.

2) Synthetic Scenario: Beside the NYC scenario, a syn-
thetic scenario is also built to provide comprehensive experi-
ments. A square grid with 36 nodes are used to represent the
transport network. 6 mobility providers are simulated to offer
transport service for any two neighboring nodes, and thus there

2https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://www1.nyc.gov/html/dot/html/about/citywide-mobility-survey.shtml

Fig. 3. The map and structure of the NYC taxi zone.

are 360 edges in the network. The network utility of each edge
is generated the same as in the NYC scenario.

The set of passengers K in the synthetic scenario is gener-
ated with random origin, destination, and characteristics. The
calculation of the expected utility weights, initial passenger
satisfaction levels, and problem-solving process of Problem
3 are the same as the NYC scenario. Table IV shows the
parameters setting of the experiments.

B. Experiment Results

1) Solution quality: To test the effectiveness of the pro-
posed DRL-based journey planning, two baseline methods
were evaluated with the FDDPG approach, namely, “random”
and “fixed” approaches, which set the utility weights by
uniformly random values between 0 and 1, and constant values
of ones, respectively. The evaluation metric is based on the
profit, which is the reward returned by the environment as
discussed in Section IV-A4. We run the experiments for 2000
episodes, and each episode contains 100 iterations of transport
queries of a different set of random passengers based on
the two scenarios. The average rewards of the approaches
of NYC and synthetic scenarios are given in Tables V and
VI, respectively. Both scenarios show a similar observation.
Among the three compared approaches, the agent approach
has the highest average profit on average. Both “fixed” and
“random” approaches are much worse than the FDDPG ap-
proach. To view the trend during the training in the episodes,
we plotted the moving average of rewards of those approaches
in Figs. 4 and 5 for NYC and synthetic scenario, respectively.
We can see that the reward of the FDDPG approach in both
scenarios increases along with the training episodes. This
indicates that the FDDPG approach can successfully learn
from the experience of the initial random policy as the initial
ϵ is high, and most of the actions taken in the initial episodes
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TABLE IV
PARAMETER SETTINGS.

Parameter Definition Value
NYC transportation network and datasets

|N | Number of nodes 63

|A| Number of links 963

|F| Number of mobility providers 3

Synthetic transportation network and datasets
|N | Number of nodes 36

|A| Number of links 360

|F| Number of mobility providers 6

|Km| Number of passengers per episode 10

Cf
ij Capacity 3

|R| Replay buffer size 106

B Minibatch size 128

γ Discount factor 0.99

τ Target network soft update rate 0.001

- Actor learning rate 0.0001

- Critic learning rate 0.0003

- Neural network optimizer Adam

ϵ0 Initial random explore rate 1

ϵ̄ Explore rate decay per episode 0.995

T Number of iteration per episode 100

M Number of episodes 2000

- Number of neural network layers 3

- Number of neurons of each layer 256

- Range of satisfaction level 1 to 5

E
k upper expectation threshold 0.0

Ek lower expectation threshold -0.1

TABLE V
AVERAGE REWARD OF DIFFERENT APPROACHES IN THE NYC SCENARIO.

Approach Average reward (profit)
FDDPG 358.28

Fixed utility weights 236.77

Random utility weights 174.82

TABLE VI
AVERAGE REWARD OF DIFFERENT APPROACHES IN THE SYNTHETIC

SCENARIO.

Approach Average reward (profit)
FDDPG 410.19

Fixed utility weights 166.80

Random utility weights 102.78

are random. In the later episodes, ϵ decays to a small value,
and thus the FDDPG policy with good performance dominates
the actions to be taken, further improving the policy for
exploitation. For “random” and “fixed”, they remain in a low
reward level which indicates the incapability of adapting to
passengers with different preferences.

2) Passenger Satisfaction: Passenger satisfaction is an im-
portant metric to evaluate how well the MaaS coordinator
works in addition to the profit. Figs. 6 and 7 show the average

Fig. 4. Moving average of rewards of different approaches in the NYC
scenario. The time window of the moving average is equal to 40.

