Loading [a11y]/accessibility-menu.js
Deep Distributional Reinforcement Learning Based High-Level Driving Policy Determination | IEEE Journals & Magazine | IEEE Xplore

Deep Distributional Reinforcement Learning Based High-Level Driving Policy Determination


Abstract:

Even though some of the driver assistant systems have been commercialized to provide safety and convenience to the driver, they can be applied for autonomous driving in l...Show More

Abstract:

Even though some of the driver assistant systems have been commercialized to provide safety and convenience to the driver, they can be applied for autonomous driving in limited situations such as highways. In this paper, we propose a supervisor agent that can enhance the driver assistant systems by using deep distributional reinforcement learning. The supervisor agent is trained using end-to-end approach that directly maps both a camera image and LIDAR data into action plan. Because the well-trained network of deep reinforcement learning can lead to unexpected actions, collision avoidance function is added to prevent dangerous situations. In addition, the highway driving case is a stochastic environment with inherent randomness and, thus, its training is performed through the distributional reinforcement learning algorithm, which is specialized for stochastic environment. The optimal action for autonomous driving is selected through the return value distribution. Finally, the proposed algorithm is verified through a highway driving simulator, which is implemented by the Unity ML-agents.
Published in: IEEE Transactions on Intelligent Vehicles ( Volume: 4, Issue: 3, September 2019)
Page(s): 416 - 424
Date of Publication: 28 May 2019

ISSN Information:

Funding Agency:


References

References is not available for this document.