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Using Reachable Sets for Trajectory Planning of
Automated Vehicles

Stefanie Manzinger, Christian Pek, and Matthias Althoff

Abstract—The computational effort of trajectory planning for
automated vehicles often increases with the complexity of the
traffic situation. This is particularly problematic in safety-critical
situations, in which the vehicle must react in a timely manner.
We present a novel motion planning approach for automated
vehicles, which combines set-based reachability analysis with
convex optimization to address this issue. This combination
makes it possible to find driving maneuvers even in small and
convoluted solution spaces. In contrast to existing work, the
computation time of our approach typically decreases, the more
complex situations become. We demonstrate the benefits of our
motion planner in scenarios from the CommonRoad benchmark
suite and validate the approach on a real test vehicle.

I. INTRODUCTION

EXISTING motion planning techniques for automated
vehicles may still fail to obtain comfortable and safe

motions in complex traffic scenarios with small and convoluted
solution spaces (i.e., the portion of the state space enclosing
feasible solutions is reduced by a large number of obstacles
[1]). Yet, automated vehicles have to cope with arbitrarily com-
plex scenarios in the real world. Why do planning techniques
still struggle in complex scenarios?

The complexity mainly arises from the non-convexity of
the motion planning problem: the presence of obstacles in the
environment partitions the search space of the motion planning
problem into different homotopy classes [1]–[3] (see Fig. 1).
Homotopy classes describe “sets of trajectories that can be
transformed into each other by gradual bending and stretching
without colliding with obstacles” [4]. Figuratively speaking,
planners have to decide when and how to pass obstacles, e.g.,
on the left or right side. The temporal orders of such tactical
decisions can be represented by driving corridors (spatio-
temporal constraints) and are a crucial element in generating
collision avoidance constraints.

Given strict real-time constraints, many motion planning
techniques encounter difficulties in determining suitable driv-
ing corridors for three reasons: a) scenarios in which α tactical
decisions can be taken to avoid σ obstacles may already have
up to ασ possible driving corridors. This circumstance is
particularly problematic in safety-critical situations, in which
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Fig. 1: Each trajectory Xi, i ∈ {1, 2, 3}, belongs to a different homotopy
class. The automated vehicle needs to decide whether to pass the construction
site (X2 or X3) or not (X1). In the former case, the automated vehicle also
has to decide on a passing side (left: X2, right: X3).

the automated vehicle must react in a timely manner to avoid a
collision. b) Besides the sheer number of corridors, identifying
which ones are drivable in reasonable time may often be
intractable [5]. Deciding whether a driving corridor with a
drivable trajectory exists can be reduced to a mixed-integer
problem [6] and is therefore NP-complete [7]. c) Multiple
driving corridors may exist that may not reach desired goal
regions of the vehicle.

Set-based reachability analysis is particularly well suited
for determining driving corridors in complex scenarios, since
the number of set operations often decreases if the solution
space becomes smaller [8]. The reachable set of an automated
vehicle is the set of states the vehicle is able to reach over time
starting from an initial set of states. Consequently, reachable
sets make it possible to explore search spaces and homotopy
classes efficiently in continuous space and to detect even
narrow passages [9].

In this work, we show that by combining reachability
analysis with an optimization-based trajectory planner, we
are able to compute driving corridors and trajectories online
in arbitrary scenarios. Our experiments demonstrate that our
approach becomes faster with increased complexity of the
motion planning problem. Below, we review existing planning
techniques and present their shortcomings for the motion
planning of automated vehicles in complex scenarios.

A. Literature Overview

1) Motion Planning Techniques: Various motion planning
approaches are discussed in [10], [11]. We briefly review the
most relevant publications for our work. Discretization-based
planners, such as rapidly exploring random trees [12]–[14]
or state lattices [15]–[18], connect partial motions toward a
goal region in a kinematically feasible way. However, because
the search space is discretized, solutions may not be found in
small and convoluted solution spaces.

Continuous optimization techniques are applied to overcome
discretization effects [19]. They minimize a cost function
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with respect to a set of state and input constraints [20]–
[23]. Since many motion planning problems are non-convex,
optimization problems may get stuck in local minima and may
not be solvable in a computationally efficient way [24]. Convex
optimization problems, however, have global convergence, for
which efficient solving techniques exist [24]–[26]. Yet, convex
planning problems can only be formulated for most traffic
scenarios if the motion is separated into longitudinal and
lateral components [27]–[30]. As a result, collision avoidance
constraints can usually only be obtained if the driving corridor
is already known [6].

Machine learning approaches have also been successfully
applied to motion planning, e.g., [31]–[34]; however, these
techniques are not yet suitable in safety-critical situations,
since they are difficult to verify [35].

2) Driving Corridor Techniques: The extraction of driving
corridors has been studied for some time. Naive approaches
address the problem of determining driving corridors through
sampling [36]–[39], combinatorial enumerations [5], [40], or
support vector machines [41], [42]. However, sampling-based
approaches usually struggle to detect narrow passages due to
discretization effects, and enumerating all possible sequences
of tactical decisions is not feasible under hard real-time con-
straints for complex situations. Pre-defining rules for tactical
decision-making, e.g., using ontologies [43]–[45] or state-
machines [46]–[49], may fail in unforeseen traffic situations.
Some approaches reduce the complexity of maneuver planning
by considering only a discrete set of admissible actions [50]–
[53], but this diminishes the expressiveness of the planner.

Reachable sets have already been used to obtain driving
corridors and to determine the non-existence of maneuvers [9],
[54], [55]. The approaches in [56]–[58] combine reachability
analysis with planning approaches to obtain collision-free
motions. Nevertheless, they may not be applicable in arbitrary
traffic situations, cannot constrain corridors to end in certain
terminal states, or cannot extract high-level maneuvers with
certain desired properties, such as comfort.

B. Contribution and Outline
This paper proposes a novel method for motion planning of

automated vehicles by combining reachability analysis with
convex optimization. Unlike previous work, our approach
simultaneously

1) handles small and convoluted solution spaces. Our experi-
ments reveal that the computational effort of our approach
decreases with increased complexity of the scenario;

2) identifies collision-free driving corridors in arbitrary traf-
fic situations using reachable sets;

3) plans optimal trajectories in candidate driving corridors
with low computational effort; and

4) constrains driving corridors to end in certain terminal
states, e.g., standstill in safe areas.

This paper is structured as follows: after presenting prelim-
inaries in Sec. II, we introduce our framework in Sec. III. The
computation of reachable sets is described in Sec. IV, fol-
lowed by the determination of driving corridors and collision
avoidance constraints in Sec. V-VI. We evaluate our concept
in Sec. VII and finish with conclusions in Sec. VIII.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. System Dynamics

We introduce different discrete-time linear systems to model
the dynamics of the automated vehicle, subsequently denoted
as ego vehicle. The linear models are a trade-off between the
required computational time for the planning task and the
accuracy compared to the real behavior. To formally verify
planned trajectories despite control disturbances and model
uncertainties, we refer to the approaches presented in [59],
[60], which is not discussed in this work since we focus on
motion planning. Additionally, in Sec. VII, we demonstrate by
vehicle tests that planned trajectories are drivable despite the
use of different models.

Let us introduce the subscript sys ∈ {lon, lat,R} to
distinguish the discrete-time linear systems for the longitudinal
and lateral trajectory planning, and reachability analysis:

xsys,k+1 = Asys,kxsys,k +Bsys,kusys,k, (1)

where xsys,k ∈ Rnsys,x is the state, usys,k ∈ Rnsys,u is the
input, and k ∈ N0 is the discrete time step corresponding to
the time tk = k∆t, where ∆t ∈ R+ is the time increment.
Without loss of generality, the initial time step is k0 = 0 and
the final time step is kf . Asys,k ∈ Rnsys,x×nsys,x is the system
matrix and Bsys,k ∈ Rnsys,x×nsys,u is the input matrix. Systems
in the form of (1) are subject to the convex sets of admissible
states Xsys,k ⊂ Rnsys,x and admissible control inputs Usys,k ⊂
Rnsys,u , each at time step k. We use Xsys and Usys to denote
a possible state and input trajectory. Subsequently, we assume
that the chosen reference point for describing the systems (1)
coincides for all sys ∈ {lon, lat,R}.

B. Coordinate Systems and Reference Path

Let us introduce the global Cartesian coordinate frame as
F G, the local curvilinear coordinate frame as F L, and the
vehicle-fixed coordinate frame as F V, as shown in Fig. 2. The
frame F L is aligned with a given reference path Γ : R→ R2,
which is the centerline of a lane and can be provided by a
route planning module, for example. In F L, a global position
(sx, sy)T is expressed in terms of the arc length sζ and
the orthogonal deviation sη from Γ(sζ) (see Fig. 2). The
orientation and curvature of Γ(sζ) are denoted by θΓ(sζ) and
κΓ(sζ), respectively. The transformation from F L to F G is
denoted by T G

L (sζ) (see [61]). The transformation from F V to
F G is T G

V (θ), where θ is the heading of the ego vehicle. We
use a left-sided superscript {G, L, V} to indicate the reference
coordinate system of a variable, e.g., Gv means velocity v of
the ego vehicle in F G; for brevity, we omit the superscript if
the coordinate system can be inferred from the context.

C. Reachability Analysis

As motivated in Sec. I, we use reachability analysis for
identifying driving corridors. We therefore describe the dy-
namics of the ego vehicle with the discrete-time linear system
xR,k+1 = ARxR,k + BRuR,k. Before introducing the one-
step reachable set of the ego vehicle dynamics, we define the
set Fk of forbidden states.
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Fig. 2: The shape of the ego vehicle is approximated by three circles with
center c(i)k , i ∈ {1, 2, 3}, to obtain collision avoidance constraints.

Definition 1 (Set of Forbidden States) The occupied space
of the ego vehicle in state xR,k is denoted by GQ(xR,k) ⊂ R2

and the set of occupied positions of all obstacles (e.g., other
cars and pedestrians), as well as the space outside the road
by GOk. The set of forbidden states at time step k is

Fk =
{
xR,k ∈ XR,k | GQ(xR,k) ∩ GOk 6= ∅

}
.

