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Deconstructing Pedestrian Crossing Decisions in

Interactions with Continuous Traffic: An

Anthropomorphic Model
Kai Tian, Gustav Markkula, Chongfeng Wei Member, IEEE, Yee Mun Lee, Ruth Madigan, Toshiya Hirose,

Natasha Merat and Richard Romano

Abstract—Increasing attention has been drawn to compu-
tational pedestrian behavior models aimed at understanding
the interaction mechanisms between pedestrians and vehicles.
Nevertheless, existing research lacks exploration of the under-
lying behavioral mechanisms of pedestrian crossing decisions,
which leads to unrealistic modeling results. In particular, when
dealing with continuous traffic flow scenarios, the concept of
waiting time is frequently used to account for all intricate traffic
flow effects. Moreover, very few studies considered the time-
dynamic nature of crossing decisions. To address these research
limitations, this study deconstructs pedestrian crossing decisions
at uncontrolled intersections with continuous traffic flow through
a cognitive process and proposes an anthropomorphic crossing
decision model. Specifically, we propose a novel visual collision
cue-based crossing decision-initiation model to characterize time-
dynamic crossing decisions. In light of the risk-aversion theory,
a traffic gap comparison strategy is put forward to explain and
model pedestrian waiting behavior in traffic flow. Two datasets
collected from a CAVE-based immersive pedestrian simulator are
applied to calibrate and validate the model. The proposed model
accurately predicts pedestrian crossing decisions across all traffic
scenarios. The modeling performance is significantly enhanced
by considering the proposed traffic gap comparison strategy.
Moreover, the model accurately captures the timing of crossing
decisions. This work concisely demonstrates how pedestrians
dynamically adapt their crossings in continuous traffic based on
visual collision cues, potentially offering insights into modeling
pedestrian-vehicle interactions or serving as a tool to realize
anthropomorphic pedestrian crossing decisions in simulators.

Index Terms—Pedestrian-vehicle interaction, Road crossing
decision, Anthropomorphic model, Traffic flow.

I. INTRODUCTION

C
ONSENSUS suggests that automated vehicles (AVs)

should be capable of operating on roads mixed with

other road users during the transition from manual to fully

automated driving [1]. As AV deployment expands from con-

fined low-risk areas to a variety of operational design domains,
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conflicts with other road users will inevitably increase [2].

Failures in interactions between AVs and other road users

may impede large-scale adoption and social acceptance of

AVs [3], [4]. This, therefore, leads to the research context of

this study, which is to promote safe and smooth interactions

in traffic [1], [3], [4]. Pedestrians are generally regarded as

the most vulnerable road users in modern transport systems

due to their lack of protective equipment and slow movement

compared to other road users. However, it is a challenge to

determine pedestrians’ actions and intentions. Especially at

uncontrolled intersections, pedestrian crossing decisions are

more unpredictable, and safety problems are more common

than on other controlled road sections, as there are no traffic

signals to coordinate the interaction process [5]. Below, we re-

view the relevant theories and results to understand pedestrian

crossing decisions.

A. Pedestrian crossing decisions research

Pedestrian crossing decision-making is a complex and dy-

namic process that involves assessing the traffic situation,

selecting an appropriate gap, and coordinating motor ac-

tivity with the continuous perception of road traffic [6].

Some theoretical frameworks have been used to understand

pedestrian crossing decision-making from psychological per-

spectives. According to Ajzen’s theory of planned behavior

[7], pedestrians’ crossing intentions could be determined by

their attitudes toward crossing behavior, subjective norms,

and perceived behavioral control. [8] found that perceived

behavioral control had the most significant impact and was

related to pedestrian-perceived risk. [1] applied the situation

awareness model to interpret the crossing decision-making

and suggested that pedestrians would perceive the traffic and

environment, comprehend the situation, and predict future

states and events before making crossing decisions, where

the perception process was at first. Moreover, according to

cumulative prospect theory [9], [10] supposed that pedestrians

were risk aversive when making crossing decisions, attempt-

ing to minimize their collision risks and time delays. The

mentioned theoretical frameworks agree that the perception

process, especially pedestrian risk perception, is critical for

crossing decision-making. There are various factors that could

affect the crossing decision-making, such as traffic factors

(e.g., vehicle speed, vehicle yielding behavior, traffic density)

[11], environmental factors (e.g., lane number, road width,

This is the author-accepted version of a paper now published
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weather condition) [12], and pedestrian characteristics (e.g.,

age, gender, distraction) [13], while time to collision (TTC),

distance, vehicle speed, and traffic density is closely related

to pedestrian risk perception [4].

Before pedestrians start the action of crossing, there is usu-

ally a period of time called crossing initiation time, reflecting

the time-dynamic nature of pedestrian crossing decisions [13].

When consecutive vehicles drive on the road, the crossing

initiation time refers to the duration between when the rear

end of the previous approaching vehicle passes the pedestrian

position and when pedestrians start crossing. However, if

only one car approaches pedestrians, the crossing initiation

time is defined as the duration between when the vehicle

appears in the lane and when pedestrians initiate crossing [14].

According to a cognitive theory, pedestrian crossing initiation

time was assumed to be the product of the accumulation

process of noisy evidence in the human cognitive system

[15], which reflects the efficiency of pedestrian cognitive and

locomotor systems. Pedestrian crossing initiation time could

be affected by many factors, such as vehicle TTC and speed.

For instance, pedestrians might initiate quickly when facing a

vehicle with a low speed [13] or with a small time gap from

the approaching vehicle [16]. Therefore, existing empirical

observations highlight the role of crossing initiation time in

pedestrian crossing decisions.

On busy roads, it is common to see pedestrians waiting for

opportunities to cross when facing a stream of vehicles. The

waiting time before pedestrians make crossing decisions has

received considerable attention in research. Intuitively, it might

be inferred that pedestrians, after an initial failed attempt to

cross, were willing to accept higher risk crossing opportunities

to reduce time costs. In other words, as the waiting time

increased, pedestrians might become more inclined to take

riskier crossing opportunities [12], [17]. However, a substantial

body of evidence suggested that pedestrians who tended to

wait were more cautious and less likely to accept risky gaps

[18]–[21]. [21] showed that drivers who rejected the bigger

traffic gap tended to incur a longer delay. [20] indicated that

pedestrians who tended to reject the crossing opportunities

would be more cautious and tend to accept longer gaps.

Moreover, [18] found that pedestrians who missed the first

opportunity to cross the road would not compensate for

their loss by making riskier crossing decisions. A meta-study

explored these conflicting findings and concluded that insuffi-

cient evidence supports a direct relationship between waiting

time and the propensity to make riskier crossing decisions [22].

[20] suggested that waiting time is more likely a consequence

of certain factors rather than the primary cause of crossing

decisions. Accordingly, to truly understand pedestrian behavior

in traffic flow, it is essential to investigate why pedestrians wait

in the first place [18], [19], [21].

B. Computational models for pedestrian crossing decisions

Against the research background above, researchers are

naturally interested in considering how to use computational

models to reproduce realistic pedestrian crossing decisions by

involving the above-mentioned theories and factors, which

do have real social implications in terms of traffic safety,

management, and more [3], [23]. Much attention has been,

therefore, drawn to this pressing issue [14], [24], [25]. Ex-

isting computational models for pedestrian crossing decisions

have been developed based on a wide range of theories and

hypotheses, such as discrete choice models [24], data-driven

approaches [26], cognitive models [14] and more.

