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Abstract—In order to develop provably safe human-in-the-loop
systems, accurate and precise models of human behavior must
be developed. In the case of intelligent vehicles, one can imagine
the need for predicting driver behavior to develop minimally
invasive active safety systems or to safely interact with other
vehicles on the road. We present a optimization based method
for approximating the stochastic reachable set for human-in-
the-loop systems. This method identifies the most precise subset
of states that a human driven vehicle may enter, given some
dataset of observed trajectories. We phrase this problem as a
mixed integer linear program, which can be solved using branch
and bound methods. The resulting model uncovers the most
representative subset that encapsulates the likely trajectories,
up to some probability threshold, by optimally rejects outliers
in the dataset. This tool provides set predictions consisting of
trajectories observed from the nonlinear dynamics and behaviors
of the human driven car, and can account for modes of behavior,
like the driver state or intent. This allows us to predict driving
behavior over long time horizons with high accuracy. By using
this realistic data and flexible algorithm, a precise and accurate
driver model can be developed to capture likely behaviors.
The resulting prediction can be tailored to an individual for
use in semi-autonomous frameworks or generally applied for
autonomous planning in interactive maneuvers.

I. INTRODUCTION

When considering human-robot interaction and human-in-
the-loop systems, one of the primary concerns is how to
estimate and guarantee safety. From a design perspective, there
are many different approaches that can be used. Some robotic
systems approach safety from a mechanical point of view
by creating systems that physically cannot harm the human
[1]. Another approach is to develop controllers and sensor
systems that can guarantee safety for a given system [2].
However, when considering systems that involve or interact
with humans (e.g. human-in-the-loop systems), deriving safety
boundaries and assessments is not a simple task, as many of
the classical assumptions break down when giving the human
influence in the system. This is due to the fact that human
actions and behaviors are often unpredictable and cannot easily
be described by known distributions or by normal dynamical
methods [3]. Another difficulty comes from the computational
complexity that arises from humans possible action spaces. To
compensate for this, simplified models are used to represent
the system without proper metrics to measure how well the
model matches real-world behavior.
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To develop provably safe human-in-the-loop systems, first
an informative and accurate model of the human must be
developed that can be incorporated into control frameworks. In
deriving the modeling methodology, we consider two possible
approaches to modeling human behavior: informative and
robust methods, as visualized in Figure 1.

A. Informative Predictions

In order to have safe and interactive systems, predictive
modeling is incredibly important [4]. Ideally, for each obstacle
in the environment, the exact future trajectory would be able
to be uncovered for all scenarios. Having a precise trajectory
would maximize the informativeness or the utility of the
prediction.

However, given the randomness of human motion, it is
unlikely that the precise trajectory will be uncovered uniquely
[5]. While this has been applied to very specific situations
under strict assumptions [6], the probability of this functioning
reliably is negligible. In the realm of intelligent vehicles, many
works have developed models attempt to predict the exact
trajectory, but either do not generalize well or cover unknown
situations [7], [8].

To gain more utility, probabilistic approaches have been
applied to allow some uncertainty about a nominal trajectory
[9], [10]. Again, this requires many assumptions on the
distribution over driving behavior, which is often violated
[11]. Stochastic models have also been developed, but make
many assumptions on the underlying model of human behavior
(e.g. Markov Decision Processes assume humans satisfy the
Markov property [12]) or on the distribution on human actions
[3].

B. Robust Predictions

In contrast to informative models, reachable sets maximize
the robustness and accuracy of the prediction. This modeling
methodology is inspired by the control theoretic tool of
forward reachability, which gives lovely provable guarantees
of encapsulating the systems behaviors, assuming the model
and disturbances are well known. Given these assumptions,
these and related methods can provide certificates that give an
exact proof of safety [13]. As a consequence, these methods
tend to be over-conservative, meaning that the prediction is
highly accurate, but not informative.

