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Abstract—In maritime traffic surveillance, detecting illegal
activities, such as illegal fishing or transshipment of illicit
products is a crucial task of the coastal administration. In the
open sea, one has to rely on Automatic Identification System
(AIS) message transmitted by on-board transponders, which are
captured by surveillance satellites. However, insincere vessels
often intentionally shut down their AIS transponders to hide
illegal activities. In the open sea, it is very challenging to
differentiate intentional AIS shutdowns from missing reception
due to protocol limitations, bad weather conditions or restricting
satellite positions. This paper presents a novel approach for
the detection of abnormal AIS missing reception based on self-
supervised deep learning techniques and transformer models.
Using historical data, the trained model predicts if a message
should be received in the upcoming minute or not. Afterwards,
the model reports on detected anomalies by comparing the
prediction with what actually happens. Our method can process
AIS messages in real-time, in particular, more than 500 Millions
AIS messages per month, corresponding to the trajectories of
more than 60000 ships. The method is evaluated on 1-year
of real-world data coming from four Norwegian surveillance
satellites. Using related research results, we validated our method
by rediscovering already detected intentional AIS shutdowns.

Index Terms—Automatic Identification System (AIS), Mar-
itime Surveillance, Self-supervised Machine Learning, Trans-
former Models, AIS Shutdown, Anomaly Detection

I. INTRODUCTION

ESSEL Traffic Service (VTS) aims at monitoring and
V controlling the activities of vessels in dedicated maritime
areas. The general objectives of VTS include identifying and
guiding ships, helping vessels to prevent collisions, launching
rescue missions at sea, or more generally, regulating the
maritime traffic. In addition, modern VTS systems also support
the detection of illegal activities such as piracy, fishing in
protected zones, intrusion into economic exclusion zones,
transshipment of narcotics, degassing at sea, etc. Most of the
time, the detection of these illegal activities rely solely on
the visual observation of vessels, manual analysis of collected
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data, and coastal administration officers’ intuition based on
their long-term experience []1].

Among the sources of maritime surveillance information,
Automatic Identification System (AIS) messages play an es-
sential role. At sea, passenger ships or ships of sufficient
tonnage must transmit their identity, their position, their di-
rection and speed, and additional information up to every two
seconds [2]]. These messages are captured by various means,
such as beacons at sea, coastal base stations, and satellites
dedicated to observing maritime traffic. However, it happens
that the transmission of AIS messages is absent for some
vessels. It can be due to a failure of the AIS transponder,
but it may also correspond to its intentional shutdown.

Actually, shutting down the AIS transmission is a simple ac-
tion used by (a few) vessel captains to silently perform illegal
actions at sea. For example, in order to fish in a prohibited
area located in the open sea, a vessel can stay invisible by
intentionally shutting down the AIS transponder [3] during
fishing. For instance, Oceana [4] reports that, from 2018 to
2021, it’s no less than 600 000 hours by 800 fishing ships that
occurred in an illegal fishing zone close to the Argentina’s
national waters by using this technique. Noticeably, Agnew
et al. [3]] estimate that a total loss between $10 billion and
$23.5 billion can be imputed annually to illegal and unreported
fishing activities worldwide, which shows that this problem has
a huge economic impact. Desai and Shambaugh [6] further
emphasize the negative impact of illegal fishing on local
fishing industries and its destruction of the corresponding
ecosystem and the environment.

The problem is considered serious by the coastal adminis-
tration all around the world and for prohibited maritime areas
close to the coast (typically within a 20km-zone from the
coast), different sources of information (e.g., radars, human
visual control from ships or land stations) can be efficiently
combined to automatically detect illegal activities. However,
when vessels transit at long distance from any coast in the
open sea, the maritime surveillance can only rely on satellite
AIS data. For instance, in the past ten years, the Norwegian
Coastal Administration has been using satellites to capture
AIS messages outside the areas covered by the base stations.
Statsat AS, the company in charge of managing these satellites
on behalf of the Norwegian government, drives the AISSat-



{1, 2}[1_-] and NorSat-{1, 2, S}E] satellites which supervise AIS
transmissions. These satellites are inclined at 97° and are
positioned in Sun-synchronous polar orbit at an orbital height
of 600-650 km, such that they shift to cover all latitudes with
each rotation around the earth.

While these satellites ensure a broad coverage of the earth,
it happens that some AIS messages remain unseen due to
weather perturbations or reception conflicts. Also, the selected
polar orbit leads to a better coverage of the poles rather than
the equator. Hence, to human eyes, while reconstructing the
trajectory of a single ship, it is common to have missing AIS
messages on the trajectory, but for a given ship trajectory,
distinguishing missing AIS messages reception due to an
AIS transponder shutdown from acceptable causes is almost
impossible. In order to distinguish both cases, we refer to
abnormal missing AIS message reception for the former case
and as ordinary missing AIS message reception for the latter.

Even though the number of messages that can be processed
by the satellites is artificially limited, the volume of collected
AIS messages is still considerable. In a single day, the Norwe-
gian satellites can collect more than 4 million AIS messages
(e.g., on 15/01/2020, there were 4,862,628 messages). Due
to the high volume, only a restricted proportion of AIS
messages can actually be manually explored. To the best of our
knowledge, there exists no dataset annotated by operators that
differentiate intentional AIS shutdown from ordinary missing
AIS message reception. It is therefore not possible to train
models to directly detect these issues. For any alerting system
to be actionable (i.e. sending out assets to investigate) the
system needs to detect intentional AIS shutdown in near real-
time. Prompt delivery of alerts ensures that the coastal admin-
istration can follow up on the alert while the illegal activity is
performed. The large datasets, seemingly unpredictable nature
of data gathering, and timeliness requirements, make it very
challenging to detect intentional AIS shutdowns in the open
sea and to propose an alerting system that can work in near
real-time.

