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Route and Stopping Intent Prediction at Intersections
From Car Fleet Data

Florian Gross, Justus Jordan, Felix Weninger, Felix Klanner, Member, IEEE,
and Bjorn Schuller, Senior Member, IEEE

Abstract—In this paper, an approach is presented to predict the
route and stopping intent of human-driven vehicles at urban in-
tersections using a selection of distinctive features observed on the
vehicle state (position, heading, acceleration, velocity). For poten-
tial future advanced driver assistance systems, this can facilitate
the situation analysis and risk assessment at road intersections,
helping to improve the protection of vulnerable road users. After
extracting recorded driving data for nine intersections (featuring
over 50 000 crossings) from a database, they are assigned to possi-
ble routes and transformed from a time-based representation to a
distance-based one. Using random decision forests, the route intent
can be predicted with a mean unweighted average recall (UAR) of
0.76 at 30 m before the relevant intersection center, the stopping
intent prediction scores a mean UAR of 0.78.

Index Terms—Advanced driver assistance systems, car fleet
data, driver state and intent recognition, driving data, machine
learning.

1. INTRODUCTION

HILE the number of registered vehicles in Germany
W is still on the rise [1], the number of road traffic acci-
dents involving personal injuries is steadily decreasing [2]. One
factor contributing to this trend is the evolvement of advanced
driver assistance systems’ (ADAS) capabilities. To further im-
prove road safety, multiple projects encouraged the research in
the field of vehicle-to-x communication (combining vehicle-
to-vehicle and vehicle-to-infrastructure). In Germany, recent
projects were sim™P [3] and Ko-FAS [4], both initiated by the
German automotive branch and funded by the German Ministry
of Economics and Technology. Still, the majority of accidents
with personal injuries happen in an urban environment [5], [6].
With a rising number of road users and countless possibilities of
distraction in a complex environment, there is a need for ADAS
in urban areas.

While outside of cities (on highways or freeways), the major-
ity of involved persons are the respective vehicle’s passengers,
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inside of cities also vulnerable road users (VRU), such as pedes-
trians or cyclists, are likely to be involved in a road traffic
accident. Over the last few decades, the protection of vehi-
cle passengers has been improved steadily. However, although
there were efforts to improve VRU safety by passive as well
as active safety measures, VRU still suffer serious injuries
from collisions with vehicles. Hence the most promising way
to reduce injuries at accidents with VRU is to prevent them
altogether.

One potential use case here is the protection of cyclists when
performing a right-turn (see figure 1): Mostly, cyclists travel
parallel to cars on separate lanes. Before turning right in coun-
tries with right-hand driving, one has to pay special attention
to cyclists going straight ahead. A similar situation arises for
pedestrians intending to cross the street a driver wants to turn
into. In this setting, a potential ADAS could warn drivers if,
and only if the driver intends to turn right without stopping first.
The general driver intent in this context comprises the choice of
the turn direction (e.g. left, right, straight ahead) as well as the
intent to stop at a given point: Mostly stoplines defined through
traffic rules, or pedestrians crossing.

Related Work: In the context of robotics, intent prediction
is divided into two types of approaches: Descriptive and gen-
erative [7]. Descriptive methods aim to characterize patterns
through the extraction of low-level features [7]. When labeling
these features with the underlying goals, belief and intentions,
the “action-effects associations” method allows for intention in-
terpretation. In contrast, generative methods [8] model causes
that can produce the observed data through latent (hidden) vari-
ables. Another possibility is the mirroring of intentional agents
(refer to the “like me” framework describing infant imitation
[9]). A general approach to driver intent recognition based on
the psychological “Perception-Action” model is described and
evaluated in [10].

A more specific case, the prediction of the turn intent is cov-
ered in [11]-[18]. By sampling signals from a vehicle’s CAN
bus and utilizing a Hidden Markov Model (HMM), Sathya-
narayana et al. [11] manage to predict all right turns, however
they did not provide data on how timely the prediction took
place. Berndt and Dietmayer employ a similar approach in [12],
[13]: Multiple features, such as velocity and steering wheel an-
gle are fed into a left-to-right HMM. It is decided to leave out
the turn signal as feature, since it is believed that there is a
risk of “overweighing them in well-behaved situations and then
failing in critical driving situations” [13]. After evaluating the
sensitivity of the individual features, it is found that the steering
wheel angle proved most useful for turn recognition. However,
when mostly using the steering wheel angle as feature, it can be
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Fig. 1. Right turn with a conflicting cyclist.

suspected that the turns are only recognized after they already
started, i.e. a heading change is noticeable.

