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Abstract—Developing autonomous vehicles (AVs) helps im-
prove the road safety and traffic efficiency of intelligent trans-
portation systems (ITS). Accurately predicting the trajectories of
traffic participants is essential to the decision-making and motion
planning of AVs in interactive scenarios. Recently, learning-based
trajectory predictors have shown state-of-the-art performance
in highway or urban areas. However, most existing learning-
based models trained with fixed datasets may perform poorly
in continuously changing scenarios. Specifically, they may not
perform well in learned scenarios after learning the new one.
This phenomenon is called ”catastrophic forgetting”. Few studies
investigate trajectory predictions in continuous scenarios, where
catastrophic forgetting may happen. To handle this problem,
first, a novel continual learning (CL) approach for vehicle
trajectory prediction is proposed in this paper. Then, inspired
by brain science, a dynamic memory mechanism is developed by
utilizing the measurement of traffic divergence between scenarios,
which balances the performance and training efficiency of the
proposed CL approach. Finally, datasets collected from different
locations are used to design continual training and testing
methods in experiments. Experimental results show that the
proposed approach achieves consistently high prediction accuracy
in continuous scenarios without re-training, which mitigates
catastrophic forgetting compared to non-CL approaches. The
implementation of the proposed approach is publicly available
at https://github.com/BIT-Jack/D-GSM.

Index Terms—Continual learning, interactive behavior mod-
eling, intelligent transportation systems, autonomous vehicles,
trajectory prediction.
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tf Predicted time horizon
tr Positions of vehicles
t̂r Predicted position of vehicles
Nts Number of testing samples
X Historical trajectories observed by predictor
Y Future trajectories to be predicted
Γ Bivariate Gaussian distribution over the predicted time

horizon
XN

cond Condition considered N surrounding vehicles
CKLDwt

i,j Weighted-CKLD between distribution pi and pj
mD

r Amounts of memory data allocated to the rth task
fθ Model parameterized by θ
f

′

θ Model state at the end of learning of the last task
gr Loss gradient of the rth previous task
S Continuous scenarios
di The ith scenario in continuous scenarios
c Index of ”the current scenario”.

I. INTRODUCTION

AUTONOMOUS vehicles (AVs) play an essential role
in improving traffic safety and efficiency in intelligent

transportation systems (ITS) [1]. Since understanding inter-
active behavior of road users and predicting their future
trajectories support the efficient decision-making and enable
the risk assessment of AVs, they are fundamental to develop
AVs [2–4].

In early studies, trajectories of vehicles are predicted based
on kinetic and dynamic models [5, 6]. These approaches are
classified into physics-based methods in [7]. Physics-based
methods perform well in short-term (less than 1s) prediction.
However, driving behaviors among vehicles influence each
other, but these methods do not consider these interactive be-
haviors. Thus, physics-based methods cannot handle changes
caused by the execution of a particular behavior (e.g., a lane-
changing action, acceleration, or brake). It limits their long-
term prediction performance in interactive scenarios [7].

More advanced interaction-aware methods are developed to
overcome these limitations. Most interaction-aware methods
are learning-based, which predict future trajectories based on
the modeling of interactions between agents [8]. By utilizing
Long Short-Term Memory (LSTM), Social-LSTM is the first
work that modeled interactions between pedestrians as social
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Fig. 1. Continuous scenarios are coming in a sequence. Due to the limited data
sustainability, the data of past and unseen scenarios are not fully accessible.
In continuous scenarios, trajectory predictor trained with the current scenario
data may have poor performance in learned scenarios (old tasks), which is
called catastrophic forgetting. The proposed CL approach aims to address
this problem. Measurements of the traffic divergence (task similarity) are also
exploited to reduce learning cost in this study.

behaviors [9]. In social-LSTM, a grid-based pooling mech-
anism was designed to represent the spatial information of
pedestrians in a scene. Then social-pooling layers were used
to capture interactions among pedestrians based on the spatial
information. [10] improved the performance of Social-LSTM
by applying convolutional layers to replace the fully connected
layers.

Moreover, Social-LSTM was applied in the generator of
Generative Adversarial Networks (GAN) to predict socially
plausible trajectories in Social-GAN [11]. Due to the more
explicit modeling of interactions, graph-based methods with
the better interpretability are developed. Graph-based methods
represent interactions between agents by the nodes and edges
in graphs. In [12], interactions and trajectories were modeled
as spatial-temporal graphs using a Graph Neural Network
(GNN). Then trajectories of vehicles and pedestrians were
predicted by a GNN-based multitask learning framework. Sim-
ilarly, [13] extracts interactions into social behavior graphs.
Then a graph convolutional neural network was applied to
propagate social interactions in such graphs, outperforming
prior works.

However, the studies above mainly focus on designing net-
works or architectures to improve the accuracy of predictions.
Most existing models are trained and tested specifically for
each dataset. Models may fail under this learning paradigm if
testing data distribution differs from the training data distribu-
tion [14, 15]. Meanwhile, AVs are expected to drive through
various scenarios continually in applications. Since factors
including traffic rules, the density of traffic flow, and road

geometry are divergent, interactive behaviors vary in different
scenarios. Most models need to be re-trained on increasing
datasets to guarantee the good performance in continuous
scenarios [16]. With a heavy computing burden and data
storage requirement, this scheme is not efficient and practical.
This paper is inspired by Continual Learning (CL) [17], which
trains models on new data streams without directly accessing
old data to address these problems.

Given a potentially unlimited data stream, learning from a
sequence of partial experiences where all data is not available
at once is called Continual Learning [16]. In continual learn-
ing, the model is updated with a dataset of the current task
without directly accessing old ones. As shown in Fig. 1, mod-
els in this work observe different scenarios sequentially. Only
the data of currently observed scenario are fully available.The
data of past scenarios can be stored with limited amounts by
CL strategies. Under this assumption, trainable parameters of
non-CL models are optimized to minimize the loss of the
current scenario. Conversely, the training loss of past scenarios
is ignored. Thus, non-CL models may have low predicting
accuracy in past scenarios after learning the new one, which
is called ”catastrophic forgetting”. In other words, catastrophic
forgetting happens since models try to ”fit” the current task
without considering the performance on past ones. One of the
primary purposes of continual learning strategies is to alleviate
catastrophic forgetting [17–19]. To overcome the catastrophic
forgetting, this paper aims to enable learning-based trajectory
predictors to have consistent good performance in sequential
tasks without re-training. The task similarity is also exploited
to balance the learning cost and the performance.

More detailedly, this work is inspired by rehearsal meth-
ods, which are advanced strategies in CL [20–22]. Rehearsal
methods achieve the goal of CL by using a memory system
to keep the learned knowledge. The specific strategy used in
this work is Gradient Episodic Memory (GEM) [22]. GEM
firstly uses the data stored in the episodic memory to calculate
losses on previous tasks. Then, these losses are utilized to
define an inequality constraint, interfering with the training
process. Under the constraint, models are required to avoid
the increment of losses on previous tasks when updating the
trainable parameters to mitigate the catastrophic forgetting.

