
 

Abstract— The application of traction control systems (TCS) for 

electric vehicles (EV) has great potential due to easy 

implementation of torque control with direct-drive motors. 

However, the control system usually requires road-tire friction 

and slip-ratio values, which must be estimated. While it is not 

possible to obtain the first one directly, the estimation of latter 

value requires accurate measurements of chassis and wheel 

velocity.  In addition, existing TCS structures are often designed 

without considering the robustness and energy efficiency of torque 

control. In this work, both problems are addressed with a smart 

TCS design having an integrated acoustic road-type estimation 

(ARTE) unit. This unit enables the road-type recognition and this 

information is used to retrieve the correct look-up table between 

friction coefficient and slip-ratio. The estimation of the friction 

coefficient helps the system to update the necessary input torque. 

The ARTE unit utilizes machine learning, mapping the acoustic 

feature inputs to road-type as output. In this study, three existing 

TCS for EVs are examined with and without the integrated ARTE 

unit. The results show significant performance improvement with 

ARTE, reducing the slip ratio by 75% while saving energy via 

reduction of applied torque and increasing the robustness of the 

TCS.    

Index Terms—traction control, acoustic signal processing, 

electric vehicles 

NOMENCLATURE 

 

𝜆 Slip ratio 𝜏2 
Time constant for high pass 

filter in MFC 

Icom Current command 𝐴 Gradient of µ/λ curve 

𝑤 
Rotational speed of 

wheel shaft 
𝑀 Vehicle mass 

𝐽 
Moment of inertia for 

vehicle body 
𝐼 Vehicle inertia 

𝐽𝑊 
Moment of inertia for 

wheel and its shaft 
𝑉 Velocity of vehicle 

𝑟 Tire radius 𝑊 Normal force of wheel 

𝐹𝑚 Motor torque 𝑇 Motor torque 

𝐹𝑑  Friction force 𝐹𝑑𝑟 Driving resistance 

𝑀𝑤 Wheel inertia 𝑉𝑊 Wheel velocity 

𝑁 Vertical force 𝜇 Friction coefficient 

𝑔 Gravity acceleration 𝛼 Relaxation factor 

𝐹𝑟 Rolling resistance 𝑉̇ Acceleration 

𝐹𝑎 Air resistance 𝑤̇ Angular acceleration 

𝜏𝑚 Motor time constant 𝑚 Wheel mass 

𝜏1 
Time constant for 

electric motor in MFC 
𝜏1 

Time constant for low pass 

filter in MTTE 

 

I. INTRODUCTION 

HERE are currently two focus areas in vehicle technology 

research; the first one is based on electric vehicles and the 

second one involves the active vehicle safety systems 

towards fully autonomous cars. The active safety systems in 

automated vehicles can be ranging from TCS (traction control 

system) and ABS (anti-lock braking system) to LKS (lane 

keeping system) and DYC (direct yaw control). As an 

intersection of electric vehicles and active safety research, 

direct-drive motors offer a new application field to improve the 

existing active vehicle safety concepts while benefiting from 

embedded mechatronics interfaces and advanced signal 

processing. This type of systems can be more feasible in EVs 

compared to conventional vehicles with ICE. As it was 

suggested in [1], a complete control system addressing 

longitudinal and lateral vehicle dynamics becomes possible if 

the necessary signal processing algorithms and controllers can 

be applied on EVs. One such application is TCS which can be 

considered as a sub-system for many of the upper-level vehicle 

stability control systems with the aim to minimize the slip and 

skid of the wheels. This is achieved by conserving the necessary 

adhesion between the road and the wheel. The applications of 

TCS as a sub-part of a more comprehensive active vehicle 

safety system such as DYC can be seen in literature [2,3,4].  

There are several types of TCS in literature in addition to 

dedicated studies examining road-tyre friction characteristics 

focusing on temperature [5] and prolonged sliding conditions 

[6]. If the TCS application is narrowed down to EVs, one of the 

simplest form is model following controller (MFC) studied in 

[1]. MFC system represents the longitudinal dynamic behaviour 

of the vehicle body in an internal model and generates wheel 

reference angular velocity. Then, wheel reference angular 

velocity is compared with actual angular velocity value to 

generate an error signal. After high-pass filter conditions the 

error signal, it is amplified and fed back to control the torque of 

the electric motor in turn. MFC system is very basic and 

straightforward using the electric motor embedded in the wheel; 

therefore, it helps reaching the demanded traction forces via 

motor torque control. However, its major disadvantage is the 
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lack of updated road conditions. The real dynamics between the 

road and tire in terms of slip ratio and friction coefficient are 

not measured by MFC system at all. The slip ratio used in the 

calculation of the real vehicle inertia is a pre-set, constant value 

which does not update itself dynamically according to the 

current condition of the road. Another essential TCS for EVs 

named as Slip Ratio Control (SRC) [7,8,9,10] system. In SRC, 

velocity difference between vehicle chassis and the wheel 

provides the actual slip ratio. As a reference to be compared 

with the measured slip ratio, optimal slip ratio is estimated 

using an either a fuzzy inference system or gradient descent 

algorithm involving µ-lambda friction characteristic curves and 

formulae. The signals of a driving force observer are also 

included in SRC with the fuzzy system, yielding indirect but 

essential indications reflecting the level of adhesion between 

tire and road. Although the estimation of road characteristics 

represented by optimal slip ratio is just an estimated value, the 

actual road-tire dynamics are at least considered in SRC. 