Using high-precision localization, a digital lane-level map
and a Bayesian approach, [14], [15] predict the route choice by
only using the entry lane and turn signal. For vehicles show-
ing consistent behavior (i.e. correct lane for the intended turn +
turn signal used correctly), the authors report no misclassifica-
tions. As soon as vehicles show inconsistent behavior though,
the performance decreases significantly (5% correct classifi-
cations at the stopline). This approach seems best suited for
complex intersections with multiple lanes and all drivers using
the turn signals correctly. In 2013, Liebner et al. introduced a
method [17] for combined turn and stop prediction using an ex-
plicit model for a vehicle’s velocity profile [18] (the Intelligent
Driver Model (IDM) [19]). Similarly, high-precision localiza-
tion together with a digital lane-level map enables a Bayesian
approach. Being the first approach to explicitly model preceding
vehicles, the influence of preceding vehicles on the classifica-
tion performance is evaluated: As for vehicle traces with no
preceding vehicles, at a false positive rate (FPR) of 5% a true
positive rate (TPR) of 95% is achieved. In the presence of pre-
ceding vehicles though, this TPR decreases to 55%. Hence, this
approach is able to express uncertainty in the presence of a pre-
ceding vehicles, enabling the same FPR for this case. In [20],
the performance of a velocity-based stop prediction is evaluated
using extensive infrastructure (four radar units, four cameras)
at a signaled intersection. A Support Vector Machine (SVM)
classifies the stopping intent for all vehicles passing the in-
tersection, and issues warnings when vehicles are predicted to
violate a red light. In 2012, Aoude et al. introduce an HMM
and Bayesian Filtering for the SVM, trained on a naturalistic
car dataset for a similar infrastructure [21]. Similarly, [22] sur-
veys the perception-reaction time at signaled intersections for
the onset of a yellow phase, whereas [23] focuses on the factors
contributing to a stop/go decision and presents a classification
tree based method for classifying the same.

[24], [25] pursue a different approach: The two-dimensional
trajectory is predicted by either comparing the current trajectory
to previously recorded ones [24] or using a Gaussian Mixture
Model [25]. In [26], the behavior of human beings in dangerous
situations is analyzed and a detection approach using brake pedal
force and speech features is presented. Most approaches use the
vehicle dynamics such as velocity, acceleration and heading and

the change of these as primarily modeled input. However, recent
research efforts such as [27], [28] investigate the connectedness
of a driver’s gaze direction to the driver’s intention. Doshi et al.
infer the driver’s gaze patterns and the vehicle’s surroundings
by inside-mounted and outside-mounted cameras. It is further
investigated, in which direction the drivers gaze for what reason.
Although it is focused on lane change maneuvers, characteristic
gaze patterns for left or right turns are discovered. Jain et al.
demonstrate a promising approach to fuse multi-modal sensor
cues, including the driver’s gaze direction [28]. Still, the use of
a driver-facing camera limits the use of this approach to the ego
vehicle only, and one cannot predict the driver activity for e.g.
crossing or preceding vehicles.

All in all, although there are already numerous studies con-
cerning driver intent recognition, most of them focus on lane-
change detection on freeways, the recognition of maneuvers af-
ter they already started (i.e. for a significant heading change) or
are only feasible in highly constrained and demanding environ-
ments, such as the ones using high-precision localization. This
paper introduces a two-fold approach for driver intent prediction
based on a naturalistic car fleet dataset retrieved from produc-
tion vehicles. The performance of classification via Random
Decision Forests (RDF) as well as a Support Vector Machine
(SVM) is investigated and it is demonstrated that in most cases a
correct prediction can be achieved more than three seconds be-
fore reaching the navigation link reference node. The remainder
of this paper is structured as follows: Section II introduces the
dataset and the necessary steps before training of the machine
learning algorithms described in Section III. Section IV shows
experimental prediction results, whereas Section V concludes
this paper.