Definition 2 (One-step Reachable Set) The initial reach-
able set is Re

k0
= XR,k0 , where XR,k0 is the set of initial

states of the ego vehicle including measurement uncertainties.
The one-step reachable set Re

k+1 is then defined as the set
of all states that can be reached from an initial set of states
Re
k ⊆ XR,k within one time step without intersecting Fk+1:

Re
k+1 =

{
xR,k+1 ∈ XR,k+1

∣∣∣∃xR,k ∈ Re
k, ∃uR,k ∈ UR,k :

xR,k+1 =ARxR,k+BRuR,k ∧ xR,k+1 /∈ Fk+1

}
.

Before defining the drivable area representing the collision-
free, reachable positions of the ego vehicle, let us introduce
the projection operator proj♦(x).

Definition 3 (Projection) The operator proj♦(x) maps the
state x ∈ X to its elements ♦ , e.g., proj(m1,m3)(x) =

(m1,m3)T for x = (m1,m2,m3)T . Using the same notation,
we project a set of states X : proj♦(X ) =

{
proj♦(x) | x ∈ X

}
.

Definition 4 (Drivable Area) We obtain the drivable area
De
k of the ego vehicle as the projection of its reachable set
Re
k onto the position domain: De

k = proj(sζ ,sη)(Re
k).

The superscript e of Re
k and De

k denotes the exact reachable
set and drivable area, respectively. However, it is generally
computationally intractable to compute the exact reachable set
of a system [62]. For this reason, we aim to compute accurate
approximations Rk ≈ Re

k and Dk ≈ De
k (see Sec. IV).

D. Convex Trajectory Planning

For trajectory planning, we describe the kinematics of the
ego vehicle along Γ(sζ) using the rear axis center as the
reference point, e.g., as shown in [29], [30]. In principle, the
reference point can be chosen differently; however, our choice
has the advantage that the slip angle can be assumed to be
zero at low speeds and generally neglected at high speeds
[29]. To formulate our trajectory planning problems as convex

optimization problems—which can be efficiently solved with
global convergence [24]—we separate the longitudinal and
lateral motion of the ego vehicle.

Following [29], we assume that the orientation θ of the
ego vehicle is close to the reference path’s orientation θΓ(sζ),
consequently, the trigonometric functions can be approximated
as sin(∆) ≈ ∆ and cos(∆) ≈ 1, and sηκΓ(sζ) � 1. In this
way, we linearize the kinematics of the ego vehicle as in [29]:

ṡζ = v
cos (θ − θΓ(sζ))

1− sηκΓ(sζ)
≈ v, (2)

ṡη = v sin (θ − θΓ(sζ)) ≈ v(θ − θΓ(sζ)). (3)

Using (2) and (3), we can derive discrete-time linear systems
of structure (1), which is detailed in [29], [30] and Sec. VII-A.

To model collision avoidance for the full-dimensional ve-
hicle, we over-approximate its shape by three circles with
equal radius r similar to [29], [30], [63]. The centers c(i)k ,
i ∈ {1, 2, 3}, of the circles are selected such that c(1)

k and c(3)
k

coincide with the rear and front axis centers, respectively (see
Fig. 2). The distance between the centers of adjacent circles
is /̀2, where ` is the wheelbase. With this, we formally define
the longitudinal and lateral trajectory planning problems.

Definition 5 (Longitudinal Trajectory Planning Problem)
The longitudinal trajectory planning problem is to
minimize the convex cost function Jlon(xlon, ulon) for
all k ∈ {k0, . . . , kf}:

min
ulon

Jlon(xlon, ulon) (4a)

s.t. xlon,k+1 = Alon,k xlon,k +Blon,k ulon,k, (4b)
ulon,k ∈ Ulon,k, xlon,k ∈ Xlon,k, (4c)

sζ,k+1 ≤ projsζ(xlon,k+1) ≤ sζ,k+1, (4d)

where (4b) describes the longitudinal dynamics of the ego
vehicle subject to the convex constraints (4c)-(4d). The linear
constraint (4d) models collision avoidance, where sζ,k =

projsζ(xlon,k) is the longitudinal position of Lc
(1)
k (see Fig. 2).

The minimum and maximum bounds on sζ,k are denoted by
sζ,k and sζ,k, respectively.

Definition 6 (Lateral Trajectory Planning Problem)
Given that the longitudinal trajectory Xlon is obtained a
priori by solving (4), the lateral trajectory planning problem
is to minimize the convex cost function Jlat(xlat, ulat) for all
k ∈ {k0, . . . , kf}:

min
ulat

Jlat(xlat, ulat) (5a)

s.t. xlat,k+1 = Alat,k xlat,k +Blat,k ulat,k, (5b)
ulat,k ∈ Ulat,k, xlat,k ∈ Xlat,k, (5c)

∀i∈{1, 2, 3} : d
(i)
k+1≤d

(i)
k+1(xlat,k+1, xlon,k+1)≤d(i)

k+1, (5d)

where (5b) describes the lateral dynamics of the ego vehicle
subject to the convex constraints (5c)-(5d), and xlon,k ∈ Xlon.
To model lateral collision avoidance, we introduce the lateral
distance d(i)

k (xlat,k, xlon,k) of the i-th circle’s center to Γ(sζ,k)
at time step k (see Fig. 2) and restrict the minimum and
maximum deviations d(i)

k and d
(i)

k from Γ(sζ,k), respectively.
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E. Problem Statement

The drivable area Dk is used to explore the collision-free
solution space for trajectory planning. However, the drivable
area is generally non-convex and may be disconnected due to
the presence of obstacles (see Fig. 3a), which renders the direct
usage of the drivable area unsuitable to obtain bounds for the
convex collision avoidance constraints (4d) and (5d). To over-
come this issue, we determine driving corridors that are subsets
of the drivable area, particularly, a driving corridor for the
longitudinal and lateral trajectory planning problems referred
to as longitudinal and lateral driving corridor, respectively. To
this end, we exploit that the projection of a connected set
C ⊂ R2 onto either the longitudinal or lateral position domain
yields an interval from which we can obtain the bounds in
(4d) and (5d).

Definition 7 (Connected Set [64]) A set C ⊂ R2 is con-
nected if there do not exist open sets W1,W2 ⊆ R2 such that
W1 ∪ W2 contains C and with C ∩ W1 and C ∩ W2 disjoint
and non-empty.

A longitudinal driving corridor is composed of connected sets
(see Fig. 3b).

Definition 8 (Longitudinal Driving Corridor) A longitudi-
nal driving corridor Clon is a sequence of connected sets
Ck ⊆ Dk over time steps k ∈ {k0, . . . , kf}. We refer to the
longitudinal driving corridor at time step k as Clon,k.

A lateral driving corridor is also composed of connected
sets. However, a connected set may have holes, e.g., C(1)

k

in Fig. 3b; thus, the passing sides for obstacles may be
ambiguous. Therefore, we demand that lateral driving cor-
ridors must provide a single passing side for each obstacle
at the longitudinal positions projsζ(xlon,k) of the longitudinal
trajectory Xlon (see Fig. 3d).

Definition 9 (Lateral Driving Corridor) A lateral driving
corridor Clat is a sequence of connected sets Ck ⊆ Dk over
time steps k ∈ {k0, . . . , kf}. For each Ck, it must hold that
{sη,k | (sζ,k, sη,k)T ∈Ck, sζ,k = projsζ(xlon,k), xlon,k ∈Xlon}
is a non-empty interval (unique passing side at projsζ(xlon,k),
see Fig. 3d). We refer to the lateral driving corridor at time
step k as Clat,k.

The goal of this work is to present an efficient algorithm to
extract longitudinal and lateral driving corridors according to
Def. 8 and 9 from the drivable area. Furthermore, we elaborate
on the extraction of collision avoidance constraints for the full-
dimensional vehicle using the proposed driving corridors.

III. FRAMEWORK

Let us introduce our motion planning approach summarized
in Alg. 1 using the scenario in Fig. 3, in which the ego vehicle
approaches a construction site and a pedestrian. Our motion
planning approach is integrated between the behavioral layer
and the control layer of the ego vehicle, e.g., see planning
framework in [11]. We assume that our method receives as
input the environment model including the admissible lanes
leading to the specified target, a desired reference path through

predictiondrivable area Dk

ego vehicle
C(1)
k C(2)

k

(a) Computation of the drivable area for consecutive time steps k. We depict
the drivable area Dk at time step k.

projsζ(Clon,k)

Clon,k = C(1)
k

(b) Identification of the longitudinal driving corridors Clon as a time series
of connected sets. We depict the longitudinal driving corridor Clon,k = C(1)

k
at time step k.

sζ

sη projsζ(xlon,k)projsζ(xlon,k0
) projsζ(xlon,kf )

projsζ(Clon,k)

(c) Optimization of the longitudinal trajectory Xlon subject to the longitudinal
position constraints obtained from the longitudinal driving corridor Clon.

Clat,k = C(3)
k

projsζ(xlon,k)

projsη(Clat,k)

(d) Identification of the lateral driving corridors Clat as a time series of
connected sets with unique passing side. We depict the lateral driving corridor
Clat,k = C(3)

k at time step k.

projsζ(xlon,k)

Clat,k

(e) Optimization of the lateral trajectory Xlat subject to the lateral position
constraints obtained from the lateral driving corridor Clat.

Fig. 3: Motion planning with reachable sets.

the road network, and all safety-relevant traffic participants
and their predicted future behavior. Our algorithm outputs a
reference trajectory for the ego vehicle that is passed to a
vehicle controller.

As a first step, we compute the one-step reachable sets of
the ego vehicle for consecutive time steps (see Alg. 1, line 2)
and store them in a data structure GR (see Sec. IV). Since our
trajectory planner requires position constraints to determine
drivable trajectories, we project the reachable set onto the
position domain to obtain the drivable area (see Fig. 3a).