This paper proposes a deep learning-based approach to
detect intentional AIS shutdowns in open sea. Our method
uses self-supervision techniques to cope with the problem
related to distinguishing ordinary from abnormal missing AIS
message reception (which are witnesses of likely intentional
AIS shutdown). Self-supervision means to extract pseudo-
labels from the unlabelled data set [7]]. Our method is generally
an unsupervised task, but as pseudo-labels can be derived from
the dataset itself using self-supervision techniques, it allows us
to eventually train the model in a supervised manner.

By training a multi-layer neural network model with auto-
labelled data that learn the missing AIS messages’ normality,
we design a model that can process AIS messages in real-
time and alert the coastal administration on suspicious ship
trajectories containing possible intentional AIS shutdowns.
More precisely, the results presented in this article revolve
around three distinct contributions:

Uhttps://eoportal.org/web/eoportal/satellite-missions/a/aissat-1-2
Zhttps://eoportal.org/web/eoportal/satellite-missions/n/norsat-1-2

1) We provide a self-supervised deep-learning methodol-
ogy to detect abnormal missing AIS reception in the
open sea. Our methodology is based on unlabelled
world-covering satellite-collected AIS data, which has
not been annotated by operators;

2) Our methodology is designed for live surveillance of
vessels. It exploits raw monthly data containing up to
500 million vessel messages corresponding to more than
60,000 unique vessels. Our DL model can be exploited
in real-time to ease the decision-making process of the
coastal administration;

3) We demonstrate through experimental results the effec-
tiveness of our methodology, as well as its robustness
in varying scenarios and configurations. In particular,
the use of the state-of-the-art transformer deep learning
model architecture benefits us with greater precision in
the data analysis.

The rest of this paper is organized as follows: Section
reviews previous work on the usage of Machine Learning
in the maritime surveillance. We introduce our methodology
with a general overview in Section before detailing how
raw data are handled in Section Section [V| presents our
methodology in depth as well as the architecture of our deep
learning model and its training regime. In Section we
evaluate the methodology in experiments along three research
questions, and conclude with a discussion in Section

II. EXISTING METHODS IN MARITIME TRAFFIC
SURVEILLANCE

Intentional shutdown of the AIS transponder to hide illegal
fishing or illicit cargo transfer is a common illegal activity in
maritime domain, and several methods have been proposed to
detect intentional AIS shutdown. We review these methods in
Section Then, in Section we present the methods
processing satellite AIS data using machine learning.

A. AIS Shutdown Detection

In [8]], [9], Mazzarella et al. design a method to compute
the probability of receiving an AIS message depending on the
distance to the base station. For that, the signal strength to
the base station is used to create a probability map. Also,
in [10], Shahir et al. draw a probability distributions for
suspected dark fishing. In [11], Kontopoulos et al. identify
AIS switch-off in near real-time by analysing large streams
of AIS messages received from terrestrial base stations. The
method relies on the high-quality of the data coming from
these sources by predicting precisely when AIS messages are
expected for a given ship trajectory in a given cell from a
coverage network. In [12], Singh et al. propose to detect AIS
switch-off in a labelled dataset extracted from a single base
station using a multi-class artificial neural network, that can
additionally determine if anomalies are due to power outage.
The dataset is composed of 132 352 messages, corresponding
to 133 distinct vessels. These three solutions have proved to
achieve excellent results when using high-quality AIS datasets,
but they are limited to only detecting intentional AIS shutdown
of vessels located in the neighbourhood of base stations.
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Fig. 1: Overview and data flow of our self-supervised learning

They have not been experimented yet when using satellite-
based AIS datasets, which is the only source of AIS available
in the open sea. Besides, by using only ground-based AIS
message streams, they cannot detect vessels having their AIS
already switched off which penetrate into a surveillance zone.
Therefore, it seems complementary to combine these methods
with solutions adapted for the open sea able to process satellite
data. In this context, AIS missing reception is influenced by
the spatial and temporal coverage of the satellites, as well
as potential signal collisions and weather conditions. These
elements make satellite-based datasets very fragmented, with
irregular missing reception from a few minutes to several
hours. Moreover, when considering trajectories located in
the neighbourhood of base stations, the signal coverage of
satellites is very poor as compared to the signal from beacons,
which makes any comparison or generalisation very difficult.
In [13], Ford et al. propose a Generalised Additive Model
(GAM), adapted to the open sea, which captures space-time
variations in AIS gaps during transmissions. The model aims
at detecting abnormal AIS missing reception and the overall
approach shows good results for an area located between
the Australian and Indonesian EEZ border. Interestingly, the
approach uses the frequency of transmissions of other vessels
to compute the probability of (not) receiving a message. It
renders the method more accurate when considering highly
dense traffic zones. However, the confidence level of the
method starts at a very low level and increases over time
because it is based on a probability map. Hence, the solution is
well-suited for post-mortem analysis, i.e., analysis of the traffic
several hours after it actually happened. In [[14], Weimerskirch
et al. use GPS data provided by GPS transponder attached
on Albatross birds to track fishing vessels. This solution is
original and works in real-time, but it is limited to specific
areas where albatross birds live and follow fishing vessels. In
[15], d’Afflisio et al. propose a procedure based on the Orn-
stein—Uhlenbeck mean-reverting stochastic process to detect
anomalous deviations from standard maritime routes hidden
behind AIS Shutdown. This solution cannot be adapted to
fishing vessels that have unpredictable trajectories. It also
requires to wait for the re-connection to determine the ab-
normality. In [[16], Park ef al. make the correlation between
the vessel lights at night captured with satellite images and the
reported AIS messages received from these ships. Using this

method for the detection of abnormal missing AIS reception.

correlation, the authors discovered a dark fleet fishing illegally
in North Korean waters, estimated to be worth $440 million.
However, the generalisation of this solution is unfortunately
impossible as the vessel lights are usually turned off during
the day. While the two last presented solutions are original
and useful for evaluating the negative impact of illegal fishing
activities, they cannot easily be generalised and cannot offer
a robust solution to the problem of automatic intentional AIS
shutdown detection. Using hidden information channels for
detecting illegal activities is appealing, however, the only
source of reliable information available in open waters is
satellite-captured AIS data.