II. DATA COLLECTION AND PRE-PROCESSING

As this paper utilizes naturalistic driving data, recorded from
different drivers with different car models, first the process of
data collection and pre-processing is described. The process
of recording was already dealt with in the research project,
more details can be found in [3]. For sim™®, more than 100
vehicles were equipped with off-the-shelf hardware and data
transmission units, sending data from the vehicle’s CAN bus
to a backend every second. They were then instructed to travel
specific routes in the area of Frankfurt, continuously sending
driving data to a central server. In addition to applying this data
to new ADAS, it was used to test the performance of potential
vehicle to vehicle and vehicle to infrastructure communication
systems. A part of this paper’s contribution is to prepare the
raw driving data for usage with machine learning algorithms.
As it can be seen in figure 2, the four major pre-processing steps
are extracting trace points from the database, route association,
transformation to a local reference system and the selection and
extraction of applicable features.

A. Data Source Description

In order to generate a better understanding of the underlying
sim'P dataset, several terms have to be defined and explained.
The smallest unit of the underlying dataset is a trace point.
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Fig. 2. Steps for data collection and pre-processing.
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Fig. 3. Exemplary trace crossing intersection 5 with preceding vehicle. (a) Velocity and distance to preceding vehicle. (b) Heading and acceleration. (c) Position;

Image data: Aerowest, Google; Map data: GeoBasis- DE/BKG, Google.

A trace point is a state vector of the driving dynamics and
position at a given time. To be able to create a time series out of
these state vectors, each of them are associated with a session
ID (SID € N) and a timestamp (¢;):

¢ = WGS-84 latitude
A = WGS-84 longitude
B v = velocity
y(SID, t:) = © = acceleration
¢ = compass heading
dacc = distance to preceding vehicle

ey

After concatenation of all state vectors of an individual SID,
one retrieves a trace or trajectory

TSID = [Y(SID7 t0)7 Y(SID7 by + At)7 ey Y(SIDa ty + nAt)]
2

For the sim™P dataset, data were recorded and wirelessly
transmitted to a database server with a sample rate of 1 Hz. De-
tailed information about the project can be found at [3]. Figure 3
shows an exemplary representation of such a time series of a ve-
hicle passing an intersection behind another vehicle. When the
vehicle approaches the turn (i.e. the significant heading change)
att = 15 s, it decelerates until it reaches the vertex of the turn.
This demonstrates the physical properties of road traffic: To en-
sure safe and controlled travel around corners, drivers need to
pass the turn with a certain maximum speed, dependent on the
vehicle dynamics and curvature of the road (see [17] for details
on a possible model). Further, a preceding vehicle is detected.
The distance is measured via the radar of the ego vehicle.

The position plot with an added satellite image (figure 3(c))
illustrates one peculiarity of the dataset: As the uncorrected
Global Navigation Satellite System (GNSS) localization from
production vehicles is used, the position inside cities and
other occluded areas could be inaccurate by several meters. In
this particular example, the GNSS positions are visible. The
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Fig. 4. Exemplary trace with signal drop-outs.

vehicle’s exact path can only be speculated about with the help
of the satellite image. However, for the later approach only the
heading and lateral displacement to a reference path (e.g. the
geometry of the navigation link leading to the reference node)
are considered, eliminating the need for a high-precision local-
ization (e.g. using WAAS/EGNOS). In the spirit of only using
data which can be inferred for other vehicles, the turn signal
feature is omitted as well. Additionally, this allows the intent
prediction for drivers setting the turn signal too late or not at all.

Another challenge arises from the drop-outs of the radar sig-
nal in the sim™P dataset. In some cases (see figure 4), preceding
vehicles seem to disappear and appear for several time steps,
whereas—based on the behavior of the host vehicle—it can be
speculated that another vehicle is present and cannot be de-
tected all the time. Consequently, the chosen machine learning
algorithms have to be robust with regard to signal noise and
drop-outs of the front-facing radar data and the uncorrected
GNSS localization.

B. Intersection-Wise Data Extraction

This paper focuses on creating machine learning models for
individual navigation options at intersections. However, since
the driving data are stored session-wise—covering a whole trip—
only relevant data points in the vicinity to an intersection are
extracted. The challenge of finding these relevant points is best
explained by a short walkthrough of the first two steps of the
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7); Image data: Aerowest, Google; Map data: GeoBasis-DE/BKG, Google.

intersection-wise data extraction for a real-world example: Fig-
ure 5 shows the satellite image of an intersection in Frankfurt.
The street network is automatically extracted in a graph-like
structure from a navigation map, with nodes being vertices,
connected by links (edges). The links can be polylines to allow
a more precise street mapping. For this example, it is decided to
collect data for the route decision following the node from the
reference link (1)in the direction indicated by the arrow. Starting
at this node, two route options are obvious: Following link (2)or
link (). These options occuring directly after the reference node
are called the initial route options. However, if these routes are
not expanded further, problems might arise when associating
each trace with one of these routes: As seen in the previous
section, the GNSS localization is affected by heavy noise. To
still enable robust route association, the links are expanded fur-
ther to ensure an adequate distance between the route endpoints.
The two expanded route options are in this case: Route 1 with
O— @— (), route 2 with (D— @— ()— (). Hence, the spa-
tial size of the bounding box of the inscribed routes for extracting
trace points is found.