In this research, a novel CL approach termed Dynamic
Gradient Scenario Memory (D-GSM) is proposed for the
prediction of vehicle trajectory in continuous scenarios. Com-
pared with non-CL models, D-GSM improves the predicting
performance in continuous scenarios by constraining the loss
increment in observed scenarios. Moreover, inspired by brain
science [23], a dynamic memory is designed in D-GSM by
exploiting the similarity of tasks. The similarity of tasks are
modeled by traffic divergence between scenarios. Instead of
treating all previous tasks equally as in [24, 25], the dynamic
memory allocates different memory resource to divergent
tasks, balancing the performance and training efficiency of the
CL strategy in D-GSM. Main contributions of this paper are:

1) A novel continual learning approach named Dynamic
Gradient Scenario Memory (D-GSM) is proposed for in-
teractive behavior learning in continuous scenarios. With
the help of GEM, the proposed D-GSM enables learning-
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based prediction models to consistently perform well
in various scenarios coming in a sequence without re-
training by avoiding the increment of losses on previous
tasks.

2) A new metric based on Kullback-Leibler divergence
(KLD) is proposed to measure traffic divergence between
different scenarios. The distance between distributions of
different scenario data is measured by the KLD-based
metric, representing the traffic divergence. Furthermore,
a dynamic memory exploiting the measurement of traffic
divergence is developed to improve the training efficiency
of the proposed CL approach.

3) Evaluation methods for vehicle trajectory prediction in
continuous scenarios are designed. Then, three experi-
ments are conducted based on the divergent scenario data
collected from different locations. It should be noted that
the proposed CL approach is a plug-and-play approach.
The base model adopted in experiments is demonstrated
as an example.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this work, interaction-aware predictors are trained using
a sequence of datasets collected in different scenarios. To
formulate the trajectory prediction in continuous scenarios, the
fundamental problem, i.e., the prediction of vehicle trajectory
in the interactive scenario, will be firstly formulated in Section
II-A. Then, based on the fundamental problem, the CL task for
trajectory prediction in continuous scenarios will be described
in Section II-B.

A. Trajectory Prediction in Interactive Scenarios
As most interactive behavior learning research [12, 26, 27],

this work considers scenarios1 with highly interactive be-
haviors among vehicles, including scenarios in urban and
highways. The scenarios in this work are represented by traffic
datasets collected from divergent locations at different time. It
is assumed that datasets representing different scenarios are
non-i.i.d. For this assumption, Section IV-A will intuitively
demonstrate the divergence of selected scenarios. This paper
also proposes a method in Section III-B to quantitatively
measure the divergence between distributions of motion data
from different scenarios. The following of this sub-section
will generally formulate the trajectory prediction task in the
interactive scenario.

In an interactive scenario, driving behaviors and motions of
vehicles influence each other. The interaction-aware trajectory
predictor observes historical trajectories of vehicles in the
scene over th seconds. Then, it predicts future trajectories
of target vehicles over tf seconds. In detail, the input to the
predictor is:

X=
[
tr(t−th), ..., tr(t−1), tr(t)

]
. (1)

In (1), tr(t) =
[
x
(t)
0 , y

(t)
0 , ..., x

(t)
i , y

(t)
i , ..., x

(t)
n , y

(t)
n

]
represents

x and y co-ordinates of vehicles at time t. tr(t) includes x(t)0

1The exploration of rigorous definitions of ”traffic scenario” or ”traffic
scene” is not the focus of this work. Researchers who are interested in the
exploration of these concepts can refer to [28].

and y(t)0 , representing co-ordinates of the target vehicle (pre-
dicted vehicle). x(t)i and y

(t)
i , (i = 1, ..., n) are co-ordinates

of surrounding vehicles. Since decision-making expects the
prediction to provide all possible future motions [4], the output
is not a single predicted trajectory of target vehicle. Instead,
the output is considered as the estimated bi-variate distribution
over:

Y =
[
tr

(t+1)
0 , ..., tr

(t+tf )
0

]
, (2)

with tr
(t)
0 =

[
x
(t)
0 , y

(t)
0

]
are future co-ordinates of the target

vehicle. Thus, the output can be formulated as:

P(Y|X) ∼ Γ. (3)

where Γ =
[
Γ(t+1), ...,Γ(t+tf )

]
are parameters of a bivariate

Gaussian distribution at each time step over the prediction
horizon. After introducing the fundamental task, the CL task
for trajectory prediction in continuous scenarios is described
in Section II-B.

B. Continual Learning Task for Trajectory Prediction

CL problem consists of a sequence of tasks coming in
a stream [16, 18]. In this work, tasks refer to trajectory
predictions in interactive scenarios, which is formulated in
Section II-A. Due to the limited data and computing resource,
it is assumed that all data are not available at once. Moreover,
the observed data cannot be entirely stored. Under these as-
sumptions, the trajectory predictor is expected to perform well
consistently in sequential tasks, i.e., predictions in continuous
scenarios. Important concepts of the CL tasks in this work are
defined as follow:

1) Continuous Scenarios: Continuous scenarios consist of
a sequence of datasets which can be characterized as S =
{d1, ..., dc, ...dn}. In S = {d1, ..., dc, ...dn}, datasets are
collected at different time and locations representing divergent
scenarios. The AV is assumed to pass these scenarios orderly,
and di ∈ S, (i = 1, ..., n) is the ith scenario to be observed by
the AV. It should be noted that scenarios are allowed to appear
in S more than one times, corresponding to the situation that
the AV passes the same scenario again.

2) Current Scenario: The current scenario refers to the
newly coming scenario dc in S. The data of the current
scenario are fully available to train the trajectory predictor.
The trajectory prediction in the current scenario corresponds
to the current task in CL.

3) Past Scenarios: In continuous scenarios S, the scenarios
di ∈ S, (i = 1, .., c− 1) that have been observed are termed
past scenarios. The data of past scenarios cannot be directly
used for training, while the CL strategy can store these
data with limited amounts. The trajectory predictions in past
scenarios refer to previous tasks in CL.

4) Future Scenarios: The scenarios dj ∈
S, (j = c+ 1, .., n) to be arrived are termed future scenarios.
Data of future scenario are not available. The next ”current
scenario” will come from future scenarios. The number of
scenarios n can be unknown.
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Fig. 2. Dynamic Gradient Scenario Memory (D-GSM): When a new traffic scenario arrives, scenario repository will firstly store new data as memory data.
Then, the traffic divergence measurement module utilizes memory data to measure the divergence between the current scenario and each past scenario. Based
on the measuring of divergence, the dynamic memory module allocates memory data with different amounts for different previous tasks to the CL module.
Finally, with the help of GEM strategy, the trajectory predictor is trained in the CL module. Since the more memory data bring the higher computing cost,
the dynamic memory balances the training efficiency and performance by allocating memory data in a reasonable way.

5) Catastrophic Forgetting: Catastrophic forgetting in this
work refers to the phenomenon that the predicting accuracy
in past scenarios declines after the predictor learns the data of
current scenario.