Following the actual traction force between tire and road, the 

force observer mainly determines the performance of SRC. A 

second source of uncertainty may be from the look-up tables of 

µ-lambda curves of road conditions (i.e. mu-lambda curves 

obtained by Magic Formula [11]) to get an optimal lambda (λopt) 

using fuzzy system. The double estimation process is used to 

obtain the optimum slip ratio which is then tracked by adjusting 

the motor torque. In brief, although estimation errors of SRC 

may decrease its performance, it could perform better than 

MFC system because of its dynamic update on the road 

conditions. Lastly, the Maximum Transmissible Torque 

Estimation (MTTE) can be mentioned as the third main TCS 

[12, 13] for EVs.  MTTE needs neither chassis velocity nor the 

estimation of road-tire condition. Thus, it is fundamentally 

different from SRC as structure. The uncertain dynamics 

between the road and tire together with its effect on the chassis-

wheel velocity difference is accounted in the relaxation term 

alpha (α) and an observer-based strategy is followed in MTTE.  

In addition to these TCS structures, it is worth mentioning 

several recent studies on control sub-systems or sensor 

platforms for traction control. For example, the coefficient of 

tire-road was estimated using novel wireless piezoelectric 

sensors, to measure tire sidewall deflections and employ the 

conventional tire brush model to complete the estimation in 

[14]. This study again emphasizes the necessity of a plausible 

model to obtain the road-tire friction coefficients although a 

specialized sensor is developed. Being relatively new, acoustic 

methods are also employed in road condition estimation in a 

limited capability distinguishing between the dry and wet 

asphalts in [15]. Estimation of the frictional condition is used 

with an adaptive vehicle speed control in [16]. To obtain an 

estimation of the frictional condition, they employed the 

actuation redundancy of an in-wheel-motor (IWM) configured 

EV. This method seems to identify the friction characteristics 

of the particular road without longitudinal motion of the 

vehicle, therefore it is innovative. The traction control 

applications can go as far as the method used in [17] controlling 

the wheel slip employing a sliding mode controller and having 

a sliding mode observer to estimate the friction value. However, 

the controller design in that work assumes that the velocity or 

angular velocity measurements are available. In [18], another 

application, a sliding-mode observer is proposed. Similar 

examples involving wheel slide protection (WSP) in railway 

field can be found in [19, 20]. There are also real-time 

applications of traction control/antiskid systems [21] usually 

applied in a separate rig for railway vehicles [22]. Besides the 

studies which are focused on the traction control, there are also 

numerous studies on estimation of the road-tire friction in 

general, independent of its end-use. An early example of slip-

ratio based road friction estimation was detailed in [23] using 

the standard sensors in ABS. Later a similar approach [24, 25, 

26] was taken for wheel slip control for ABS brakes, employing 

gain scheduling using LQR control.  There are also studies 

applying recursive identification for the cornering stiffness 

estimation [27] and noise-adaptive particle filtering [28] to 

provide a better understanding of road-tire dynamics in lateral 

motion of the vehicle. In more comprehensive works, road 

frictional coefficient can be estimated using a nonlinear 

observer [29] but both longitudinal and lateral models for 

vehicle dynamics is needed. A very interesting low-cost 

application [30] tracks the vehicle speed using chassis vibration 

when GPS or wheel-based sensors are not available. Although 

it does not aim for road-friction estimation directly, it can be 

used as an alternative low-cost sub-system for the TCS which 

might require slip-ratio measurements. One of the recent studies 

uses in-tire accelerometers [31] to determine the tire 

deformation directly to be used in driving, braking or other 

stability systems. There are also efforts in the identification of 

road-tire friction forces in real time [32] using curve fitting 

algorithms. Although the previous studies contributed greatly 

to the estimation of the road-tire interaction characteristics and 

proposed several TCS, there is still need for an affordable 

sensor platform which can be integrated into TCS structures 

increasing its robustness while considering the energy 

efficiency of the torque control.     

In this work, an acoustic signal-based road-type estimator is 

proposed which is capable of distinguishing between asphalt, 

gravel, snow and stone. The unit is called ‘Acoustic Road Type 

Estimation’ system or ARTE in short. Signal processing 

methods in acoustics and speech recognition fields are adopted 

for extraction of features. Then artificial neural networks 

(ANN) or support vector machines (SVM) is used for 

classification. To demonstrate the effect of ARTE unit on 

robustness and energy efficiency of traction control, three TCS 

structures are examined first without, then with the unit 

integrated. The resultant smart TCS with ARTE unit could 

reduce the slip ratios and decrease the required torque effort. 

Furthermore, ARTE unit provides the TCS with more 

robustness due to reduced uncertainty in the input. Although the 

main contribution is in providing the up-to-date slip-ratio for 

the control algorithm in an affordable way, the research also 

derives transfer functions for three TCS and analyses the 

robustness of them with and without the ARTE unit. This extra 

outcome of the research can help researchers working in TCS 

design as a guideline to increase the robustness and energy 

efficiency of their systems. The real innovation value of ARTE 

is to provide a (1) low-cost and easy to set-up alternative for 

road-condition estimation, (2) integration of the road-condition 

estimation in already existing TCS for EV.  