Common observations suggested that pedestrians base their

crossing decisions on the gap between two consecutive ve-

hicles at uncontrolled intersections [13]. Early approaches

estimated the critical gap as a threshold for crossing decisions,

which is the minimum gap that half of the pedestrians would

accept, such as Raff’s method [27]. More recently, some sim-

ilar models estimated the critical gap by considering vehicle

speed and distance [28]. Compared to critical gap models,

some studies assumed that pedestrian crossing gap acceptance

behavior follows binomial distribution and proposed crossing

decisions models based on Artificial Neural Networks [17] and

Logistic Regression [12]. Those models considered more fac-

tors, leading to better generalization performance. Moreover,

a class of emerging models, namely evidence accumulation

models, utilized a cognitive decision-making process, i.e., the

drift-diffusion process, and assumed that the pedestrian cross-

ing decisions were the results of the evidence accumulation

process. The crossing decisions were determined after the

accumulated evidence reached a certain threshold [14], [15].

However, those approaches have not yet bridged several gaps,

as identified and discussed below.

Firstly, computational models are scarce that effectively

capture pedestrian crossing decisions in continuous traffic

scenarios. In such situations, pedestrians usually encounter a

stream of vehicles and accept one traffic gap after rejecting

some. Consequently, pedestrian crossing decisions often en-

tail complex safety and time efficiency trade-offs [12]. As

discussed in Section I-A, [12], [23] developed models that

hypothesized that pedestrians tended to accept riskier crossing

opportunities as waiting time increased. However, some studies

have raised doubts about this assumption, suggesting that

there is insufficient evidence to substantiate it [18]–[20], [22].

The concept of waiting time circumvents why pedestrians

choose to wait. It is unreasonable to assume that pedestrians

inevitably opt for riskier crossing chances as waiting time

increases. Instead, we should treat each case on its own merits

by delving into the underlying rationale governing crossing

decisions and analyzing the factors influencing pedestrians’

waiting decisions. Regrettably, this issue remains unsolved.

Furthermore, modeling crossing decisions in traffic flow is

challenging, partly because existing pedestrian models lack

psychological underpinnings. These models are rarely based

on specific psychological theories, i.e., pedestrian visual per-

ception. Instead, these models often rely on external physical

factors, like distance and TTC. For example, [28] developed

a pedestrian crossing decision model based on the vehicle

deceleration distance. [23] applied a minimum TTC as the

threshold for pedestrian crossing decisions. However, growing

evidence has shown that the impacts of vehicle kinematics on

pedestrians are multi-dimensional. For instance, at the same

TTCs, a higher vehicle speed induced more pedestrians to
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cross the street compared to a lower one [13]. Therefore, the

TTC or distance may not properly carry the risk information

that pedestrians perceive. Moreover, previous research has

found that pedestrian crossing decisions were highly correlated

with perceived visual cues [1], [14], [29]. Therefore, it is

worthwhile to consider the pedestrian visual perception in

crossing decisions.

Last but not least, very limited models pay attention to

the time-dynamic nature of pedestrian crossing decisions, as

discussed in Section I-A. Existing models often make the sim-

plifying assumption that every pedestrian could cross the road

immediately after satisfying decision criteria, disregarding the

concept of crossing initiation time [24]. However, it is crucial

to recognize that crossing initiation time varies and plays

an important role in modeling crossing decisions. It should

be noted that evidence accumulation models could capture

crossing initiation time. Nevertheless, due to the complexity

of these models, they focused more on the cognitive process,

making it unclear whether they can effectively incorporate

additional factors, like vehicle kinematics.

C. Research gaps

The effectiveness of the pedestrian model in applications,

such as incorporating pedestrian models into simulation mod-

els, depends on the model’s behavioral realism. However, in

light of the above discussion, there are several research issues

in existing crossing decision models that make the models not

anthropomorphic, which can be summarized as follows:

• There is a lack of computational models that characterize

pedestrian crossing decisions based on the pedestrian

visual perception mechanism.

• There is a lack of computational models that concisely

consider the time-dynamic nature of crossing decisions

and relate them to visual perception cues.

• Why do pedestrians wait for crossing opportunities in the

traffic flow? The crossing decision patterns of pedestrians

when interacting with the continuous traffic flow remain

unclear, resulting in few computational models simulating

such crossing decisions.

D. Contribution of this study

This study proposes an anthropomorphic model for simulat-

ing pedestrian crossing decisions at uncontrolled intersections

with continuous traffic flow. We highlight the importance of

visual collision cues and provide a paradigm to reproduce

crossing decisions from this aspect. The detailed contributions

of this paper are as follows:

• Instead of using traditional vehicle kinematic cues, a

visual collision cue model is introduced as the main cue

for pedestrian crossing decisions.

• In light of risk aversion theory, a novel gap comparison

strategy is proposed to interpret and model pedestrian

waiting behavior in continuous traffic flow, instead of

using waiting time.

• A crossing initiation time model is developed and asso-

ciated with the visual collision cue model, indicating that

every pedestrian has a time-dynamic crossing decision

rather than crossing simultaneously.

• Two datasets collected in a highly immersive pedestrian

simulator are applied to calibrate and validate the model.

Based on the proposed model, a simulation model is

established to reproduce pedestrian crossing decisions in

a customized traffic scenario.

II. METHODOLOGY

A. Deconstructing pedestrian road crossing decisions

In road crossing tasks, pedestrians may be simplified as data

processing systems, including perception, comprehension &

decision, and response [14], [25]. Firstly, pedestrians perceive

the traffic environment to acquire cues, such as vehicle dis-

tance, speed, TTC, and more. Based on those cues, pedestrians

comprehend traffic situations, like collision risks, and decide

whether to cross the road. Finally, pedestrians respond to

the task through behaviors such as crossing initiation time,

walking speed, and trajectory. According to the deconstructed

three-stage cognitive process, we propose a collision cue-

based decision-initiation model for characterizing pedestrian

crossing decisions (Fig. 1), assuming that crossing decision-

making is described by three parts, namely, collision cues

perception, decision, and crossing initiation.

Collision cues 

in the crossing 

scenario

Comprehension 

& Decision 

making

Response

Fig. 1. A simplified cognitive process for pedestrian road crossing decisions.

B. Visual collision cue model

According to psychological theory, when moving through

the environment, people rely on their visual perception of the

space around them [30]. The road crossing task is a typical

case that highly demands pedestrians to use visual cues to

evaluate the collision risk from approaching vehicles and guide

their movements. Relevant behavioral research has shown that

the human visual system is sensitive to changes in some

visual cues, which may be the source of collision perception.

Specifically, one group of cues may provide reliable collision

time information, such as Tau, binocular disparity, and more

[31]. Other cues, like visual angle and its first temporal

derivative [30], effectively translate motion information into

visual cues through images that expand on the retina. Although

most daily naturalistic road crossings involve all of the above

visual cues (and possibly others), Delucia [30] has suggested

that humans may rely on collision time-related cues when the

scenarios include robust optical information or occur at a near

distance. Conversely, when the optical information in the task

is impoverished or occurs at a long distance, the visual angle

and its first temporal derivative may play a dominant role.

In light of this conceptual framework, we have previously

identified that the first temporal derivative of visual angle,
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Fig. 2. (a) Visual collision cue model in road crossing scenario. Collision cues are as a (b) function of distance from and speed of the vehicle or (c) TTC
from and speed of the vehicle.