After learning the data of current scenario, a trajectory
predictor is expected to perform well among all scenarios
that have been learned. For example, in continuous scenarios
S = {d1, ..., dc, ..., dn}, the data of the current scenario dc ∈ S
are fully accessible for training. Conversely, the data of past
scenarios di ∈ S, (i = 1, .., c− 1) are not fully accessible. The
performance of prediction is evaluated on all testing sets from
di ∈ S, (i = 1, .., c). Denoting the predicting error in the ith

scenario as Ri, the aim of CL task for trajectory prediction in
continuous scenarios is to minimize the average errors R of
all scenarios that have been learned in S:

minimize R =
1

c

c∑
i=1

Ri. (4)

III. DYNAMIC GRADIENT SCENARIO MEMORY FOR
VEHICLE TRAJECTORY PREDICTION

This section introduces the proposed CL approach for
vehicle trajectory prediction in continuous scenarios, termed
Dynamic Gradient Scenario Memory (D-GSM). As shown
in Fig. 2, D-GSM consists of four modules: 1) a scenario
repository, 2) a traffic divergence measuring module, 3) a
dynamic memory module, and 4) a dynamic memory-aware
continual learning module.

Since the old data is not directly accessible, the scenario
repository is used to store the observed data of past scenarios
as memory data. When a new scenario comes, the scenario
repository updates by storing new data with abandoning a part
of old memory data due to the limited storage. Then, the traffic
divergence between the current and past scenarios is measured
using the memory data from the scenario repository. Next,
according to measuring results, the dynamic memory module
dynamically allocates memory data into the CL module. Fi-
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nally, with the help of allocated memory data, the CL module
trains the trajectory predictor using GEM strategy. The details
of four modules in D-GSM are presented in Section III-A,
Section III-B, Section III-C, and Section III-D, respectively.

A. Scenario Repository

The scenario repository is used to store observed data with
a limited amount as memory data. In S = {d1, ..., dc, ..., dn},
when a new scenario dc arrives, the scenario repository updates
by storing the data from the current scenario dc. Since the
storage space of the repository is not infinite, it also abandons
a part of memory data stored from di(i = 1, . . . , c − 1).
Supposing the upper limit of data storage is M , amount
of memory data corresponding to the ith scenario will be
mi = M/c. Thus, when a new scenario arrives, mi declines
while c increases.

In D-GSM, the memory data stored in the scenario repos-
itory are used to measure the traffic divergence between
scenarios. Then, according to the measurement, the dynamic
memory module allocates memory data into continual learning
modules for model training. Different tasks are allocated with
different amounts of memory data to improve the training
efficiency.

B. Traffic Divergence Measuring

The divergence between different scenarios is the main
reason causing catastrophic forgetting of trajectory prediction
in continuous scenarios. On the contrary, if the new scenario is
quite similar with the observed one, the catastrophic forgetting
may not happen. Moreover, exploiting similarity of tasks is
also a key factor in CL [23]. Thus, the divergence (or de-
scribed as similarity) measurement between traffic scenarios is
considered in this work. In detail, traffic divergence measuring
module in D-GSM uses a KLD-based metric to quantify the
traffic divergence between scenarios. The measurement esti-
mates the similarity between CL tasks, enabling the strategy
of data allocation in dynamic memory module.

According to previous studies [25, 29], the divergence
between interactive scenarios can be represented by the dif-
ference of spatiotemporal dependency among vehicles. From
the aspect of scenario data, the spatiotemporal dependency can
be formulated as the conditional probability density function
(CPDF) p (Y|X), where Y represents the future trajectories of
the predicted vehicle, and X represents the observed historical
trajectories of all vehicles.

Supposing p1 and p2 are the CPDFs of two scenarios.
The distance between CPDFs are calculated by conditional
Kullback-Leibler divergence (CKLD):

CKLD(p1 (Y|X) ||p2 (Y|X))

=
∫
p1 (X)

∫
log
(

p1(Y|X)
p2(Y|X)

)
p1 (Y|X) dYdX,

(5)

In (5), p1 and p2 are approximated by estimations of
Gaussian Mixture Models (GMMs) from a Mixture Density
Networks (MDN) [30]. It should be noted that, in the im-
plementation, to facilitate the learning process, the condition
X with fixed dimensions is used, which only considers the

closest N surrounding vehicles. Besides, to represent the
interactions of vehicles, instead of directly using historical
trajectories, k eigenvectors of a 2D Laplacian matrix con-
catenated with historical trajectories of the predicted vehicle
X0 =

[
tr

(t−th)
0 , ..., tr

(t−1)
0

]
are used to generate the condition

X. To distinguish this processed condition X from the histor-
ical trajectories described in (1), we denote this condition one
as XN

cond:
XN

cond = [X0,v1, ...,vk], (6)

where vi(i = 1, ..., k) are eigenvectors of a 2D Laplacian
matrix.

Supposing that e
(
trki , tr

k
j

)
is Euclidean distance between

the ith vehicle and jth vehicle at time k, and λ is a decay
parameter, the Laplacian matrix Lp is computed by:

Lp = D−A (7)

where A = (ai,j)N×N and D = (di,j)N×N . The elements in
matrix A and D are calculated by:

ai,j = exp

(
−

t−1∑
k=t−th

ωke
(
trki , tr

k
j

)
/

t−1∑
k=t−th

ωk

)
,

ωk = λ(t−1)−k, k = t− th, ..., t− 1,

di,j =


N∑
j=1

ai,j , i = j

0, i 6= j

,

(8)

After estimating the GMM for each condition XN
cond, Monte-

Carlo sampling is used to compute the Kullback-Leibler
divergence (KLD) since the KLD between two GMMs is
not analytically attractable. Then CKLD is obtained based
on KLD. Specifically, assuming that distribution p1(X

N
cond)

has n1 samples denoted as XN
cond,i(i = 1, ..., n1), nmc

samples denoted as Yj(j = 1, ..., nmc) are sampled from
p1(Y|XN

cond,i), KLD between two distributions is obtained
by Monte-Carlo sampling:

KLD
(
p1

(
Y|XN

cond,i

)
||p2

(
Y|XN

cond,i

))
= 1

nmc

nmc∑
j=1

(
log p1

(
Yj |XN

cond,i

)
− log p2

(
Yj |XN

cond,i

))
.

(9)
Finally, CKLD is calculated as:

CKLD
(
p1
(
Y|XN

cond

)
||p2

(
Y|XN

cond

))
= 1

n1

n1∑
i=1

KLD
(
p1

(
Y|XN

cond,i

)
||p2

(
Y|XN

cond,i

))
.

(10)

Moreover, since the original KLD is calculated using mem-
ory data in the scenario repository with a storage limit, the
amount of memory data for each scenario decreases when a
new scenario arrives, as stated in Section III-A. The influence
of data usage on CKLD is also considered in this paper. More
investigations and the basic requirement of this calculation are
represented in Appendix B.