We continue with identifying possible longitudinal driving
corridors within the drivable area according to Def. 8 (see
Alg. 1, line 3). The drivable area Dk can be disconnected, e.g.,
C(1)
k is not connected with C(2)

k in Fig. 3a, since its computation
requires the removal of colliding states (see Def. 2 and 4).
Because of this, there may be multiple longitudinal driving
corridors (stored in a data structure GC,lon, see Sec. V). We
select a suitable one for trajectory optimization by ranking
the longitudinal driving corridors according to a user-defined
criterion (see Alg. 1, line 4). The highest-ranked driving
corridor Clon, e.g., Clon,k in Fig. 3b, is selected for planning
the longitudinal trajectory Xlon as proposed in Sec. II-D (see
Alg. 1, line 5). If the optimization problem is infeasible, we
select the next available longitudinal driving corridor. The
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Algorithm 1 CONVEXTRAJECTORYPLANNING

Input: set of initial states XR,k0 , set of obstacles Ok for k0 to kf
Output: longitudinal and lateral trajectories Xlon and Xlat

1: Xlon, Xlat ← ∅
2: GR ← COMPUTEREACHABLESET(XR,k0 ,Ok)
3: GC,lon ← IDENTIFYCORRIDORS(GR)
4: for all Clon in GC,lon.ASSESSCORRIDOR( ) do
5: Xlon ← LONGITUDINALOPTIMIZATION(Clon)
6: if Xlon 6= ∅ then
7: GC,lat ← IDENTIFYCORRIDORS(GR, Xlon, Clon)
8: for all Clat in GC,lat.ASSESSCORRIDOR( ) do
9: Xlat ← LATERALOPTIMIZATION(Clat, Xlon, Clon)

10: if Xlat 6= ∅ then
11: return Xlon, Xlat

12: end if
13: end for
14: end if
15: end for

longitudinal trajectory Xlon (see Fig. 3c) is used to identify
lateral driving corridors (see Alg. 1, line 7).

Analogous to longitudinal planning, multiple lateral driving
corridors may exist (stored in a data structure GC,lat, see
Sec. V). We also rank them according to a user-defined
criterion (see Alg. 1, line 8). The highest-ranked lateral driving
corridor Clat, e.g., Clat,k in Fig. 3d, is used to optimize
the lateral trajectory Xlat as proposed in Sec. II-D (Alg. 1,
line 9). If the optimization problem is infeasible, we use the
next available driving corridor Clat to obtain Xlat. If the
optimization is successful, the final trajectory is returned (see
Fig. 3e and Alg. 1, line 11). Trajectories can be planned for
each available driving corridor as long as time permits. Thus,
it is possible to obtain several maneuver options to choose
from. In the rare event that no drivable trajectories are found,
we always keep a fail-safe trajectory available [30], [65].

IV. REACHABLE SET COMPUTATION

After presenting the vehicle model for reachability analysis
in Sec. IV-A, we introduce the representation of reachable sets
(see Sec. IV-B) and our proposed algorithm (see Sec. IV-C)
inspired by [9].

A. Vehicle Model for Reachability Analysis

We deliberately select a simple but realistic dynamic model
for the reachable set computation to reduce computational
complexity. The dynamics of the ego vehicle are described
by two second-order integrator models in the curvilinear
coordinate frame F L with Lc

(1)
k as the reference point (see

Fig. 2). The state xR = (sζ , vζ , sη, vη)T is composed of the
position s and velocity v in the longitudinal ζ-direction and
the lateral η-direction. The input uR = (aζ , aη)T is given by

the acceleration a in ζ- and η-directions. Adding bounds on
the accelerations and velocities, the dynamics are

xR,k+1 =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

xR,k +


1
2∆t2 0
∆t 0
0 1

2∆t2

0 ∆t

uR,k, (6a)

vζ ≤ vζ,k ≤ vζ , vη ≤ vη,k ≤ vη, (6b)

aζ ≤ aζ,k ≤ aζ , aη ≤ aη,k ≤ aη. (6c)

The formulation of the dynamics in F L makes it possible
to consider speed limits and to avoid driving backwards. This
entails that model (6a) deviates increasingly from a real vehicle
for larger curvatures κΓ(sζ), e.g., the ego vehicle would be
able to make a turn with an arbitrarily high velocity. However,
we compensate for this by setting appropriate constraints
(6b)-(6c), e.g., we use a conservative parametrization of the
admissible accelerations and velocities.

B. Reachable Set Representation

To improve computational efficiency, the reachable set (see
Def. 2) of (6) is approximated by the union Rk of base sets
R(i)
k = P(i)

ζ,k×P
(i)
η,k, i ∈ N0, which are the Cartesian products

of two convex polytopes P(i)
ζ,k and P(i)

η,k in the (sζ , vζ) and
(sη, vη) plane (see Fig. 4e), respectively [9]. Hence, each
base set represents pairs of reachable positions and velocities.
We select polytopes for the representation of the reachable
set, because the required set operations can be efficiently
performed on polytopes. The projection of sets R(i)

k onto
the position domain yields axis-aligned rectangles D(i)

k (see
Fig. 4a) whose union represents the drivable area Dk (see
Def. 4).

C. Algorithm

The initial base set R(0)
k0

encloses the set of initial states
XR,k0

of the ego vehicle including measurement uncertainties,
such that XR,k0

⊆ R(0)
k0

. The reachable set Rk of consecutive
time steps is computed as explained below and illustrated in
Fig. 4. To simplify the notation, we also denote the collection
of base setsR(i)

k withRk (not only the union of base sets), i.e.,
Rk = {R(0)

k ,R(1)
k , . . .}. Similarly, we simplify the notation

for the drivable area Dk.
1) Forward Propagation: The base sets R(i)

k ∈ Rk of time
step k (see Fig. 4a) are propagated forward in time according
to the system model (6) considering all admissible inputs.
The forward propagation is computed similarly to [9] and
a detailed description can be found in the Appendix A. We
denote the propagated reachable set with Rprop

k+1 , and refer to
the propagated drivable area as Dprop

k+1 , see Fig. 4b.
2) Re-Partitioning: With the aim to reduce the number of

axis-aligned rectangles, the propagated drivable area Dprop
k+1 is

merged and re-partitioned into a set Drprt
k+1 of new axis-aligned

rectangles with disjoint interiors using sweep line algorithms
[66] (see Fig 4c). To avoid generating a large number of new
axis-aligned rectangles with only slightly displaced edges, we
enlarge each propagated set Dprop(i)

k+1 to a grid prior to merging
and re-partitioning as presented in [9] (see Fig 4c).
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D(i)
k

Fk
sη

sζ

(a) Previous reachable set

Dprop(i)
k+1

Fk+1
sη

sζ

(b) Forward propagation

Drprt(q)
k+1

Fk+1
sη

sζ

(c) Re-partitioning

D(j)
k+1

Fk+1
sη

sζ

(d) Removal of forbidden states

D(j)
k+1

R(j)
k+1

=

vζ

sζ

P(j)
ζ,k+1

×

vη

sη

P(j)
η,k+1

(e) Creation of base sets

GR

R(0)
k

R(1)
k

...

R(0)
k+1

R(1)
k+1

R(j)
k+1

...
(f) Update of reachability graph

Fig. 4: Steps in the reachable set computation.

3) Removal of Forbidden States: The forbidden positions
are removed from Drprt

k+1 to obtain only collision-free con-
figurations of the ego vehicle as shown in Fig. 4d. Since
Drprt
k+1 \ proj(sζ ,sη)(Fk+1) cannot be represented by axis-

aligned rectangles in general, we under-approximate the result
by Dk+1. The under-approximation ensures that the remaining
drivable area Dk+1 is collision-free. A detailed description of
this computation step is provided in Sec. IV-D.

4) Creation of Base Sets: The reachable set Rk+1 is ob-
tained by determining the reachable velocities for the collision-
free drivable area Dk+1 (see Fig. 4e). From the propagated
base sets Rprop(i)

k+1 , we can determine the velocities for which
the ego vehicle reaches a set of positions D(j)

k+1. After intro-
ducing the set overlap(D(j)

k+1) = {i ∈ N0 | ∃Rprop(i)
k+1 ∈ Rprop

k+1 :

D(j)
k+1 ∩proj(sζ ,sη)(R

prop(i)
k+1 ) 6= ∅}, the new polytopes P(j)

ζ,k+1

are

P(j)
ζ,k+1 = convexhull

 ⋃
i∈overlap(D(j)

k+1)

P̂(i)
ζ,k+1

 ,

with

P̂(i)
ζ,k+1 = Pprop(i)

ζ,k+1 ∩
{(

sζ
vζ

)
∈ R2

∣∣∣sζ ≥ inf
(

projsζ(D
(j)
k+1)

)
,

sζ ≤ sup
(

projsζ(D
(j)
k+1)

)}
.

P(j)
η,k+1 is determined similarly. Note that we compute the

convex hull to ensure that we obtain convex polytopes.
5) Update of Reachability Graph: The base sets R(j)

k+1 are
stored in a directed graph GR to trace back the temporal and
spatial sequence of reachable states (see Fig. 4f). In GR, each
base set R(j)

k+1 is assigned to exactly one node and an edge
indicates that R(j)

k+1 is reachable from R(i)
k for consecutive

time steps (this also holds for D(i)
k and D(j)

k+1, since D(i)
k =

proj(sζ ,sη)(R
(i)
k )). Note that a set R(i)

k may reach several sets
R(j)
k+1 in the next point in time.

