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RangeSeg: Range-Aware Real Time Segmentation
of 3D LiDAR Point Clouds

Tzu-Hsuan Chen, and Tian Sheuan Chang, Senior Member, IEEE

Abstract—Semantic outdoor scene understanding based on 3D
LiDAR point clouds is a challenging task for autonomous driving
due to the sparse and irregular data structure. This paper takes
advantages of the uneven range distribution of different LiDAR
laser beams to propose a range aware instance segmentation
network, RangeSeg. RangeSeg uses a shared encoder backbone
with two range dependent decoders. A heavy decoder only
computes top of a range image where the far and small objects
locate to improve small object detection accuracy, and a light
decoder computes whole range image for low computational
cost. The results are further clustered by the DBSCAN method
with a resolution weighted distance function to get instance-
level segmentation results. Experiments on the KITTI dataset
show that RangeSeg outperforms the state-of-the-art semantic
segmentation methods with enormous speedup and improves the
instance-level segmentation performance on small and far objects.
The whole RangeSeg pipeline meets the real time requirement
on NVIDIA® JETSON AGX Xavier with 19 frames per second
in average.

Index Terms—LiDAR point clouds, semantic segmentation,
instance segmentation, deep learning

I. INTRODUCTION

The semantic scene understanding from 3D LiDAR point
clouds is one of the fundamental blocks to provide robust
and real time 3D object detectors for the autonomous driving.
LiDAR sensors provide range measurements by sampling a
specific location with spanning vertical and horizontal angular
resolutions, which is different from the 3D point clouds
sampled densely and uniformly on all sides used in indoor
scenes. In addition, LiDAR sensors are robust under almost all
light conditions or the foggy weather. As a result, 3D LiDAR
point clouds attract the significant research attention recently.

The major difficulty in processing LiDAR data is that the
sensors provide non-Euclidean data in the form of point clouds
with about 100k points around 360°, which poses a great
challenge for object detection and segmentation tasks and thus
needs the high computational cost. For the 3D object detection
and the 3D semantic segmentation, the segmentation task gives
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Fig. 1: Range distributions of the detected cars (denoted by
black) for different ID of lasers in LiDAR. The simulation
setting is based on Velodyne HDL-64E S3.

the dense predictions of the scene understanding. The previous
work such as SqueezeSeg [1] proposed a light weight convo-
lutional neural network (CNN) backbone with the conditional
random field (CRF) [2] to get the real time performance, but it
still leaves room for accuracy improvements. Higher accuracy
demands higher computational cost, which hurts real time
performance.

To achieve high accuracy within a real time constraint,
this paper proposes a instance-level segmentation, denoted as
RangeSeg. RangeSeg exploits the uneven range distribution
of 3D LiDAR point clouds as shown in Fig. 1 for the
autonomous driving. It has far and small objects at the top
of the range image, and large and near objects at the bottom
of the range image. This algorithm achieves high accuracy
for these far and small objects by adopting a heavy decoder
only on the top of the image, and meets the real time demand
by adopting a light decoder on the whole image with a
shared backbone encoder. The semantic segmentation results
are further clustered as instances by the density-based spatial
clustering and applications with noise (DBSCAN) [3] method
based on a resolution weighted distance. The result shows
that the proposed method can improve the detection on far
and small objects with the real time execution performance
on NVIDIA® JETSON AGX Xavier.

The rest of the paper is organized as follows. Section II first
introduces the related works. Section III presents our approach.
Section IV shows the experimental results and comparisons
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with other methods. Finally, we conclude this paper in Section
V.

II. RELATED WORKS

A. Data representation of 3D LiDAR point clouds

3D LiDAR point clouds have an unstructured data format.
To tackle such unstructured data for 3D outdoor scene under-
standings, one approach is to transform point clouds into a
structured format to utilize standard convolutional operations.
The other approach is to define a new operation directly on
unstructured data. Current data transformations are mainly
divided into two types: 3D voxel grids or 2D projections.
The 3D voxel grid method transforms the data into a regular
space of 3D grid such that the following 3D convolution
operations can be applied to extract the high order of feature
representations. However, the 3D voxel grids are sparse since
the point clouds are inherently sparse, which wastes lots of
computations on unnecessary grids. The 2D projections such
as the birds’ eye view (BEV) and the range image encoding
are much more compact. BEV is sparse while preserves the
size of objects. The range image encoding is dense but distorts
objects. The novel graph-based neural networks can directly
apply on point clouds, but the recent approaches only apply on
the 3D indoor scene understanding, in which the point clouds
are uniform sampled on surface with about 1k points.