The manuscript is organized to reflect the design of ARTE 

unit first and then its integration with TCS, finally concluding 

on the performance comparison of TCS with and without the 



proposed unit. Section 2 describes the ARTE unit including the 

data acquisition platform, signal processing, and selection of 

acoustic features and road-type classification part using ANN 

or SVM. Then, in Section 3 three TCS structures for EVs 

mainly based on MFC, SRC and MTTE are introduced and their 

transfer functions are derived to be used in robustness analysis. 

In Section 4, the ARTE unit and selected TCS are integrated 

and the performance of TCS with and without the ARTE unit is 

compared. Lastly, the conclusions are drawn in Section 5 

together with the future improvement and expansion of the 

proposed smart TCS. 

II. ACOUSTIC ROAD TYPE ESTIMATION (ARTE) SYSTEM 

There are many mainstream methods available for friction 

force estimation or measurement. However, they often require 

high-cost sensors and complicated set-ups. The method 

described herein aims to offer a simplified and low-cost system 

as an alternative for road-tire friction estimation and a 

methodology to integrate this system in TCS structures. In order 

to have a clear comparison, the mainstream methods are 

discussed briefly. A great portion of friction estimation systems 

uses the vehicle dynamics, wheel motion or tire-deformation as 

the basis for measurement or estimation. They can be 

considered in three main groups as follows: 

(I) Vehicle-based friction estimation system model: uses 

vehicle’s longitudinal and lateral motion measurement for 

the estimation. The limitation of this system lies in the fact 

that vehicle-based system cannot provide friction 

coefficient estimation if the slip-ratio and slip angle are 

very small, so the signal to noise ratio is not adequate [33] 

for reliable measurement. There are limitations of vehicle-

dynamics-based estimation methods because they demand 

either sufficient tire slip or adequate tire slip angle to 

provide real time updates of the estimates. If the slip ratio 

and slip angle are extremely small, as it can happen during 

vehicle coasting on a straight road, the system cannot 

provide friction coefficient estimate updates [34]. 

(II) Wheel shaft-based estimation system model: provides the 

friction coefficient estimation using the sensors on an 

extra wheel mounted on the vehicle. Extra tire on 

redundant wheel can skid and therefore friction values can 

be estimated. This system has complicated set-ups [33]. 

(III)  Tire-based estimation system model: uses tire deflection 

(vertical, lateral and longitudinal) measurements by 

piezoelectric strips embedded in the regular tires of the 

vehicle [33].  

To compare available estimation and measurement techniques, 

a comprehensive list is shown in Table I. The acoustic method 

shown in Table I uses only IC voice recorder to collect direct 

information from the road. It is a simple, low cost and fast 

method. The recognition accuracy can reach to 99%.  

In this part, we propose an alternative acoustic based road 

friction estimation method demonstrating almost all the 

advantages of the method mentioned in [35, 36]. In addition to 

that, ARTE system proposed in this work is integrated as a part 

of traction control systems (TCS) and quantitatively proven to 

improve the performance of all three TCS structures examined 

here. More details on ARTE system could be found in [37, 38] 

and the focus of this work is limited to the integration of ARTE 

with traction control systems and its performance.  

ARTE system is designed as a low-cost solution to deal with 

the uncertainty in the estimation process of road-tire interaction. 

The friction force here is estimated to involve the mu-lambda 

relationship, representing the effective friction coefficient 

versus the slip ratio. The estimation is performed by recognition 

of the road type and then finding the corresponding mu-lambda 

(i.e. friction coefficient vs slip-ratio) look-up tables. To detail 

more, in ARTE set-up, a cardioid microphone is used to collect 

the acoustic data from tire/road interaction and the data is 

processed to classify the road type. This information is then 

used to select the pre-recorded correct mu-lambda to produce a 

better optimal lambda value than the assumption in original 

model which usually features a road-tire model with constant 

lambda. When the real/actual values do not match the assumed 

constant values, the performance of the system is undermined. 

Eliminating this blind assumption and providing a reliable 

estimation on the actual road-friction, ARTE leverages the 

system performance. In other words, ARTE updates the model 

to get closer to the actual dynamics by removing some part of 

the uncertainty related to the road-type and conditions. The 

benefit of ARTE can be also explained from an uncertain 

system perspective. By integrating ARTE, uncertainty bounds 

of the system become narrower allowing the model to control 

the traction force much better with a more robust structure. 

Here, the ARTE model consists of four parts: (a) data collection 

set-up (b) pre-processing, noise cancellation and signal 

conditioning, (c) extraction and selection of features, (d) road 

type estimation using ANN or SVM. The flow-chart in Fig 1 

illustrates the signal flow and the processing steps to reach the 

optimum lambda.  