In summary, existing analysis methods for detecting AIS
switch-off are mostly based on high-quality data coming from
base stations, or on probability maps which are relevant only
for post-mortem analysis, or else on hidden channels that
cannot be generalised. In contrast, our work focuses on near
real-time prediction in the open sea based on satellite data
that are highly irregular and impacted by the position of the
satellites, the number of vessel in the area, the weather and
more. In that respect, it is complementary to other methods.
Also, it is worth noticing that shared labelled datasets for
detecting intentional AIS shutdowns do not exist, which makes
fair comparison between different methods very difficult.

B. Machine Learning Applied to AIS

The major challenge with AIS messages received by a fleet
of surveillance satellites is that they contain irregular patterns
and missing data. Also, AIS data captured by satellites is noisy
because there can be errors in the information entered by
vessel captains, or AIS transponders can be of low quality
or damaged. Previous work that processes AIS data automati-
cally has focused on detecting anomalies from predicted ship
trajectories, trajectory reconstruction, collision avoidance and
future traffic evaluation.

Among existing techniques, the usage of probabilistic mod-
els of ships’ behaviour from historical AIS data has been
proposed. For instance, the exploitation of Gaussian mix-
ture models (GMMs) [17]], grid-based methods [18]], Markov
models [19] or hierarchical neural networks [20] have led
to significant advances in terms of trajectory reconstruction,
trajectory prediction and anomaly detection. Other work has
also focused on enriching vessel information from radar



and visual tracking [21f]. For detecting anomalies in AIS
message transmission, reconstructing the trajectory of vessels
just before the loss of the signal is crucial. Arguedas et al.
use graph-based methods to create a promising lightweight
representation of vessel trajectories [22]]. Nguyen et al. in
[23]], [24] use a representation that regularises the frequency
of messages by completing a dataset with artificially generated
missing messages. Interestingly, this approach deals with noisy
data and allows datasets to be used for training models for
multitasking learning. However, the datasets do not come
from satellites but from beacons at sea. As a limitation, such
an artificially completed datasets cannot be used to detect
intentional AIS shutdown because the missing messages have
been re-introduced for the purpose of regularisation [23]], [24]].

Other approaches include using ship-tracking probability
maps, such as those created by Skauen [25], to estimate the
probability of receiving (or not receiving) a satellite-based AIS
message in a given time frame. However, these maps estimate
the probability of re-detecting an already detected ship, which
implies that one needs to wait a significant amount of time
before any action is triggered.

In contrast to these works, we propose to train a self-
supervised model for a given vessel, in order to build a rep-
resentation that considers the previous messages and the gap
between them, as explained in Section This allows us to
propose a method that reveals suspicious cases of intentional
AIS shutdowns as soon as a vessel’s signal disappears.

III. METHOD OVERVIEW

Before giving an in-depth presentation of our self-
supervised method, we introduce a high-level overview of its
different components and their connection, as shown in Fig. [I]
The diagram highlights three distinct processes, namely, Data
Collection, Data Processing and Self-Supervised Training and
Operation, and their workflow. First, during Data Collection,
the satellite operator collects and stores AIS data from geo-
marine observation satellites. In the context of this work,
the Norwegian Coastal Administration has provided us access
to the AIS data collected by the Norwegian state operator
Statsat AS during 2020, which corresponds to approximately
4 billion messages. As part of the Data Processing and Self-
Supervised Training process, the collected data is first prepared
and processed into a dataset, including the enrichment with
self-supervision labelling information. As said above, the
main issue is to distinguish ordinary vs. abnormal missing
AIS reception. For this purpose, we have used the following
artefact for implementing our self-supervised training method
with the collected data. For a given ship in the open sea,
given a window of w successive AIS messages (typically 25
messages, but other window sizes can be considered) and a
time frame 7 (typically, 10 minutes), one can train a model
that predicts if an AIS message is expected to be received
in the next time frame 7. This model will then be useful to
compare its prediction with the actual observation performed
in near real-time (i.e., using the same time frame 7) regarding
the reception of the expected AIS message. Fig[Z] illustrates
this principle by considering a window of w = 3 messages.

Window (most recent messages
used for prediction) = 3 H

. AlIS Message

At = Time between 2 messages
: Message received in time frame (1)

i mm Message not received in time frame

t

P At>T
i\ [l
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Fig. 2: Auto-labelling of trajectories: Green flags indicate
trajectories expecting an AIS message in the next time frame
7, while red flags indicate trajectories without an AIS message.

Red-flagged trajectories indicate that no message is expected
within 7 while green-flagged trajectories indicate the opposite.