θ̇, is a critical collision cue for making crossing decisions

at uncontrolled intersections. We have demonstrated that θ̇
not only well explains pedestrian crossing decisions across

a wide range of traffic scenarios from two different datasets,

but also reasonably characterizes the impacts of vehicle speed

and traffic gap on pedestrians [29]. Therefore, in this study,

we formalized the pedestrian crossing decision model based

on our previous findings. Typically, θ̇ refers to the change rate

of the visual angle subtended by an approaching vehicle, θ,

(Fig. 2a) [32]. The following equations specify its physical

model:

θ = 2 tan−1 w

2Z
⇒ θ̇ (Z, v, w) =

wv

(Z)2 + w2/4
(1)

where v denotes the vehicle speed, Z and w are the distance to

the vehicle and maximum edge of the vehicle’s front profile,

which could be vehicle width or height. It should be noted that

Eq. 1 is a simplified expression of visual angle, assuming that

pedestrians stand in front of vehicles and observe approaching

vehicles. This simplification is valid in our study because, (1)

in our cases, when pedestrians make decisions, vehicles are

still far away from them, from 18-88 m. Pedestrians cannot

clearly see the length of the vehicle. (2) Our previous study

[29] strictly derived the visual angle based on the geomet-

ric relationship in Fig. 2a and found no significant pattern

differences between that method and this simplified one. To

better interpret the collision cue model, an example is shown

in Fig. 2. Suppose that a vehicle ( w = 1.95 m) approaches

the pedestrian with two different constant speeds (30 and 60

mph) from 100 m. θ̇ is an approximately inversely exponential

function of distance and TTC from the approaching vehicle

(Fig. 2b, c), showing that θ̇ increases slowly at long distances

and rapidly at close distances, which agrees qualitatively with

the observation that pedestrians usually feel safe to cross for

long distance or big time gap conditions but not when the

vehicle is close [13]. Further, it can be noticed that speed

effects vary across distance (Fig. 2b) and TTC dimensions

(Fig. 2c). When θ̇ is a function of distance and speed, it

increases with speed, which is opposite to the results in Fig.

2c, suggesting that pedestrians may perceive a higher collision

threat from the vehicle with higher speed at the same distance.

However, the approaching vehicle with a slower speed gives

pedestrians a bigger collision threat under the same TTC. The

results tie well with the previous experimental observations on

pedestrian crossing decisions [13], [33].

C. Decision model

Regarding crossing decisions at uncontrolled intersections,

pedestrians typically make crossing decisions by judging

and selecting the appropriate gaps between two consecutive

vehicles, called gap acceptance [12]. Our previous study

has proven that θ̇ is significantly negatively correlated with

pedestrian gap acceptance, and a collision cue-based binary

choice logit model predicts pedestrian gap acceptance well

across different vehicle speeds and traffic gap experimental

scenarios [29]. Furthermore, evidence from experimental ob-

servations indicated that individuals’ judgments toward traffic

gaps are not necessarily entirely static over time, especially in

traffic streams [18], [19]. Due to certain learning or compari-

son strategies, pedestrians may tend to compare the current

crossing opportunity to previous decisions or opportunities

upstream of traffic. If the current crossing opportunity does

not satisfy pedestrians’ expectations, pedestrians then tend to

reject the current opportunity and wait. We, therefore, propose

the following strategy for the crossing decisions in the traffic

flow:

(i) Pedestrians make decisions mainly based on collision cues,

i.e., θ̇, provided by approaching vehicles.

(ii) Risk-aversion strategy: People tend to prefer outcomes

with low uncertainty (low risk) to those outcomes with high

uncertainty (potentially high risk), even if the average outcome

of the latter is equal to or higher in value than the more certain

outcome [34]. Therefore, in traffic flow, pedestrians could be

unwilling to accept the current gap with a collision cue equal to

or greater than the maximum collision cue previously rejected.

For example, if pedestrians reject a θ̇ cue with a value of 0.02
rad/s, they would be more likely to reject the same or bigger

one upstream of traffic. The rule is given by:

X1 =

{

1, θ̇c ≥ θ̇mr

0, θ̇c < θ̇mr
(2)

where X1 is the dummy variable for the rule. θ̇c and θ̇mr

represent collision cues for the current gap and maximum

rejected gap, respectively. However, if pedestrians find that

a gap next to the current gap has a smaller collision cue than

the current gap, they may prefer to wait for this gap rather
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Fig. 3. Illustration of the initiation model. (a) Initiation time tint is the duration between tpass and the time when the pedestrian start crossing. tsg denotes
the actual gap to the approaching vehicle when pedestrians initiate. (b) The shapes of the initiation model by changing γ. (c) The positions of the initiation
model by changing τ .

than accept a current gap with a greater collision threat, given

the rule:

X2 =

{

1, θ̇c > θ̇f
0, θ̇c ≤ θ̇f

(3)

where X2 is the dummy variable for the decision rule. θ̇f
represents a collision cue of the gap following the current one.

X1 and X2 form risk-aversion terms. Therefore, the utility

function of the decision model is formulated as:

V = ρ0 ln(θ̇) + ρ1X1 + ρ2X2 + ρ3 (4)

where ρ0 to ρ3 are estimated coefficients. In this study, every

θ̇ only refers to the θ̇ value of the approaching vehicle at the

time when the rear end of the previous vehicle just past the

pedestrian (Fig. 3a). Regarding the ln transformation, we have

previously proven that it can efficiently increase the accuracy

of model fitting [29]. Since crossing decisions at uncontrolled

intersections are assumed to be a binary choice task, a logistic

function is applied [12]. Then, a decision model for crossing

tasks in the traffic flow is given by:

p(θ̇, X1, X2) =
1

1 + exp (−V )
(5)

where p is the probability of the gap acceptance. The (5)

without the terms X1 and X2 degenerates to the model we

proposed in [29].

D. Crossing initiation model

In real traffic, the time at which pedestrians start to cross the

road is a variable. As illustrated in Fig. 3a, crossing initiation

time, tint, is typically defined as the duration between the time

when the rear end of the previous car passes the pedestrians’

position, tpass, and the time when pedestrians start their

movements [13]. The skewed and lognormal-like shape of

the distribution of crossing initiation time is similar to those

distributions that can be written in a closed mathematical form,

such as Ex-Gaussian, Shifted Wald (SW), and Weibull [35].

Considering the similarities of those methods, we only apply

the SW distribution instead of trying all of them. The SW

distribution is a simple and concise distribution modeling tool,

which can fully qualify the crossing initiation time distribution

with three parameters: b (deviation around the mode), γ (tail

magnitude), and τ (onset of the distribution). Its equation is

defined as:

x ∼ SW(b, γ, τ)

⇒
b

√

2π(x− τ)3
· exp

(

−[b− γ(x− τ)]2

2(x− τ)

)

(6)

An illustration of the distributional effect that occurs by

changing each of the γ and τ parameters is shown in Fig.

3 b and c. The tail becomes heavier as γ decreases, (Fig. 3b).

Changes in τ control the position of the distribution (Fig. 3c)

[35].

