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Corrections to “Intelligent Traffic Data Transmission and Sharing Based
on Optimal Gradient Adaptive Optimization Algorithm”

Xing Li*~, Member, IEEE, Haotian Zhang™, Yajing Shen"™, Senior Member, IEEE, Lina Hao, and Wanfeng Shang

N [1], inaccuracies in several critical equations along with their

accompanying descriptions appear in the article. Furthermore,
some references are missing, and certain analyses of experiments
are flawed.

The results and conclusions presented in the article are based on the
corrected equations.

The authors would like to apologize for any inconvenience caused.

The corrections are mentioned as follows:

In Section III, the following text needs to be modified as shown.

On page 13332, the sentence:

“The transportation industry data center acts as one of the exchange
sub-nodes of the entire smart cities data center.”

should be changed to:

“The transportation industry data center acts as one of the exchange
sub-nodes of the entire smart cities data center [43].”

On page 13332, the following sentence:

“Within the transportation industry, data exchange and sharing
is mainly aimed at the data exchange and sharing between the
transportation bureau and its subordinate departments, such as ...”

should be changed to:

“Within the transportation industry, data exchange and sharing
is mainly aimed at the data exchange and sharing between the
transportation bureau and its subordinate departments [43].”

On page 13333, the sentence:

“Whenever two CHs come into communication range of each other
at the same time, they consider whether to merge their clusters.”

should be modified to:

“Whenever two CHs come into communication range of each other
at the same time, they consider whether to merge their clusters [44].”

Also, on page 13333, the sentence:

“Before the data is unloaded, the cluster head divides the TP
(Transmission Priority) of the data packet.”

should be:

“Before the data is unloaded, the cluster head divides the TP
(Transmission Priority) of the data packet [44].”

On page 13334:

“The IAP algorithm proposed in this work is to solve the obvious
regional differences in energy consumption. It integrates the node
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energy factor based on the AP algorithm. The specific improvements
are as follows:

13)

In equation (13) above, dist (i, j) denotes that the distance between
nodes is close to “intimacy”, E<'8 /E ;es denotes the energy attraction

init

dist' (i, j) = dist (i, j) fo”’g/E;” x B

init
“intimacy” between nodes, and B refers to the adjustment factor of

the number of cluster heads.”

needs to be changed to:

“The IAP algorithm proposed in this work is to solve the obvious
regional differences in energy consumption. It integrates the node
energy factor based on the AP algorithm [45]. The specific improve-
ments are as follows:

avg
unit

dist' (i, j) = dist (i, j) XEjps /E7* x B (13)

In equation (13) above, dist (i, j) represents the distance between
nodes, EZ;;?; denotes the average energy of the cluster to which node
j belongs, E"¢ denotes the residual energy of node j, and B is a
factor.”

At the bottom of page 13334:

“In the EEMR algorithm, the base station runs the IAP clustering
algorithm for network clustering after receiving the information of
all surviving nodes. In addition, the EEMR algorithm draws on the
dynamics of network clustering in the LEACH protocol, and proposes
the ACRR (Adaptive Cluster-head Round Robin) method for local
dynamic election of cluster heads. ACRR is a cluster head round-
robin strategy based on node adaptability T(s):

T(s) =T; +TrxT3 + Ty (14)
T = E{/E 15)
T, = El /Bt (16)
T3 = (1 — dist (i, sink) /d"4¥) an
Ty = tm/ C+ 1) (18)

In the above equations, T1 and T2 represent the absolute proportion
of the node’s remaining energy and the relative proportion of the
node’s energy in the cluster to which it belongs, respectively; T3
refers to the relative distance ratio of the distance between the node
and the base station in the cluster to which it belongs; and T4 is the
ratio of the node that does not serve as the cluster head continuously
in the cluster to which it belongs.”

should be changed to:

“In the EEMR algorithm, the base station runs the IAP clustering
algorithm for network clustering after receiving the information of all
surviving nodes. Additionally, drawing inspiration from the network
clustering dynamics in the LEACH protocol, the EEMR algorithm
incorporates the ACRR (Adaptive Cluster-head Round Robin) method
for the local dynamic selection of cluster heads [45]. ACRR operates
as a cluster head round-robin strategy, employing node adaptability
T(@i):

(14)
15)

T@@)=T+ThxT3+ 14
T) = E(es/E{nit
i i
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T2 — El_res/Elgmit (16)
T3 = (1 — dist (i, sink) /d"%) a7
Ty = rm (i) (18)

where, E7® denotes the residual energy of node i, E l”” ! denotes the
initial energy of node i, E l?””" denotes the total energy of the cluster
to which node i belongs, dist (i, sink) denotes the distance between
node i and the sink node, d'%} represents the maximum distance
within the cluster to which node i belongs, and ry, (i) denotes the
number of rounds that node i does not serve as the cluster head
continuously in the cluster to which it belongs.”