TABLE I 

ROAD SURFACE CONDITION ESTIMATION TECHNIQUES COMPARISON 
 

Techniques Sensor 

Signal 

Processing Accuracy Cost 

Imaging 
[39,40,41] Camera Yes >90% High 

Imaging 

[39,42] 

Optical Sensor/ 

Laser Yes 98% High 

Slip-slope [39] 
Accelerometer, 
pressure sensor Yes >90% High 

Tire Vibration 

[43] Accelerometer Yes >90% Medium 

Solar 
Radiation [40] 

Infrared, temp. 
sensor, humidity Yes >90% Medium 

BP NN[39] No add. sensor No 80-90% Low 

Acoustic 

Method[35,36] 

IC Voice 

recorder Yes >99% Low 

 

 
Fig. 1.  Flow-chart for operation principle of ARTE unit 
  



A. Data Collection Set-up and Pre-processing 

Acoustic data was collected by using a full Electric Vehicle 

located at Mechatronics Education and Research Centre, ITU, 

a DC-AC converter, a DPA 4012 model cardioid microphone, 

a generic microphone amplifier, and a laptop which has 

Pentium(R) Dual-Core CPU T4200 2GHz processor. Gold 

Wave program was employed for data acquisition and pre-

processing. Acoustic data of gravel, asphalt, snow and stone 

road types collected in the set-up are shown in Fig 2. The 

electric vehicle is more suitable than a vehicle with internal 

combustion engine for ARTE method. Since EVs provide 

quieter environment, no problems were met regarding the motor 

noise or combustion chamber. In addition to this, a foam rubber 

shield was used to suppress the wind noise that could be 

generated when the vehicle moves. Fig 2 also shows cardioid 

microphone pattern which graphically demonstrates 

microphone’s directionality. This pattern indicates that the 

microphone collects data mostly at its front part but to a less 

extent on its sides. The acoustic data was picked up at constant 

and low-speeds from 10-30 km/h during collection. Generally, 

the tire-road friction estimation structures need variable and 

high-speed profile for the estimation process, however, ARTE 

system does not demand variable or high-speed profile. In fact, 

it can be used in all speed profile conditions, including constant 

and variable speed values. 

B. Pre-processing, Noise Elimination and Signal 

Conditioning 

The original data is collected under ideal conditions in a test 

track at ITU Campus without any external noises such as car 

pass, tire squeal or rain drop noises. However, to test the effect 

of extra external noises on the acoustic signal recognition 

performance, the original data with two most common noise 

sources have been mixed with the noise data provided by [44], 

some example noises can be seen in Figure 3.  

Filtering experiments are performed to see if the noise data 

can be eliminated to recover back the original data without any 

significant alterations to the signal characteristics. To achieve 

this, fundamental frequencies of original and noise data were 

calculated. Then, by a simple band-pass or low-pass filtering, 

the noise data could be eliminated. Furthermore, the worst case 

is also explored to see if the noise was not eliminated whether 

the classification of road type data would be still possible.  

Acoustic data could be classified correctly even though 

velocity was increased. The data clusters representing different 

road conditions are still distinguishable; however, a new set of 

classifiers would be trained for more accurate results if very 

high speeds are in question [42]. 

C. Feature Extraction and Selection 

In Fig 4, a sample from the original data of acoustic signals 

which are acquired by the cardioid microphone of ARTE 

system can be seen in raw-format data of gravel, asphalt, snow 

and stony road. Thirty samples were taken for each data record 

with 0.1 seconds intervals randomly. A feature vector was 

 
Fig. 2. Data collection and microphone set-up behind EV (left), Example 
cardioid response (right) 

  

 

 
 

Fig. 3. Sample noise data representing car passing-by (top), rain (bottom)  
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Fig. 4. Raw acoustic signals of asphalt, snowy road, stony road and gravel 

obtained by ARTE 
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formed using power spectrums, cepstrums and linear predictive 

coding coefficients (LPC) as acoustic signal processing 

techniques. These techniques provided to determine the best 

feature vector which represents audio data. Selection criteria of 

feature vector elements are minimum variance intra-class 

coherence and maximum distance criteria for inter-class 

separability. Firstly, 10 LPC coefficients, 5 power spectrum 

coefficients and 5 cepstrum coefficients are selected to form a 

feature vector having 20 elements. Then, the feature vector was 

trimmed using a least variance approach considering intra-class 

values. After this pruning process, the features providing a 

coherent class representation remained as 3 LPC, 2 power 

spectra co-efficient and 2 cepstrums values giving a feature 

vector of seven elements per data point. 

In addition to this feature selection, Kullback-Leibler 

distance was calculated for determining the distance between 

different road data clusters to observe the effectiveness of the 

measurement and separability. If the stony road data is taken as 

the benchmark, the distance between the stony road and asphalt 

is 936.58, stony road and snowy road is 971.88 and stony road 

and gravel is 928.13. These Kullback-Leibler distances indicate 

that the clusters are separable after the most significant digit. 

After this rough analysis for separability of feature vectors on 

inter-class and intra-class coherence, ANN and SVM are 

trained for classification which is detailed in next section. 

D. Road Type Estimation using ANN and SVM 

An ANN was trained and tested off-line on the audio data 

using the selected feature vector. The ANN uses Levenberg-

Marquardt learning method and has 4 layers with hidden layers 

including [4-3-2] neurons in order. The structure is a MLP 

network and back propagation is used to feedback the errors at 

each epoch. After 18 epochs, the ANN converged to 

performance criteria of the mean square error. The regression 

results in Fig 5 show that ANN can identify the test data with a 

regression coefficient of 0.91. The coefficient can be increased 

if the bias in feature vector space is removed. In fact, the results 

shown here is one of the worst, better performances were 

obtained giving regression coefficients above 0.95, however 

that required further pruning and analysis on the vector space.  