CKLD can preliminarily reveal the divergence between
scenarios since large CKLD indicates a significant distance
between GMMs. If two scenarios are the same, CKLD will
equal zero. However, CKLD is asymmetrical, which means
that if the p1 and p2 are exchanged in (5), CKLD will be



6

Fig. 3. Dynamic memory in D-GSM is inspired by synaptic theory in brain
science. Sufficient memory resources help agents to remember specific issues/
tasks. Restricted memory resources bring rapid forgetting.

different. The asymmetry may lead to contradictory measur-
ing results when comparing divergence among traffic sce-
narios. Therefore, this work proposes a novel metric termed
weighted-CKLD to address the problem mentioned above. The
weighted-CKLD is calculated as:

CKLDwt
1,2 = w1CKLD(p1||p2) + w2CKLD(p2||p1) (11)

In (11), w1 and w2 are weights (w1 + w2 = 1). And p1
and p2 in (11) represent CPDFs of scenarios to compare.
Which weight to be larger depends on which distribution is
highlighted. For example, there are three CPDFs {p1, p2, p3}
corresponding to three scenarios. We want to compare the
divergence between {p1, p2} and {p1, p3}. The weighted-
CKLD CKLDwt

1,2 and CKLDwt
1,3 need to be calculated. In this

case, the highlighted one is p1. Then we choose larger value
for w1 in CKLDwt

1,2 and CKLDwt
1,3.

In our work, D-GSM explores the relationship between
catastrophic forgetting and the spatiotemporal dependency di-
vergence between current traffic scenarios and past scenarios.
Thus the highlighted scenario is the current one. Weighted-
CKLD measuring the traffic divergence is utilized to improve
the training efficiency of CL module by applying the dynamic
memory, which is introduced in Section III-C.

C. Dynamic Memory Module

The dynamic memory module allocating different memory
data for divergent tasks to improve the efficiency of CL is in-
spired by the synaptic theory of memory in brain science [31].
The synaptic theory indicates that the forgetting process can
become rapid when memory resources are restricted [23, 32].

The idea inspired by brain science and the allocating principle
in the dynamic memory module are shown in Fig. 3. In
this work, the memory resources refer to the memory data.
Using more memory data may enable the model to have
better retention. However, more memory data also burden the
training cost in CL.

Based on the inspiration, an allocation strategy for memory
data is developed in the dynamic memory module to make
a trade-off between the performance and training cost: In-
tuitively, compared with tasks in pretty different scenarios,
tasks in past scenarios that are similar to the current one
are ”easier” for models to remember since the learning-based
model updates parameters depending on the training data.
Therefore, to balance the effectiveness and efficiency of CL,
the dynamic memory in D-GSM allocates more memory data
for observed tasks that are ”hard” to remember.

In detail, results of traffic divergence measuring is used to
enable the dynamic memory module to dynamically allocate
memory data from the scenario repository to the CL module.
Instead of allocating memory data to all previous tasks equally
as GEM [22], the dynamic memory of D-GSM allocates a
different number of memory data to different previous tasks.
The specific amounts of allocated data to a past scenario
depend on its traffic divergence to the current scenario. Firstly,
the traffic divergence measuring module uses memory data
stored in the scenario repository to calculate weighted-CKLD.
Then the maximum weighted-CKLD is selected:

CKLDwt
max = max

{
CKLDwt

c,r|r ∈ {1, ..., c− 1}
}

(12)

where CKLDwt
c,r is the weighted-CKLD between the current

scenario and the rth past scenario. The traffic scenario cor-
responding to the maximum weighted-CKLD indicates the
largest divergence with the current scenario. Denote the max-
imum amounts of memory data for CL as Mcl(Mcl ≤ M).
Then, memory data with the most amounts mmax = Mcl

c−1 is
allocated to this traffic scenario. Finally, memory data amounts
allocated to the rth scenario is calculated by:

mD
r = mmax

CKLDwt
c,r

CKLDwt
max

. (13)

Equation (13) presents the specific data allocation of dy-
namic memory, which will be used to formulate the dynamic
memory-aware CL module of D-GSM in Section III-D.

D. Dynamic Memory-Aware Continual Learning

The allocated memory data from the dynamic memory
module are used to apply the CL strategy in model training.
Inspired by GEM [22], the CL module in D-GSM firstly
defines loss functions for previous tasks, i.e., trajectory pre-
dictions in past scenarios. Then, inequality constraints are set
to interface the training process, where the model observes
the training data of the current scenario. Finally, with the help
of the Quadratic Program (QP) algorithm, proposed gradients
satisfying the inequality constraints are applied to update
parameters, which avoids the increment of losses on previous
tasks.
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The loss functions for previous tasks are calculated using
memory data. Original GEM treats all previous tasks equally
without considering the similarity between tasks, which may
bring an unnecessary computational burden. As introduced in
Section III-C, instead of treating all tasks equally, D-GSM uses
dynamic memory data allocation to construct loss functions for
previous tasks:

l
(
fθ,m

D
r

)
=

1

mD
r

mD
r∑

i=1

l (fθ (Xi, r) ,Yi) (14)

where mD
r (r = 1, .., c−1) is the allocated amounts of samples

described in (13). fθ is the vehicle trajectory predicting model
parameterized by θ, and (Xi, r,Yi) is the ith sample in the al-
located memory data corresponding to the rth (r = 1, .., c− 1)
past scenario. Then, in the training process of the current task,
losses in (14) are used to define inequality constraints to avoid
the increment of losses on previous tasks.

Supposing that (X, c,Y) are samples of the current task,
and f

′

θ represents the predicting model state at the end of
learning of the last traffic scenario, the inequality constraints
are formulated as:

minimizeθ l (fθ (X, c) ,Y)

s.t. l
(
fθ,m

D
r

)
≤ l
(
f

′

θ,m
D
r

)
, for all r < c.

(15)

For an efficient implementation, this paper assumes that the
loss function is local linear (when learning rate is small), and
denotes loss gradients of the current and previous tasks as g
and gr, respectively. (15) can be rephrased into:

〈g,gr〉 :=
〈

∂l(fθ(X,c),Y)
∂θ ,

∂l(fθ,mD
r )

∂θ

〉
≥ 0,

for all r < c.
(16)

If constraints (16) are satisfied, the proposed gradient g to
update parameters will not increase the loss of previous tasks.
Otherwise, the gradient g will be projected to the closest
gradient g̃ (in squared L2 norm) satisfying all constraints in
(16):

minimizeg̃
1
2 ‖g − g̃‖22

s.t. 〈g̃,gr〉 ≥ 0, for all r < c.
(17)

To solve (17) efficiently, a QP algorithm is used. The primal
of a QP with inequality constraints is described as:

minimizez
1
2zTCz + pTz

s.t. Qz ≥ b
(18)

where C ∈ Rp×p,p ∈ Rp,Q ∈ R(c−1)×p and b ∈ Rc−1.
The dual problem of (18) is:

minimizeu,v
1
2uTCu− bTv

s.t. QTv −Cu = p,
v ≥ 0.

(19)

If (u∗,v∗) is a solution to (19), then there will be a solution
z∗ satisfying Cz∗ = Cu∗. Thus, the primal GEM QP to (16)
can be described as:

minimizez
1
2zT z− gT z + 1

2gTg
s.t. Gz ≥ 0,

(20)

Fig. 4. The mechanism of D-GSM to realize continual learning in continuous
scenarios. Compared with non-CL methods, dynamic memory-aware continual
learning strategy of D-GSM constrains the increment of loss on previous tasks,
which alleviates catastrophic forgetting.

where G = − [g1, ...,gc−1] and the constant term gTg is
discarded. (20) is a QP on p variables (the number of trainable
parameters of trajectory predictor). The dual of it is formulated
as:

minimizev
1
2vTGGTv + gTGTv

s.t. Gz ≥ 0.
(21)

Once the dual problem (21) is solved for v∗, the projected
gradient update can be recovered as g̃ = GTv∗+g. According
to [22], adding a small constant γ ≥ 0 to v∗ biased the gra-
dient projection to updates that favored beneficial backwards
transfer in practice. Fig. 2 shows the complete process of D-
GSM. Fig. 4 also shows the mechanism of D-GSM to realize
continual learning. Compared with not-CL methods, D-GSM
applies the memory-aware continual learning strategy to avoid
the loss on previous tasks during the current updating.