During Operation, by using the trained model with the auto-
labelled dataset and a logical decision module that analyses
real-time observations streamed from the surveillance satel-
lites, it becomes possible to classify ordinary versus abnormal
missing AIS reception. Every collected vessel trajectory is
again preprocessed into the machine learning model input
format, although in this context without the addition of self-
supervision information that is only necessary for training
purposes. Based on the time frame 7, the logical decision
module then classifies the vessel trajectory as either abnormal,
highlighting a risk of intentional AIS shutdown, or as ordinary.
In the first case, a specific alert can be escalated to an operator
or a downstream system for further investigation, while in the
second case issues no alert.

IV. DATA PROCESSING
A. Automatic Identification System (AIS)

According to AIS technical specifications [26], messages are
composed of static and dynamic information. Static fields in-
clude, amongst others, international standard vessel identifiers,
ie., MMS]EL IMO ship identification number, vessel name
and call sign, ship dimensions and vessel type. These static
elements, which are entered manually by the vessel captains
into the AIS transponder, are automatically transmitted on a
broadcast channel every 6 minutes. Also, AIS transponders
send dynamic information every 2 to 10 seconds depending on
the vessel’s speed, or every 3 minutes if the vessel is at anchor.
The dynamic information includes navigation status, e.g., “at
anchor” or “fishing”, vessel position in terms of latitude (lat)
and longitude (lon), vessel speed over ground, its direction
relative to the north pole, its true heading relative to the
magnetic north pole and the timestamp when the message was
sent. There are currently 27 different AIS message types. Of
these message types, we only consider the subset that contains
the dynamic information, i.e., message types 1, 2, 3, 18 and
19. Typical AIS transponders have a range of about 20 to 40
km. The limitation of this range is due to the curvature of
the earth and the height at which the antenna is installed on

3Maritime Mobile Service Identity



TABLE I: Overview of Satellite AIS Data Collection

Month #Msg  Uniq. vessels ‘ ‘ Month #Msg  Uniq. vess.
January 138M 46 250 July 504M 62389
February  113M 43243 August 500M 61070
March 118M 43682 September ~ 434M 59583
April 506M 58603 October 472M 59911
May 513M 61377 November 211M 49284
June 454M 61451 December 80M 40 366

ships. For vessels too far away from the coast or other AIS
observers, AIS satellites collect and forward the messages.

B. Data Collection

One challenge with AIS data collection is that the radio ac-
cess scheme defined in the standard creates only 2200 available
time slots every minute for each of the 2 channels and receivers
can be easily overwhelmed by large AIS reception footprints
[25]]. Due to the growing number of AIS transponders and the
expansion of the satellite reception area, message collisions
can occur and lead to vessel disappearance [27]].

Our satellite-based AIS dataset, provided by the Norwegian
Coastal Administration and collected by Statsat, consists of
4050019441 AIS messages from all over the world, which
corresponds to the messages collected for the year 2020 (see
Table [). Technical issues on the satellite during the original
data collection can explain the difference in the number of
messages per month. However, we did not notice any bias in
the data or any effect on our experimental results as a result
of this difference.

C. Feature Extraction

From each message of the AIS dataset, we select relevant
characteristics, namely position (lat,lon), the timestamp (),
and speed (s). Also, we enrich the characteristics with At
the time difference compared to the preceding message from
the same ship, ADy the difference in meters on the latitude
with the preceding message from the same ship, ADy the
difference in meters on the longitude, Dp the distance to the
port, Tp the second of the day (between 0 and 86 399). We
have chosen to split the relative distance with the previous
message between ADy and ADy to keep the direction of
movement.

It is worth noticing that:

e The distance ADy, ADy, Dp are computed with the
Haversine formuld’|

e At and Tp allow having a better precision on the
temporal dimension than that given by the timestamp ¢,

e ADy and ADpy improve understanding of position over
small distances,

o Dp allows filtering the relevant samples (more informa-
tion on this point in Section [[V-D).

4The distance of the arc on a sphere is not as precise as the Vincenty
formulas in geodesy since the earth is not a perfect sphere, but its computation
has the advantage of being vectorisable, which is necessary in the case where
the dataset contains a very large number of trajectories.

TABLE II: Statistics for Jan. 2020 dataset (500k trajectories)
show a wide variety of trajectory characteristics. (Ad = Dist.
between messages , At = Time between messages, >d = Tra-
jectory length and ¥t = Trajectory duration)

Percentile Ist Sth 25th  50th 75th 95th 100th
Ad [m] 0 0 0 48 307 5.6k  19.7M
At [s] 1 4 11 52 372 4.0k 2.1M
3d [km] 0 0 5.8 404 1185 555.5 648.1
3t [h] 042 1.28 4.1 858 2289 14744 72222

Thus, the vector of characteristics corresponding to a message
takes the following form:

m = [t,lat,lon, s, At, ADy,ADy, Dp,Tp)

A trajectory £ is a temporal sequence of T successive
messages from a ship & = [mq,ma, ..., mr|. It corresponds
to the trajectory of a ship’s motion in a time window. Also,
note that there is no constraint on the maximum values of At
and AD, between two successive messages within a trajectory.