1) Expansion of Possible Routes: As the logical representa-
tion of street networks are graphs, the task of expanding possible
routes can be expressed as a graph traversal task. For this paper,
it is decided to ignore routes that involve a 180 degree turn or
travel the same link twice. This further reduces the problem to
a tree traversal task. In general, the route decision tree, starting
at the reference link, is continuously traversed breadth-first and
expanded dynamically until certain criteria are met. These are:

1) Never travel the same navigation link twice

2) Expand to a maximum of 1 km

3) Only consider legal routes

4) If expanding backwards, expand at least 5 s (determined
by the maximum speed associated with the link)

5) If expanding forwards, ensure that the endpoints of the
initial route options have a minimum distance of 2r. (the
corridor radius, see step “Route Association”)

The last constraint only applies to expanded routes that rep-
resent the initial route options, i.e. even when two routes are
less than 27, apart, but belong to the same initial route op-
tion, they’re not expanded further. This prevents pointless ex-
pansion, when the resulting classification label for the route
decision evaluated at the reference node would remain the same
either way.

2) Trace Extraction: After the respective initial route op-
tions have been expanded to an appropriate distance from each
other, the trace points in that area are extracted. For the data
sources, a query is set for all points inside a specific coordinate
rectangle. However, before the trace points can be connected
to traces based on their session ID, they have to be split up to
individual intersection crossings: As the session IDs are only
issued once at the beginning of a journey, one vehicle can cross
the same intersection multiple times with the same session ID.
Hence, the traces are split for each intersection crossing and the
traces are now transformed from a WGS-84 datum to a local,
cartesian Gauss-Kriiger coordinate system [29], with the refer-
ence node being at the origin. All following computations are
thus executed in a two-dimensional euclidean space.

3) Route Association: The dataset for each intersection con-
tains not only the desired traces, but rather a great amount of
either physically impossible traces (e.g. crossing a river) or
traces going in the wrong direction. The next step—the route
association—is responsible for two major tasks: filtering and as-
sociating the traces to the expanded routes. In the end, this step
will also yield the route label for the respective traces. The
process of route association is divided in three steps: Corridor
matching, gate activation and trace cropping. For each trace,
these steps are executed for each route option. If one trace
matches more than one route, this ambiguity is resolved at the
last step.

The first step—corridor matching—represents the coarsest fil-
tering step. For each trace point, the perpendicular distance d,. to
the nearest route segment is computed. If this distance is smaller
than the corridor radius 7., the respective trace point is marked
as valid. The first and last valid trace points define the trace point
interval for further computations. If one point inside this interval
does not fulfill the corridor criterion (d. < r.), the whole trace
is discarded for the route at hand. The corridor criterion filters
vast outliers, but is still ignoring the fact that some parts of the
routes are shared (e.g. the reference link). Thus, by introducing
gate activation, the direction as well as completeness of a route
match is evaluated. As previously mentioned, links can be given
as polylines of multiple support points to allow a detailed route
geometry. These points are used to create gates, by creating a
perpendicular line on the route, spanning one corridor radius
to the left and to the right. If a trace fails to activate all gates—
traversing in the right direction within a maximum distance—it
is not further considered for this route. These criteria ensure the
removal of traces that either stop prematurely, travel the wrong
direction or belong to other routes. Figure 6 shows examples for
acceptable (green) and unacceptable (red) traces.

To reduce the storage consumption for the extracted traces,
they are now cropped to the start and end point of the route.
Although an adequate route expansion should prevent one trace
being assigned to multiple routes, for some cases (e.g. when
the corridor radius is chosen too small and thus the routes are
not expanded far enough) this ambiguity needs to be resolved.
As there are multiple concrete choices available for the route
assignment, this problem is reduced to simply comparing the
trace to the available routes and choosing the best fit. For com-
paring two trajectories in 2D space it is decided to use the weak
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Fig. 6. Gate activation. One trace is invalid (red) since it fails to activate gates
©® and (). Another red trace activates all gates but gate () inside the corridor
radius (dashed blue line). The valid, green trace activates all gates inside the
corridor radius. Image data: Aerowest, Google; Map data: GeoBasis-DE/BKG,
Google.