B. 3D Object Detection of Point Clouds

VoxelNet [4] encodes point clouds into hand-crafted 3D
voxel grids by a voxel feature encoding layer to extract high
order of features. They use 3D CNN layers to aggregate the
voxel-wise features with expanded receptive fields. However,
the 3D CNN has high computational cost even for such sparse
representation. Its real time performance is limited to four
frames per second (fps). PIXOR [5] uses a 2D birds’ eye view
representation to build a real time pipeline, but fails to deliver a
good performance on small objects. PointRCNN [6] is the first
two-stage 3D detector that only uses 3D LiDAR point clouds,
which uses PointNet++ [7] on the unstructured data to get the
preliminary bounding boxes and applies a simple multi-layer
neural network to get a final prediction. This approach gets
a good performance on small objects such as pedestrians and
cyclists, but the two-stage pipeline makes it unsuitable for real
time applications.

C. 3D Semantic Segmentation of Point Clouds

SqueezeSeg [1], PointSeg [8] and SqueezeSegV2 [9] all use
a light weight SqueezeNet [10] as their backbone with range
images as input for the semantic segmentation task. They use
different post-processing methods to improve the accuracy.
SqueezeSeg and SqueezeSegV2 use a recurrent CRF module
[2] to reduce the blurry boundaries. SqueezeSegV2 additional
tackles the inherent problems of missing points in range
images with a context aggregation module. PointSeg uses a
squeeze re-weighting layer [11] and an enlargement layer [2]
to achieve a better performance. RIU-Net [12] directly uses U-
Net [13] on range images with focal loss [14]. These works get
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Fig. 2: The proposed pipeline of RangeSeg.

real time performance due to a light weight backbone but has a
low accuracy. Moreover, none has discussed the instance-level
segmentation.

D. Graph Neural Networks of Point Clouds

Pointnet [15] proposed to use an end-to-end pipeline to learn
point-wise features directly from point clouds. The follow-up
work improves the performance by extracting local features
[7]. Furthermore, DGCNN [16] and PointCNN [17] define a
new convolution operation on point clouds. They succeed in
the 3D indoor scene understanding (∼1k points). However, the
outdoor scene contains about 100k points, which will make
the above network training demand high requirements of the
memory and the computation.

E. 3D Instance Segmentation of Point Clouds

A novel paper [18] proposed a pipeline with a feature
learning network and a stacked hourglass network for the
instance segmentation in the outdoor LiDAR point clouds,
which could help localize the small and far-away objects.
However, the high complexity of the model makes it hard
to run in real time, where the elapsed time in TESLA V100
GPU was 300 ms.

III. RANGESEG FRAMEWORK

In this paper, we propose a real time pipeline, Range-
Seg, that gets accurate instance-level segmentation results by
exploiting 2D range image representations of LiDAR point
clouds. Our range-aware framework attains a fast and accurate
semantic segmentation by a complex heavy decoder to predict
far and small objects and a light decoder to reduce complexity
of general predictions. Next, we use DBSCAN with the
proposed weighted distance function to get instance-level seg-
mentation results. An overview of the whole pipeline is shown
in Fig. 2. In the following subsections, we will introduce
our input representation, range-aware network architecture and
how to use DBSCAN as a post-processing to get instance-level
segmentation results.
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A. Input Representation

3D point clouds are unstructured data while the standard
neural networks perform discrete convolution operations on
grids. Thus, several methods have been proposed to encode
point clouds into a suitable format. In which, the 3D voxel
grids are one possible solution. However, 3D convolution
operations are computational intensive, and the sparse voxel
grids will lead to lots of unnecessary computations. The 2D
birds’ eye view is another solution, but leads to information
loss. Instead, we use range images to represent the point
clouds. The range image is a 2D dense image-like data format
without the information loss, and does not need hand-crafted
parameters during the format conversion.