D. Removal of Forbidden States

To remove the forbidden states (see Fig. 4d), we need to
consider the occupancy GQ(xR,k) of the ego vehicle that is
over-approximated by three circles with radius r (see Sec. II).
Let us therefore introduce the Minkowski sum of two setsW1

and W2 as W1 ⊕ W2 = {w1 + w2 |w1 ∈ W1, w2 ∈ W2}.
By dilating the occupancies GOk with a circle with radius r
using the Minkowski sum, it is sufficient to test only Gc

(i)
k ,

i ∈ {1, 2, 3}, for collisions [63]. To determine the center Gc
(i)
k

of the i-th circle for Lc
(1)
k = (sζ,k, sη,k)T , we assume that the

heading θk of the ego vehicle is aligned with θΓ(sζ,k):

Gc
(i)
k = T G

L (sζ,k)

(
sζ,k
sη,k

)
+ T G

V (θΓ(sζ,k))

(
i−1

2 `
0

)
. (7)

Computing (7) for all (sζ,k, sη,k)T ∈ Drprt
k to determine

the collision-free drivable area is intractable, since the trans-
formation matrix T G

V (θΓ(sζ,k)) continuously varies along the
reference path Γ(sζ) with changing sζ,k (see Fig. 5a). To re-
duce computational complexity, we strictly over-approximate
the reachable positions of centers Lc

(i)
k by enlarging each

Drprt(q)
k ∈ Drprt

k with a rectangular shape Aε (see Fig. 5b):
Drprt(q)
k ⊕Aε. The size of Aε depends on the local curvature

κΓ of the reference path and Drprt(q)
k ; however, we omit the

sζ,k
sζ

sη

G c
(2)

k

G c
(3)

k

G c
(1)

k

GQ

G
Drprt(q)
k

in F G

(a) Occupancy GQ of the ego vehicle
for an arbitrary position Gc

(1)
k within

G
Drprt(q)
k given that θk = θΓ(sζ,k).

sζ

sη

Lc
(2)
k

Lc
(3)
k

Lc
(1)
k

Drprt(q)
k ⊕Aε

Drprt(q)
k

(b) Reachable positions of centers
Lc

(i)
k , i ∈ {1, 2, 3}, are enclosed by

enlarging Drprt(q)
k with Aε in F L.

Fig. 5: Consideration of the shape of the ego vehicle in the reachable set
computation.
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dependency in the notation for brevity. A detailed explanation
on the computation of Aε is given in the Appendix B.
Using Aε, the removal of forbidden states from Drprt

k can
be either performed in the global coordinate frame F G or in
the curvilinear frame F L. As a result, we under-approximate
Drprt
k \ proj(sζ ,sη)(Fk) with a new set of axis-aligned rectan-

gles Dk, such that for all D(j)
k ∈ Dk: D(j)

k ⊕Aε is collision-
free.

V. IDENTIFICATION OF DRIVING CORRIDORS

After introducing necessary preliminaries, we elaborate on
the identification of longitudinal and lateral driving corridors.

A. Preliminaries

As stated in Def. 8-9, a driving corridor is a temporal se-
quence of connected sets in the position domain. We denote the
n-th connected set at time step k by C(n)

k = {D(i)
k ,D(j)

k , . . .},
n ∈ N (see Fig. 3a). To determine longitudinal and lateral
driving corridors, we create corresponding graphs GC , in which
connected sets C(n)

k are stored as a node denoted by n(C(n)
k ).

An edge between nodes n(C(n)
k ) and n(C(m)

k+1) in GC indicates
that at least one set D(i)

k ∈ C
(n)
k reaches a set D(j)

k+1 ∈ C
(m)
k+1

within one time step so that the connected set C(n)
k reaches

C(m)
k+1. A path in GC from k0 to kf is a possible driving corridor.

B. Longitudinal Driving Corridors

Alg. 2 identifies longitudinal driving corridors backwards in
time using the reachability graph GR. Let us first explain the
procedure, afterwards we apply it to the example in Fig. 6:
we obtain the drivable area Dkf of the final time step kf
(see Alg. 2, line 2) through the reachability graph GR. As an
option, we can exclude states of the reachable set beforehand
to constrain driving corridors to end in a predefined set of
terminal states (e.g., a standstill in safe areas). Then, we
identify connected sets C(n)

kf
within the drivable area Dkf using

a sweep line algorithm [67] (see Alg. 2, line 6). For each C(n)
kf

,

we add a new node n(C(n)
kf

) to GC (see Alg. 2, line 7) and
determine the temporally preceding connected sets by calling
the FINDPATHS function (see Alg. 2, line 8).

The FINDPATHS function updates graph GC by determining
connected sets C(s)

k−1, s ∈ N, reaching the provided set C(n)
k

within one time step (see Alg. 2, lines 11-22). To this end, we
obtain the union of parents Dparents

k−1 = {D(q)
k−1,D

(p)
k−1, . . .} for

all provided sets D(i)
k ∈ C

(n)
k through the reachability graph

GR (see Alg. 2, line 12). Next, we also cluster the parent sets
Dparents
k−1 to connected sets C(s)

k−1 (see Alg. 2, line 16). For each
connected parent set C(s)

k−1:

1) a new node n(C(s)
k−1) is added to GC (see Alg. 2, line 17),

2) an edge from n(C(s)
k−1) to n(C(n)

k ) is created to store the
fact that C(s)

k−1 reaches C(n)
k (see Alg. 2, line 18),

3) the FINDPATHS function is called (see Alg. 2, line 19).
The FINDPATHS function terminates as soon as all paths from
the provided set C(n)

kf
to the initial set C(1)

k0
are found. One may

Algorithm 2 IDENTIFYCORRIDORS

Input: reachability graph GR
Optional Input: Xlon and Clon to obtain lateral driving corridors

(otherwise longitudinal driving corridors are obtained).
Output: graph GC containing possible driving corridors

1: GC .INIT( )
2: Dkf ← GR.DRIVABLEAREA(kf )
3: if Xlon 6= ∅ then . only for lateral driving corridors
4: Dkf ← EXCLUDESETS(Dkf , Xlon, Clon)
5: end if
6: for all C(n)

kf
in CONNECTEDSETS(Dkf ) do

7: GC .ADDNODE(n(C(n)
kf

))

8: GC ← FINDPATHS(GR, GC , C(n)
kf

, Xlon, Clon)
9: end for

10: return GC

11: function FINDPATHS(GR, GC , C(n)
k , Xlon, Clon)

12: Dparents
k−1 ← GR.GETPARENTS(C(n)

k )
13: if Xlon 6= ∅ then . only for lateral driving corridors
14: Dparents

k−1 ← EXCLUDESETS(Dparents
k−1 , Xlon, Clon)

15: end if
16: for all C(s)

k−1 in CONNECTEDSETS(Dparents
k−1 ) do

17: GC .ADDNODE(n(C(s)
k−1))

18: GC .ADDEDGE(n(C(s)
k−1), n(C

(n)
k ))

19: GC ← FINDPATHS(GR, GC , C(s)
k−1,Xlon,Clon)

20: end for
21: return GC
22: end function

23: function EXCLUDESETS(D′k, Xlon, Clon)
24: D′k ← D′k ∩ Clon,k

25: D′k ← FILTER(D′k, Xlon.AT(k))
26: return D′k
27: end function

also set a timeout or other criteria for early stopping, e.g., a
maximum number of driving corridors.

Example At time step kf = 2, the connected sets are C(1)
2 ,

C(2)
2 , and C(3)

2 (see Fig. 6b). Let us assume that FINDPATHS is
invoked with C(2)

2 . The obtained parents of C(2)
2 are Dparents

1 =

{D(0)
1 , . . . ,D(4)

1 } (see Fig. 6a-6b) that are partitioned into two
connected sets C(1)

1 and C(2)
1 (see Fig. 6b). Assume that we

continue with C(1)
1 : we first add the node n(C(1)

1 ) to GC (see
Fig. 6c), followed by creating an edge from n(C(1)

1 ) to n(C(2)
2 ).

Then, the FINDPATHS function is first invoked for C(1)
1 . After

the FINDPATHS function terminates for C(1)
1 , it is invoked for

C(2)
1 . Eventually, we obtain the paths (C(1)

0 , C(1)
1 , C(2)

2 ) and
(C(1)

0 , C(2)
1 , C(2)

2 ) for C(2)
2 (see Fig. 6c).

C. Lateral Driving Corridors

Lateral driving corridors are obtained in a similar way to
longitudinal driving corridors using Alg. 2, but with the ad-
dition that sets D(i)

k are removed (see Alg. 2, EXCLUDESETS
function, lines 23-27)
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... ...

GR

D(0)
0

D(0)
1

D(2)
1

D(3)
1

D(1)
1

D(4)
1

D(0)
2

D(1)
2

(a)

k0 = 0 k = 1 kf = 2

sη

sζ

C(1)
0

C(1)
1

C(2)
1

C(1)
2

C(2)
2

C(3)
2

D(0)
2 D(1)

2

D(0)
1

D(1)
1

D(2)
1

D(3)
1

D(4)
1

D(0)
0

(b)

GC

C(1)
0

C(1)
1

C(2)
1

C(2)
2

(c)

Fig. 6: Identification of longitudinal driving corridors. (a) Example of a
reachability graph GR. We only depict nodes and edges that are relevant
for our example. (b) Corresponding drivable area (gray rectangles) of the ego
vehicle for different time steps k. As an example, we highlight sets D(i)

k in
dark gray that are part of a longitudinal driving corridor reaching C(2)

2 at kf .
(c) Excerpt from the graph GC . We only show paths that end in C(2)

2 .

A1) that are not part of the longitudinal driving corridor
Clon (see Alg. 2, line 24),

A2) for which projsζ(xlon,k) /∈ projsζ(D
(i)
k ), xlon,k ∈ Xlon,

holds (see Alg. 2, line 25).

Addition A1 ensures that each identified lateral driving corri-
dor is a subset of the longitudinal driving corridor. Since we
do not update the reachability graph GR for computational
efficiency, all parents, including those that are not part of
the longitudinal driving corridor, are returned in Alg. 2, line
12. Addition A2 ensures that we obtain connected sets with
a unique passing side at all states xlon,k of the longitudinal
trajectory Xlon.