D. Dataset Creation

A total of 500000 trajectories has been extracted for each
month, creating 12 datasets, equally balanced between two
classes: 1. trajectories including a message received within
the time frame; 2. trajectories without any message received
within the time frame Fig. [3] shows the distribution of the
samples on the surface of the globe for January 2020. For the
selection of trajectories in the dataset, we set two conditions:

1) The AIS vessel trajectory history must consist of at
least 50 messages to exclude vessels not sufficiently
represented over the entire year of the dataset. This
corresponds to about a 1-minute history for a moving
vessel. Indeed, these trajectories are too short for any
relevant generalisation by the model;

2) The ship’s loss of reception must be at more than 5
kilometres from a port (Dp > 5km). This eliminates
examples of intentional (legal) AIS shutdown that take
place in ports. It is also relatively easy for the coastal
administration to control vessels without AIS transmis-
sion in ports. To determine the distance to the nearest
port, we calculate the distance of the arc between two
points on a sphere with a database of nearly 30 000 ports
compiled by the organisation Global Fishing Watclﬂ

The datasets used for training, validation, and testing of the

model are separated by date, e.g., train on the January data
with 10% of the February data for validation, and then test on
the rest of the February data. Another alternative is to separate
by ships, i.e., train on one group of vessels and test on another,
but the temporal separation has the advantage of being closer
to the operational use of the model, since the objective is
to make predictions based on past data to predict upcoming
missing AIS reception. A further alternative would be to split
by geographical regions, but this would either require a strong
regional generalization or result in a highly region-specific

Shttps://globalfishingwatch.org/datasets-and-code/anchorages/
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Fig. 3: Distribution of January’s samples over the surface of the globe. Each point shows the location of the most recent
message and whether the next message will be received within 10 minutes.

model, whereas we aim for a globally applicable model.
Therefore, the model will be trained according to the described
separation by date.

Table |lI| shows the range of duration and distance between
two consecutive messages along with the total duration and
distance trajectories. We observe the dataset to be heteroge-
neous with strongly varying time spans and distances between
messages as well as drastically different trajectories, explained
both by different vessel types and irregularities in AIS recep-
tion and therefore potentially long gaps between messages.
Noticeably, 1% of the messages are sent with a time-interval
of 1s or less, which is abnormal w.r.t. AIS protocol. In fact, our
data is noisy and the noise is mostly due to inappropriate reuse
of MMSI numbers. Skauen et al. estimate than in between
0.5% to 2% of the MMSI numbers are reused [23]], [28]].

V. TRAJECTORY PREPROCESSING AND SELF-SUPERVISED
MACHINE LEARNING MODEL

Fig. [ shows an overview of the architecture of the deep
learning model. Firstly, the preprocessing step encodes and
normalizes the input trajectory £ to simultaneously handle
long distances between two messages and to maintain suf-
ficient precision for those messages having only few seconds
of difference. It also allows us to dissociate the trajectory from
the absolute time and position toward a generic representation.
Secondly, the two output vectors of the preprocessing step are
transferred to the deep learning model that is trained to classify
whether a message should be received or not.

A. Trajectory Preprocessing

The preprocessing block in the Fig. [] is essential to our
approach. Following the feature extraction describe in Sec-
tion[[V-C} the input trajectory £ is divided into two vectors, Vy
the history of AIS messages which contains the information

relating to the previous message and ), the most recent
position. Then V4 and V. go through a normalization layer
N. The input is divided to have an encoding that considers
the possible small distances that can be found between two
messages while maintaining very high precision on the starting
position of missing AIS reception.

1) Message History: To represent the message history
Vs generically, the normalization layer A first removes the
absolute position in latitude and longitude and the absolute
time represented by the timestamp. Instead, the representation
only considers the time and distance differences relative to
the previous message. Since the model is supposed to work
in relation the most recent received message of a vessel’s
trajectory we can therefore create a relative representation
space and work time-independently. In addition, the second of
the day Sp is added to strengthen the detection of temporal
patterns. A cyclic normalisation N (Eq.[T) is applied to cyclic
fields such as the Sp, a linear normalisation N, (Eq. ) is
applied to limit values such as speed V. For At, ADy and
ADy, a logarithm is applied (Eq. [3).

. [ 2n(x — minz) 27(z — min x)
sin ( ——— = |,cos | —————= || (1)
maxz — minx maxz — minx

(x — minx)

Ne =

Neg=——~ """ 2)
maxxr —minax
N (V) = [log(At),log(ADv ), log(ADg), 3)
Ne(Sp), Ne (V)]
N(VP) = [Ng(latpeg),./\/c (latMm),Nc(latsec), @

Ne(lonpeg), Ne(lonarin), Ne(lonsee), - - -]

2) Most Recent Position: The vector N'(Vp) consists of 11
values allowing the model to have maximum precision on the
position of the vessel at the most recent message received. N



decomposes latitude and longitude into Degree-Minute-Second
and then normalises them cyclically to maintain continuity
(Eq. ), for example, when a ship passes longitude 180 at
—180.

B. Model Architecture

Our method to detect the abnormal missing AIS reception
is based on transformer models, a deep learning architecture.
Transformer models have demonstrated compelling results in
the field of Natural Language Processing (NLP) [29] and the
field of computer vision [30]. The suitability of the transformer
architecture for dealing with sequential data makes it a good
candidate for the analysis of time series. In the context of AIS,
the message history can be seen as a time series [31]], [32]. The
transformer architecture is a variant of self-attention networks
[33] for processing sequential data, however it does not involve
a recurrent network architecture [34]. This is possible due to
the multi-head self-attention [|35] mechanism, that allows it to
attend and weight multiple parts of the sequence differently
in parallel. Thereby, it allows to model both long-term and
short-term dependencies within the input sequence [36].

We specifically use the encoder part of the transformer
model to extract a general fixed-size representation vector,
that can be used in a generic way for different applications
in maritime surveillance, here for the detection of abnormal
missing AIS reception. More specifically, the model consists
of two transformer blocks, following on the model of [35],
to encode a variable-length input sequence Vy; together with
a positional encoding into the first part of the representation
vector R. Choosing 64 as the size of the representation vector
R results from a tradeoff between the model complexity and
an attempt to prevent the classical overfitting risk and has been
determined through preliminary experiments.