In order to utilize these techniques, many assumptions must
be made on the model being used. There has been a great
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Fig. 1: Informative versus Robust Modeling. (a) Maximally informative, but least robust prediction. (b) Informative prediction
with assumptions over distributions on human behavior. (c) Maximally robust prediction, requiring exact model and disturbance
bounds and tends to be over-conservative. (d) Visualization of prediction that identifies useful subsets of reachable set, balancing
robustness with informativeness.

deal of work aiming to a address these issues by considering
stochastic reachability or by applying safe learning techniques.

For human controlled systems, the disturbances are often
difficult to model and use in control frameworks [14]. The
disturbances, however, are crucial in robust modeling–if the
assumed disturbance bounds do not globally capture the true
disturbance, reachability methods can no longer guarantee
safety. On the other hand, if the disturbances are over approx-
imated, the resulting control will be over-conservative [4].

To address this issue, there has been growing interest in
learning these disturbances online to reduce the conservative-
ness of these methods [15]. In [16], the authors designed a
safe online learning framework to both learn disturbances and
modeling errors, while applying reinforcement learning for
control.

A key inspiration for considering the reachability framework
is the Volvo City Safety system, a successful semiautonomous
system that relies on such reachable sets to mitigate collisions.
When driving in the city (below 35 miles per hour), the system
calculates the forward reachable set of the vehicle for the
future 500ms and anticipates collisions by checking to see if
a detected object is within that set [17]. As noted, this method
does not work at high speeds as the reachable set of the vehicle
itself becomes too large, leading to an overly invasive system.
When considering high speeds, the human can no longer be
considered as a disturbance in the system, as the driver has
significant influence over the future trajectories of the vehicle.
Ideally, the system would function at high speeds and consider
the likely actions of the human by modeling the driver to create
a more informative reachable set.

C. Our Contributions

Here, we present a method for identifying the subset of the
reachable set that is useful up to some probability threshold,
which we will call the empirical reachable set. The algorithm
estimates the nonparametric distribution empirically induced
by a dataset of trajectories, giving it the power to rejecting

outliers and identify the likely behaviors of the coupled
human-robot system.

From a safety and interaction perspective, predicting the
drivers behavior is incredibly important, as autonomous ve-
hicles are on the precipice of being a part of everyday life.
Here, beyond presenting the algorithm, we focus on two key
components of driver behavior: the influence of distraction
(i.e. texting while driving) and the impact of intent (i.e.
deciding whether or not to change lanes). We specifically
consider building models of individual driver behavior, but
the algorithm presented generalizes across datasets of human-
in-the-loop systems, as will be discussed in Section V.

Frequently, driver monitoring systems that estimate the
driver state, are used in Advanced Driver Assistance Systems
(typically warning systems) [18], [19]. If we want to take an
active and preventative approach by integrating these driver
models into control frameworks, a predictive model of the
effect on the dynamical system is needed. Building off the
data-driven reachable set concept [3] and control framework
presented in [14], we aim to create a highly precise and
accurate model of human behavior.

The algorithm presented here takes a dataset from a human-
in-the-loop system under different conditions (e.g. driver state,
environmental conditions, etc.) and outputs empirical reach-
able sets that have rejected unlikely samples up to some
probability threshold. By selecting observed trajectories of the
system, the explicit calculation of the reachable set is estimated
by finding the bounds on the dataset, given a mode of behavior.
This can be used to identify mislabeled data or identify the
most likely behaviors from the human-robot system. Due to
the flexibility of the modeling method, we can build a more
informative and useful reachable set that is usable in a wide
variety of scenarios, if represented in the dataset.

The paper is structured as follows. Section II will present
our modeling methodology and set prediction algorithm. To
demonstrate the utility of this method, experiments to collect
driver data in a realistic human-in-the-loop testbed will be
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presented in Section IV-A. The resulting model is be presented
and evaluated in Sections III and IV. Finally, we will conclude
with a discussion of the results and of the future works.

II. MODELING METHODOLOGY

As previously described, in this work we aim to develop
a framework that when given a dataset of human-robot be-
haviors, can identify the likely empirical reachable set. First,
we state the assumptions, and present the formulation of the
problem in terms of finding representative subsets of data.