The performance of the classification can also be 

summarized in the confusion matrix given in Table II. From this 

table, classifier has relatively reasonable number of true 

positive and true negative results out of 30 samples. The correct 

classification rate is around 85%. Although the system may 

need improvement, ARTE system would provide a reasonable 

optimum slip ratio at most of the time if this ANN is included 

as pattern classifier. It should be noticed that the ARTE method 

uses the results from the ANN classifier of the road types and 

matches them with pre-loaded/pre-recorded mu-lambda curves 

for the optimal lambda estimation (i.e. where the correspondent 

friction coefficient is the highest) for each road condition. 

Therefore, a direct estimation of road adhesion coefficient is not 

performed, rather the road type is identified by the 

classification. The classification gives the road type, and the 

slip ratio can be estimated from velocity measurements if they 

are available in the given TCS. Then, using these two pieces of 

information (i.e. the road type and slip ratio) the correct mu-

lambda look-up table can be used to read the correspondent mu 

(i.e. friction coefficient). In case the system does not have the 

sensors to obtain the chassis and the wheel velocity, the slip 

ratio cannot be obtained. The approach is then to take the peak 

mu value of the corresponding road condition for our reference. 

Although it seems to introduce a big error by assuming the peak 

mu-value for all the slip ratios, it still gives better results 

compared to the traction control systems without road type 

estimators. The reason is that the road-type classification at 

least provides the information on the actual road condition and 

guides the system to take the correct mu-lambda table as the 

reference. In other words, the error it would have by not 

selecting the right slip-ratio/ mu couple within a certain road 

 
Fig. 5. Regression results of ANN classification, the recognition rate goes up 
to 91% in test data 

  

TABLE II 

CONFUSION MATRIX OF THE ANN CLASSIFIER   

 

ANN 

CLASSIFICATION  

ACTUAL 
 

ASPHALT SNOW STONE GRAVEL FALSE 

POSITIVE 

P
R

E
D

IC
T

E
D

 ASPHALT 28 0 1 1 2 

SNOW 0 26 3 4 7 

STONE 1 3 26 2 6 

GRAVEL 1 1 0 23 2 

FALSE NEGATIVE 2 4 4 7 
 

 



type data is much less than the error it would have if the wrong 

mu-lambda look-up table had been used. 

To explore the possibility of a better classification result, we 

have trained support vector machines (SVM) on the same data. 

A well-known benefit of SVM is the unique and global solution 

while ANN can suffer from multiple local minima. In addition 

to this, SMVs have the advantage of having a simple geometric 

interpretation and giving a sparse solution. Unlike ANN, SVM 

computational complexity does not depend on the input space 

dimensionality. SVMs use structural risk minimization, while 

ANNs use empirical risk minimization. The SVMs often 

outperform ANNs in practice since they are less prone to 

overfitting [45]. 

During training, SVM is used to separate three dry road 

surface condition (gravel, stone, asphalt) from snow using 

cepstrums in a smaller data size. Cepstrums are generally more 

discriminative features than others (i.e. LPC, Δ) because their 

inter-class variance is the highest. Using SVM classification, 

road types can be separated well. However, gravel, stone and 

asphalt data can be occasionally confused. This less successful 

result of SVM classification can be explained due to using of 

smaller data and limited features, i.e. cepstrum.  

A confusion matrix for SVM classification test is given in 

Table III to compare against the results of ANN in Table II. As 

it can be seen from Table III, SVM classifier is better than ANN 

classifier in giving no false negatives while yielding 100% true 

positives. Despite this successful result, the SVM classifier can 

also give false positives. However, the frequency of the mistake 

from false positives is acceptable for road type estimation since 

the estimation is continuously performed. Therefore, any 

momentary misclassification will be corrected in a prompt 

manner in the long-run. It should be also noted that, the false 

positives can be explained by the operation principle of this 

algorithm as SVM classification operates on single support 

vectors which may not always have clear-cut separations 

between classes all throughout the feature space, therefore, 

yielding more false positives than expected. For example, when 

original data from asphalt, stone, gravel and snow was 

presented to support vector decision surfaces, the classes can be 

perfectly separated. However, when data from other classes are 

presented to a single support vector for a particular class, it may 

falter and conclude in false positives due to imperfections in 

projections to hyper-space.  

Although both ANN and SVM based road-type estimation 

algorithms give acceptably good response, they need to be 

tested for the abrupt change in road conditions to ensure a stable 

transient response. For this purpose, a road profile having 

abrupt changes between stone-gravel-asphalt was processed. 

The samples for extracting the features were taken for 0.1 sec 

time interval. The interval of the sampling directly affects the 

transient response of the classification system. It was observed 

that both road type classification algorithms (ANN and SVM) 

were able to predict the real road condition with above 95% 

correct classification rate. The abrupt road condition change did 

not have any visible transient side-effect. The classification 

algorithm was able to catch up the real condition within 0.2 sec 

(i.e. two-folds of the sampling interval) at its worst case. 