This first part is concatenated with the second input, the
most recent position V., into the overall fixed-size repre-
sentation vector. This vector is then processed by the final,
task-specific subnetwork. Here, this subnetwork consists of
three dense layers of respective size (100, 50, 50) with ReLu
activation and 10% dropout and a final layer to classify
whether a message should be received within the given time
frame.

C. Detection of Abnormal Missing AIS Message Reception

Given a ship trajectory and a time frame 7, the model is
trained to predict whether an AIS message from the vessel
shall be received or not, within 7. Using this model, it becomes
possible to classify ship trajectories as ordinary or abnormal in
near real-time. More precisely, there are four distinct situations
for a given trajectory:

1) If the model predicts that no AIS message is expected
and no message is actually received during the time
frame 7, then the trajectory can safely be classified as
ordinary. The model has correctly learnt that the ship
has an ordinary AIS disconnection due to any acceptable
cause (i.e., reception conflict, loss of satellite coverage,
etc.);
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Fig. 4: Model architecture: The relative vessel trajectory is
encoded via a transformer network and forms together with the
most recent position a representation vector for classification.

2) If the model predicts no AIS message and a message
is actually received within 7, then there is a prediction
error in the model. The trajectory can be safely classified
as model error;

3) If the model predicts that an AIS message shall be
received within 7 and a message is actually received,
then the trajectory can safely be classified as ordinary;

4) If the model predicts that an AIS message is expected
within 7 and no message is actually received, then the
trajectory can be classified as abnormal. These latter
cases are the most interesting for the coastal administra-
tion, whom can then proceed to a detailed analysis of the
ship trajectory in order to confirm or denial the abnormal
missing AIS reception. In this case, the complete vessel
AIS history is reported.

During operation, only the missing AIS reception that exceed
the time frame are analysed. This is corresponding to the
cases 1) and 4) Note that having a prediction model with high
precision is crucial here to avoid the production of too many
false negatives or false positives. The detailed examination of
a ship trajectory takes time and there is a challenge to report
only suspicious trajectories which are likely to correspond
to actual intentional AIS shutdown. Note also that the time
frame must be exhausted in order to classify ship trajectory.



Besides justifying the terminology “near real-time”, it also
justifies the selection of a value for 7 which is compatible
with current practices of the coastal administration. Indeed, it
will be useless to classify ship trajectories as suspicious after
a long time like 24 hours.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the capabilities and robustness
of the proposed model. For that, we examine different config-
urations of the trained models, such as their architecture and
the training set size, the selection of the most appropriate time-
horizon for improving the detection of missing AIS messages.
More precisely, we investigate these three research questions:

RQ1 Is the method effective enough to detect abnormal AIS
shutdown?

RQ2 How stable is the model over time, and is it affected by
dataset shift?

RQ3 How robust is the model and its effectiveness to con-
figuration changes, i.e., changes in training set size,
message window size, model architecture, or predicted
time horizon?

A. Experimental Setup

In our experiments, the batch size B is equal to 128, the
message window size W is 25 and the representation vector
size R is 64 (see Fig. [). With these hyperparameter values,
the model M has a total of 470821 trainable parameters.
For model training, the dataset contains 200 000 trajectories
with 10 minutes time horizon labels. The model is trained
over a maximum of 200 epochs with each 1562 batches
with early stopping once the validation loss converged. All
training is performed with the configuration described above,
unless stated otherwise. Section compares the results
for the most impactful hyperparameters. All our experiments
are run on an NVIDIA DGX-2 with an Intel Xeon Platinum
8168 CPU with 2.7 GHz and 24 cores, using one NVIDIA
Tesla V100 graphics cardﬂ One epoch of model training takes
approximately 17s. We have evaluated the model stability by
running each model prediction five times with different initial
random models. As said in Section [[V-D] the one-year dataset
is separated into 12 time-windows, one per month.

Evaluation Metrics. Three metrics are used to compare the
models: 1) the accuracy (Eq. [5), which measures the overall
capability of the model to predict whether a message should
be received or not; 2) the positive predictive value (Eq.[6), or
precision, focuses on the model capability to predict whether it
is normal to not receive a message or not; and 3) the negative
predictive value (Eq. [7), which focuses on the error made
by the model when it predicts that we should not receive a
message, but we receive one.

Formally speaking,

Accuracy = TP+TN (@)
TP+ FP+TN+ FN
Positive predictive value (PPV) = L (6)
TP+ FP

Provided by the eX3 research infrastructure: |https://www.ex3.simula.no/

TABLE III: RQ1: Confusion matrix (in %), on 4.5M trajecto-
ries of vessels disappearing more than 10 minutes.

Annotation (Ground Truth)

Yes No
g Yes 4996 (F. pos.) 0.20 PPV =99.60
& No (F neg) 0.04 49.80 NPV =99.92
Negati dicti lue (NPV) N (7)
egative predictive value = — -
gatve p TN + FN

where TP stands for True Positive, TN for True Negative, FP
for False Positive and TN for False Negative.

B. RQI: Model Effectiveness

There are no datasets for evaluating our model precisely on
the task of detecting voluntary AIS shutdown. Therefore, we
have reversed the question into predicting whether a message
is received within a time frame or not in order to train a model
in a self-supervised manner.

Therefore, it is important to note that the model accuracy
corresponds to the prediction of message reception within a
time frame and not the prediction of voluntary AIS shutdown.
For this particular task, the combination of the model and the
encoder presented in this paper has shown the high accuracy
between 99.5% and 99.8%. Table shows the confusion
matrix for prediction results of 4500000 trajectories. False
negative (F. neg.) means that the model predicted a non-
reception of a message, while the message is received; False
positive (F. pos.) means that the model predicted a reception
of a message, while the message is not received.