According to our assumptions in Fig. 1, the crossing initi-

ation time model is affected by collision cues, so we define

the initiation time model as follows:

tint ∼ SW(b, γ, τ)

with γ = β1 ln(θ̇) + β2; τ = β3 ln(θ̇) + β4

(7)

where tint is the crossing initiation time. β1 to β4 are esti-

mated coefficients. The idea behind these equations is that the

strength of collision cues could affect the distribution pattern

of pedestrian initiation time. For a more intensive collision

threat, if pedestrians choose to cross, they tend to do so more

quickly, so the distribution is concentrated and has a short

tail. In contrast, when the collision threat is small, pedestrians

tend to start crossing slowly, so the distribution is more likely

to have a long tail [14]. Accordingly, the SW model is not

only a practical distribution model but also provides notable

psychological significance for our decision model. In addition,

b is assumed to be a coefficient not influenced by collision

cues. Furthermore, since response time data are routinely

assumed to be normally distributed in many studies [13],

another crossing initiation time model based on the Gaussian

distribution is proposed as a comparison to the SW model,

defined as the following equations:

tint ∼ N (µ, σ),

with µ = β1 ln(θ̇) + β2;σ = β3 ln(θ̇) + β4

(8)

where µ and θ are parameters of the Gaussian model, N .

E. Pedestrian crossing decisions in traffic flow

Finally, a computational model based on the SW distribution

(SW-PRD), accounting for pedestrian road crossing decisions
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in the continuous traffic flow, is then established by employing

(5) and (7):

fSW (tint ) =

N
∑

n=1

Pn · SW
(

b, γ
(

θ̇n

)

, τ
(

θ̇n

))

Pn = p
(

θ̇n, X1,n, X2,n

)

· (1− Pn−1)

P0 = 0

(9)

where n is the position number of the gap in the traffic flow.

θ̇n, X1,n and X2,n represent the decision variables for the nth

traffic gap. Pn means the recursive probability that pedestrians

accept the nth gap, which is calculated based on p and Pn−1.

Similarly, a road-crossing decision model based on Gaussian

distribution (G-PRD) is given by:

fG(tint ) =

N
∑

n=1

Pn · N
(

µ
(

θ̇n

)

, σ
(

θ̇n

))

(10)

F. Simulation model

To demonstrate the performance and application capabilities

of the proposed decision model, an agent-based simulation

model is established to reproduce pedestrian crossing be-

havior at uncontrolled intersections with traffic flow. The

framework of the simulation model mainly includes three

parts: the pedestrian decision model, the traffic environment

model, and the pedestrian kinematics model. Regarding the

traffic environment, a single-lane road with an uncontrolled

intersection is considered. A stream of vehicles travels on the

lane at a constant speed, wherein the vehicle quantity, speed,

and traffic gaps can be customized. Afterward, a basic social

force model is applied as a pedestrian kinematics model [36],

which considers the driving force of pedestrian i towards the

destination,
−→
F id, and repulsive force from the boundary of the

crosswalk,
−→
F ib, given by:

−→
Fi =

−→
F id +

−→
F ib (11)

Finally, according to the information provided by the traffic

environment and kinematics model, each pedestrian’s road

crossing decision is generated through PRD models. The

detailed process of the simulation model is provided in the

supplementary file (Appendix. A). A demonstration video

of the simulation model is also provided. Please see the

attachment.

III. MODEL CALIBRATION AND EVALUATION

This study applied two empirical datasets collected in a

CAVE-based highly immersive pedestrian simulator to cal-

ibrate and evaluate the PRD models. Dataset one included

traffic gap and vehicle speed as experimental variables. While

dataset two considered the experimental variable, i.e., the

order of traffic gap size in the traffic flow. Therefore, dataset

one was important for verifying the model’s performance

in modeling the impact of vehicle kinematics on pedestrian

crossing decisions. Dataset two was applied to verify the

model’s performance in modeling pedestrian crossing deci-

sions in traffic flow. The following sections provide detailed

information on the calibration and validation methods of the

two datasets.

𝑣𝑣 = 25, 30, 35 mph

Gap = 2, 3 ,4 ,5 s 

𝑣𝑣= 30 mph
kth gap1st gap

… …

a

b

Fig. 4. Schematic diagrams and photos of traffic scenarios in simulated
experiments. The crossing scenarios and traffic of the (a) first dataset and
(b) second dataset.

A. Empirical data

Dataset one. A virtual road scene with a 3.5 m wide single

lane and 1.85 m wide pavement was created in the simulator.

Two consecutive vehicles of 1.95 m in width were driven in

the middle of the road at the same constant speed. According

to vehicle speed compliance statistics in the UK [37], the

speed of vehicles in the town is concentrated between 25-35

mph, so three common observed vehicle speeds were selected,

namely, 25 mph, 30 mph, or 35 mph. The first vehicle came

into view 96 m away from the pedestrian, and the second

vehicle maintained a specific time gap behind the first vehicle,

i.e. 2 s, 3 s, 4 s, or 5 s (Fig. 4a). Sixty participants were

instructed to cross the road between the two cars if they felt

comfortable and safe to do so. Otherwise, they could reject

the gap. Three experimental blocks were created, and each of

the 12 scenarios (4 time gaps × 3 speeds) was presented in

random order and repeated once in each experimental block.

Therefore, each participant experienced 72 trials, and 4270

trials of data were obtained in total.

The virtual environment and simulation process mentioned

above were designed and controlled by the Unity3D platform.

Internal code automatically recorded the positions and ve-

locities of vehicles and participants on each time step. Two

main metrics were applied: gap acceptance, u, and crossing

initiation time, tint. The gap acceptance data were the binary

crossing decisions made by participants, i.e., u = 1 means

pedestrians accepted the gap, while 0 indicated rejected the

gap. The crossing initiation time was defined as described in

Section II-D and Fig.3a. For more detailed information about

this dataset, please refer to [38].

Dataset two. To explore pedestrians’ road crossing decisions

in traffic flow, pedestrians were asked to cross a one-lane

road with continuous traffic in the simulator (Fig.4b). The

size of time gaps between every two consecutive vehicles

varied, which provided pedestrians with different opportunities

to make crossing decisions (Fig.4b). Four traffic scenarios with



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 7

different sequences of gap sizes (in seconds) were designed as

follows:

• Scenario one: 1 1 1 3 3 3 6 1 1 6;

• Scenario two: 1 1 1 1 3 3 7 1 1 3 8;

• Scenario three: 1 1 1 3 1 3 1 3 5 4 8;

• Scenario four: 2 3 1 1 3 1 1 1 5 4 7;

Among these scenarios, the one-second and two-second

time gaps between vehicles were considered dangerous cross-

ing opportunities that very few pedestrians would accept.

For the three-second and four-second gaps, decisions were

expected to significantly differ between participants due to

their heterogeneity (e.g., age and gender). The time gaps

longer than four seconds were considered safe gaps that

most pedestrians were expected to accept confidently. In all

scenarios, a range of compact, midsize, van, and SUV vehicles

were driven at 30 mph. Since the types of approaching vehicles

were randomly selected, in the analyses here, the width of the

vehicle was calculated by averaging the width of all vehicles

in the corresponding gap in each scenario. 60 participants

completed four crossing tasks in any of the four scenarios and

repeated them once more (4 crossing tasks × 4 scenarios × 2

repetitions). We, therefore, collected data from 1920 trials. All

the trials that participants experienced were in a randomized

order. Similar to the first dataset, two main metrics were used:

gap acceptance, u, and crossing initiation time, tint. For more

detailed information about this dataset, please refer to [19].