On page 13335:

“The core of the EEMR algorithm is to avoid the control energy
cost caused by frequent clustering, and a hierarchical multi-hop data
forwarding strategy based on node competence is proposed. The relay
cluster head is determined based on node competence f(s). If ES"" is
the residual energy of the cluster head s, and 6 is the data transmission
deflection angle, the calculation equation of f(s) can be expressed as:

f(s) = A1 (ES"/Einit) + A2 (dist (i, s) /Rp x cos 6) (19)

A in the above equation represents the weight coefficient of each
competency factor.”

should be modified to:

“The core of the EEMR algorithm is to avoid the control energy
cost caused by frequent clustering, and a hierarchical multi-hop data
forwarding strategy based on node competence is proposed. The relay
cluster head is determined based on node competence f(s) [45]. If
ESU is the residual energy of the cluster head s, and 6 is the data
transmission deflection angle, the calculation equation of f(s) can be
expressed as:

fGs)=x1 (ES””/ES’”’”) + Ay (dist (i, s) /Ry x cos ) (19)
where ES denotes the current energy of cluster head s, EY"!
denotes the total energy of the cluster to which the node s belongs,
and A; denotes the weight coefficient.”

Also, on page 13335:

“The mini-batch gradient descent method is adopted to solve the
network parameters.”

needs to be modified to:

“The mini-batch gradient descent method is adopted to solve the
network parameters [46].”

On page 13336:

“Based on the above basis, the concept of adaptive friction coeffi-
cient is adopted to the Adam algorithm, and a new adaptive algorithm
can be obtained, which is called the TAdam algorithm. The update
rule of the TAdam algorithm is given as follows:

me = frmey + (1= g
ve=vii = (1= By tanh (viy — o) f
should be changed to:
“Based on the above basis, the concept of adaptive friction coeffi-
cient is adopted to the Adam algorithm, and a new adaptive algorithm

can be obtained, which is called the TAdam algorithm [46]. The
update rule of the TAdam algorithm is given as follows:

(32)
(33)

(32)
(33)

me = gime_y + (1 =B &
vi=Favict + (1 - By anh (viy - ¢f) &f

where ) and B, are the exponential decay coefficients of the first
and second moments, respectively.”

In Section IV, Results and Discussions, the following sentences
should be changed:
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From:

“Vehicles that unload data based on the traditional transmission
mode directly establish a connection with the edge server, and
the tasks to be processed are directly offloaded to the MEC for
processing. The network coverage of MEC is 120 meters and the
coverage radius is 60 meters.”

To:

“Vehicles that unload data based on the traditional transmission
mode directly establish a connection with the edge server, and
the tasks to be processed are directly offloaded to the MEC for
processing. The network coverage of MEC is 120 meters and the
coverage radius is 60 meters [44].”

Also:

“Figure 8 shows the relationship between system energy con-
sumption and the proportion of a given failed node under the five
algorithms. It shows that the energy consumption rate of the LEACH
algorithm and the UCR algorithm is too fast in the first half, and
the energy consumption rate in the second half gradually tends to
be slow. During about 1,200 rounds of data collection, the node
energy consumption rate of the proposed EEMR algorithm and BUC
algorithm is relatively stable, and the energy consumption in each
round of data collection is lower than that of the LEACH algorithm
and the UCR algorithm. Overall, the EEMR algorithm has the lowest
average energy consumption per round of data collection, thus sig-
nificantly extending the network working time. The BUC algorithm
and the EEMR algorithm control the low energy consumption in
each round of data collection due to their stable network clustering
mechanism and realize the energy balance of network nodes through a
reasonable data forwarding strategy. Moreover, in the 1,500 rounds of
data collection, the network surviving nodes of the EEMR algorithm
are still as high as 90%, while the network surviving nodes of the
BUC algorithm are only 30%. It is further explained that the EEMR
algorithm achieves the energy balance of the network nodes as much
as possible while minimizing the system energy consumption. The
EEMR algorithm effectively solves the limited communication and
too fast energy consumption in the DT transmission mode. The
clustering method based on energy level avoids the system overhead
caused by frequent clustering and random cluster selection, and
greatly prolongs the network operation duration.