Example We continue the example in Fig. 6. Let us assume
that the selected longitudinal driving corridor is Clon =

(C(1)
0 , C(1)

1 , C(2)
2 ). In Fig. 7, the longitudinal positions of

Xlon are highlighted. For brevity, we only concentrate on
the modifications in Alg. 2 for determining lateral driving

k0 = 0 k = 1 kf = 2

sη

sζ

projsζ(xlon,0) projsζ(xlon,1) projsζ(xlon,2)

D(0)
2 D(1)

2

D(0)
1

D(1)
1

D(2)
1

D(4)
1

D(0)
0

Fig. 7: Identification of lateral driving corridors. As an example, we highlight
sets D(i)

k in dark gray that are part of the lateral driving corridor reaching
D(0)

2 at the final time step kf .

corridors: at time step kf = 2, the connected sets C(1)
2 and

C(3)
2 are removed as they are not part of Clon (addition A1,

see Fig. 6b). We also exclude D(1)
2 from C(2)

2 due to addition
A2 (see Fig. 7 and Alg. 2, line 4). Then, the FINDPATHS

function is invoked from {D(0)
2 }. The parent sets of D(0)

2 are
Dparents

1 = {D(0)
1 ,D(1)

1 ,D(2)
1 ,D(4)

1 } (see Fig. 6a). We remove
D(4)

1 and {D(0)
1 ,D(2)

1 } due to addition A1 and A2, respectively
(see Fig. 7 and Alg. 2, lines 13-15).

VI. DETERMINING COLLISION AVOIDANCE CONSTRAINTS
FROM DRIVING CORRIDORS

The longitudinal trajectory planner (see Def. 5) optimizes
the longitudinal motion of the ego vehicle along the reference
path Γ(sζ), i.e., ∀k : θk = θΓ(sζ,k) and sη,k = 0. The lateral
trajectory planner (see Def. 6) optimizes the lateral motion
of the ego vehicle, so that the ego vehicle is able to deviate
from the reference path, i.e., for some k, it may hold that
θk 6= θΓ(sζ,k) or sη,k 6= 0. To guarantee collision avoidance,
we constrain all possible trajectories of the ego vehicle to stay
within the longitudinal and lateral driving corridor Clon and
Clat, which is described below.

A. Longitudinal Constraints

Longitudinal collision avoidance is realized by enforcing a
minimum and maximum bound sζ,k and sζ,k on the longitu-
dinal position sζ,k of the reference circle Lc

(1)
k (center of rear

circle, see Fig. 2) at each time step k. As the shape of the ego
vehicle is considered during the reachable set computation,
we conclude that the ego vehicle is collision-free if Lc

(1)
k is

located within the drivable area Dk. Since Clon,k ⊆ Dk, we
obtain sζ,k and sζ,k for the longitudinal position constraint
(4d) from the longitudinal driving corridor Clon,k:

sζ,k = inf
{

projsζ(Clon,k)
}
, sζ,k = sup

{
projsζ(Clon,k)

}
.

B. Lateral Constraints

To model lateral collision avoidance, we introduce the
linearized lateral deviation d

(i)
k of the i-th circle’s center to
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the reference path at time step k (see Fig. 2):

d
(i)
k = sη,k +

i− 1

2
`
(
θk − θΓ(projsζ(xlon,k))

)
, (8)

where xlon,k is the k-th state of the longitudinal trajectory Xlon

and i ∈ {1, 2, 3}. We are able to guarantee collision avoidance
in the lateral direction by limiting the deviation (8) of centers
Gc

(i)
k at each time step k (see (5d)). Below, we assume that

θk = θΓ(projsζ(xlon,k)) to obtain the limits on (8). Note that
the limits obtained are still valid for θk 6= θΓ(projsζ(xlon,k))
due to the small-angle approximation (see Sec. II). Below, we
use these findings to obtain the admissible lateral deviations
for the circles Gc

(i)
k , i ∈ {1, 2, 3}.

1) Admissible Deviations for Reference Circle: Using a
similar reasoning as for the longitudinal position constraints in
Sec. VI-A, we obtain the minimum and maximum admissible
deviations d(1)

k and d
(1)

k of Gc
(1)
k from the reference path Γ(sζ)

directly from Clat. Figuratively speaking, we move the ego
vehicle perpendicular to the reference path at projsζ(xlon,k)
and determine all positions of the lateral driving corridor Clat,k

intersecting with Gc
(1)
k (see Fig. 8a):

d
(1)
k = inf

{
projsη(Clat,k)

}
, d

(1)

k = sup
{

projsη(Clat,k)
}
.

2) Admissible Deviations for Center and Front Circles: The
maximum and minimum admissible deviations d(i)

k and d
(i)

k ,
i ∈ {2, 3}, for the center and front circle cannot be extracted
directly from the lateral driving corridor Clat. The reason is
that Clat,k only contains collision-free, reachable positions of
Lc

(1)
k in the neighborhood of projsζ(xlon,k), xlon,k ∈ Xlon (see

addition A2 in Sec. V-C). Thus, Gc
(2)
k and Gc

(3)
k may be even

located outside of Clat,k (see Fig. 8a). Yet, we can set the
bounds d(i)

k and d
(i)

k , i ∈ {2, 3}, to d(1)
k and d

(1)

k , respectively,
since we have already considered the shape of the ego vehicle
in the reachable set computation (see Sec. IV-D) for θk =
θΓ(projsζ(xlon,k)).

sζ
sη

d
(1)
k

d
(1)
k

Gc
(3)
k

Gc
(2)
k

Gc
(1)
k

Clat,k

projsζ
(xlon,k)

Γ(sζ)

(a) Admissible deviations d(1)
k of cen-

ter Gc
(1)
k from Γ(sζ) are determined

with the lateral driving corridor Clat.

sζ
sη Gĉ

(1)
k

Gĉ
(2)
k

Gĉ
(3)
k

I
(2)

k,1

I
(2)

k,0

I
(2)

k,2

g
(1)
k

g
(2)
k

g
(3)
k

1

2

3

i [d
(i)
k , d

(i)
k ]

Clat,k

Clon,k

(b) Admissible deviations d(i)
k of cen-

ters Gc
(i)
k , i ∈ {2, 3}, from Γ(sζ) are

determined with Clon.

Fig. 8: We obtain the minimum and maximum admissible deviation d(i)
k and

d
(i)
k through driving corridors Clon and Clat.

However, this choice might be overly conservative for large
time steps k, since we restrict the limits d(i)

k and d
(i)

k , i ∈
{2, 3}, to the bounds of d(1)

k . We aim to use the longitudinal
driving corridor Clon to extend the deviation limits of the
center and front circles based on the following observation: the
connected sets of the longitudinal driving corridor Clon usually
increase in size for greater time steps k (since more states are
reachable), so that Lc

(2)
k , Lc

(3)
k ∈ Clon,k for Lc

(1)
k ∈ Clat,k.

We can infer that the center and front circle are collision-
free within Clon,k, since a circle with radius r is guaranteed
to be collision-free in the longitudinal driving corridor (see
Sec. IV-D). We therefore continue with the determination of
the admissible deviations from the reference path for which
the center and front circle are contained in the longitudinal
driving corridor.

Let us introduce the normal vector η(projsζ(xlon,k)) of
the reference path at the longitudinal position projsζ(xlon,k).
We further introduce the straight line g(i)

k that is parallel to
η(projsζ(xlon,k)) passing through Gĉ

(i)
k , where Gĉ

(i)
k is the

Cartesian position of the circle centers if the ego vehicle is
located on Γ(sζ) at projsζ(xlon,k) (see Fig. 8b). The point
Gĉ

(i)
k is obtained with (7) for Lc

(1)
k = (projsζ(xlon,k), 0)T . The

distances from Gĉ
(i)
k to all positions in Clon,k intersecting g(i)

k

are:

Y(i)
k =

{ distance︷ ︸︸ ︷
η(projsζ(xlon,k))T

(
T G
L (sζ,k)

(
sζ,k
sη,k

)
− Gĉ

(i)
k

)
∈ R

∣∣∣(
sζ,k
sη,k

)
∈ Clon,k, T

G
L (sζ,k)

(
sζ,k
sη,k

)
∈ g(i)

k︸ ︷︷ ︸
intersection points

}
.

If Y(i)
k 6= ∅, there exist sets D(j)

k ∈ Clon,k intersecting g(i)
k in

F G (see Fig. 8b, g(2)
k ). We unify the intersection distances Y(i)

k

to intervals I(i)
k,q , q ∈ N0, as illustrated in Fig. 8b, and consider

only those intervals I(i)
k,q where [d

(1)
k , d

(1)

k ] ∩ I(i)
k,q 6= ∅. The

collection of the intervals considered is denoted with I(i)
v . As

illustrated in Fig. 8b, interval I(2)
k,2 is omitted and we only

consider intervals I(2)
k,0 and I(2)

k,1, i.e., I(2)
v = {I(2)

k,0, I
(2)
k,1}. The

deviation limits are then determined by

[d
(i)
k , d

(i)

k ] = [d
(1)
k , d

(1)

k ] ∪ I(i)
v , i ∈ {2, 3}.

VII. EXPERIMENTS

After introducing implementation details in Sec. VII-A,
we validate the drivability of our planned motions by real-
world experiments in Sec. VII-B. In Sec. VII-C, we compare
our method to motion planners based on discretization and
continuous optimization. Subsequently, we demonstrate that
our approach works in arbitrarily complex scenarios. A video
of the experiments is attached to this paper.

A. Implementation Details

Our approach is implemented partly in Python and C++ on
a computer with an Intel Core i7-6700HQ CPU and 16 GB of
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memory. We use the CommonRoad benchmark suite to model
our scenarios [68]. The assessment criteria for driving corridor
selection can be chosen arbitrarily. In this work, we select the
paths in GC with the greatest cumulated area of connected
sets, since connected areas of greater size generally yield less
restrictive position constraints for trajectory optimization.