III. TRACTION CONTROL SYSTEMS FOR ELECTRIC VEHICLES 

In this section, TCS structures are analysed in the order of 

simplest to most-complex: model following controller (MFC), 

slip ratio controller (SRC) with the fuzzy inference of the 

optimal slip ratio, and the maximum transmissible torque 

estimation (MTTE) model which has an observer for actual 

driving force. The core data analytics of any TCS consists of 

tire/road friction force estimation and control. However, 

tire/road friction forces cannot be directly estimated or 

controlled. Thus, observers or indirect estimation systems are 

used in each TCS model. Some of these methods allow better 

results as stability and robustness (i.e. MTTE and SRC), while 

the other TCS may have a simpler but rough model (i.e. MFC). 

Although friction value is not possible to measure directly, 

some models make it possible to estimate the friction force 

between the road-tire tire using more available and explicit but 

empirical tire friction models such as Pacejka and LuGre [46]. 

Herein, first the principles of MFC, SRC and MTTE traction 

control systems are introduced with block diagrams. Then, the 

transfer functions including the torque or the current as input 

and velocity of the wheel, chassis, and the slip ratio as the 

output is derived. Next, the performance of these three TCS 

structures under constant torque demand condition is evaluated. 

Additional stability conditions are also derived to compare the 

systems in terms of their dependency on the controller and/or 

vehicle dynamics parameters. This analysis also helped to see 

the limitations of the examined TCS model structures 

independent of the ARTE unit and how much the inclusion of 

ARTE could improve them.  

TABLE III 

CONFUSION MATRIX OF THE SVM CLASSIFIER   

 
SVM 

CLASSIFICATION  

ACTUAL 
 

ASPHALT SNOW STONE GRAVEL FALSE 

POSITIVE 

P
R

E
D

IC
T

E
D

 ASPHALT 20 0 3 2 5 

SNOW 0 20 1 1 2 

STONE 0 0 20 2 4 

GRAVEL 0 0 6 20 6 

FALSE NEGATIVE 0 0 0 0 
 

 

 
Fig. 6.  The detailed Simulink block-diagram of MFC for analysis, based on 

original model described in [1] 

 
  



A. Model Following Controller (MFC) 

The aim of MFC model is to make the dynamics of real 

vehicle follow the structure output which is described as ideal.  

However, when the real result and model result are different and 

far away from each other, the actuators might be overloaded and 

even saturated. The detailed block diagram of MFC based on 

[1] can be seen in Fig 6.   

From the detailed block diagram in Fig 6, it can be understood 

that the real value of the moment of inertia reflected in the 

wheels deviate from the ideal value in the model because of the 

multiplication of the Mr2 term with (1-λ). This means that the 

real vehicle is felt lighter on the wheels causing the deviation 

from ideal model. In fact, the requirement on the slip-ratio being 

zero is a very conservative and rough approach. Any 

information on the optimal slip ratio for the road will help 

obtaining a better tracking performance and less load on the 

actuators. In a classical MFC application, there are two kinds of 

uncertainty: (i) modeling errors, (ii) measurement noise in the 

angular velocity. To show the dependency of performance on 

these two uncertainty sources, transfer functions of the MFC are 

derived having the torque (or current) and measurement noise 

as input and angular velocity of the wheel as output. 

We start with basic formulae for real and model values of the 

moment of inertia for a wheel in (1) and (2).  

𝐽𝑟𝑒𝑎𝑙 = 𝐽𝑤 + 𝑀. 𝑟2(1 − 𝜆)                                     (1) 

𝐽𝑚𝑜𝑑𝑒𝑙 = 𝐽𝑤 + 𝑀. 𝑟2                                                     (2) 

Then using the detailed block-diagram given in [7], the transfer 

function between the reference current for motor and the 

angular velocity difference is given in (3).  

 

𝜔𝑑𝑖𝑓𝑓 (𝑠)

𝐼𝑟𝑒𝑓(𝑠)
= 

𝐾.(𝐽𝑚−𝐽𝑟)

𝑠[𝜏1 .𝜏2 .𝐽𝑚 .  𝐽𝑟.𝑠2+(  𝐽𝑚 .  𝐽𝑟).(𝜏1 + 𝜏2).𝑠 +(  𝐽𝑚 .  𝐽𝑟)+ 𝐾𝑀𝐹𝐶.𝜏2.𝐾.(𝐽𝑚−𝐽𝑟)]
   (3) 

Using the characteristic equation of the transfer function in (3), 

absolute stability condition in (4) can be derived.  

𝐾𝑀𝐹𝐶 ≤
𝐽𝑚(𝜏2 −𝜏1)2

4.𝜏2
2.𝜏1.𝐾.∆

             (4) 

The term “∆” is the uncertainty between the real and the model 

values of the vehicle inertia described by equation (5). 

𝐽𝑟 =
𝐽𝑚

1+∆
                    (5) 

As it can be seen, the MFC gain is an upper bounded variable 

and it depends on the vehicle inertia  𝐽𝑚 , motor time constant 

𝜏1 , motor gain K, HPF time constant 𝜏2  and most importantly 

the uncertainty in the vehicle inertia denoted by ∆. The classical 

MFC uses a predefined 𝐾𝑀𝐹𝐶 gain value which may not be the 

optimal value for the situation.  

B. Slip-ratio Controller (SRC)  

Slip ratio controller structures in literature has two versions: 

(I) SRC with road condition estimator using a free 

wheel to estimate mu-coefficient and determine the 

optimum lambda accordingly. 

(II) SRC with fuzzy system to estimate the optimum 

lambda value using the mu-lambda curve slope a, 

mu and lambda at that point. 