Fig. 7. Matched routes for two urban intersections; Map data: GeoBasis-
DE/BKG, Google. (a) Intersection 1. (b) Intersection 2.

Fréchet distance [30] which was already utilized in [31] for
route matching. The route with the smallest weak Fréchet dis-
tance to the trace is then chosen as the final route assignment.
Figure 7 shows the final route matching for two intersections.

C. Intersection-Centered Reference System

Until now, all trace points were primarily represented by their
timestamps and their corresponding latitudes and longitudes on
a map. For the following processing though, a one-dimensional
representation based on the distance to the reference node of
the navigation links (in most cases the intersection center) is
advantageous for several reasons:

1) The trace information becomes independent from the ge-

ographic location of the intersection

2) A distance-based reference system is a more intuitive rep-

resentation of trajectories

3) The trajectories become more comparable and are invari-

ant to the duration of stops

To allow for a precise representation of curved road trajecto-
ries, it is decided to introduce a Frenet coordinate system along
the sequence of navigation links for each route with its origin
at the reference node. For the actual transformation, all trace
points are matched to their nearest route segment. This results
in an explicit representation by the longitudinal position on the
sequence of navigation links (s) and the lateral displacement (n).
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D. Feature Extraction & Labeling

After all traces for the respective intersections have been
converted into the same format, the feature extraction creates
an adequate numerical representation of the traces in order to
apply the machine learning methods. Additionally, the existing
traces have to be marked with their actual intent, this process is
also known as labeling. For this paper, the vehicle dynamics as
well as its position are chosen to be extracted, since they feature
a high predictive power for driver intent prediction tasks (see
Section I, [13], [15], [17]).

When building a machine learning model intended for live
prediction, it has to be made sure that all features that are ex-
tracted from the dataset can also be extracted during an online
drive. Specifically, when building a feature vector, only points
from the past can be included and reference systems equal for
all intents have to be chosen. In detail, the chosen features are
extracted as follows:

Distance to Reference Node: Distance s to the reference node,
computed via the navigation link geometry.

Velocity: The current velocity v in ms™!, either retrieved from
the vehicle odometry (recommended) or computed from the
GNSS position (as used im sim™P).

Acceleration: The current acceleration a in ms 2, retrieved from
the vehicle odometry.

Heading Difference: To provide the ability to generalize to mul-
tiple intersections in the future, only the heading difference
A (computed from the GNSS positions) in rad of the current
compass heading compared to the navigation link geometry
is used.

Distance to Preceding Vehicle: The distance d to the vehicle in
front of the own vehicle, in meters. Measured by the front-
facing far range radar.

Flag for Presence of Preceding Vehicle: Boolean flag (false =
0 or true = 1) to indicate the presence of a preceding vehicle,
output from radar.

Lateral Displacement: Lateral distance n to the navigation link
geometry.

This results in the feature vector x(s) sampled at a distance
s. Additionally, these points are not only sampled at the current
distance (s), but also at previous distances, resulting in the final
feature vector:

3

with a number of n, points sampled every s;, meters. As for this
approach, these parameters were chosen empirically to sample
4 points every 10 meters, resulting in a feature vector length of
35.

After all features have been extracted and converted to a
numerical format, one last step has to be executed: The labeling
of the trace, i.e. assigning it the actually driven intent. As a
reminder, the overall driver intent consists of the route intent
and stopping intent. The route intent is given by one of the initial
navigation options and is labeled for all feature vectors created
from the trajectory. The stopping intention however requires
another approach: Before analyzing the data for an intersection,

X = [X(So —ny - Sh,), ceey X(S() - Sh,), X(S())] ,
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Fig. 8. Possible route and stopping intents, depending on the distance s to the
reference node.

TABLE I
MEAN UAR AND TP@S5FP OVER NINE INTERSECTIONS, EVALUATED AT FOUR
TTI. BEST AVERAGE MEASURES PER INTENT AND TTI ARE SET IN BOLD FONT.