The entire algorithm of D-GSM is summarized in Algorithm
1. To clearly explain the input and output in each step, symbols
in including frepo for repository updating, fdiv for divergence
measuring, falloc for dynamic memory module, fcl for CL
training strategy and lprev , lcur for previous and current losses
are newly used in Algorithm 1.

IV. EXPERIMENTS

To investigate CL problems formulated in Section II and
evaluate the proposed approach introduced in Section III, three
experiments using datasets representing different scenarios are
conducted. As shown in Fig. 5, the first experiment explores
the relationship of catastrophic forgetting and task similarity
of trajectory prediction in continuous scenarios. The second
experiment investigates the influence of memory resource on
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Algorithm 1 Dynamic Gradient Scenario Memory (D-GSM)
for Vehicle Trajectory Prediction in Continuous Scenarios
Inputs: Data of continuous scenarios S = {d1,..., dc, ..., dn};

memory limit M , Mcl; functions frepo, fdiv , falloc, fcl;
loss lprev, lcur; model fθ.

Outputs: Prediction of the rth scenario Pr(Y|X) ∼ Γ in (3),
for r=1:c.

1: for current scenario c = 1 to n do
2: for i = 1 to c do
3: Memory data d

′

i ← frepo(di,mi). . Scenario repos-
itory updating. Amount mi =M/c.

4: if c > 1 then
5: for r = 1 to c− 1 do
6: CKLDwt

c,r ← fdiv(d
′

c, d
′

r) . Traffic divergence
measuring in (6)-(11).

7: Calculate CKLDwt
max as (12).

8: mD
r ← falloc(CKLDwt

max,Mcl,CKLDwt
c,r). . Dy-

namic memory allocating as (13).
9: lprev ← l(fθ,m

D
r ) . Previous loss in (14).

10: θ ← fcl(lprev, lcur) . CL strategy in (15)-(21).
11: end for
12: else
13: Model training in a single scenario (c==1).
14: end if
15: Evaluate fθ with the testing set of di.
16: end for
17: end for

the CL performance. The comparison between non-CL models
and models applied with the proposed CL approach is demon-
strated in the third experiment, evaluating the performance of
D-GSM in continuous scenarios. This section firstly introduces
used datasets and experimental settings. Then, experimental
results with analysis are presented.

A. Datasets and Implementations

Since this study focuses on CL tasks for interactive behavior
learning, typical interactive scenarios, including merging sce-
narios in highways, intersections, and roundabout scenarios
in urban areas, are selected as examples to evaluate the pro-
posed approach. Specifically, experiments are conducted based
on INTERACTION [33], which collect data from different
locations at different time to represent divergent scenarios.
For convenience, these scenarios are denoted with different
notations, as shown in Table I.

TABLE I
DIFFERENT SCENARIOS FROM INTERACTION DATASET USED IN

EXPERIMENTS

Scenario Name Interactive Scenario Type Notation

DR USA Intersection MA Urban Intersection d1
DR USA Roundabout FT Urban Roundabout d2

DR CHN Merging ZS Ramp Merging d3
DR USA Roundabout EP Urban Roundabout d4
DR USA Roundabout SR Urban Roundabout d5

Fig. 5. The logic of three experiments in this paper. The experiment I explores
the relationship between catastrophic forgetting and traffic divergence. After
exploring the reasons for forgetting, the experiment II investigates the memory
capability of the proposed CL approach using different amounts of memory
data. The proposed D-GSM utilizes measurements of traffic divergence to
dynamically allocate memory data. Experiment III compares the performance
of D-GSM with several baselines.

Fig.6 also demonstrates the photos of these scenarios intu-
itively. In detail, as shown in Fig. 6(a), d1 is a busy all-way-
stop intersection with lanes controlled by stop signs. d2 is
demonstrated by Fig.6 (b), which is a busy 7-way roundabout
with one ”yield” branch and six ”stop” branches. As Fig.6
(e) shows, d3 is collected on a highway that contains several
sub-scenarios. The upper two lanes are zipper merging, and
it is a ramp for the middle two lanes. Moreover, it is a
forced merging for the lower three lanes where vehicles must
change lanes. Fig.6 (c) and (d) show the d5 and d4, which
are roundabouts controlled by stop signs and yield signs,
respectively.

These scenarios are divergent from many aspects such
as road geometry, traffic participants, traffic rules, driving
behaviors of vehicles, etc. Fig.7 also demonstrates the com-
parison of the distribution of the minimum time-to-conflict-

TABLE II
IMPLEMENTED KEY PARAMETERS

Parameters Implemented Values

Observation horizon 2s
Prediction horizon 4s

Input Size 2
Output Size 5

Number of ST-GCNN Layers 1
Number of TXP-CNN Layers 5
Number of Training Epochs 250

Learning Rate 0.001
Kernel Size 3
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Fig. 6. Intuitive visual aids for scenarios: Various interactive driving scenarios are used in experiments based on INTERACTION datasets. The first two
letters (”DR”) of names represent that the data are collected by drones. The following three letters represent the corresponding country (”USA” is for the
U.S.A., and ”CHN” is for China). The last two letters are scenario codes to distinguish different locations [33].

point(4TTCPmin). 4TTCPmin represents the density of
interactive behaviors among these scenarios [33]. As shown
in Fig. 7, it can be found that selected five scenarios have
different density of interactive behaviors. More details on the
definition of 4TTCPmin are provided in Appendix A. To
quantify the divergence of scenarios, as described in III-B, this
paper mainly focuses on the different spatiotemporal depen-
dencies among vehicles between scenarios. And the weighted-
CKLD is proposed to measure the divergence of distribution
in the aspect of spatiotemporal dependencies between these
non-i.i.d datasets which represent divergent scenarios.

In data processing, extracted features include IDs and coor-
dinates of vehicles with timestamps. Then, trajectories samples
are processed for vehicle trajectory prediction and traffic
divergence measuring, respectively, as described in Section
II-A and Section III-B. In detail, the closest 5 surrounding
vehicles are considered (N = 5) in the conditional XN

cond

for measurements of the traffic divergence. Furthermore, the
number of eigenvector k in (6) is set as 3. The training strategy
of continual trajectory prediction is that the learned model is
loaded to be trained on new datasets without directly accessing
old data from past scenarios when a new scenario comes.
Approximate 10,000 data samples are used from each scenario.
The selected dataset corresponding to each scenario is split
into training, validation, and testing datasets by 7:1:2.