A. Modeling Assumptions

In this subsection, we provide the notation and assumptions
for the formulation of empirical reachable set to be used as a
driver model.
Assumption 1: Existence of Human-in-the-Loop Dataset.
Consider a vehicle with a set of dynamics:

x[k + 1] = f(x[k], u[k]) (1)

where x[k] ∈ Rn is the state of the vehicle, u[k] ∈ U is the
vehicle inputs where U ⊂ Rm is a compact, connected set,
k ∈ {0, . . . , T} denotes the time step, and T ∈ N is the finite
time horizon. Since we are interested in the human-in-the-loop
system, we suppose that the input u comes from the human
driver. The u the human driver uses is affected by the mode,
which will be described in Assumption 2.

For now, we will consider the case where the dynamics f
of the vehicle and/or the human control input u is unknown,
but we can observe trajectories and recover the observable
states. Suppose we have a dataset X that consists of N sample
trajectories of the system over a given time horizon T :

X =

x1[0] . . . x1[T ]
...

...
...

xN [0] . . . xN [T ]

 (2)

where xi[t] ∈ Rn is a trajectory indexed by i. It is assumed that
the initial positions of these trajectories are centered, meaning
xi[0] = x0, ∀i. For notational simplicity, we will denote a
sample trajectory as xi := [xi[0] . . . xi[T ]].
Assumption 2: Existence of Scenario Modes.
We also assume that we have associated observations of the
surrounding vehicles and the environment (e.g. data from radar
and road sensors), which we can use to create environmental
abstractions.

Suppose given the current sensor information, et, and the
dataset of past observations (or environment abstractions) E,
we are able to map the current scenario to a past similar
scenarios or mode.

θ : et × E 7→ m (3)

where m ∈ M denotes a driver mode that is one of a finite
set of scenario modes that the vehicle could be in.

This is similar to the hybrid systems formulation where
we identify the current mode of operation. We can associate
this with a set of mental states for the driver (e.g. attentive
or distracted), as presented in [20], and/or states of the
environment.

Assumption 3: Existence of Distinct Behavior Modes.
Given that driver behavior heavily depends on context and
that we can identify this mode through θ(et, E), we assume
that these modes have associated behaviors and that these
behaviors are unimodal. As was previously mentioned, we are
interested in long time horizon trajectory predictions that will
encapsulate the uncertainties and the bounds of the potential
future states of the vehicle.

For a particular mode m ∈M, we will present an algorithm
to calculate some function:

A(X,m)→ ∆m(α) (4)

where we have some function A that utilizes the dataset X to
produce a prediction set as ∆m(α). For a given α, the set will
encompass the α-likely trajectories for mode m, as identified
by θ. The formulation and algorithm to identify this set will
be presented in the following section.

B. Identifying the Empirical Reachable Set

In order to approximate the reachable set and give a
reasonable prediction of the system, we present an algorithm
(previously denoted A) for deriving the empirical reachable
set with outlier rejection to capture the likely behavior of the
system.

To find a more useful representation of this dataset, we’d
like to find the minimum area set that contains the α-likely
trajectories. Formally:

argmin∆⊆RT λ(∆)

subject to P̂X(∆) ≥ α (5)

where ∆ is the predicted set, λ(·) is the Lebesgue measure
that gives the size of the set, and P̂X(∆) ∈ σ(RT ) is the
empirical probability over the trajectories in dataset X:

P̂X(∆) =
1

N

N∑
i=1

I{xi ∈ ∆} (6)

Since our primary concern is interaction and safety in terms
of constraints on the vehicles motion, the trajectories of the
high dimensional dynamics are projected into Rnc , where
nc = 2, to capture vehicle position.