Next, the average energy consumption under the five data collection
algorithms is compared, as shown in Figure 9. The consumption of
the EEMR algorithm and the BUC algorithm is relatively stable.
When the node failure ratio is less than 0.4, the average energy
consumption of the two algorithms is lower than that of the LEACH
algorithm and the UCR algorithm.”

should be changed to:

“Figure 8 illustrates the correlation between system energy con-
sumption and the proportion of failed nodes across the five algo-
rithms. It is evident that the energy consumption rate of the LEACH,
UCR, and SHDC algorithms outpaces that of the EEMR and BUC
algorithms. Within approximately 1,400 rounds of data collection,
the node energy consumption rate remains relatively stable for both
the EEMR and BUC algorithms. Moreover, their energy consumption
per round is lower compared to the other three algorithms. Both the
BUC and EEMR algorithms maintain low energy consumption per
round through their stable network clustering mechanism and employ
a rational data forwarding strategy to achieve energy balance among
network nodes. Notwithstanding, the EEMR algorithm exhibits the
lowest average energy consumption per round of data collection,
outperforming the BUC algorithm due to its meticulous consideration
of energy distribution among distinct clusters, thus ensuring balanced
energy consumption across clusters. Importantly, after 1,600 rounds
of data collection, the EEMR algorithm maintains approximately
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90% of network nodes as survivors, contrasting starkly with the
BUC algorithm’s mere 30% survival rate. This further underscores
the efficacy of the EEMR algorithm in maximizing energy balance
among network nodes while concurrently minimizing system energy
consumption. The EEMR algorithm effectively addresses the chal-
lenges of limited communication and rapid energy consumption in
the DT transmission mode. By employing a clustering method based
on energy levels, it circumvents the system overhead associated with
frequent clustering and random cluster selection, thereby significantly
extending the network’s operational duration [45].

Subsequently, the average energy consumption across the five data
collection algorithms is compared, as depicted in Figure 9. Notably,
the EEMR algorithm exhibits consistently low energy consumption
irrespective of the Proportion of Failed Nodes. Conversely, the BUC
algorithm demonstrates lower consumption compared to the other
three algorithms when the node failure ratio is below 0.4. However, as
the node failure ratio surpasses 0.6, the average energy consumption
of LEACH, UCR, and SHDC becomes lower than that of BUC.”

In addition, the sentence:

“As demonstrated in Figure 11, SGD, Adam, and the improved
TAdam in this work all achieved about 100% accuracy on the MNIST
dataset. Moreover, the convergence speed of the TAdam algorithm
proposed in this work is faster than other adaptive algorithms, and
it reaches 100% accuracy at about the 10th epoch. In the test set,
the training accuracy rates of several algorithms are quite different,
and the Adam algorithm has the worst performance, with the worst
stability and training accuracy. The TAdam optimization algorithm
shows high stability in the whole process.”

should be modified to:

“Figure 11 illustrates that SGD, Adam, and the enhanced TAdam
algorithm in this study all attained approximately 100% accuracy on
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the MNIST dataset. Notably, the TAdam algorithm introduced in this
research exhibits superior convergence speed compared to the other
two algorithms, achieving 100% accuracy around the 10th epoch.
In contrast, SGD demonstrates the slowest convergence, requiring
approximately 100 epochs to reach 100% accuracy on the training
dataset [46].

Conversely, regarding the test set, significant disparities exist in the
accuracy rates among various algorithms, with the Adam algorithm
exhibiting the poorest performance characterized by inferior stability
and accuracy. In contrast, the TAdam optimization algorithm demon-
strates remarkable stability throughout the process. This is attributed
to the introduction of the friction factor, which mitigates parameter
oscillations during optimization, thereby rendering the entire process
smoother.”
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