In the analysis here, the second type of SRC with fuzzy 

system is examined and the optimal slip ratio stands for the 

value where the correspondent friction coefficient takes 

maximum attainable value. The closed block diagram of SRC 

as it appears in [10] and corresponding Simulink diagram in 

simplified form is given in Figure 7.  

As it can be seen from Fig 8, the system uses a kind of optimal 

slip ratio estimator (i.e. fuzzy inference) and tries controlling 

the slip-ratio directly by computing and applying the 

appropriate torque input. Since the slip ratio is more directly 

addressed in SRC and dynamically included with the 

estimation, it is a finer method than MFC. In Figure 4, SRC 

system main control structure can be examined in more detail 

showing five main parts: (i) EV-motor for the plant to be 

controlled, (ii) driving observer, (iii) road condition estimator, 

(iv) slip ratio estimator and (v) controller having PI action.  

The related transfer function and its parameters are shown in 

equations (6) - (8). 

𝐺(𝑠) =
𝜆(𝑠)

𝜏(𝑠)
=

1−𝜆𝑜

𝑎.𝑁𝑒

1

1+𝜏𝑠
                 (6) 

𝜏 =
𝑀𝑤𝑉𝑤

𝑎.𝑁𝑒
                    (7) 

𝑁𝑒 =
𝑀𝑤+𝑀(1−𝜆𝑜)

𝑀
. 𝑁                (8) 

Using these relations, a transfer function between the motor 

current and velocity difference is obtained in (9) with real 

inertia defined in (10.  
𝑉𝑑𝑖𝑓𝑓(𝑠)

𝐼(𝑠)
=

𝑟.𝜆

𝑠.(𝜏𝑚𝑠+1)[𝑀𝑟2(1−𝜆)+𝐽𝑟]
          (9)     

 𝐽𝑟𝑒𝑎𝑙 =
𝐽𝑛

1+Δ
.                             (10) 

 
Fig. 7.  Slip Ratio Controller structure in open forms 

 
  

 
Fig. 8.  Detailed SRC system with main parts in block-diagram format 
 

  



C. Maximum Transmissible Torque Estimation (MTTE) 

MTTE model does not demand the vehicle chassis velocity 

or wheel velocity measurements. Observed driving force is the 

main part of the model as seen in block diagram in Fig 9. First, 

MTTE model has an observer to obtain the driving force Fd.  

Then, the system uses this observed driving force to calculate 

and obtain the maximum transmissible and allowable torque. 

One of the advantages of this model is that MTTE uses the 

acceleration ratio of the vehicle chassis and wheel as a 

relaxation value and tries to keep the ratio as close as possible 

to one or greater. It means that since the vehicle chassis and 

wheels accelerations are not allowed to deviate much, the 

speeds would not be so different from each other as well, thus 

guaranteeing a low slip ratio.  

To examine the robust stability of the MTTE model, in [12] 

an equivalent closed-loop block-diagram is given (see Appendix 

2 for details) with an additive uncertainty in the inertia of the 

vehicle together with derived Tzw transfer function (11). 

However, the derivation of the transfer function is not detailed 

here for the sake of brevity. Further examination of transfer 

function τ(s)/ τmax (s) can be performed, relating the relaxation 

variable alpha, α, and the slip ratio value, lambda, λ using the 

full model in [12].  

𝑇𝑧𝑤 =
−𝐽𝑤.𝐾

𝐽𝑛𝑟𝜏1𝜏𝑠2+𝐽𝑛(𝑟𝜏−𝐾𝜏1+𝑟𝜏1)𝑠+𝐽𝑛𝑟−𝑀𝑟2𝐾
         (11) 

IV. PERFORMANCE ANALYSIS OF TCS STRUCTURES WITH ARTE 

The TCS suggested previously [1-4, 7] are simulated under 

several dangerous scenarios, i.e. slippery road conditions and 

frequent change of road characteristics which may cause 

instability. Vehicle parameters given in Table IV are used for 

simulating all TCS structures to establish a common 

comparison ground representing the same vehicle.  

To compare these three TCS in a systematically reasonable 

manner, we have selected four criteria indicating the 

performance of a TCS: (i) time averaged total deviation of slip 

ratio from zero (i.e. the ideal value), (ii) the max torque of the 

motor during TCS in action, (iii) the normalised area under the 

torque-time graph showing the correction effort and energy 

consumption, (iv) gap metric to assess the stability under worst 

cases of deviation from the nominal system parameters. The 

study considered only constant torque demand profiles herein, 

however, several other traffic conditions involving inclination 

and stop-and-go traffic conditions can be also simulated using 

the models. It must be noted that the models in this work 

consider only linear regions in traction control problem. The 

application is implemented in a bracket of 10-30 km/h speed 

under limited test track requirements.  Performances of MFC, 

SRC and MTTE systems without using ARTE module are 

shown in Figure 10.  

ARTE system with a trained and tuned classifier is integrated 

in all TCS structures in the scope of this work. The integration 

was performed for three TCS structures as follows: For MFC, 

the total inertia of the vehicle used in the model is updated 

according to the estimated value of lambda in J=Jw+ Mr2(1- λ). 

In the SRC structure, the integration is straightforward since the 

estimated optimum lambda by ARTE is directly needed in the 

algorithm as the reference signal. Lastly, the MTTE system uses 

the estimated result in updating the α coefficient used to 

calculate the maximum torque. 