To make this optimization more concrete, we rephrase
the problem as a mixed integer linear program (MILP) that
minimizes the area between two bounding hyperplanes that
select a subset of the trajectories to meet the probability
threshold:

argmin
x,x∈RT

area(x, x)

subject to bi(x− xi) ≥ 0
bi(x− xi) ≤ 0∑

i bi ≥ N(1− α)

(7)

where bi is the decision variable associated with trajectory i.
This decision variable chooses whether or not this trajectory
will be included in the set or not, ensuring that more than
N(1 − α) trajectories are included. The area between the
bounding hyperplanes x and x is approximated using the
Riemann sum approximation.
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Fig. 2: Driver Modeling Algorithm. This flowchart shows how the dataset of trajectories (left) with some outliers (labeled in red) becomes
disturbance bounds with some probability threshold (right). For all trajectories, the initial position is centered at (0,0), heading in the positive
x direction. The center image shows the initial set and the new, more precise set with the outliers in red rejected. The right image shows
the full empirical distribution over the dataset.

These bounds optimally result in being the pointwise min-
imum and maximum over the subset of the data, determined
by the constraints. Simply put, this algorithm identifies the
lines that bound the most precise subset of the trajectories
that captures the α-likely trajectories behaviors.

However, this is a bilinear constraint and is therefore not
easily solvable. In order to make these constraints linear, we
use a cute trick to recast the constraints as linear equations:

x− xi ≥ (1− bi)(xmin − xi)
x− xi ≤ (1− bi)(xmax − xi)

(8)

where xmin is the pointwise minimum and xmax is the
pointwise maximum of the dataset. This changes the decision
variables to select when the trajectory will be included in the
set and when a trivial constraint will be satisfied (i.e. when
the upper boundary x is greater than the minimum of the set).

By casting this problem as a mixed integer program, we can
efficiently solve for the set that will allow us to choose the
trajectories in the data that maximize the precision, given an
empirical probability threshold. This formalization allows us
to capture likely behaviors of the system, and reject outliers
from the dataset to derive a more precise and useful trajectory
prediction set.

C. An Example

Suppose we have a dataset consisting of sample trajectories
of a human driver lane keeping, which may consist of some
outliers, as visualized in the first panel of Figure 2.

By simply taking the pointwise bounds of the samples, a
conservative estimate of the empirical set is found (as was
done in [20]). However, we would like to find a representative
set and use the algorithm to reject the outliers. Using the
algorithm presented and allowing a rejection of up to 10% of
the samples, the optimization program identifies the outliers,
as labeled in red sample trajectories in center panel of Figure
2. By sweeping over the probability threshold, the empirical
reachable sets with are identified.

We note two key points. First, an interesting observation
can be made by looking at the effect of the precision as we
vary probability thresholds, as seen in the right-most figure in
Figure 2. A sort of invariant set appears, when the precision
no longer changes significantly by throwing out more samples
(this will be discussed in more detail shortly).

Second, this data is associated with a specific mode of
operation or scenario. In general, this algorithm assumes a
unimodal data distribution, to uncover the the most precise,
representative subset of the data. Our method of overcoming
this will be discussed in Section IV. Much like the reachable
set analysis utilized by the hybrid systems community, the
power of this tool comes from looking at modes which will
determine the high level control actions of the human.

III. ALGORITHM EVALUATION

To demonstrate the functionality of the algorithm in a
tangible ground truth, the method is employed on known
distributions to make sure these empirical sets are providing
useful set with respect to probability thresholds in a reasonable
computation time.

A. Distribution Analysis

To exemplify and validate algorithm performance, baseline
results on known distributions were performed for uniform,
normal, extreme value, and log-normal distributions. These
were selected to span a range of distributions with varying
likelihood of outliers.

To test this, N data-points were drawn at random from
each distribution. These datasets are passed through the ERS
algorithm to identify sets that capture the most precise subset
of αN samples of the data. Samples of the sets overlayed
with the probability density functions for the extreme value,
normal, and log-normal distributions are visualized in Figure
3.

It can be observed that this method tends to capture the high
density regions well and quickly rejects the extreme samples
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Fig. 3: Distribution Analysis of ERS Algorithm. Sweeping over probability thresholds, we approximate the distribution using
data sampled from known distributions.

from the sets. For a more quantitative sanity check, a normal
distribution, the sets found to capture the 1 and 2-σ bounds
that capture 68% and 90% of the data, respectively, in Figure
4. We observe that the sets match the tighter bound quite well,
but the 2-σ bound has some error. This is to be expected, as
the empirical data is more likely to appear near the mean,
capturing the typical sets, rather than the distribution itself.