The proposed approach is appropriate for interaction-aware
models using gradient descent-based methods for updating
parameters. In this work, the Social-STGCNN model [34], a
graph-based interaction-aware trajectory predictor, is adopted
as the base model. In Social-STGCNN, interactions between
vehicles are represented by a graph where nodes represent
the positions of vehicles, and edges with a weighted matrix
encode the spatial interdependency between vehicles. Then,
graph representations are inputted into the spatiotemporal
graph convolutional neural networks (ST-GCNN). Based on
the operation of ST-GCNN, a time-extrapolator convolutional
neural network (TXP-CNN) outputs the predicted distribution

Fig. 7. Comparisons for distributions of the minimum time-to-conflict-point
among selected scenarios. The x-axis represents the length of minimum time-
to-conflict-point (4TTCPmin) in seconds. And the y-axis are the percentage
of vehicles that with particular 4TTCPmin relative to total number of
vehicles in the dataset. The higher values of y-axis represent larger density of
interactive behaviors [33]. Detailed definition of minimum time-to-conflict is
described in Appendix A.

of trajectories as (3).
The model observes 2s historical trajectories and predicts

trajectories for 4s. They are trained for 250 epochs using
Stochastic Gradient Descent (SGD), and the learning rate is
set as 0.001. Detailed implementation of models are shown
in Table II. The training loss function is the negative log-
likelihood:

l (θ) = −
∑

log
(
P
(
Y|Γ̂

))
(22)

where Γ̂ is the estimated Gaussian distribution over future
trajectories Y. Models are implemented using PyTorch2.

The metrics for predicting accuracy are Average Displace-
ment Errors (ADE) and Final Displacement Errors (FDE),
commonly used in trajectory predictions [9, 12, 34]. Suppose
each test set has Nts samples, the ith sample of predicted

2https://pytorch.org
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Fig. 8. Catastrophic forgetting compared with the measurement of traffic divergence.

co-ordinates of target vehicle and the ground truth at time t
are denoted as t̂r

(t)

0,i and tr
(t)
0,i. ADE represents the average

Euclidean distance for the whole predicted trajectory:

ADE =

∑Nts

i=1

∑t+tf
t′=t+1

∥∥∥t̂r(t′)0,i − tr
(t′)
0,i

∥∥∥
2

Nts × tf
. (23)

FDE represents the Euclidean distance for the final predicted
position:

FDE =

∑Nts

i=1

∥∥∥t̂r(t+tf )

0,i − tr
(t+tf )
0,i

∥∥∥
2

Nts
. (24)

B. Experimental Settings

This work mainly investigates the catastrophic forgetting of
vehicle trajectory prediction in continuous scenarios. Instead
of treating all previous tasks equally as GEM, the proposed

D-GSM uses dynamic memory for CL. Dynamic memory
allocates more memory resources, i.e., the memory data for
tasks that are easier to be forgotten to balance the effectiveness
and efficiency. D-GSM judges different tasks by measuring
traffic divergence between the current task and the previous
ones. To validate the rationality of dynamic memory and
evaluate the performance of D-GSM, three experiments are
conducted based on INTERACTION dataset. Experiments I
and II investigate key factors of predictions in continuous
scenarios and also validate the rationality of our design of
dynamic memory. Experiment III evaluates the proposed ap-
proach. Fig. 5 demonstrates the logic of experiments in this
work.

In detail, experiment I explores the relationship between
catastrophic forgetting and traffic divergence. Base models
are firstly trained with continuous scenarios consisting of two
scenarios. After learning the second scenario, the model is
tested with the firstly learned one. Compared to the test after
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learning the first scenario, the increment of predicting errors
reflects the catastrophic forgetting. Then, the traffic divergence
between different scenarios is presented by the weighted-
CKLD. Finally, the relationship between catastrophic forget-
ting and traffic divergence is analyzed.

After investigating influencing factors of forgetting in ex-
periment I, experiment II explores the retention of the pro-
posed approach from the aspect of memory resources. The
performance of the proposed approach with different memory
data is compared. Models with the proposed CL approach
are trained and tested in continuous scenarios. To make a
clear comparison between different memory usage, models
allocate 100, 500, and 1,000 samples of memory data for each
previous task in the CL strategy without using the dynamic
memory. The average performance over continuous scenarios
is compared.

Experiment III aims at evaluating the performance of the
proposed approach. Since the dynamic memory allocating
is expected to be compared to the model with equal mem-
ory allocating, three groups of continuous scenarios are set,
including Sthree = {d1, d2, d3}, Sfour = {d1, d2, d3, d4},
and Sfive = {d1, d2, d3, d4, d5}. Each group of continuous
scenarios has more than two scenarios (In continuous scenarios
with only two scenarios, the memory allocation of D-GSM is
the same as GSM.) The model settings are:
• Vanilla: The base model (Social-STGCNN) without ap-

plying continual learning approach.
• GSM (ours): The base model applied with the proposed

TABLE III
AVERAGE PREDICTING ADE(M)/ FDE(M) IN CONTINUOUS SCENARIOS

WITH DIFFERENT NUMBER OF MEMORY DATA

Continuous
Scenarios

0
Per Task

100
Per Task

500
Per Task

1,000
Per Task

{d1, d2} 2.33/5.89 2.29/5.65 2.12/5.51 1.99/5.14
{d1, d2, d3} 3.61/8.43 2.30/5.46 2.01/4.84 1.87/4.58

{d1, d2, d3, d4} 2.36/5.83 1.91/4.75 1.78/4.54 1.70/4.33

approach but without dynamic memory. The memory
usage for all past scenarios are equally set as mmax =
Mcl/ (c− 1). In this experiment, Mcl are 3,500 samples.

• D-GSM (ours): The base model applied with the entire
proposed approach. The memory usage for the rth past
scenario is described in (13), Mcl are also set as 3,500
samples.

• Joint-Training: Vanilla base model with joint training. It
is a non-continual learning setting that does not follow
the storage limitation assumptions of continual learning.
Data from all scenarios are available at once. Models are
trained with mixed data from all scenarios.

C. Experimental Results and Analysis

1) Experiment I: In the first experiment, models are tested
on the past scenarios that have been observed. Experimental
results of the first experiment are shown in Fig. 8. Taking
the first row in Fig. 8 for example, (a) and (b) are ADE and

Fig. 9. Trajectory predictions in continuous scenarios: The orange cross markers with dash lines represent the predicting performance vanilla social-STGCNN
model (base model). The red triangle markers with dash lines represent the performance of base model with joint-training, which has fully access to all traffic
data. And the solid lines are proposed continual learning method, where the green one represents the GSM (ours) and the purple one represents the D-GSM
(ours).
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TABLE IV
VEHICLE TRAJECTORY PREDICTING PERFORMANCE (ADE / FDE) IN CONTINUOUS SCENARIOS

Continuous Scenarios Tested Scenario Vanilla Joint Training GSM (ours) D-GSM (ours)

Continuous Scenarios Sthree:
d1, d2, d3

The 1st past scenario: d1
The 2nd past scenario: d2

Current scenario: d3
(Average)

4.82 / 11.53
5.29 / 12.15
0.73 / 1.62

(3.61 / 8.43)

3.15 / 7.80
2.69 / 6.43
1.23 / 2.54

(2.36 / 5.59)