After the integration, evaluation was performed in a series of 

simulated tests. The simulations mainly consist of road 

scenarios where different mu-lambda characteristics and 

dynamic torque-demands may occur. The ARTE module is 

integrated in MFC to update the reference model, whereas in 

SRC as the reference optimal slip ratio source and in MTTE to 

update the relaxation factor. The main mechanism behind why 

ARTE helps improving the TCS performance is that it reduces 

the uncertainty sources or narrows down the uncertainty bounds 

in the systems. The comparison of three TCS structures after 

the integration with ARTE can be seen in Fig 11. The results 

are only presented for the constant torque demand, however the 

 
Fig. 9.  MTTE block-diagram in closed form 

 
  

TABLE IV 
UNITS FOR MAGNETIC PROPERTIES 

Parameter Magnitude Units 

Jw: moment of inertia for 

the Wheel 

0.6 kg.m2 

r: wheel Radius 0.28 m 

τ1: Time constant for electric 

motor 

0.05 sec 

τ2: Time constant for high 
pass filter in MFC  

1000 sec 

M: vehicle mass 1400 kg 

m: wheel mass 10 kg 
   

   

   
   

   

   
   

 

 
Fig. 11.  MFC, SRC and MTTE traction control systems with ARTE 

 
Fig. 10.  MFC, SRC and MTTE traction control systems without ARTE 

 

  



other road conditions demanding different torque profiles have 

similar results, therefore not included here for brevity. 

The performance criteria measured on all TCS structures 

with and without ARTE module is given in Table V. As it can 

be seen from the table and the Figures 10-11, the slip ratio is 

reduced to a level very close to zero especially when SRC and 

MTTE is integrated with ARTE. It was also observed that 

although ARTE helped MFC system to have less angular 

velocity difference between the model and the real vehicle, the 

slip ratio reflected a smaller improvement. The SRC system 

also benefited from ARTE; however, the average and max 

torque values were still high compared to MTTE. As a result, it 

can be concluded that MTTE with ARTE is the best TCS 

structure of all since the slip ratio has reduced without a 

formidable increase in the torque correction effort.  

It should also be noted that MTTE structure with/without 

ARTE has a delay in reacting to environment changes (Fig.10-

11) as implementation of ARTE in SRC structure introduced a 

similar delay as can be noticed in Fig.11.  

In addition to performance criteria results given in Table V, 

gapmetric defined by Vinnicombe [47] is also measured 

between the nominal and uncertain plant models in MFC, SRC 

and MTTE structures. It was seen that SRC was more prone to 

instability since the gap between the nominal and uncertain 

plant can go up to 0.91 in SRC structure, whereas it remains 

relatively small in MTTE with 0.85 and the smallest value is 

calculated for MFC structure being just 0.0332. This analysis 

perfectly matches the characteristics of three structures since 

MFC is crude but less prone to uncertainties since no estimation 

of lambda or dynamical value is included in the structure. The 

SRC structure gives the worst performance in terms of 

gapmetric because it contains a double estimation process with 

more uncertain parameters. MTTE lies between these two 

extremes; however, it also suffers from the uncertainty in 

observation process. After the integration with ARTE system, 

the robustness of all systems has greatly improved, reducing the 

gap metric from 0.0332 to 0.0127 for MFC; from 0.91 to 0.28 

for SRC and from 0.85 to 0.096 for MTTE systems. 

V. CONCLUSIONS 

As an active vehicle safety system, the application of traction 

control systems (TCS) for electric vehicles (EV) is feasible due 

to advantages of the torque control with direct-drive motors. 

However, TCS structures usually require the estimated road-tire 

friction and slip-ratio as input. Obtaining the road-tire friction 

might require some intricate model-based indirect methods 

and/or expensive sensors. Furthermore, the systems using the 

slip ratio explicitly as input or feedback require the 

measurement of accurate chassis and wheel velocity.  Another 

roadblock in front of effective TCS application is that existing 

TCS structures are often designed without any consideration of 

the robustness and energy efficiency of torque control. In this 

study, we have considered only three TCS structures for EVs 

and improved their performances with the integration of ARTE. 

Out of these systems, only the SRC structure requires 

measurement of chassis and wheel velocity since it explicitly 

uses the slip ratio as input. MFC and MTTE on the other hand 

does not need the chassis velocity. We addressed the robustness 

and energy-efficiency issues while reducing the uncertainty in 

internal models or assumptions in the control structures. The 

system features a low-cost road-type estimation unit is based on 

acoustic signals picked up from the vicinity of the interface 

between the road and the tire of the EV. The design of this 

acoustic road-type estimator (ARTE) unit is presented 

including data collection set-up, feature extraction, signal 

processing and classification modules. To demonstrate the 

effect of ARTE on TCS structures, it is integrated into three 

existing TCS models for supplying the uncertainty bounds in 

the system for the optimum slip ratio. Next, the performances 

of these three TCS models are evaluated using the same 

physical parameters of the vehicle for constant torque demand 

scenario. As a result, it was found that based on the simulations, 

ARTE system can improve the performances of SRC and 

MTTE models greatly while it does not necessarily contribute 

towards the performance of MFC structures. The system is able 

to reduce the slip-ratios up to 75% in general. 
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