Route Intent Stopping Intent

TTI [s] Measure SVM  RDF SVM RDF
2.88 UAR 0.67 0.75 0.73 0.77
TP@SFP 0.42 0.59 0.44 0.58
2.16 UAR 0.67 0.76 0.70 0.78
TP@S5FP 0.44 0.57 0.45 0.57
1.44 UAR 0.67 0.79 0.67 0.80
TP@SFP 0.46 0.58 0.48 0.61
0.72 UAR 0.75 0.79 0.70 0.80
TP@S5FP 0.50 0.61 0.52 0.71

all stoplines are labeled manually, including the information
for which routes the stoplines are valid. For the future it is
considered to crowdsource these stoplines from the dataset [32].
From each recorded vehicle trace the executed stop maneuvers
are known, i.e. vehicle velocity approaches zero between 15 m
before and 5 m after a route relevant stopline. Therefore all
feature vectors prior to a particular stop are associated with
the respective stopping intent. If there are multiple stops on a
route the intent of the successive stop is not anticipated before
the preceding stop has been performed and thus is only labeled
starting from the preceding stop. After the last stop the vehicle
trace is labeled with ’no stop’ (see figure 8). An example is
given for an intersection with two initial route options and two
identified stoplines:

Route Intent: { Route 1, Route 2 }
Stopping Intent: {Stopline 1, Stopline 2, No Stop}

The possible class labels for the overall intent (route and
stopping combined) are hence the power set of the these two
intent sets. In order to ease computation with the probabilities
produced for each label by a later classifier, the power set of
labels is translated into a matrix (rows: route intent; columns:
stopping intent). By then computing either the row or column
sum, the overall probability for the routes or stoplines can be
inferred. The choice of the power set method is motivated by
the increased insight and use of synergies: By laying the classi-
fication results out in a matrix, one can easily identify common

misclassifications and parametrize an ADAS function accord-
ingly. Moreover, the classification of route and stopping intent
is closely related, e.g. identifying a stopping intent can hint
towards taking a specific navigation option.

III. MACHINE-LEARNING APPROACHES

Following the definition and extraction of features, the im-
plementation of the machine learning algorithm used—Random
Decision Forest—is covered. For this paper, the implementation
of Leo Breiman [35] is used. RDF is an ensemble learning
method: By creating and combining a multitude of weak learn-
ers (decision trees in this case), one strong classifier is built. To
allow an evaluation of the individual feature information gains
and an incremental training of the RDF in the future with min-
imal data pre-processing, it is decided to perform no PCA or
standardization on the training data.

IV. RESULTS

For nine different intersections (with over 50,000 crossings),
the performance is retrieved for each of the two machine learning
algorithms and averaged for an overall representation of the
classifier performance (see table I). Each evaluation is carried
out using 10-fold cross validation. For this, the dataset is divided
into two parts: 90% are used to train the machine learning model
as described previously, the remaining 10% are utilized to assess
the algorithm’s ability to generalize to unknown data. This is
repeated 10 times in a round-robin manner, so that each trace
will be part of the evaluation once.

For each of the methods, a general overview on the perfor-
mance is given by providing two major performance measures
(Unweighted Average Recall (UAR) and true positive rate at
5% false positive rate (TP@5FP)) for four different worst-case
times to the reference node (TTI), assuming the vehicle trav-
els constantly with the maximum allowed speed inside cities:
2.88s(s=—40m), 2.16s(s = —30m), 1.44s(s = —20m)
and 0.72s (s = —10m). TP@5FP is only defined for binary
decision. If more than two classes exist, this measure is com-
puted for one-vs-all classifications (i.e. creating as many binary
decisions as there are class power sets) and averaged. UAR is
the unweighted average of the class-wise recalls and is better
suited to imbalanced class distributions than accuracy. With im-
balanced class distribution as given by the dataset studied here,
a high accuracy could be obtained trivially, by always predicting
the majority class.

A. Route Intent Prediction

Throughout all TTI, multi-lane intersections stand out as the
intersections with the best performance, with the lateral dis-
placement contributing heavily to the performance. Whereas
multi-lane intersections provide an adequate prediction even at
TTI = 2.88 s and gain little performance when getting nearer to
the navigation link reference node, the performance for single-
lane intersections increases remarkably with decreasing TTI.
For these intersections, it can be observed that the classifier
relies heavily on the velocity feature.
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ROC curves for the SVM and RDF predictions (route and stopping intent) at two different intersections at TTI = 2.16s. Additionally, insets show the

area around 5% false positives with more details. (a) Intersection 1, single-lane. (b) Intersection 2, multi-lane.