2.55 / 6.36
2.96 / 6.84
0.80 / 1.74

(2.10 / 4.98)

2.67 / 6.14
3.05 / 6.91
0.90 / 1.97

(2.21 / 5.01)

Continuous Scenarios Sfour :
d1, d2, d3, d4

The 1st past scenario: d1
The 2nd past scenario: d2
The 3rd past scenario: d3

Current scenario: d4
(Average)

2.74 / 7.29
2.23 / 5.83
2.96 / 6.37
1.52 / 3.84

(2.36 / 5.83)

3.24 / 7.09
3.18 / 7.32
1.26 / 2.58
2.20 / 4.97

(2.47 / 5.49)

2.03 / 5.73
1.95 / 5.13
1.46 / 3.09
1.40 / 3.67

(1.71 / 4.04)

2.01 / 5.60
1.86 / 4.88
1.23 / 2.60
1.44 / 3.76

(1.63 / 4.21)

Continuous Scenarios Sfive:
d1, d2, d3, d4, d5

The 1st past scenario: d1
The 2nd past scenario: d2
The 3rd past scenario: d3
The 4th past scenario: d4

Current scenario: d5
(Average)

2.58 / 6.83
2.23 / 5.93
3.61 / 7.86
1.83 / 4.56
0.34 / 0.67

(2.12 / 5.17)

1.80 / 5.00
1.63 / 4.19
1.16 / 2.70
1.47 / 3.88
0.27 / 0.58

(1.27 / 3.27)

2.30 / 6.31
1.99 / 5.52
1.35 / 3.40
1.69 / 4.46
0.36 / 0.79

(1.54 / 3.05)

2.31 / 6.35
2.19 / 5.88
1.46 / 3.32
1.64 / 4.18
0.45 / 0.96

(1.61 / 4.13)

FDE tested on scenario d1 after observing the last scenario
in continuous scenarios S1 = {d1, d4}, S2 = {d1, d2}, and
S3 = {d1, d3}. The blue bars in (a) and (b) are baselines
showing the testing performance of the model trained on d1.
(c) shows the weighted-CKLD between new scenarios and the
first learned scenario d1. It can be found that, compared to
baselines, ADE and FDE increase in all settings after learning
the new scenario. The increased predicting errors reveal the
catastrophic forgetting of trajectory predictions in continuous
scenarios. The highest increment of ADE and FDE occurs in
the setting S3 = {d1, d3}. After learning scenario d3, ADE and
FDE increase by 112% and 105%. Compared to measurements
of the traffic divergence represented by weighted-CKLD in
(c), it can be found that the largest weighted-CKLD also
corresponds to the setting S3 = {d1, d3}.

The results are similar in the second rows (d)-(f) and third
rows (g)-(i). These results are explainable intuitively. First, d3
is a merging type scenario from a highway in China, while d1,
d2, and d4 are scenarios belonging to urban areas in the USA.
Thus, d3 can be regarded as a divergent scenario to others. As
expected, the highest weighted-CKLDs are results between d3
and other scenarios in all groups of Experiment I. Moreover,
compared with errors and weighted-CKLD, experimental re-
sults indicate that larger traffic divergence brings higher error
increments.

2) Experiment II: The second experiment compares the
proposed CL approach using different memory data for con-
tinual learning. Table III shows the average ADE and FDE

TABLE V
CALCULATED CKLDS BETWEEN DIFFERENT SCENARIOS

d′
CKLD(d||d′) d

d1 d2 d3 d4 d5

d1 0 151.21 87.79 65.45 121.64
d2 209.30 0 88.88 121.10 132.71
d3 1230.01 1622.34 0 987.29 1110.29
d4 152.44 171.08 109.58 0 97.99
d5 269.04 183.51 93.31 164.99 0

in three groups of continuous scenarios. The baseline is the
vanilla base model which does not use memory data (0
memory data per task) and has the highest average errors (both
ADE and FDE) in three tested groups. The model using the
most memory data in this experiment has the lowest errors
among the three groups of continuous scenarios. It can also be
found that in each group, with the increment of memory data
allocated to calculate the losses of past scenarios, the average
errors decline. These results indicate that using more memory
data for losses (14) may improve the predicting performance
in continuous scenarios. However, using more memory data
brings higher training costs. The third experiment will discuss
more on the cost, where the training cost of two proposed
model settings is compared.

3) Experiment III: The third experiment evaluates the per-
formance of the proposed approach. First, models are contin-
ually trained in continuous scenarios. Then models are tested
with all scenarios that have learned. This experiment includes
three groups of continuous scenarios.Table IV shows detailed
results. Compared to vanilla base model, the proposed GSM
and D-GSM models have lower ADE and FDE among three
groups of continuous scenarios. Besides, joint-training settings
are regarded as the best possible performance in continual
learning [24, 25] since all training data are accessible at once
in joint training. Joint-training model has the best performance
in the continuous scenarios Sfive = {d1, d2, d3, d4, d5}. How-
ever, we also found that in another two groups of continuous
scenarios, joint-training models are not the best. The proposed
models outperform the joint-training in Sthree = {d1, d2, d3}
and Sfour = {d1, d2, d3, d4}. Here, take results in Sthree as
example to briefly discuss this ”unexpected” phenomenon: It
may owe to the memory mechanism of the proposed approach
and the selected scenarios. In Sthree, d3 is a highway merging
scenario collected in China, while other scenarios are from
urban environments in the USA. d3 has a larger divergence
relative to others. The total number of scenarios is 3, which
means that the data of d3 has one-third of the training data
for joint-training. Besides, the joint-training just mixed all data
together to train the model. Due to the divergence, data from
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d1 and d2 may ”weaken” the performance on d3. Meanwhile,
data from d3 interrupt the performance on d1 and d2. However,
since the proposed approach purely uses memory data to
constrain the loss increment on past scenarios, it performs well
both in the current and past scenarios.

When the number of scenarios increases as in Sfive, on the
one hand, highly divergent scenario d3 has a lower weight in
the whole continuous scenarios. On the other hand, decreasing
memory data may reduce the advantage of the proposed
methods. As a result, in Sfive, joint-training has the best
performance. In summary, these interesting results indicate
that the advantage and limitations of the proposed approach
are relative to the memory room and the scenario data. There
can be some ablative studies to explore more characteristics
of the proposed approach in future works.

The ADE and FDE are also detailed in Table IV. Besides,
CKLDs utilized to calculate weighted-CKLDs for D-GSM
are shown in Table V. These experimental results show that
the proposed approach improves the performance of vehicle
trajectory prediction in continuous scenarios. The catastrophic
forgetting of base models is alleviated.