The point clouds are converted to range images as following.
First, project the points onto a spherical coordinate system
with the grid-based representation as

θ = arctan

(
z√

x2 + y2

)
, θ̂ =

⌊
θ

∆θ

⌋

φ = arctan
(y
x

)
, φ̂ =

⌊
φ

∆φ

⌋ (1)

where θ and φ are an azimuth angle and an elevation angle
respectively. ∆θ and ∆φ are resolutions for the discretization
and (θ̂, φ̂) denotes the position of 2D spherical grids. Applying
(1) on each point, we can get a 3D H ×W × K tensor. In
this paper, we use the KITTI dataset [19], [20] collected by
Velodyne HDL-64E S3, which has 64 laser beams, (H = 64).
Also, the horizontal angular resolution is 0.1728° and the an-
notations are only available in the 90° front view, (W = 512).
K is the number of features, which is 3 in this paper, (K = 3),
including intensity, range measurements and occupancy. The
occupancy channel indicates whether the grids contain points.
The visualization of a range image representation is shown in
Fig. 2.

B. Range Distribution on Range Images

In order to get 360° view of scenes, the LiDAR sensors
are mostly placed on the top of vehicles. As a consequence,
the vertical view is asymmetric, where only few laser beams
are emitted to the upper part of a scene. The lower position
lasers can only sample the objects in a much shorter range.
Fig. 1 shows the laser ID that can detect ”car” at different
ranges. As shown in the figure, only the top part of lasers can
detect objects in the whole range, especially if they are far
away. Besides, the far objects only occupy few pixels on range
images due to the lower density of points associated to objects
at larger distances. Based on the observation, we propose
the range-aware framework that uses different decoders for
different parts of the range image to get higher accuracy and
speedup as well.

C. Network Architecture

RangeSeg as shown in Fig. 3 is a fully-convolutional
network with one backbone encoder, two decoders, a fusion
layer and a simple post-processing for final instance-level

segmentation prediction. The outputs of network are the same
size as inputs to get higher accuracy segmentation results.

For the encoder backbone, this paper uses two different
backbones for testing. The first one is the modified version of
ResNet-18 [21]. The original ResNet-18 performs two down-
sampling steps at the beginning of the network, which are
removed in this paper to enable computations on original
resolution feature maps for better accuracy, as shown in Fig. 4
(a). The other one is based on LaserNet [22] that performs
3D object detection on range images. In which, the residual
blocks are also used to get better performances with deeper
layers and fewer channels. Although the LaserNet backbone
is much deeper, its parameters of kernels are fewer due to the
fewer channels as shown in Fig. 4 (b).

For the target KITTI dataset, the input representation is 64×
512 × 3. Thus, we only perform the stride and downsample
operations on the vertical dimension to minimize information
loss.

The range-aware decoders use the same feature maps from
the backbone network for the heavy and light decoders to
exploit the different range distribution of range images. The
heavy decoder only predicts the results for top of images,
where the small and far objects locates and needs the deeper
network aggregation for accurate predictions. The heavy de-
coder uses the ‘deep’ skip connections inspired by DLA [23],
where the high level feature maps will be upsampled and ag-
gregated with lower level ones repeatedly. In this paper, instead
of using the tree-structured DLA, a much dense concatenation
is used as shown in Fig. 5 (b) since this decoder only processes
the top rows of the range maps. The light decoder predicts
the results of whole images with low computational cost. The
light decoder uses the ‘shallow’ skip connections like U-Net
[13] that only concatenates the feature maps once as shown in
Fig. 5 (a). It has low computational cost while preserves the
information of different range features.

The predictions from the light and heavy decoders are fused
together for final results. However, these two predictions have
different spatial sizes, which prohibits a direct fusion. For
a smooth fusion, the whole output of the heavy decoder is
concatenated with the top same size output from the light
decoder. Then the concatenated result changes its channel
numbers by 1x1 convolutions to match the channel numbers
of the bottom part from the light decoder, as shown in Fig. 3.
Finally, these two parts are concatenated along the height
dimension for the final results. In order to get the predictions
on the same resolution, a transpose convolution layer is applied
after the fusion layer. In our experiments, we apply the heavy
decoder on the top 16 rows of range images based on the
observations of the KITTI dataset.

D. Training Strategy

RangeSeg uses the common multi-class cross entropy loss
and Lovász-softmax loss [24] to train the network. Cross-
entropy loss is used for the pixel-wise classification loss on
the classification output p with the target y. If k denotes the
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Fig. 3: The architecture of the proposed range-aware network.