B. Stopping Intent Prediction

Using the combined route and stopping intent labeling intro-
duced in II-D, the RDF classifier performs reasonably well on
the sim™P dataset (table I). As for the route intent prediction,
the same observation of a performance gain towards the center
of the intersection can be made. Remarkably, the overall perfor-
mance is comparable or even better than for the route prediction
and not dependent on the topology of the intersection (mostly,
the number of lanes). This is mostly attributable to the fact
that stopping prediction relies on the velocity and acceleration
features the most.

At 20 m to the reference node (i.e. TT'C' = 1.44 s, assuming
the vehicle is driven at the maximum allowed speed), our over-
all numbers are similar to the ones obtained by [20], which is
remarkable since in their study a much more constrained en-
vironment was used for the evaluation (multi-lane intersection
with high-precision map and localization, high sampling rate).

C. Influence of RDF Parameters

From literature [36], [37] it is well-known that the RDF clas-
sifier is sensitive to several parameters. Among these, the influ-
ence of the three most important are evaluated: Number of trees,
depth of trees and number of features selected for a node split.
As the first two parameters represent the topology of the RDF,
they are evaluated together. As a metric, the out-of-bag error
(OOBE) [35] is chosen, as it represents an intrinsic measure
for the ability to generalize to unknown data, produced during
training. This eliminates the need for time-consuming cross val-
idation but still provides a common basis for comparison. The
OOBE is retrieved as follows: Each tree in the Random Forest is
trained on two thirds of the dataset. After training, the other third
(“out-of-bag”) is evaluated by the tree. The OOBE represents
the average of the classification error on the out-of-bag samples
over all trees. Figure 10 shows the OOBE for the number and
depth of the trees for one intersection. One can see that the RDF
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Fig. 10.  Influence of RDF parameters on out-of-bag error: Depth versus Num-
ber of Trees with 6 features selected for node splitting.

is highly sensitive to the depth of trees and mildly sensitive to
the number of trees. For both parameters the intuitive principle
“the more, the better” holds, since random forests are robust
against overfitting [35]. For this RDF approach, the number of
trees was chosen to be 200, with each tree being 20 levels deep
at maximum (Figure 10), being a compromise between perfor-
mance and RDF model complexity. As the evaluation for the
number of selected features showed that the decision trees are
not very sensitive to the number of features selected for node
splits, in accordance with the recommendation by Breiman [35],
the number of selected features is chosen to be the first integer
less than log, (M) + 1 = 6, with M = 35 denoting the total
number of features.

D. Feature Information Gain

To be able to perform a sensitivity analysis, the information
gain (1G) [38] is computed for each feature. The IG measures
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the predictive power for a feature based on entropies. For this,
the weighted average of all entropies for the class distribution
assuming all possible feature values is subtracted from the en-
tropy of the overall class distribution (H (c)):

IG=H(c) = Y Ple|f=v)-H(c|f =),
Yoef
with 33, ., P(c| f =v) =1and P(c| f = v) being the like-
lihood for the feature f assuming the value v (i.e. the relative
frequency taken from the histogram). The entropy H (X)) for
finite samples from an arbitrary random variable X can be cal-
culated as follows:

H(X) = —Zp(fcf) log (p(z:)),

“)

®)

where p(z;) denotes the relative frequency of the value x; for
the random variable X . For ¢ describing a two-class distribution
(with classes a and b), the entropy would result to H(c) =
—p(a) log (p(a)) — p(b) log (p(b)). The unit of the entropy, and
thus also of the information gain as difference of entropies is
Shannon (Sh).

A feature with an information gain of 0.0 would contribute
nothing to the prediction, whereas a feature with 1.0 informa-
tion gain would most likely be the label itself. The data mining
workbench Weka [39] provides an information gain-based at-
tribute evaluation, which is used for this paper. For both plots,
the meta-features, such as distance to the reference node as well
as the flag, whether a preceding vehicle exists, are left out, as
they should only be auxiliary to the other features.

The information gain for features of two different intersec-
tions can be seen in Figure 11, computed at the four distances
corresponding to the known TTI. The evaluation displays once
again the importance of the lateral displacement and heading
difference for multi-lane intersections (Figure 11(b)). Further-
more, for intersections where turns begin before the reference
node, the heading difference becomes increasingly important
respectively (Figure 11(a)). All in all, in comparison the fea-
tures have a higher predictive power on intersection 1 than on
intersection 2, as can be seen from the sum of the IGs.