The 0.04% of detected false negatives can only be caused
by a model error. On the other hand, the 0.2% false positives
can either be due to a model error or an anomaly. In our
results, 8868 of trajectories are returned as anomalies out
of 2250000 trajectories that are annotated as missing AIS
messages. However, there is no precise way to evaluate and
filter the proportion of accurate missing AIS receptions among
the 8868 of total model predictions for a full year covering
the whole globe. We discuss model errors in Sec[VI-F

C. RQ2: Model Stability over Time & Dataset Shift

The second research question addresses the model stability
over time and possible effects of dataset shift [37]. A trained
model has potentially the highest accuracy for trajectories that
are close in time to the period covered by the training data,
since it is expected to be most similar to the data within the
training set, i.e., it is from a similar distribution. However,
over time this distribution might change, e.g., due to seasonal
effects. To investigate the general stability of the model over
time and a potential negative impact from dataset shift, we
perform two evaluations:

1) We train the model on one month and evaluate it on the
next month, e.g., training on January and evaluation on
February, repeated for all months of the year;

2) We train the model once on the January dataset and
evaluate its accuracy on the other months of the year.
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TABLE IV: RQ2: Stability of the model (in %). Small seasonal effects throughout the year, but the model is generally stable.

Month Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ‘ Average
Model trained on previous month ~ 99.61 99.87 99.69 99.70 99.78 99.72 99.75 99.74 99.84 99.63 99.90 99.75
Model trained once on January 99.61 99.81 99.63 99.61 99.63 99.63 99.61 99.59 99.64 99.71 99.90 99.67
TABLE V: RQ3: Accuracy by dataset size
100 Mean 97.24 Mean 99.39 Mean 99.65 Mean 99.38 Mean 99.16
Dataset Size 10k 50k 100k 150k 200k 500k b i =
%*—Mean 96.82
Accuracy (%)  95.35 98.79 99.32 99.24 99.38 99.69 95
90 +~Mean 90.86
S
The results are shown in Table We observe a small T 85
dataset shift, as indicated by the slightly lower accuracy of the @
. . .. 80
fixed model trained on the January data. For each individual 3
<

month this difference in accuracy is not more than 0.15%
and in the average over the year not more than 0.08%. The
variation in accuracy is accounted for by seasonal effects. The
largest accuracy differences occur in the summer months, i.e.,
June to September, whereas towards the end of the year the
accuracy gap is closer or even non-existent in December.

We conclude from this experiment that the model is gener-
ally stable and that there is no need for frequent re-training.
Since the encoding of the vessel trajectory works on relative
time and position information, there is no strong dependency
or link to the absolute time of the training data, but just
the vessel traffic patterns, which are subject to seasonal
adjustments. However, it is advisable to consider a training
dataset that spans multiple months or seasons of data to further
improve the model stability.

D. RQ3: Model Robustness to Configuration Changes

As previously introduced, our model allows to be adjusted
through a number of configuration decisions and parameters.
Those include both parameters that affect the operation in
maritime surveillance, i.e., the horizon of time during which
an AIS message is expected, and technical decisions, i.e., the
dataset size used for training or the model architecture. To
analyse the robustness of the model, we vary each of these
parameters individually to identify the sensibility of the overall
model to this parameter.

1) Dataset Size: As the first parameter, we vary the dataset
size used for training from 10k to 500k trajectories of each
25 messages. As shown in Table [V] the training benefits from
more data, but the effect diminishes after 100 000, while the
training time continues to increase approximately linearly. We
therefore select a dataset size for our experiments of 200 000
to balance accuracy and training cost.

2) Window Size: The window size controls how much of
a vessel’s history the model receives as input. Fig. [5] shows
that some history is relevant to identify vessel behaviour,
but that the effect saturates and a higher window size only
increases model complexity but reduces the accuracy. For our
experiments, we selected a window size of 25 messages, which
showed the best accuracy. However, it should be noted that
the window size is likely to be specific for the surveillance
application, e.g., for other applications such as detecting
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Fig. 5: RQ3: Accuracy for different model architectures and
message window sizes.

missing AIS reception, a larger window size can be more
beneficial.

3) Model Architecture: In this experiment, we vary the
model architecture and alternatively select a standard feed-
forward neural network and a transformer model without AIS
message encoding. The feed-forward neural network consists
of 5 layers with 10/20/25/20/10 neurons, selected by hyperpa-
rameter search. Since the input layer needs to be adjusted for
each input size, we opt to test it with one input message, as
the most naive baseline, and 25 input messages, as selected
for our main architecture.

The results are again shown in Fig. 5] While the naive
baseline is not competitive, it highlights the necessity of
considering a multi-message window size. For the direct
comparison of all three architectures, the feed-forward neural
network achieves an accuracy of 96.82%, which exceeds
the 90.86% accuracy of the transformer without the custom
encoding, whereas the full model achieves 99.65% accuracy.
This result underlines the importance of the dedicated message
encoding in combination with the transformer architecture.

4) Horizon of Time: The horizon of time parameter is
closely linked to the model’s operational use, as it defines the
threshold after which the missing reception of AIS messages is
deemed interesting or relevant. We evaluate five time horizons:
1, 5, 10, 30, and 60 minutes. The model is both trained and
tested with these time horizons.