For longitudinal and lateral trajectory planning (see Def. 5
and 6), we apply the approach presented in [30], where system
(4b) is a fourth-order integrator model with jounce as input
and bounded velocity, acceleration, and jerk. System (5b) is
a linearized kinematic single-track model with constraints on
the steering actuators. We select a quadratic cost function for
both the longitudinal and lateral optimization. The longitudinal
cost function Jlon punishes deviations from a desired velocity,
high accelerations, jerk, and inputs. The lateral cost function
Jlat minimizes the lateral distance to Γ(sζ), deviations from
θΓ(sζ) and κΓ(sζ), as well as high curvature rates and inputs
to obtain smooth trajectories.

B. Drivability of Planned Motions

We have integrated our approach in a BMW 7-series test
vehicle and applied it online to determine the driving corridor.
Fig. 9a illustrates the real-world scenario with two lanes,
in which we placed a static obstacles O1 and a simulated
pedestrian O2 in the driveway of the vehicle. The obstacles
are detected by LiDAR sensors and we use the set-based
prediction SPOT [69] to predict the future motion of the
pedestrian over time. Note that the prediction method can be
replaced and is not part of our algorithm.

Fig. 9b shows the drivable area at the final time step, from
which we infer that two maneuvers exist: a) stopping in front
of the pedestrian, and b) swerving. The trajectory that ends in
front of the pedestrian and its driving corridor are visualized
in Fig. 9c. The swerving trajectory is illustrated in Fig. 9d,
in which the vehicle first passes the pedestrian O2 on the left
and then evades the static obstacle O1 by changing to the
original lane. Fig. 9e shows the drivable area of the scenario
at t30 = 6.0 s. Even though the solution space is exceedingly
small, we are able to detect even narrow passageways by
using reachable sets for driving corridor identification. This
is of utmost importance in safety-critical scenarios, in which
evading may be the last possible feasible maneuver. Even
though our approach uses different models for the reachability
analysis and trajectory planning, we obtain drivable trajectories
as illustrated in Fig. 9f and 9g, which show the nominal
and measured velocity and curvature profiles of the executed
double lane change maneuver.

C. Comparison

1) Sampling-based Motion Planner: We compare our
method with a popular sampling-based trajectory planner
presented in [15] on the previous scenario to demonstrate
the efficacy of our method to detect narrow passages in the
solution space. The motion planner in [15] samples a finite set
of trajectories that connect the initial state of the ego vehicle
with different goal states. The longitudinal and lateral motions
are planned separately using quartic and quintic polynomials

ego
vehicle

O2

O1

(a) Initial scenario with a static obstacle O1 and a pedestrian O2 at t = 0 s.

predicted motion of O2

(b) Drivable area D70 at the final time step t70 = 14 s.

(c) Planned trajectory that ends in front of the pedestrian and the correspond-
ing driving corridor Clat.

(d) Planned evasive trajectory and the corresponding driving corridor Clat at
t27 = 5.4 s.

(e) Small solution space within the drivable area D30 at t30 = 6.0 s.
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(f) Nominal and measured velocity profile.
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(g) Nominal and measured curvature profile.

(h) Images of the vehicle tests with a BMW 7-series.

Fig. 9: Validation of our approach on a BMW 7-series test vehicle (scenario
ZAM Urban-8 1 S-1:2018b).

in F L. The Cartesian product of all longitudinal and lateral
motions yields the set of candidate trajectories that are checked
for drivability and collisions. Due to the pre-defined s-shape of
the trajectories of the sampling-based planner, a double lane
change maneuver that is similar to the one of our method
(see Fig. 9d) can only be planned in an anticipatory way. We
therefore remove the static obstacle O1 and aim to sample at
least one feasible trajectory that evades the pedestrian, which
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TABLE I: Parameters for Sampling.

scenario goal state min. value max. value step size

baseline t in [s] 0.40 10.0 0.20

& critical d(2) in [m] −4.00 4.00 1.00

baseline vζ in [m/s] 6.00 18.00 1.5

critical vζ in [m/s] 6.00 18.00 0.2

is particularly challenging due to the small solution space (see
Fig. 9e). This scenario is referred to as baseline scenario. Then,
we add an additional constraint to the motion planning to
increase the difficulty and demand that the ego vehicle must
keep a distance of 0.2 m to the pedestrian. We therefore dilate
the predicted occupancies of the pedestrian with a circle with
radius 0.2 m and refer to this scenario as critical scenario.
Subsequently, we compare the performance of both planners.

Following [15], we compute 3969 trajectories using the
sampling-based planner in the baseline scenario. The sampling
parameters are uniformly distributed and can be found in
Tab. I. From 3969 trajectories, we found two feasible trajecto-
ries evading the pedestrian. However, using the same sampling
parameters, no feasible trajectory has been found in the critical
scenario. We therefore gradually raise the number of goal
states by approximately bisecting the step size for velocity
sampling, i.e., we used step sizes {1.5, 0.8, 0.4, 0.2}m/s, until
one feasible trajectory is found. The final sampling parameters
are listed in Tab. I. Overall, we needed 26901 trajectories to
obtain one feasible trajectory evading the pedestrian in the
critical scenario (see Fig. 10). The computation times of the
baseline and critical scenario are 3.2 s and 20.8 s, respectively;
thus, the runtime increases by factor 6.5. In contrast, our
motion planning approach is able to solve both scenarios
without the need for adapting parameters and the computation
times do not substantially differ (baseline scenario: 0.078 s,
critical scenario: 0.076 s).

This scenario particularly demonstrates that sampling-based
motion planners struggle to detect narrow passage ways in the
solution space for trajectory planning due to the discretization
of the state space. In contrast, our method can automatically
detect narrow passages without increased computational effort.
One might argue that we have used a naiv sampling strategy,
however, manually tuning or learning adaptive sampling strate-
gies for different traffic situations is error-prone and difficult.
In comparison, our method for driving corridor identification
can be applied immediately without parameter tuning.

2) Mixed-Integer Quadratic Programming: We analyze the
influence of an increasing number of obstacles on the runtime
behavior of our method. For comparison, we select the motion
planner proposed in [70] based on mixed-integer quadratic

sampling approach proposed approach

ego vehicle at t0

pedestrian

Fig. 10: Critical scenario at t27 = 5.4 s.
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Fig. 11: Runtime behavior of our approach (label QP) and a MIQP planner
[70] (label MIQP) in randomly generated scenarios with up to ten obstacles.

programming (MIQP). The reason for selecting a MIQP plan-
ner is two-fold: 1) it is a continuous optimization method,
and thus, does not suffer from discretization effects, and
2) mixed-integer programming has gained increasing interest
over the past years, e.g., see [6], [20], [70]–[72], as binary
variables enable to incorporate discrete tactical decisions into
the trajectory optimization.

We consider the same road as in Fig. 10 and gradually
increase the number σ ∈ {1, . . . , 10} of static obstacles in
the environment. The obstacles are represented by rectangles,
i.e., [sx − lobs/2, sx + lobs/2] × [sy − wobs/2, sy + wobs/2],
that are randomly sampled, where sx ∈ [25, 180] m, sy ∈
[−1.75, 5.25] m, lobs ∈ [1.0, 20.0] m, wobs ∈ [0.5, 4.0] m.
Since our motion planner uses a kinematic single-track model
for optimization that is more restrictive compared to the third-
order integrator models of [70], we only consider scenarios
for the analysis that both planners could solve. Overall, we
generated 50 scenarios for each σ. In all scenarios, trajectories
are planned for 50 time steps with ∆t = 0.2 s and the initial
velocity of the ego vehicle was 15 m/s. To compute the solution
for the MIQP, we use the solver Gurobi [73], version 9.0.2.

As illustrated in Fig. 11a, the median computation times for
both planners are comparable. While the MIQP planner has
lower computation times for scenarios with up to 4 obstacles,
our approach is faster for scenarios with more than 4 obstacles.
Our method is already applicable for complex road geometries
and obstacles with arbitrary shapes, whereas the MIQP planner
is tailored to our experimental setup, i.e., lane boundaries
are constant and obstacles have rectangular shapes. Modeling
complex obstacle geometries, e.g., arbitrary polygonal shapes,
increases the computation times of the MIQP planner [70].

The MIQP planner solves many scenarios rather fast, how-
ever, the runtime behavior is highly volatile. As shown in
Fig. 11b, the standard deviation of the computation times are
particularly high for scenarios with multiple obstacles and have
the tendency to increase with a raising number of obstacles.
In contrast, the computation times of our method vary only
slightly over the different scenarios. The experiment indicates
that the runtime behavior of our method is reliable, which is
of high importance for real-time applications.

D. Motion Planning in a Complex Scenario

Let us consider a complex scenario, where the ego vehicle
is in the far left lane and plans to take the highway off-
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ego vehicle Clat obstacle

(a) Scenario at t = 0 s.

(b) Scenario at t = 3.6 s.

(c) Scenario at t = 4.8 s.

(d) Scenario at t = 5.6 s.

Fig. 12: Planned trajectories of the ego vehicle for different planning cycles (scenarios DEU A9-3 {1,...,15} T-1:2018b).

ramp (see Fig. 12a). Even for experienced human drivers, this
maneuver is challenging as multiple lane changes need to be
planned. In order to account for realistic movements by other
traffic participants, this scenario is based on real traffic that
we recorded using a BMW 7-series vehicle. Again, we use
SPOT [69] to predict the future motion of the other traffic
participants and assume that traffic participants will remain in
their current lanes, and accelerate or decelerate only slightly.
Since this maneuver requires longer planning horizons, we
replan the trajectory for consecutive planning cycles. In each
planning cycle, trajectories are planned for 30 time steps using
∆t = 0.2 s; a new planning cycle starts every 0.4 s.

Fig. 12 illustrates the planned trajectories and the corre-
sponding lateral driving corridors at selected times t. Other
traffic participants are shown in their measured state without
uncertainties at time t. As can be seen in Fig. 12b, our method
enables the ego vehicle to merge into small gaps while finally
reaching the highway off-ramp (see Fig. 12d). The median
computation times of the reachability analysis and of trajectory
planning, including the driving corridor identification, are
≈ 131 ms and ≈ 154 ms, respectively. This scenario highlights
that driving corridors allow the ego vehicle to maneuver even
in dense traffic with multiple road users.