B. Data processing and model calibration

With regard to data processing, both datasets were divided

into a training set and a validation set. Regarding dataset

one, as controlled experimental variables were vehicle speed

and time gap size, we separated the training and validation

sets by choosing the data from different combinations of

experimental variables (As illustrated in Section III-A, there

were 12 different combinations). To have enough data in

the training and validation sets, data from 10 combinations

were grouped into the training set, while the rest of the data

belonged validation set. Moreover, in order to make sure the

validation data were sufficiently different, the 2 combinations

are not adjacent to each other in terms of speed or time gap

size. Accordingly, the validation set included data in 4 s 25

mph and 5 s 35 mph conditions, approximately accounting for

23% of the initiation time data and 14% of the gap acceptance

data (The data size of the two metrics was not the same as there

was no initiation time data for participants who rejected the

gap). The remaining data of all other conditions were grouped

into the training set. Similarly, with respect to dataset two,

the data from traffic scenario four were used as the validation

set, accounting for 24% of gap acceptance data and 25% of

initiation time data.

A Maximum Likelihood Estimation (MLE) method was

used to calibrate the parameters in the models. Firstly, re-

garding the decision model (5), since it assumes that crossing

decisions are drawn from a Bernoulli distribution, its likeli-

hood function is given by:

L1(ω) =

n
∏

i=1

p (Θ | ω)ui

(

1− p (Θ | ω)1−ui

)

ρ1, ρ2, ρ3, ρ4 ∈ ω

θ̇i, X1,i, X2,i ∈ Θ

(12)

where ω includes all the estimated parameters ρ1, ρ2, ρ3, ρ4.

Θ denotes θ̇i, X1,i, X2,i for the ith trial. n is the size of the

dataset. With respect to the initiation models, their likelihood

functions are given by the following equations based on (7)

and (8):

L2(∆) =

m
∏

j=1

SW
(

tint,j , θ̇j | ∆
)

β1, β2, β3, β4, b ∈ ∆

(13)

L3(∆) =

m
∏

j=1

N
(

tint,j , θ̇j | ∆
)

(14)

where ∆ is the summary of the estimated parameters of

crossing initiation models. tint,j is the jth crossing initiation

time data. The data size is m. According to the MLE method,

the maximization problem is equivalent to minimizing the

negative log-likelihood. Thus, the optimal estimations for

parameters are achieved when negative log-likelihood func-

tions are minimized, e.g., − ln (L1(ω)). We applied a built-in

’fminuc’ function in MATLAB to find the solution to the above

minimization problems [39].

C. Model evaluation method

Since no specific existing model simulates pedestrian cross-

ing decisions and initiation time in continuous traffic flow, the

proposed model could not be evaluated by comparing it with

an existing model. Nevertheless, to demonstrate that the pro-

posed model captures pedestrian crossing decisions correctly,

we applied two comparison methods. First, we established

two crossing decision models, using the SW and Gaussian

distributions as the initiation time model, respectively. At this

point, neither model, i.e., SW-PRD (without flow) and G-PRD

(without flow), included the decision strategy for traffic flow.

We could, therefore, evaluate the difference between the two

initiation time models based on two different distributions. The

two models were fitted to dataset one that did not include

traffic flow scenarios. The estimated parameters are presented

in Table I. Secondly, to demonstrate the benefit of the proposed

traffic flow decision strategy, we manipulated the SW-PRD

model to include the decision strategy and compared it with the

G-PRD model without the decision strategy. The two models

were fitted to dataset two, which was collected in traffic flow

scenarios. The estimated parameters are presented in Table

II. In addition, the parameters of the social force model are

adopted from [36], provided in Appendix. A.

D. Evaluation criterion

After calibration, the predictions were compared with the

validation set to verify the ability of the models. Two evalua-

tion methods were applied to compare the performance of the
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TABLE I
CALIBRATION RESULTS OF MODELS BASED ON DATASET ONE

Parameter
SW-PRD (without flow) G-PRD (without flow)
Estimate 95 % C.I. Estimate 95 % C.I.

β1 0.03 [-0.19, 0.24] -0.03* [-0.05, -0.01]
β2 4.48* [3.35, 5.62] 0.15* [ 0.07, 0.24]
β3 -0.20* [-0.26, -1.78] -0.21* [-0.24, -0.18]
β4 -2.11* [-2.43, 1.22] -0.76* [-0.91, -0.62]
b 6.06* [4.43, 7.68] n/a n/a
ρ0 -2.14* [-2.28, -1.98] -2.14* [-2.28, -1.98]
ρ3 -9.95* [-10.64, -9.26] -9.95* [-10.64, -9.26]
LL -108.43 -176.69
BIC 252.37 381.79

Note. LL: log-likelihood of the entire model, C.I.: confidence
interval, *: significant at a 5% significance level
With/Without flow: consider/not consider decision strategies for traffic flow

TABLE II
CALIBRATION RESULTS OF MODELS BASED ON DATASET TWO

Parameter
SW-PRD (with flow) G-PRD (without flow)
Estimate 95 % C.I. Estimate 95 % C.I.

β1 0.47* [0.29, 0.66] -0.05* [-0.06, -0.04]
β2 7.36* [6.15, 8.57] 0.01 [-0.05, 0.07]
β3 0.04 [-0.02, 0.10] -0.10* [-0.13, -0.09]
β4 -1.41* [-1.70, -1.13] -0.59* [-0.68, -0.50]
b 7.76* [5.6, 9.90] n/a n/a
ρ0 -2.92* [-3.16, -2.68] -3.31* [-3.55, -3.07]
ρ1 -1.29* [-1.56, -1.02] n/a n/a
ρ2 -0.50* [-0.84, -0.15] n/a n/a
ρ3 -13.23* [-14.30, -12.16] -15.50* [-16.56, -14.46]

LL(Decision model) -1536.40 -1672.50
LL(CIT model) -36.35 -104.03

BIC 3218.40 3600.40

Note. LL(Decision model/CIT model): log-likelihoods of decision models
/crossing initiation time models

proposed models, namely BIC and K-S test. The BIC is given

by:

BIC = k ln(n)− 2 ln(L) (15)

where k is the number of parameters in the model. n is the

size of the dataset. L is the maximum likelihood. The preferred

model is the one with the minimum BIC [40]. K-S test is a

nonparametric test, which is used to evaluate the goodness-of-

fit of the predicted results by quantifying the distance between

empirical and predicted distributions [41]. The main equation

of K-S test is:

Dn,m = sup |F n(x)− Fm(x)| (16)

where sup denotes the supremum function. F n(x) and Fm(x)
are the distribution functions of the observed data and pre-

dicted result. n and m represent the size of the samples. The

K-S test rejects the null hypothesis, i.e., two samples are drawn

from the same probability distribution if Dn,m is bigger than

the selected threshold. In addition, the R-squared, R2, and

Root Mean Square Error (RMSE) are also used in the model

discussion.

IV. RESULTS AND ANALYSIS

In this Section, we first discuss the calibration results of the

SW-PRD and G-PRD models. Afterward, the validation results

of the two models were compared using the BIC and K-S

test. Finally, the model with better performance is compared

to two entire datasets, and the reproduced crossing decision

patterns are discussed in detail. Additionally, regarding the

first dataset, as it does not include the traffic flow scenario,

we focus on the impacts of speed and time gap on pedestrian

crossing decisions, while the effect of traffic is discussed using

the results based on the second dataset.