Fig. 4: Comparing ERS Method to Known Standard Devi-
ation Metrics. Given a normal distribution, this plot visualizes
and compares our results with the known sets associated with
one and two standard deviations.

If we consider the size of the sets for each distribution, we
see the trend illustrated in Figure 5. This plot shows the area
reduction (δA = λ(∆(α)) − λ(∆(β))), where β ∈ [0 1] and
α > β, for each of the distributions. We note that this value is
normalized for plotting convenience and that the x-axis shows
the rejection ratio, which is 1 − α and (1 − β) in the above
notation.

We can see the shape of this curve is dependent on the
likelihood of outliers in the data. For the uniform distribution,
we have a linear relationship between the size of the set
and number of samples rejected (or the number remaining
in the set). For the Log-Normal distribution, we see that after
rejecting the extreme outliers, the size of the set approaches a
steady state, where the subset nearly remains the same. Using
these observations, we see that a typical set can be identified
when we have diminishing returns on the objective function.

B. Comparing Efficiency

As an additional evaluation, the computational efficiency
of the MILP formulation of the problem compared to naive
approaches for rejecting outliers, without assuming an under-

Fig. 5: Change in Area and Typical Sets. This plot shows
the change in the size of the set as more and more samples
are rejected from the sets. The lines for each distribution
tested show the average area reduction and the maximum and
minimum bounds are shown by the shaded regions.

lying distribution. A Leave-k Out method was implemented
for comparison:

[A∗, i∗]← min (λ(X|I)) (9)

where A∗ is the minimum area associated at index i∗. All
combinations of the trajectory indices is given by the N -
Choose-N -k combinatorial function, where N is the total
number of samples and k is the number to reject, is denoted
I ∈ NNc×N−k. Each row contains one of the combinations of
trajectories to be included in the set. The minimum function
returns the minimum area subset given the areas for all Nc

enumerated areas, given by λ(·).
The computation time for our formulation and the leave-k

out method are shown in Table I and Figure 6.
We note that the complexity of this optimization problem

grows as more trajectories are included in the dataset and
generally as more trajectories are rejected. For the former
point, the complexity has not proven itself a serious con-
cern compared to other set-based approaches, due to the
assumptions made and the straightforward formulation. The
latter point is intuitive, due ot the fact that region is more
dense making the decision variables more difficult to optimally
identify. In some cases (e.g. N � 0, X is quite dense), high
values of α are intractable in reasonable time.
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Fig. 6: Efficiency of the MILP Implementation Compared
to Naive Approaches. Computation time of rejecting increas-
ing numbers of samples for the two different implementations
are shown for N = 100 and N = 500. Our approach is shown
in the blue lines and the naive approach is shown in green.

TABLE I: Comparing Computation Time for MILP Im-
plementation and Leave-k Out Approach. Results showing
computation time in seconds for increasing number of samples
to be rejected.

N=100
k 1 2 3 4 5 10

ERS 0.005 0.030 0.025 0.041 0.048 0.44
Naive 0.019 0.261 10.572 310.917 — —
N=500

k 1 2 3 4 5 10
ERS 0.019 0.098 0.095 0.161 0.181 0.257
Naive 0.303 152.352 — — — —

To speed up the process of estimating the prediction set
over varying values of α, we can take advantage of the fact
that these sets are submodular. This means that ∆m(αp) ⊆
∆m(αq) for all αp ≤ αq . In practice, this means we can
more efficiently calculate the prediction set in dense regions
(i.e. high values of α, denoted ᾱ), by iteratively computing
decreasing values of α ∈ [ᾱ 1] and reducing the search region
to the area from the previous set. This allows us to chip away
at the problem and provides the full approximation of the
empirical distribution.