E. Scenarios with a Small Solution Space
Next, we analyze the influence of a decreasing solution

space. We therefore group the computation times of our
approach (reachability analysis and trajectory planning includ-
ing driving corridor identification) obtained in Sec. VII-C2
according to the size of the drivable area cumulated over all
time steps. As shown in Fig. 13, the computation times tend
to decrease given that the cumulative drivable area shrinks.
Since the number of driving corridors can be limited (thus,
the number of planned trajectories), the main factor for the
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Fig. 13: The computation times of our approach have the tendency to decrease
when the cumulative drivable area decreases. For better visibility, outliers of
the boxplots are not shown.

decrease in computation time is the reachability analysis that
we further examine below.

We increase the criticality of the CommonRoad scenario
USA US101-6 1 T-1:2018b (see Fig. 14) featuring 29 dy-
namic obstacles. By gradually raising the initial velocity of
the ego vehicle by 1.4 m/s, the traffic situations becomes more
dangerous compared to the baseline scenario, when using, e.g.,
the Time-to-Collision or the Inter-Vehicle-Time, as thread-
measure [74]. We emphasize that criticality measures are not
part of the presented algorithm; an overview can be found in
[74]. For each scenario, the reachable set is computed for 50
time steps with ∆t = 0.1 s and repeated 20 times to account
for fluctuations in the computation time. As shown in Tab. II,
the median computation time of the reachable set decreases
with increasing criticality of the traffic situation, since fewer
set operations have to be performed, i.e., the number of base
sets cumulated over all time steps k decreases. Also, the size
of the cumulated drivable area is reduced by roughly 75%
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ego vehicle

obstacle

Fig. 14: Scenario USA US101-6 1 T-1 of the CommonRoad benchmark
suite. The obstacles and the ego vehicle are depicted at the initial time step.

TABLE II: Decreasing median computation times, number of base sets, and
size of the drivable area cumulated over all time steps k, when increasing the
initial velocity in scenario USA US101-6 1 T-1.

Init. Vel. Comp. Time No. Base Sets Red. Drivable Area

16.79 m/s 74.76 ms 2025 0.00 %
18.19 m/s 69.51 ms 1843 8.65 %
19.59 m/s 65.65 ms 1712 17.55 %
20.99 m/s 58.90 ms 1561 27.25 %
22.39 m/s 52.93 ms 1346 37.95 %
23.79 m/s 45.46 ms 1112 49.00 %
25.19 m/s 37.79 ms 899 59.47 %
26.59 m/s 31.30 ms 678 67.97 %
27.99 m/s 27.19 ms 535 75.40 %

when comparing the baseline scenario with the most-critical
scenario. Thus, our approach is particularly suited for complex
situations with small solution spaces, where fast reaction times
are a necessity to avoid collisions.

VIII. CONCLUSIONS

This paper presents a novel motion planning approach for
automated vehicles by combining reachability analysis with
convex optimization. In contrast to most existing work on
motion planning, our approach can be applied in arbitrarily
complex traffic situations. We showed that set-based tech-
niques have the potential to reduce the computation time
of motion planners when the criticality of the scenario in-
creases, i.e., the solution space becomes smaller and more
convoluted. In real vehicle tests, we validated the extraction
of collision avoidance constraints from the obtained driving
corridors to plan drivable trajectories. Our results indicate that
the presented approach can drastically enhance the safety of
automated vehicles and their ability to determine complex
driving maneuvers. Additionally, we are able to constrain
driving corridors to end in predefined terminal states. Thus,
automated vehicles can choose the most appropriate maneuver
to achieve the desired driving task.

APPENDIX A
FORWARD PROPAGATION

The forward propagation is performed similar to [9]. How-
ever, in [9], the absolute limits of the acceleration are restricted
to be equal (|aζ | = |aζ | and |aη| = |aη|), whereas we allow
the maximum braking deceleration to be different from the
maximum acceleration. According to [9], the lower and upper
bounds of the reachable positions and velocities for system
model (6) at t = ∆t are obtained by applying a bang-bang
input with switching time γ∆t for γ ∈ [0, 1]. Below, we
present the solution only in the longitudinal direction, the
solution in the lateral direction is obtained similarly. The
lower bounds slo

ζ (γ) and vlo
ζ (γ) on the position and velocity

in the longitudinal direction are obtained by applying full
acceleration until time γ∆t followed by full deceleration:

slo
ζ (γ) = sζ(0) + vζ(0)∆t+

1

2
aζ∆t

2(1− 2γ + γ2)

+
1

2
aζ∆t

2(2γ − γ2),
(9a)

vlo
ζ (γ) = vζ(0) + aζ∆t(1− γ) + aζγ∆t. (9b)

The upper bounds shi
ζ (γ) and vhi

ζ (γ) on the position and
velocity in the longitudinal direction are obtained by applying
full deceleration until time γ∆t followed by full acceleration
for (1− γ)∆t:

shi
ζ (γ) = sζ(0) + vζ(0)∆t+

1

2
aζ∆t

2(1− 2γ + γ2)

+
1

2
aζ∆t

2(2γ − γ2),
(10a)

vhi
ζ (γ) = vζ(0) + aζ∆t(1− γ) + aζγ∆t. (10b)

From this, we can infer that a polytope P(i)
ζ,k−1 can be

propagated as shown in [9]:

P(i)
ζ,k =

((
1 ∆t
0 1

)
P(i)
ζ,k−1 ⊕ Pu,ζ(∆t)

)
︸ ︷︷ ︸

solution of (6a) + (6c)

∩
(
R× [vζ , vζ ]

)︸ ︷︷ ︸
velocity constraints (6b)

,

where ⊕ denotes the Minkowski sum and Pu,ζ(∆t) is the
set of all states that can be reached from the initial state
(sζ , vζ)

T = (0, 0)T when all admissible inputs are ap-
plied (6c). For computational reasons, Pu,ζ(∆t) is over-
approximated with a predefined number of halfspaces. Using
(9), the linear equation for one halfspace at some γ is [9]: dsloζ

dγ
dvlo
ζ

dγ

T
∣∣∣∣∣∣∣
γ

(
0 1
−1 0

)T(
sζ
vζ

)
≤

 dsloζ
dγ

dvlo
ζ

dγ

T
∣∣∣∣∣∣∣
γ

(
0 1
−1 0

)T(
slo
ζ

vlo
ζ

)∣∣∣∣
γ

.

Similarly, we obtain the halfspace for (10).

APPENDIX B
REMOVAL OF FORBIDDEN STATES

This section elaborates on the determination of the rectan-
gular set Aε that over-approximates the reachable positions
of centers Lc

(i)
k for the removal of forbidden states in the

reachable set computation (see Sec. IV-D). Particularly, we
present a solution for the following problem:

Problem 1 Given that θk = θΓ(projsζ(
Lc

(1)
k )), we aim to find

the rectangular set Aε = [0, εζ ]× [−εη, εη] such that ∀Lc(1)
k ∈

Drprt(q)
k ∀i ∈ {1, 2, 3}: Lc

(i)
k ∈ D

rprt(q)
k ⊕Aε.

Once the necessary assumptions have been introduced for
computing Aε in Appendix B-A, the longitudinal enlargement
εζ is derived in Appendix B-B, followed by the lateral en-
largements εη and εη .

A. Notation and Assumptions

We denote the respective minimum and maximum lateral
position of Drprt(q)

k by s
rprt(q)
η,k = inf

{
projsη(D

rprt(q)
k )

}
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Fig. 15: Local approximation of ref-
erence path Γ(sζ) with circle ΓC.
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Fig. 16: Positive and negative do-
main of lateral coordinate sη .

and s
rprt(q)
η,k = sup

{
projsη(D

rprt(q)
k )

}
. The minimum and

maximum curvature of Γ(sζ) are denoted by κΓ and κΓ. We
assume that we can locally approximate the reference path
Γ(sζ) with a circle ΓC in proximity of Drprt(q)

k as shown in
Fig. 15. The center, curvature, and radius of ΓC are denoted as
cCΓ, κCΓ, and rCΓ = 1/|κC

Γ|, respectively. For κCΓ ≥ 0, the lateral
coordinates sη are positive on the inner side of the curve (see
Fig. 16) and for κCΓ < 0, the lateral coordinates sη are negative
on the inner side of the curve (see Fig. 16). Based on ΓC

and Drprt(q)
k , we compute εζ , εη and εη to determine Aε. We

further assume that Drprt(q)
k ⊕ Aε lies completely inside the

unique projection domain of Γ(sζ) [75].

B. Longitudinal Enlargement
We wish to enclose all longitudinal positions of centers

Lc
(i)
k , i ∈ {1, 2, 3}, for all Lc

(1)
k ∈ D

rprt(q)
k using Aε. First, we

derive the function εζ(sη,k, κCΓ) for computing the longitudinal
enlargement based on a single position Lc

(1)
k . Second, we

determine the over-approximative longitudinal enlargement εζ
for a set of positions based on εζ(sη,k, κCΓ).

1) Single Position: Given Lc
(1)
k , we aim to determine the

longitudinal position coordinate ŝζ,k of Lc
(3)
k relative to Lc

(1)
k ,

such that ŝζ,k = sζ,k + εζ . Note that we are interested in the
maximum longitudinal enlargement, therefore, it is sufficient
to only consider Lc

(3)
k (Lc(3)

k is farther away from Lc
(1)
k than

Lc
(2)
k ). As illustrated in Fig. 17a, εζ is the arc length of a circle

sector with radius rCΓ = 1/|κC
Γ| and central angle ϕ:

εζ(sη,k, κ
C
Γ) =

ϕ(sη,k, κ
C
Γ)

|κCΓ|
, (11)

where the central angle is computed as follows:

ϕ(sη,k, κ
C
Γ) =

arctan
(

`
1/|κCΓ|−sη,k

)
for κCΓ ≥ 0

arctan
(

`
1/|κCΓ|+sη,k

)
for κCΓ < 0.