A. Calibration results

Dataset one. The parameters of the SW-PRD and G-PRD

models were calibrated using the first dataset. One thing to

note is that as the first dataset did not include traffic flow

scenarios, these two models thus did not implement decision

strategies in traffic, which means ρ1 and ρ2 were not included

in the models, and two decision models in the SW-PRD and G-

PRD models were the same. The calibration results are shown

in Table. I, where the maximum log-likelihood and BIC of

the SW-PRD model based on the training set are -108.43 and

252.37, which are significantly better than those of the G-PRD

model, i.e., -176.69 and 381.79, indicating that the SW-PRD

model can better describe pedestrian crossing initiation time

than the G-PRD model on the calibration set. Moreover, it

can be found that the effect of ρ0 is significantly negatively

correlated with θ̇ (Est. = −2.14,C.I. = [−2.28,−1.98]),
showing that pedestrian crossing gap acceptance decreases

as the risk of collision increases. Additionally, the estimated

effect of β3 in the SW-PRD model is significantly correlated

with θ̇ (Table. I), suggesting that pedestrian crossing initiation

time is negatively related to the collision risk.

Dataset two. The calibration results based on the second

dataset are shown in Table. II. As the SW-PRD model imple-

mented the decision strategies in traffic flow, it included ρ1 and

ρ2. However, the G-PRD model did not. Meanwhile, as both

the decision model and initiation time model in the SW-PRD

model and the SW-PRD model were different, we calculated

the respective log-likelihood of the decision and initiation

time models to facilitate the comparison of the results. Again,

the SW-PRD model fits data better than the G-PRD model,

where the SW-PRD model has larger log likelihoods for

both the decision and crossing initiation time models, and its

BIC is smaller than that of the G-PRD model. In particular,

concerning the SW-PRD model, except for the significant

effect of ρ0 (Est. = −2.92,C.I. = [−3.16,−2.68]), ρ1 and

ρ2 also significantly affect the pedestrian gap acceptance

(Est. = −1.29,C.I. = [−1.56,−1.02];Est. = −0.50,C.I. =
[−0.84,−0.15]), consistent with our assumed crossing deci-

sion strategies in traffic flow. In addition, although the effect

of β3 in the SW-PRD model is not significant, the positive

TABLE III
VALIDATION RESULTS OF MODELS BASED ON DATASET ONE

Condition Model LL BIC K-S test score P value

25 mph 4 s SW-PRD -23.08 71.47 0.06 0.56
G-PRD -27.28 74.82 0.10 0.08

35 mph 5 s SW-PRD -13.19 54.81 0.05 0.31
G-PRD -24.83 72.41 0.09 0.02*
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Fig. 5. Validation results. Probability density functions and data based on datasets (a) one and (b) two. The vertical dash-dotted lines in (b) indicate the time
when the rear end of the vehicle passes the pedestrian’s position. The size of the time gap (in seconds) between every two vehicles is indicated at the top of
the diagram.

effect of β1 reduces the tail magnitude of the distribution of

crossing initiation time as θ̇ increases and thus can reduce

pedestrians crossing initiation time.

B. Validation results

The calibration results indicate that the SW-PRD model

fits the training sets better than the G-PRD model. In this

section, the validation sets of two datasets are compared with

the predicted results of two models.

Dataset one. Regarding the validation results, as shown in

Table. III, the SW-PRD model has better BIC values and K-

S scores for all conditions. Specifically, in the 35 mph 5 s

condition, the K-S test rejects the null hypothesis and indicates

that the results of the G-PRD model are different from the

observed data at a 5% significance level. As shown in Fig. 5a,

it can be found that the G-PRD model tends to overestimate

the initial parts of the data, but the SW-PRD model does not.

Dataset two. The predicted results are compared to the

validation set of the second dataset. The log-likelihood of

crossing initiation time models of SW-PRD and G-PRD are

presented separately for reasons explained previously (Table.

IV). Both SW-PRD and G-PRD models accurately capture

the timing of pedestrian crossing decisions in the traffic flow,

i.e., the peak location of the initiation time distribution ( Fig.

5b). The predicted peak shapes of both models are close to

the data. However, the SW-PRD model has a relatively better

performance than the G-PRD model because the log-likelihood

of the crossing initiation time model for SW-PRD is bigger

than the value for G-PRD in Table. IV. The overall predictions

of the SW-PRD model are closer to the data than those of

the G-PRD model. Specifically, the SW-PRD model has a

better BIC value and log-likelihood than the G-PRD model

(Table. IV). Also, the K-S test supports that the predicted

density function of the SW-PRD model is similar to the

empirical distribution. In contrast, the predicted result of the

G-PRD model is rejected by the K-S test at a 5% significance

level (Table. IV). As shown in Fig. 5b, it can be found that

consistent with the empirical data, the SW-PRD model predicts

a decrease in the gap acceptance from the first 3 s gap (at

tpass2 ) to the second 3 s gap (at tpass5 ). By contrast, the G-

PRD model calculates a constant value for both 3 s gaps,

resulting in a significant underestimation of gap acceptance in

the first 3 s gap. In general, the SW-PRD model has better

performance than the G-PRD model on the validation set of

dataset two.

TABLE IV
VALIDATION RESULTS OF MODELS BASED ON DATASET TWO

Model LL LL(CIT model) BIC K-S test score p value

SW-PRD -578.37 -11.23 1193.10 0.08 0.10
G-PRD -707.53 -52.76 1444.10 0.16 0.001*

In the following sections, we discuss the predicted pedes-

trian crossing decisions in detail by comparing predicted

results with the two full datasets to provide a complete

understanding of the proposed model. Since SW-PRD per-

forms better on all datasets than G-PRD, the SW-PRD model

generates our results in the following sections.

C. Dataset one: Speed and time gap effects

The SW-PRD model predictions of crossing gap acceptance

for each speed and time gap condition are compared with the

observed data in Fig. 6a. According to the empirical data,

crossing gap acceptance increased with vehicle speed and

traffic gap, aligning well with previous studies [13], [33]. The

SW-PRD model reproduces these decision patterns very well

(R2 = 0.890, RMSE = 0.050), suggesting that pedestrians

might adapt their crossing decisions based on the changes in

collision cues.

Fig. 7a shows a comparison between the predicted crossing

initiation time and observed data. In line with the literature,

[13], the empirical data showed that pedestrian crossing initia-

tion time correlated with vehicle kinematics, i.e., it decreased

as traffic gaps and vehicle speeds decreased. This decision pat-

tern can be understood as a distance-dependent phenomenon

whereby a reduction in vehicle speed and time gap leads

to a reduction in spatial distance, resulting in an increase

in the perceived risk of collision [29]. Hence, if pedestrians

choose to cross, they tend to do so more quickly. Based on

our modeling results, the proposed SW-PRD model captures

this pattern with a good fit (R2 = 0.890, RMSE = 0.050),
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Sequence of gap sizes (s)

Scenario one.𝑅2 = 0.778, 𝑅𝑀𝑆𝐸 = 0.170
Scenario two.𝑅2 = 0.996, 𝑅𝑀𝑆𝐸 = 0.024
Scenario three.𝑅2 = 0.970, 𝑅𝑀𝑆𝐸 = 0.062
Scenario four.𝑅2 = 0.989, 𝑅𝑀𝑆𝐸 = 0.037

𝑅2 = 0.989,𝑅𝑀𝑆𝐸 = 0.029a b

11 1 3 3 3 6 1 1 6 8

11 1 1 3 3 7 1 1 3 811 1 3 3 1 1 8

11 1 3 1 3 1 3 5 4 811 1 3 8

32 1 1 3 1 1 1 5 4 71

5 s
4 s
3 s
2 s

Prediction
Data

Fig. 6. Predicted gap acceptance of the SW-PRD model for both datasets. The data and the predicted results are represented in black and blue, respectively.
(a) For dataset one, the proportion of gap acceptance is plotted as a function of vehicle speed and gap size (Gap sizes are indicated by different line styles).
(b) For dataset two, the proportion of gap acceptance for each gap of each traffic scenario is presented.

again indicating that visual collision cues are associated with

pedestrian crossing decisions.