The ratio of the baseline implementation over the submodu-
lar approach is shown in Figure 7. As shown, we significantly
improve the computation time. We also note that the plot
shows the best case baseline implementation, meaning that
we considered the minimum time to compute. This baseline
implementation frequently timed out at 10 minutes, due to the
underlying complexity of these dense regions.

Moreover, this integer program can be relaxed to penalize
deviations from the typical trajectories instead of requir-
ing strict constraints and the number of trajectories can be
weighted by importance or similarity to reduce the number
of samples. Such tricks would improve the computation, but
further details and implementations are left as future work.

Fig. 7: Comparing the Submodular Approach to the Base-
line Method.

C. Model Validation Metrics

The following section presents our performance metrics
that validate the utility of this model, providing metrics for
evaluating the informativeness and robustness of the method.
The performance metrics describe how well we can predict
human-in-the-loop behaviors.

We introduce two performance metrics to validate this
model with respect to the trajectories of vehicle B:
1) Accuracy Metric: Does the actual trajectory lie within the
prediction set?
2) Precision Metric: How informative is this predictive set
when compare to a generic set prediction?

In essence, we would like to verify that we are reliably pre-
dicting driver behavior, and that we are using a set prediction
that is relatively small and informative.

We formalize these metrics in the following equations.
Accuracy is defined as:

A = 1
NT

∑NT

j=1 I {xj ∈ ∆(θ∗(ej , E), α)} (10)

where NT is the number of samples in the validation set with
elements xi, ∆(·, ·) denotes the ERS, where the mode m is
determined by θ∗(ej , E) for each sample for a given α.

Precision is defined as:

P =
1

NT

NT∑
j=1

1− λ(∆(θ∗(ej , E), α))

λ(R(vj))
(11)

whereR(vj) represents a constant velocity reachable set of the
vehicle, given the current velocity vj and all other variables
are as previously described.

This gives us an idea of how informative the set is by
assessing how much we are shrinking the set from this generic
set. If the precision metric is 1, the size of the prediction
set is 0, meaning that we have precisely predicted the exact
trajectory. If the precision metric is 0, then we are not reducing
the size of the set and we can surmise that this prediction is
not informative.

IV. ERS ON A LANE CHANGING EXAMPLE

As previously described, we would like to follow the exam-
ple of the hybrid systems community, we introduce the concept
of driver modes to apply this approximation of the reachable
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set to human modeling. It is assumed that the way a human
controls a system is dependent upon a number of different
influences. For example, a driver will behave differently if they
are attentive or distracted, or if they are planning on staying
in their lane or executing a lane change.

In our formulation, these modes will come with different
partitions in the dataset, as guided by the scenario mode
function θ. This means that by identifying modes of behavior
and collecting a sufficient dataset corresponding to that mode,
that we can build these predictive sets to represent these
different behaviors. We consider the affects on the predictive
sets who’s modes change based off of driver intent, as example
of how to identify typical sets.

To do this, we will explore different ways of determining
modes of intent. In this formulation, the prediction set ∆m(α)
and the associated mode m is determined by the driver mode
identification function, θ(et, E). There are many different
methods for determining modes of behaviors, including su-
pervised approaches that predict specific predetermined modes
and unsupervised approaches to identify natural groupings
within the observed data.

A. Experimental Setup

To apply our method for predicting human-in-the-loop be-
haviors in the context of driving, we must collect our trajectory
dataset X and for each method of detecting driver modes. We
collected 1000 sample lane changes from ten subjects.

The resulting dataset consisted of lane changing maneuvers
in dynamic environments with up to three vehicles. For sim-
plicity, we examine a simple scenario of driving in a two-lane,
one way road, in a non-urban setting with a varying number
of vehicles. Multiple scenarios were created in which the
driver traverses a straight two lane road attempting to maintain
a speed between 15 and 20 m/s. Scenarios were generated
by creating combinations of the simulation parameters to
collected a complete dataset. The following parameters were
varied:
(1) the initial speed and lane location of ego vehicle;
(2) the number and location of surrounding vehicles, varied
from one to three; and
(3) the initial and final speed of each surrounding vehicle.