(12)

As the lateral coordinates are positive on the inner side of the
curve for κCΓ > 0 (see Fig. 16), we need to subtract sη,k from
1/|κC

Γ| to compute ϕ(sη,k, κ
C
Γ) (see Fig. 17a). For κCΓ < 0, the

lateral coordinates are negative on the inner side of the curve.
Therefore, we add sη,k to 1/|κC

Γ| for computing ϕ(sη,k, κ
C
Γ).

Note that lim
|κC

Γ|→0
εζ(sη,k, κ

C
Γ)→ `.

2) Set of Positions: For computational efficiency, we over-
approximate (11) for a set of positions Drprt(q)

k . Thus, the
question arises, for which sη,k ∈ projsη(D

rprt(q)
k ) and κCΓ ∈

[κΓ, κΓ] does the longitudinal enlargement (11) reach its
maximum.

εζ

ϕ

`
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(a) Longitudinal enlargement εζ .
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(b) Lateral enlargement εη .

Fig. 17: Computation of longitudinal and lateral enlargements.

Lemma 1 For κCΓ ≥ 0, εζ(sη,k, κCΓ) (11) is monotonically
increasing in sη,k. Furthermore, for κCΓ < 0, εζ(sη,k, κCΓ) (11)
is monotonically decreasing in sη,k.

Proof 1 Given that s′η,k > s∗η,k and κCΓ ≥ 0, we have:

εζ(s
′
η,k, κ

C
Γ) > εζ(s

∗
η,k, κ

C
Γ)

arctan

(
`

1/|κC
Γ| − s′η,k

)
> arctan

(
`

1/|κC
Γ| − s∗η,k

)
1/|κC

Γ| − s′η,k < 1/|κC
Γ| − s∗η,k

s′η,k > s∗η,k.

Using the same reasoning, we obtain for κCΓ < 0 that
εζ(s

′
η,k, κ

C
Γ) < εζ(s

∗
η,k, κ

C
Γ). �

Lemma 2 For κCΓ ≥ 0 and (sζ,k, sη,k) ∈ Drprt(q)
k , (11)

reaches its maximum for sη,k = s
rprt(q)
η,k . For κCΓ < 0, (11)

reaches its maximum for sη,k = s
rprt(q)
η,k .

Proof 2 From Lemma 1, it follows that (11) is monotonically
increasing in sη,k for κCΓ ≥ 0. Therefore, we select srprt(q)η,k

which is the maximum lateral position in Drprt(q)
k to compute

(11). Similarly, as (11) is monotonically decreasing in sη,k for
κCΓ < 0, we select the minimum lateral coordinate srprt(q)η,k of
Drprt(q)
k to compute (11). �

Lemma 3 For any sη,k ∈ projsη(D
rprt(q)
k ) and κCΓ ∈

[κΓ, κΓ], (11) is bounded by

εζ =sup
{
εζ

(
s
rprt(q)
η,k , [0, κΓ]

)
∪ εζ

(
s
rprt(q)
η,k , [κΓ, 0]

)}
.

(13)

Proof 3 According to Lemma 2, srprt(q)η,k and s
rprt(q)
η,k maxi-

mize (11) for κCΓ ≥ 0 and κCΓ < 0, respectively. In contrast to
sη,k, (11) is not monotonic in κCΓ. Using interval arithmetics
[76], we obtain the upper bound on (11) over the intervals
[0, κΓ] and [κΓ, 0]. �

As (13) becomes increasingly over-approximative for larger
intervals of curvatures, we pre-compute (13) for smaller inter-
vals and store the values in a look-up table generated offline.

C. Lateral Enlargement

Similarly to the longitudinal enlargement, we wish to en-
large Drprt(q)

k in the lateral direction such that all lateral
positions of centers Lc

(i)
k , i ∈ {1, 2, 3}, are enclosed for all
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Lc
(1)
k ∈ Drprt(q)

k . Similarly to the previous section, we first
derive the function εη(sη,k, κ

C
Γ) for determining the lateral

enlargements based on a single position Lc
(1)
k . Second, we

determine the over-approximative lateral enlargements εη and
εη based on εη(sη,k, κ

C
Γ).

1) Single Position: Given Lc
(1)
k , we aim to determine the

lateral position coordinate ŝη,k of Lc
(3)
k relative to Lc

(1)
k , such

that ŝη,k = sη,k− εη (again, it is sufficient to only compute it
for Lc

(3)
k ). As illustrated in Fig. 17b, we use the Pythagorean

theorem to determine εη:

εη(sη,k, κ
C
Γ) =



√
(1/|κC

Γ| − sη,k)2 + `2

−(1/|κC
Γ| − sη,k)

, for κCΓ ≥ 0,

√
(1/|κC

Γ|+ sη,k)2 + `2

−(1/|κC
Γ|+ sη,k)

, for κCΓ < 0.

(14)

As the sign of the lateral coordinate sη changes on the inner
side of the curve depending on the sign of κCΓ (see Fig. 16),
we distinguish two cases for (14) similar to (12). Note that

lim
|κC

Γ|→0+
εη(sη,k, κ

C
Γ)→ 0.

2) Set of Positions: For computational efficiency, we over-
approximate (14) for a set of positions Drprt(q)

k . Thus, the
question arises for which sη,k ∈ projsη(D

rprt(q)
k ) and κCΓ ∈

[κΓ, κΓ] the lateral enlargement (14) reaches its maximum.

Lemma 4 For κCΓ ≥ 0, εη(sη,k, κ
C
Γ) (14) is monotonically

increasing in sη,k. Furthermore, for κCΓ < 0, εη(sη,k, κ
C
Γ) (14)

is monotonically decreasing in sη,k.

Proof 4 The partial derivative of (14) for κCΓ ≥ 0 with respect
to sη,k is

∂εη
∂sη,k

(sη,k, κ
C
Γ)=


+1− 1/|κCΓ|−sη,k√

(1/|κCΓ|−sη,k)2+`2
, for κCΓ ≥ 0,

−1+
1/|κCΓ|+sη,k√

(1/|κCΓ|+sη,k)2+`2
, for κCΓ < 0.

(15)
Since 1/|κC

Γ| ∓ sη,k > 0 must hold such that sη,k is within
the unique projection domain of ΓC and 1/|κC

Γ| ∓ sη,k <√
(1/|κC

Γ| ∓ sη,k)2 + `2, we have:

0 <
1/|κC

Γ|∓ sη,k√
(1/|κC

Γ| ∓ sη,k)2 + `2
< 1.

Thus, it holds that

∀κCΓ ≥ 0 :
∂εη
∂sη,k

(sη,k, κ
C
Γ) > 0,

∀κCΓ < 0 :
∂εη
∂sη,k

(sη,k, κ
C
Γ) < 0.

Therefore, (14) is monotonically increasing in sη,k for κCΓ ≥ 0
and monotonically decreasing in sη,k for κCΓ < 0. �

Lemma 5 For κCΓ ≥ 0 and (sζ,k, sη,k) ∈ Drprt(q)
k , (14)

reaches its maximum for sη,k = s
rprt(q)
η,k . For κCΓ < 0, (14)

reaches its maximum for sη,k = s
rprt(q)
η,k .

Proof 5 From Lemma 4, it follows that (14) is monotonically
increasing in sη,k for κCΓ ≥ 0. Therefore, we select srprt(q)η,k ,

which is the maximum lateral position in Drprt(q)
k , for com-

puting (14). Similarly, as (14) is monotonically decreasing in
sη,k for κCΓ < 0, we select the minimum lateral coordinate
s
rprt(q)
η,k of Drprt(q)

k to compute (14). �

The remaining task is to determine the curvature κCΓ, for
which εη(sη,k, κ

C
Γ) reaches its maximum for a given Drprt(q)

k

and reference path Γ(sζ).

Lemma 6 (14) is monotonically increasing in |κCΓ|.

Proof 6 We substitute 1/|κC
Γ| with rCΓ in (14) and compute the

partial derivative of (14) with respect to rCΓ:

∂εη
∂rCΓ

(sη,k, r
C
Γ)=


−1 +

rCΓ−sη,k√
(rCΓ−sη,k)2+`2

, for κCΓ ≥ 0,

−1 +
rCΓ+sη,k√

(rCΓ+sη,k)2+`2
, for κCΓ < 0.

(16)

Since ∂εη
∂rCΓ

(sη,k, r
C
Γ) < 0, (14) is monotonically decreasing

in rCΓ. As a result, (14) is monotonically increasing in |κCΓ|,
because |κCΓ| is the reciprocal of rCΓ. �

Lemma 7 For any sη,k ∈ projsη(D
rprt(q)
k ) and κCΓ ∈

[κΓ, κΓ], (14) is bounded by

εη =

{
εη

(
s
rprt(q)
η,k , κΓ

)
, for κΓ ≥ 0,

0 for κΓ < 0,
(17)

εη =

{
εη

(
s
rprt(q)
η,k , κΓ

)
, for κΓ < 0,

0 for κΓ ≥ 0.
(18)

Proof 7 Since a straight line in the curvilinear coordinate
system F L is bent toward the inner side of the circle ΓC

when it is transformed to the Cartesian frame F G, we need
to enlarge Drprt(q)

k only to the circle’s outer side. For
κCΓ ≥ 0, we enlarge Drprt(q)

k in the negative η-direction
with εη = εη

(
s
rprt(q)
η,k , κΓ

)
(see Lemma 5 and 6). For

κCΓ < 0, we enlarge Drprt(q)
k in the positive η-direction with

εη = εη

(
s
rprt(q)
η,k , κΓ

)
(see Lemma 5 and 6). �

Theorem 1 By computing Aε according to (13), (17), and
(18), Problem 1 is solved.

Proof 8 The proof follows directly from Lemma 3 and 7. �
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