Moreover, a more detailed comparison between predictions

and data is shown in Fig. A2 in Appendix B. The predicted

probability density function of pedestrian crossing decisions

is plotted as the function of the initiation time and traffic

scenario. It can be found that the SW-PRD model predicts

pedestrian crossing behavior qualitatively and quantitatively. It

not only describes the pedestrian crossing decisions distributed

along the time axis but also captures the variation in the mean

crossing initiation time.

D. Dataset two: Impacts of traffic flow

Predicted gap acceptances of the SW-PRD model in the

traffic flow are compared to the observed data in Fig. 6b.

Firstly, it can be noticed that pedestrians in the traffic flow

did not accept gaps of the same size equally. For instance,

regarding the 4th gap and the 5th gap in traffic scenario

one (The size of both traffic gaps is 3 s), the probability of

crossing gap acceptance dropped significantly from 27.9% to

10.5%. When pedestrians faced the 6th gap, the decreasing

trend became even stronger. The probability of crossing gap

acceptance was 8.1%, more than three times smaller than the

value of the 4th gap, showing that a greater proportion of

pedestrians tended to reject this crossing opportunity and wait

for the next one. Further looking at the predictions, the SW-

PRD model reproduces this decision pattern across all traffic

scenarios with reasonable goodness-of-fit (Fig 6b), indicating

that the proposed decision strategy captures pedestrian waiting

behavior in the traffic flow.

Fig.7b plots the predicted crossing initiation time as a

function of the time gap and compares it with the observed

data. The SW-PRD model fits the crossing initiation time

data well (R2 = 0.850, RMSE = 0.038). Consistent with

empirical observations and similar to the first dataset [16], the

SW-PRD model predicts a shorter initiation time as the time

𝑅2 = 0.890𝑅𝑀𝑆𝐸 = 0.050

𝑅2 = 0.850𝑅𝑀𝑆𝐸 = 0.038

a

b

Fig. 7. Predicted crossing initiation time of the SW-PRD model for both
datasets. Error bars and the edge of blue areas indicate the 2.5% and 97.5%
percentiles of the data and predicted results. (a) For dataset one, the crossing
initiation time is plotted as a function of vehicle speed and gap size. (b) For
dataset two, the crossing initiation time is a function of gap size.

gap decreases, again suggesting that pedestrians attempted to

compensate for crossing risk in unsafe traffic gaps by initiating

faster.

Furthermore, pedestrian crossing probability and crossing

timing corresponding to each traffic gap in the flow are com-

pared with the observed data shown in Fig. A3 in Appendix

B. Across all traffic scenarios, the SW-PRD model accurately
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predicts the level, shape, and location of peaks of the crossing

initiation time distribution, showing that the model has a

good ability to characterize pedestrian crossing decisions in

a continuous flow of traffic.

V. DISCUSSION AND CONCLUSION

This study demonstrates an anthropomorphic approach to

simulate pedestrian crossing decisions at uncontrolled inter-

sections with continuous traffic flow. According to the three-

stage cognitive process, a crossing decision-initiation model

is proposed with three constituent parts: visual collision cue

perception, crossing decision, and crossing initiation. The

crossing decision model based on visual collision cues charac-

terizes pedestrian crossing decisions in continuous traffic flow

in a way that is consistent with pedestrian decision logic and

more ecological. The crossing initiation model based on visual

collision cues captures the time-dynamics nature of pedestrian

crossing decisions on a more fine-grained level. This study

provides a paradigm to model pedestrian crossing decisions in

complex scenarios, i.e., deconstructing the underlying psychol-

ogy mechanism, and allows pedestrian agents’ road crossing

decisions to be more realistic. Following is a summary of the

detailed research results.

A. Pedestrians make crossing decisions relying on visual

collision cues

In our previous study [29], we showed that the visual

collision cue, θ̇, could capture the effects of vehicle kinematics

on pedestrian crossing decisions in single gaps and explain

why pedestrians tended to rely on distance from vehicles to

make crossing decisions [13], [33]. In this study, this finding

is formally applied to model crossing decisions and extended

to a more complicated traffic scenario, i.e., a continuous flow

of traffic. The modeling results support that θ̇ is capable of

characterizing the risk perceived by pedestrians, at least at

uncontrolled intersections with constant speed traffic.

B. Time-dynamic crossing decisions

Moreover, regarding the second research gap, i.e., pedestrian

crossing initiation is time-dynamic and influenced by vehicle

kinematics, we relate the proposed crossing initiation time

model to θ̇. The modeling results support our hypothesis and

show that pedestrians dynamically adjust their initiation time

based on perceived collision cues. Both the SW and Gaussian

distributions can reasonably describe pedestrian initiation time,

whilst the SW distribution has relatively better goodness-of-

fit than the Gaussian distribution, which further indicates that

the distribution of crossing initiation time is right-skewed.

The findings may suggest that pedestrians not only follow

the gap-maximization rule when making a crossing decision

but are also influenced by certain factors that lead to delays

in decision-making. For example, there are inherent neural

conduction delays in human sensory and motor pathways that

make most people’s response times slower than a theoretical

optimal. Meanwhile, people often sacrifice speed for improved

decision accuracy. The limits in human functions and trade-

offs determine that the response time distribution is right-

skewed [35].

C. Pedestrian waiting behavior in traffic flow

Notably, to accurately reproduce pedestrian crossing de-

cisions in continuous traffic flow, we propose a traffic gap

comparison strategy based on the risk-aversion theory, which

is supported by reasonable modeling results. These results

provide an explanation for pedestrians’ waiting behavior in

traffic: (1) Pedestrians may have a reduced tendency to accept

the current gap if they see larger gaps upstream of traffic. (2)

Pedestrians may have a greater tendency to reject the current

gap if they have rejected a gap of that size or larger previously.

These results are supported by empirical observations [18],

[20], [21]. The novelty of the study is that we show that

as waiting time increases, pedestrians do not accept riskier

crossing opportunities, which may provide an explanation

for the non-significant effect of waiting time on pedestrian

crossing decisions found in [22]. Furthermore, this finding

is interesting in that pedestrians waiting for the crossing

opportunities in the traffic flow may be caused by their risk-

aversion strategy. Accordingly, the increase in waiting time is

the result of this waiting behavior.

D. Implications and limitations

Regarding the practical implications of this study, there are

many possible ways to extend these concepts and models

to further improve research in pedestrian-AV interactions.

First, the proposed decision model may provide predictive

information to help automated driving systems better anticipate

pedestrian crossing intentions and initiations. Early work is

emerging where researchers are attempting to plan and co-

ordinate the actions of AVs and pedestrians toward common

goals by considering the visual collision cue of pedestrians [5].