For example, in some scenarios, the lead vehicle would
slow down, forcing the driver to change lanes only if there
was room in the next lane. Thus, the key here is finding
the configurations of the environment states that cross the
boundary or safety margin of the human and allows us to
identify their likely action between staying in the lane (i.e.
braking) or changing lanes to maintain her desired speed. We
note that some scenarios did not require a lane change (e.g.
the relative speed of the lead vehicle was initialized such that
the driver never felt the need to overtake them), while other
scenarios which heavy traffic caused multiple lane changes, but
varied depending on the driver’s behaviors in the simulation.

To take a supervised approach, we actively label the data
using the driver’s turning signal (blinker) to determine when
the transition between the lane keeping mode and lane chang-
ing mode. By using the driver input to label the signal, the

driver’s thought process is captured and arbitrary heuristics are
avoided. This transition generally occurred one to two sections
prior to exiting the lane. This means that learning these
transitions inherently capture a predictive model, meaning
that the lane change will be predicted prior to the maneuver
actually occurring.

Fig. 8: Discrete states of Driving Example. Illustration of
discrete modes in our hybrid model of driver intent, where we
model the transitions as discrete inputs, σ∗.

B. Mode Identification

Detecting lane changes from a dataset has traditionally been
done by determining when a lane change occurs by some
heuristic (e.g. when the heading angle passes a particular
threshold or when the vehicle exits the lane). These models
look at the data leading up to this point in order to predict
that a lane change will occur in the next few seconds [18],
[21]. This, however, does not capture the decision making
process of the human, or capture the idea that these decisions
occur as a function of the environment, not just time. In the
proposed detection method, we choose to only rely on the state
of the environment, not a predetermined time horizon, meaning
that the resulting model allows the prediction time horizon
to change. Further, this approach captures typical human
interactions. While drivers often rely on turning indicators or
blinkers to convey our intent to surrounding vehicles, humans
can estimate intent without these visual cues, just by observing
the motion of nearby vehicles [22].

To do this, given some sample data from sensors, ek,
we wish to uncover the driver mode identification function

Fig. 9: Learning Separating Hyperplane between Modes of
Intent. Sample trajectories of lane changes are shown as the
black paths, with the transition points labeled: lane keeping
ends at the square points and the beginning of lane changing
are shown as circles. The learned separating hyperplane is
shown in purple.
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Fig. 10: ERS Output for Lane Changing Modes. The empirical set predictions are provided for varying α values.

θ(ek, E) given previously observed data in E. Given that
we are interested in simple lane changing maneuvers (finer
analysis of lane changes will be covered in the following
chapter), we wish to identify when the driver transitions from
lane keeping to lane changing. This mapping is uncovered
using classification techniques. Many different tools were
examined, and many existing approaches demonstrated similar
results. For simplicity, we will generally discuss classification
techniques, focusing on support vector machines which aim
to uncover the separating hyperplane between the behavior
modes [20], [23].

Classifying data is a common task in machine learning.
Suppose some given data points each belong to one of two
classes, and the goal is to decide which class a new data
point will be in. While there are many hyperplanes that might
separate the data, support vector machines aim to select the
one with the largest margin between data samples. This implies
that the distance from the boundary to the nearest data point
on each side is maximized. This resulting separation boundary
is known as the maximum-margin hyperplane and provides
optimal stability for the classifier [24].

For lane changing, we wish to uncover the transitions
as shown in Figure 8. Using the labeled data previously
described, these transition points are learned, and the deci-
sion making processes is approximated by these boundaries.
Additionally, each mode will represent a subset of the data
that is associated with each mode. We will denote this as
Xm = X(I(m)), where I(m) subset of the dataset that has
been associated with mode m.

C. ERS Results

Using this collected data and the intent detection function,
we apply the modeling methodology and run the optimization
program to identify the probability distribution over trajecto-
ries. The output of this framework are shown in Figure 10.