The results are shown in Fig. [f] with no major difference in
accuracy between the different time horizons. Therefore, it is
the choice of the operator between a shorter reaction time with
a potentially higher number of misclassifications as anomalies
versus a longer reaction time and lower risk of misclassifica-
tions. Even if the accuracy is high, the quantity of missing
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messages is significant too, and a small prediction error can
represent a large number. If we compare the examples over the
threshold value in our dataset, the number of missing messages
with a time horizon of 1 minute exceeds those with a time
horizon of 60 minutes by a factor of 10. After discussions
with domain experts, we fixed the horizon of time for our
experiments to 10 minutes. This balances both the number of
potential false alerts and the reaction time, which is still short
in the context of satellite-based maritime surveillance.

E. Near-Real Time Detection

Detecting intentional AIS shutdown is highly relevant for
maritime surveillance monitoring and any alerting system has
to react to potential anomalies in (near) real-time. Technically,
by using the hardware components mentioned in Section
our implementation processes 5400000 samples in 409 sec-
onds, i.e., in less than 7 minutes. It corresponds to a processing
rate of 13191 predictions per second, a significantly higher
rate than the rate of messages collected per second by the
four satellites used in our experiment. These satellites gather
approximately 100 to 150 messages per second, with only a
subset of these messages being potential cases of intentional
AIS shutdowns.

In practice, real-time detection of intentional AIS shutdown
is subject to certain limitations. One of these limitations is the
selection of time-horizon. In order to reduce the number of
false positives, it is necessary to wait for a user-selected time-
horizon, which has been optimally evaluated to 10 minutes
in our experiments. Another aspect that affects real-time
detection, independent of our solution, is the method by which
the data is collected. The AISSat and NorSat constellations use
the Svalbard ground station in Norway to collect data on all
15 of the satellites’ polar orbital passes each day. In the worst-
case scenario, the data is collected 96 minutes later, causing
an inherent delay in processing and detecting intentional AIS
shutdown events.

F. Discussion

In this study, we achieved excellent accuracy in predicting
whether we should receive an AIS message within a specific
time frame. The key elements contributing to this high ac-
curacy are the combination of transformer model with the

encoding, and the size of the auto-labelled dataset. However,
detecting intentional AIS shutdown with high accuracy re-
mains a challenging task, mainly because labelled datasets
with ground-truth information do not exist. The approach
we present in this paper deals with this problem, but we
still need to take two limitations into account, which are
not unique to the detection of intentional AIS shutdown but
common among the setting of limited labelled data in machine
learning. First, to cope with the absence of a labelled dataset,
our model is trained in a self-supervised manner with auto-
labelled data to predict when the next AIS message shall be
received from a given vessel. If there is a divergence between
the prediction and the real-time available information, then
an alert is reported. Even though we predict next message
reception with a very high accuracy, the model does not
provide guarantees on the accuracy to detect intentional AIS
shutdown. The availability of a labelled dataset would aid in
the training of a model with even higher accuracy, although
this would incur high cost to create the dataset in the first
place. Second, the effectiveness of our method mirrors the
diversity of the training dataset and the capability of the model
to generalise from patterns observed during training. In our
context, if an illegal activity is mimicking the most standard
vessel behaviour perfectly, it will be highly difficult to detect.
Similarly, if the behaviour is entirely different from anything
seen during training, although this is likely to be detected as an
anomaly in a AIS processing pipeline. In order to investigate
the possible materialisation of these issues, we analysed 8868
trajectories detected as potential anomalies, such as described
in Section By grouping multiple vessels which present
the same anomaly, we were able to detect suspicious patterns.
Among these clusters of anomalous trajectories one of them
particularly caught our attention. It corresponds to a cluster of
around 50 fishing vessels shutting down their AIS transponders
repeatedly, next to Argentina’s Exclusive Economic Zone (in
between 10 to 20 times over the year 2020). Signal loss can
last for multiple days before a vessel reappears again close to
the border of the zone. From the AIS-message based trajectory,
it is observable that these vessels go to anchor in Montevideo,
Uruguay, before and after going to the Argentina border where
they disappear. The alert triggered by our model was later
confirmed in a 2021 report by Oceana [4].

VII. CONCLUSION

Intentional AIS shutdowns are performed to hide illegal ac-
tivities in open sea, where vessel traffic systems can only rely
on satellite AIS. In this article, we have presented a method for
finding suspicious ship trajectories containing intentional AIS
shutdown in near-real-time using self-supervised deep learning
based on the analysis of satellite AIS data only. The model
is trained to detect abnormal missing AIS message reception
without requiring the provision of a labelled dataset, which
would be costly and labor-intensive. The training process is
instead designed to use a self-supervision technique, where
the transformer neural network is trained with auto-labelled
training data, that is generated from raw AIS data.

Our experimental evaluation shows that the method can
predict expected AIS message reception with 99.5% accuracy



on previously unseen test data. Additional experiments further
underline the robustness of the method under different con-
figurations as well as its stability over longer time periods,
avoiding the need for continuous re-training. Finally, we
were able to reproduce real-world reports of intentional AIS
shutdown using our method.

For future work, we foresee two possible directions to
reduce model errors. First, we envision incorporating feedback
from the coast guard administration on reported abnormal
trajectories to discard false positives and enhance the quality
of auto-labeled training data (i.e., by discarding trajectories
with ordinary AIS shutdowns which are wrongly reported as
suspicious by the model). Second, our model’s performance
could be further improved by adding contextual information
from both micro- and macro-level data sources. Specifically,
this could involve examining the behavior of nearby ships,
integrating additional VHF Data Exchange System data, and
incorporating optical or infrared satellite imagery for more
targeted investigations. Moreover, the inclusion of macro-level
factors like weather conditions, sea currents, and vessel density
could offer a comprehensive understanding of AIS behavior,
thereby improving model robustness.
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