Another possible application case is future traffic scenarios

involving AV platoons and pedestrians, where AV platoons

may need to take into account the dynamic pedestrian crossing

decisions along the length of the platoon and adopt the

decision strategy of each AV. Moreover, there is an urgent

need to train and evaluate AVs to perform well also in safety-

critical interactions with human road users. However, due to

the low frequency of critical traffic scenarios in real life, i.e.,

the corner case, and safety reasons, both academia and industry

have agreed on using simulation methods as a complementary

way to validate AVs. Reliable simulation results rely on the

behavioral authenticity of simulated road users [23]. Hence,

another practical significance of this study is that the model

can serve as a module in the virtual testing platforms to realize

naturalistic pedestrian road crossing decisions.

This study also holds theoretical significance. Firstly, the

proposed crossing initiation time model might inspire more

modeling studies on time-dynamic crossing decisions. Mean-

while, these findings offer potential insights into pedestrian

behavior research by allowing us to study the influence of

specific factors, such as age or gender, on pedestrian crossing

initiation using Wald distribution. Secondly, the innovative

gap comparison strategy proposed in this study interprets and

models pedestrian waiting behavior within traffic flow. It has

the potential to shed light on modeling and behavior research,
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facilitating a deeper understanding and deconstruction of traf-

fic flow effects.

However, several limitations of this study need to be ad-

dressed in the future. Since the datasets used are limited, it

is uncertain whether the gap comparison strategy is universal

among all pedestrians or just some pedestrians are more

cautious and tend to wait. The gap comparison strategy has

not captured some observations in previous studies, such as

pedestrians’ riskier crossing decisions. Hence, there may be

more intricate patterns in pedestrian decision strategy in traffic

flow. Moreover, the Wald distribution we used is just one of

many response time models. Other response time models could

be used to characterize crossing initiation time alternatively.

Also, other approaches, like deep learning or reinforcement

learning, may have potential ability. Furthermore, since the

results only cover scenarios with single-lane and constant-

speed traffic flow, the model cannot be directly generalized to

other scenarios without further development [42]. Meanwhile,

the model should further consider other factors, such as the

lateral movement of vehicles, road width, group size, and

pedestrian heterogeneity. Furthermore, compared to simulated

tasks, in real traffic, pedestrians could flexibly adjust their

behaviors and be affected by many potential factors, and the

virtual nature of tasks may also affect the observed behavior.

Hence, important future work should apply the model to a

reliable naturalistic dataset. Finally, the model is developed

based on current theories of human collision perception and

does not assert that pedestrians use the applied visual cues and

perception strategy. The research conclusions do not support

the conclusion that our deconstruction into three stages is the

best approach to characterize pedestrian crossing decisions.

Rather, this approach provides an intuitive representation of

crossing decisions and models pedestrian crossing data better

than previous models. As psychological theory is further

developed, the model can be improved accordingly.
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APPENDIX

A. Simulation model

Environment 

Traffic 

Parameters

Pedestrian 

Parameters

Pedestrian 

kinematics

model

PRD model

Model 

parameters

Model 

parameters

TrafficTraffic

Kinematics

Decisions

60 m

4.2 m

Car
Ped

Fig. A1. Structure of the simulation model. The traffic environment contains
a single lane (60 m long and 4.2 m wide) and a stream of vehicles (colored
rectangles).

In this study, an agent-based simulation model is proposed

using the established PRD models for reproducing pedestrian

crossing behavior at uncontrolled intersections with traffic

flow. The framework mainly includes three parts: the PRD

model, the environment model, and the pedestrian kinematics

model (Fig.A1). The detailed process of the simulation model

is as follows:

(i) Generate the traffic environment using the given traffic and

pedestrian parameters.

(ii) Generate a pedestrian agent at a random location on the

pavement near the intersection. After that, the pedestrian walks

to the edge of the pavement. Since this study focuses on the

crossing decisions in the traffic flow, the pedestrian performs

the PRD model after the first vehicle has passed him/her

(Algorithm. 1).

(iii) The PRD model generates each pedestrian’s decision

and initiation time through a Monte Carlo sampling method

(Algorithm. 2).

(iv) Pedestrians cross the road and walk to the opposite side

of the road, driven by the following social force model:

−→
Fi =

−→
F id +

−→
F ib

−→
F id = mi

vdi e
d
i − vi

τi
−→
F ib =

[

Abe
(ri−dib)/Bb)

]

nib

(1)

where mi is the mass of pedestrian agent i, 60 kg. vdi e
d
i is

the desire speed vector. vi is the actual speed vector. τi is

the characteristic time, 0.5 s. ri is the radii of a pedestrian

agent, 0.35 m, and dib is the perpendicular distance between

the pedestrian and the boundary. Ab and Bb are constant pa-

rameters, equal to 2×103 N and 0.08 m. nib is the normalized

vector perpendicular to the boundary. The simulation model

stops when the traffic scenario ends, or all pedestrians cross

the road.

A demonstration video of the simulation model is also

provided. Please see the attachment.

Algorithm 1 Simulation model of road crossing decision

Input: Model parameters ρ0, ρ1, ρ2, ρ3, β1, β2, β3, β4, b
Output: u, tint

1: Ir = I // Number of remaining participants Ir and total

number participants I
2: for nth gap in traffic N do

3: θ̇n ← Eq.1
4: X1,n, X1,n ← Eq.2 and Eq.3
5: pn ← Eq.5
6: Pn = pn · (1− Pn−1)← Eq.9
7: for ith pedestrian in Ir do

8: ui ← Binomial(1, Pn,i) // Sampling: crossing

decision

9: if ui == 1 then

10: f(tint) ← Eq.9 or Eq.10 // Caulculate

probability density function of crossing decision

11: tint,i ← Algorithm. 2 // Sampling: crossing

initiation time

12: else

13: Continue

14: end if

15: end for

16: Ir = Ir − length(tint) // Update remaining participants

17: end for

Algorithm 2 Monte Carlo sampling of the model

Input: f(tint)
Output: tint,i

1: Initialise s = 1
2: while s 6= 2 do

3: π(x) = f(x)
4: s← Uniform(0, 1);
5: y ← Q(x|y) // Arbitrary probability density

6: if u ≤ min( pi(y)Q(x|y)
pi(x)Q(y|x) , 1) then

7: tint,i = y
8: s = s+ 1
9: else

10: s = 1
11: end if

12: end while

B. Detailed modeling results

Detailed comparisons between modeling results and ob-

servations are shown in Fig.A2 and Fig.A3. In Fig.A2, the

probability density functions of crossing initiation time are

plotted against time gaps and vehicle speeds. While, In Fig.A3,

the probability density functions of crossing initiation time are

plotted as a function of traffic scenarios and crossing initiation

time.
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Fig. A2. Predicted density function of crossing initiation time of the SW-PRD model based on dataset one. The predicted results, including density function,
samplings and mean values of crossing initiation time, are compared with the observed data in terms of vehicle speed and traffic gap size.
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Fig. A3. Predicted density function of crossing initiation time of the SW-PRD model based on dataset two. The predicted density functions and samplings
are compared with the observed data. Regarding each traffic scenario, the order of traffic gaps is indicated above each sub-figure. The vertical lines represent
the time when the rear end of the related vehicle passes the pedestrian’s position, i.e., tpass.
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