Moreover, the proposed D-GSM aims to improve training
efficiency by allocating different memory data to diverse
previous tasks. In Fig. 9, the green dot markers with solid lines
represent the proposed approach without dynamic memory
(GSM). The purple dot markers with solid lines represent
the proposed D-GSM. Yellow cross markers and red triangle
markers with dash lines represent vanilla base model without
continual learning strategy and base model with joint-training.
Comparisons of training time and the data usage are also
demonstrated in Fig. 9. Since training time depends on the
scale of data and number of epochs, the last column of Fig. 9
shows the proportional relationships of training time and data
usage for two settings. The green bars in Fig. 9 represent the
cost of GSM, and the purple bars represent the D-GSM. (c)
show the comparisons in continuous scenarios Sfour, and (f)
shows the comparisons in Sfive. The average training time per
epoch of GSM is set as 1, which corresponds to approximate
900s. Similarly, for a clear comparison, usage of memory data
for GSM is also set as 1, corresponding to 3,500 samples. It
is easy to understand that the ratio of time cost is close to
the ratio of memory data usage since more data bring more
computations. In three groups of continuous scenarios, the
time cost and data cost of D-GSM are lower than GSM. The
costs are approximate 0.4 to 0.5 times in Sfour and Sfive.
It can be found that D-GSM models have a lower time cost
without reducing much accuracy.

V. CONCLUSIONS

This paper proposes a novel continual learning approach
termed D-GSM for interactive behavior learning of AVs. D-
GSM constrains the loss increment on old tasks when learning
a new task. With the help of memory data, the updating
strategy for trainable parameters considers both data from
the current and previous scenarios at each optimizing step.
Therefore, compared to the non-CL approaches, which only
focus on learning the current task, the proposed approach

mitigates the catastrophic forgetting of interactive behavior
learning in continuous scenarios without re-training. Moreover,
a novel metric named weighted-CKLD is proposed to measure
the traffic divergence between interactive scenarios. By utiliz-
ing the measurement of traffic divergent, a dynamic memory
for the proposed CL approach is developed to improve the
training efficiency. Based on various scenarios datasets from
INTERACTION dataset [33], experiments are conducted to
evaluate the proposed approach. Experimental results show
that D-GSM outperforms non-CL models in continuous sce-
narios. Meanwhile, the developed dynamic memory improves
the training efficiency by using less memory data.

The proposed approach strengthens the practicability of
AVs, which is beneficial to improve the road safety and traffic
efficiency of ITS. Besides, investigations on the uncertainty in
traffic or explorations for different factors of traffic divergence
may be the potential research area of continual interactive
behavior learning for ITS.
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APPENDIX A
DEFINITION OF MINIMUM TIME-TO-CONFLICT-POINT

Referring to [33], the density of interactive behaviors of a
scenario can be represented by minimum time-to-conflict-point
(4TTCPmin). 4TTCPmin is a metric to describe the relative
states between two moving vehicles in a scenario, where the paths
of the two vehicles share a conflict point but without any forced
stop. More details about the concept of the conflict points can be
found in [33]. Assuming that TTCP t

i = 4lti/v
t
i(i = 1, 2) is the

traveling time to the conflict point of each vehicle in the interactive
pairs[35]. vti and 4lti are, respectively, the speed of the ith vehicle
and its distance to the conflict point along the path at time t. Then,
4TTCPmin is defined as:

4 TTCPmin = min
t∈[Tstart,Tend]

(
TTCP t

1 − TTCP t
2

)
(A.1)

where Tstart and Tend are, respectively, the starting time index when
both vehicles appear and the crossing time index when one of the
vehicles passes the conflict point. If 4TTCPmin ≤3s, then it is
defined that interaction exists [33, 35].

APPENDIX B
BASIC REQUIREMENT FOR CALCULATIONS OF

KULLBACK-LEIBLER DIVERGENCE

As introduced in Section III-B, difference of spatiotemporal de-
pendency among vehicles are used to represent divergence between
interactive scenarios. In the implementation, the spatiotemporal de-
pendency is formulated as the conditional probability density function
(CPDF) over historical and future trajectories of vehicles, and CKLD
presented in (5) is used to measure the distance between two CPDFs.
Referring to (5), p1 and p2 are assumed as GMMs, which are firstly
estimated by MDN [30]. Then, Monte-Carlo sampling is applied to
calculate the original KLD between estimated GMMs. Finally, CKLD
is calculated based on KLD, as formulated in (10).

The calculation described above takes memory data stored in the
scenario repository as inputs. According to Section III-A, memory
storage space is not infinite. The memory data for each observed
scenario decreases when a new scenario comes. However, insufficient
data may lead to errors during the calculation of CKLD. In detail,
since GMMs are composed of several Gaussian distributions, this
unexpected issue may happen when data are insufficient to fit
the specific number of Gaussian distributions by MDN. Thus, an
experiment is conducted to demonstrate the influence of data usage
on the calculation of CKLD. The basic requirement of this calculation
will also be provided based on the analysis of experimental results.
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A. Experiment Settings
In the experiment, CKLDs between scenario d3 and the other

three scenarios are calculated using different amounts of data. All
model settings and assumptions are the same as other experiments
conducted in this paper, where GMM to be estimated is composed
of 20 Gaussian distributions, and the closest 5 surrounding vehicles
with 3 eigenvectors are considered in the conditional XN

cond.
In each group, all scenarios have the same amount of data for

the calculation of CKLDs. Processed cases are 60,000 in total. It
should be noted that data process refers to the condition XN

cond and Y
described in Section III-B, which differs from the processing of tra-
jectories for prediction in this work. Besides, the dimensions of con-
dition XN

cond for CKLD calculation are different from the processed
trajectories to be predicted. The exact amount of raw data can be
processed into different amounts of cases for CKLD and trajectory to
predict, respectively. Thus, we use ”cases” to distinguish ”samples,”
which are used in the paper to represent the processed trajectories
for prediction. CKLDs are calculated using different amounts of
data as shown in Fig. 10. The x-axis is the percentage of data
usage in 10 different groups, where m%(m = 10, 20, 30, ..., 100)
corresponds m% of total cases(eg: 50% corresponds 30,000 cases
for each scenario).

B. Experimental Results and Analysis
As shown in Fig. 10, results are relatively close most of the

time (when the percentage of data usage ≥ 30%). The green line
representing the CKLD between d2 and d3 is the highest compared
with the yellow and red lines. However, when the amount of used
data decreases to 20% and 10%, CKLD values become much higher
than other groups. It should be noted that CKLD between scenario
d5 and d3 is the largest when using 10% data, which is converse to
other groups. These experimental results indicate that insufficient data
(such as the group of 10%) may lead to an unreliable calculation since
the amount of data is too small to represent the scenario reasonably.
Furthermore, we also found that when the percentage of data usage
decreases to 5% (or less), CKLD cannot be obtained. This result
shows that insufficient data can lead to failed calculations, where
MDN cannot estimate the GMMs using inadequate data.

Based on the experimental results, the basic calculation require-
ment for CKLD under the experimental settings is that the number
of processed cases ≥ 6,000. This requirement is related to the GMM
assumption (how many Gaussian distributions are assumed to be
mixed), and the way of data processing (how many surrounding ve-
hicles and eigenvectors are considered in the condition XN

cond). Due
to the limitation that insufficient data may not accurately represent
the features of spatiotemporal dependencies in a scenario, we also
suggest setting a reasonable memory storage space considering the

Fig. 10. The conditional Kullback-Leibler divergence (CKLD) between
scenario d3 and di(i = 1, 2, 5) are calculated using different data amounts.
The maximum number of processed cases for this experiment is 60,000, which
is denoted as 100% data usage.

specific learning task. Besides, one of the future works to improve
the divergence measuring method is overcoming this limitation.
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