Fig. 5. Moving average of rewards of different approaches in the synthetic
scenario. The time window of the moving average is equal to 20.

satisfaction level of each episode of NYC and synthetic sce-
nario, respectively. The color indicates the satisfaction level,
as shown in the color bar on the right of the figures. In general,
we can see that the trend of satisfaction level of the two
scenarios are similar. The FDDPG in both scenarios show
a clear increasing trend at the beginning episode and then
converge to around 4.5, which suggests the policies improve
along with the episode. “fixed” and “random” remain in a
lower satisfaction level as similar to the rewards. Therefore, a
higher satisfaction level can increase the admission rate and
thus increase the profit in the two simulated MaaS scenario.

3) Sampling Mechanism: As discussed in Section IV, an
inappropriate sampling mechanism may significantly diminish
the performance. To evaluate the effectiveness of the sampling
mechanism in FDDPG, we compare the training with a biased
baseline method. At each iteration, the baseline samples a
mini-batch of experience from an agent instead of multiple
agents. Figs. 8 and 9 show the reward along training episode of
the FDDPG and the baseline of NYC and synthetic scenario,
respectively. From the results, we can see that the FDDPG
performs better than the baseline in both scenarios, which in-
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Fig. 6. Average satisfaction level of each episode in the NYC scenario.

Fig. 7. Average satisfaction level of each episode in the synthetic scenario.

dicates the importance of an appropriate sampling mechanism.
Indeed, sampling bias easily occurs in federated training if a
group of agents frequently participate in the training than the
rest of the agents. Therefore, ensuring the sampling diversity
as in the sampling mechanism of the proposed FDDPG may
enhance the training performance.

Fig. 8. Moving average of rewards of FDDPG approach and biased baseline
in the NYC scenario. The time window of the moving average is equal to 40.

Fig. 9. Moving average of rewards of FDDPG approach and biased baseline
in the synthetic scenario. The time window of the moving average is equal
to 20.

4) Dropout: In the highly dynamic transportation system,
client agents are not dedicated to the training process, and thus
they may dropout at any time. We simulate this situation by
assigning a dropout probability to each client in each iteration.
The agent will not participate in the training according to
the dropout probability. Figs. 10 and 11 show the FDDPG
approach with different dropout probabilities. In general, the
FDDPG with 0.25 and 0.5 dropout probabilities perform
similarly to the FDDPG without dropout for both scenarios.
On the other hand, the one with a 0.75 dropout probability
has a much worse performance compared to others in the
synthetic scenario. A slightly worse performance of 0.75
dropout case can be observed from the NYC scenario. This
may be due to the decrease in training samples and diversity,
which can be expected with such a high dropout probability.
However, considering the probability against performance, the
performance reduction is insignificant with a high dropout
probability of 0.5. So the results in both scenarios suggest
that the algorithm is relatively robust to the passenger dropout
as long as the number of passengers is larger than a certain
threshold, which can be guaranteed by the value of K0 in the
secure aggregation protocol.

VI. CONCLUSION

The privacy risk in the MaaS platform using the DRL-based
approach with passenger behavior and characteristics is an
unresolved problem. Curious participants and eavesdroppers
may acquire those sensitive information through the privacy
loophole of the system. To prevent information leakage, we
proposed a privacy-preserving FDDPG architecture that guar-
antees the information is only accessible by its owner. With
this architecture, passengers interested in MaaS can enjoy
the offered transport service without being concerned about
privacy. The experiment results also show that the MaaS profit
and passenger satisfaction improve by about 90% and 15%,
respectively, while preserving privacy and maintaining stable
training against agent dropout. The trust and participation of
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Fig. 10. Moving average of rewards of FDDPG approach with different
dropout probabilities in the NYC scenario. The time window of the moving
average is equal to 40.

Fig. 11. Moving average of rewards of FDDPG approach with different
dropout probabilities in the synthetic scenario. The time window of the moving
average is equal to 20.

MaaS and other data-driven transportation systems could be
enhanced by the proposed privacy-preserving architecture.

In the future, we may include additional cyber-security mea-
sures for the MaaS platform to ensure information privacy in
the client’s device. We may also extend the privacy-preserving
architecture to other DRL-based approaches in transportation,
such as the one in [41].
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