E. Comparison to Baseline Approach

As a state-of-the-art baseline, linear SVMs [33] are selected.
They represent a popular machine learning algorithm and usu-
ally perform well in classification tasks due to their maximum
margin property, as demonstrated in [21]. In order to reduce the
dimensionality and thus speed up training, the data are standard-
ized to zero-mean and unit-variance and a Principal Component
Analysis (PCA) [34] is performed, retaining 95% of the original
variance.

Table I compares the average measures for both classi-
fiers for the prediction of the route and stopping intent, while
figure 9 provides the ROC curves for two intersections. Through-
out all TTT and performance measures, the RDF manages to out-
perform the chosen SVM (PCA pre-processing, linear kernel,
unweighted classes) under the given specific experimental con-
ditions. It can be suspected that the RDF utilizes its strength to
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Fig. 11. Information gain for RDF features for two different intersections.
The more recent the feature, the darker the shaded area. (a) Intersection 1.
(b) Intersection 2.

deal with data sets with great variation and many outliers best. In
detail, there are contributing effects: At some intersections, the
SVM classifies all instances as the majority class, i.e. the route
taken by most vehicles. For highly imbalanced route distribu-
tions (e.g. popular routes versus merely taken routes), this poses
serious problems. Also, in some cases the SVM’s doesn’t follow
the general principle that the performance increases when mov-
ing towards the reference node: Single TTI evaluations exhibit
deteriorated performance. All in all, the maximum margin prin-
ciple could interfere with the classification of the diverse dataset.

V. CONCLUSION AND FUTURE WORK

The results allow concluding that this concept of driver intent
prediction is suitable for the route and stopping intent prediction
at urban intersections. The proposed method integrates a dataset
with recorded car fleet driving data containing the position,
velocity, acceleration, heading and distance to the preceding
vehicle. The recorded vehicle traces are then robustly assigned
to routes from a navigation database, keeping the inaccuracy of
the GNSS localization of today’s production vehicles in mind.

To enable the machine learning methods to generalize to mul-
tiple intersections in the future, the features are selected to be
independent of the direction or location of the intersection: The
position is represented by the distance to the reference node
and the lateral displacement to the navigation link, and the ve-
hicle direction being described by the heading difference to the



navigation link direction. Using these features and a Random
Decision Forest, the route intent prediction achieves a TP@5FP
of 59% at a TTI of 2.88 s. The stopping intent is predicted with
TP@5FP = 58% at the same TTI. The SVM as baseline classi-
fier scores a TP@S5SFP of 42% for route and 44% for the stopping
intent 2.88 s from the navigation link reference node.

This, together with the UAR allows the conclusion that the
proposed RDF performs better than the SVM throughout all TTI
for the given experimental conditions. As a rule of thumb, for
the range of UAR encountered in this paper, an absolute UAR
difference of 1% absolute is sufficient to yield statistical signif-
icance at the 0.1% level, according to a z-test. The analysis of
the information gain for all features reveals that for road inter-
sections with only one lane towards the reference node, velocity
and acceleration possess the highest predictive power. For inter-
sections with clearly differing headings for the respective initial
route options, the heading difference to the reference naviga-
tion link gains high predictive power towards the beginning of
the turn. For multi-lane intersection (i.e. with separate lanes for
each route option), the lateral displacement to the reference link
contributes heavily to the route prediction performance.

Finally, an outlook is given on possible areas of improvement.
It can be considered to transfer the learned models via wireless
communication and in turn collect data on a larger car fleet.
This eliminates the shortcoming of the current evaluation: The
models are trained and evaluated using the sim’ P dataset, possi-
bly overfitting on the driving behavior in this particular dataset.
Furthermore, integrating data sources other than simTP | where
drivers were instructed to travel a specific route, might result in
more balanced class distributions. To further improve the classi-
fication performance, more data from on-board ADAS sensors
(camera, radar, lidar) should be extracted, utilizing the percep-
tion of the static and dynamic environment.

In the end, training one model for a group of intersections
seems beneficial: By clustering together similar intersection
topologies, the data from all grouped intersections are used
for the training of one model, vastly reducing the number of
required machine learning models and thus the occupied disk
space. Sensible intersection parametrization comprises the num-
ber of lanes, maximum allowed speed, number of outgoing links
and heading changes at the decision point. The intersections are
then assigned to clusters by an arbitrary clustering algorithm,
where each cluster has its own intent prediction model.
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