Using the performance metrics defined in the previous
section, we validate this method as a predictive model. The
accuracy/precision trade-off curve is shown in Figure 11 in
addition to the results provided in Table II. Since these sets
are determined by a probability threshold (i.e. sweeping over
values of alpha), we hope to exceed a baseline performance
of a uniform rejection, which is also provided in the figure.
Additionally, to visualize accuracy in a more fluid fashion,
the total cumulative error is computed as the total distance
between the trajectory and the set prediction, when not on the
interior of the set.

Thus, we have produced sets that encapsulate the empirical
behaviors of drivers in these modes with reasonable accuracy.
For further nonparametric distribution analysis, we consider
the area reduction by rejection ratio as previously shown. As
expected, we see the same trend as the evaluated heavy tailed
distributions. It can be observed that after rejecting 20% of
the data, we see a nearly linear reduction in the size of the
set with each increased step in α. This implies that after this
point in the graph, we are no longer rejecting outliers, but
eliminating boundary trajectories that have little influence on
the precision of the set. This also matches the templates or
footprints from known distributions with outliers, or heavy
tails, implying that many driver behaviors are likely members
or such distributions.

V. DISCUSSION

In summary, this paper presents a novel modeling method
that aims to capture driver behavior in a manner that bal-
ances informativeness and robustness. By using this modeling
methodology, we capture the uncertainty in driving behaviors
and in a flexible and modular method. This not only gives
us insight to driving behaviors, but this framework can also
be applied to semi-autonomous frameworks, as was shown in
[14]. Future works aim to extend this to interactive scenarios
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TABLE II: ERS Lane Changing Results. Performance metrics and cumulative errors (m) are provided for the two modes
presented for lane changes.

Lane Keeping Mode
α 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10

Accuracy 0.98 0.72 0.63 0.53 0.43 0.31 0.21 0.15 0.10 0.05
Precision 0.64 0.72 0.79 0.84 0.88 0.91 0.93 0.95 0.98 1.00

Cumulative Error 0.14 0.17 0.18 0.21 0.26 0.33 0.40 0.47 0.57 1.48
Lane Changing Mode

α 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
Accuracy 0.84 0.68 0.66 0.66 0.59 0.48 0.38 0.27 0.24 0.05
Precision 0.11 0.43 0.51 0.62 0.66 0.75 0.80 0.83 0.92 1.00

Cumulative Error 0.99 1.49 1.67 1.69 1.76 1.90 2.09 2.14 2.83 2.98

where predictive modeling is required for cooperative control
and collaboration.

We note that this method has a few drawbacks. First, this
is highly dependent upon the mode identification and scene
classification, meaning that if the dataset is partitioned im-
properly, you’ll likely get uninformative results. Second, given
the cost function currently used (minimizing precision), the
algorithm primarily penalizes lateral variation, meaning that it
will eliminate trajectories with extreme steering first. This also
means that it favors trajectories that slow down (minimizing
the longitudinal distance traveled), which is where most of the
errors lay. More consideration in cost functions is left as future
work

Further, there are many other extensions that might improve
this work, including taking into account multiple or competing
objectives and driver modes. Similarly, taking into account
bimodal behaviors and mixing intent is a promising avenue
for expanding this to more general applications. Fig. 11: Accuracy/Precision Trade-off Curve for Lane

Change Example. This plot shows the trade-off between
accuracy and precision. The expected uniform baseline per-
formance is shown by the dashed line.

Fig. 12: Area Reduction Ratio for Lane Change. The
amount the size of the set decreases by rejection ratio is shown
for both modes. The trend is similar to those of the evaluated
heavy tailed distributions.
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for time-critical street scenarios using discretized terminal manifolds,”
The International Journal of Robotics Research, vol. 31, no. 3, pp. 346–
359, 2012.

[9] T. Gindele, S. Brechtel, and R. Dillmann, “A probabilistic model for esti-
mating driver behaviors and vehicle trajectories in traffic environments,”
in Intelligent Transportation Systems (ITSC), 2010 13th International
IEEE Conference on. IEEE, 2010, pp. 1625–1631.
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