3x3 Conv, 64

3x3 Conv, 64

MaxPool, /2

3x3 ResBlock,  64

3x3 ResBlock,  64

3x3 ResBlock, /2,  128
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(a) ResNet18

3x3 Conv, 64

3x3 Conv, 64

MaxPool, /2
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(b) LaserNet

Fig. 4: The architecture of the modified ResNet18 and Laser-
Net, where # denotes the number of blocks.

channels of the input images, cross-entropy loss is defined as

Lossxent(p,y) =
1

HWK

H∑
i=0

W∑
j=0

K∑
k=0

−yi,j,k log pi,j,k (2)

However, cross-entropy loss is not directly related to intersec-
tion over union (IoU). Therefore, Lovász-softmax loss, which
is a Lovász extension of the Jaccard index, is applied to
regularize the network. If c denotes the class, Lovász-softmax
loss is defined as

mi,j(p,y, c) =

{
1 − pi,j(c), if c = yi,j

pi,j(c), otherwise
(3)

LLovász(p,y) =
1

C

C∑
c=0

∆Jc
(m (p,y, c)) (4)

where ∆Jc is the surrogate function of Jaccard loss (∆Jc ).
Lovász-softmax loss is IoU-aware and helps solve the data
imbalance. Therefore, the loss function, L(p,y), is defined as

L(p,y) = Lxent(p,y) + λLovászLLovász(p,y) (5)

with the Lovász weighted term λlovász . Therefore, the loss of
the prediction part from the fusion layer as in Fig. 3 is defined
as

Lpred = L(ppred,ypred) (6)

The range-aware decoder loss combines the results from heavy
and light decoders directly as a regularization term instead of
computing loss on results of the fusion layer alone, which is
defined as

Lrange = L(plight,ylight) + L(pheavy,yheavy) (7)

The total network loss is defined as

Ltotal = Lpred + λrangeLrange (8)

with a range-aware weighted term λrange. In our experiments,
we set both λlovász and λrange as 1.

We use the super convergence strategy [25] as our learning
rate scheduler, which has higher and dynamic learning rate for
fast convergence.

E. Resolution Weighted Distance Function for Instance Seg-
mentation

To the best of authors’ knowledge, none works have used
3D information to segment instances. Unlike objects in the
2D RGB images, the 3D objects will not be overlapped in the
3D space domain, which will make it much easier to segment
different objects. Therefore, this paper uses the density-based
spatial clustering applications with noise (DBSCAN) [3] for
instance clustering, which does not require a pre-defined
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Architecture
IoU(%)

FPSCar Pedestrian Cyclist Overall Top 16 Rows Lower 48 Rows
Mean Mean Mean

UNet 75.9 66.7 47.4 63.3 62.9 63.6 249.8

ResNet18-UNet 74.8 65.3 46.0 62.0 62.4 61.3 122.9
ResNet34-UNet 76.0 67.2 53.5 65.6 65.2 65.6 76.6
Ours(ResNet18) 76.7 68.5 52.5 65.9 67.3 64.1 89.2

LaserNet-DLA 77.3 69.1 51.7 66.0 67.6 64.0 77.0
Ours(LaserNet) 77.8 70.2 56.2 67.9 69.4 66.0 109.1

TABLE I: Result comparison on the KITTI 3D object detection benchmark. ResNet-UNet uses ResNet as the encoder backbone
with the up-sample layers as UNet. LaserNet-DLA use LaserNet as the encoder backbone with the fully DLA-like feature
aggregation.

Output Input

DeConv, x2, C1

3x3 Conv, C2/2

3x3 Conv, C2/2

Concat

Higher Level

Feature Map

C1

Lower Level

Feature Map

C2

(a) The light decoder

DeConv, x2, C1

3x3 ResBlock, C1

3x3 ResBlock, C1

Concat

Higher Level

Feature Map

C1

Lower Level

Feature Map

C2

Input

Output

(b) The heavy decoder

Fig. 5: The architecture of the heavy and light decoders. The
blue block is the feature extractor and the orange block is the
up-sample module. The black arrow denotes the normal path
of the feature extractor. The blue one denotes the input of the
higher level feature maps. The green one denotes the input of
the lower level feature maps. The details of up-sample module
are shown in the left part.

number of clustering. The clusters are defined by their density.
In this paper, DBSCAN takes the points labeled as objects after
semantic segmentation as input. Then, the clustering process
is applied once for all the objects to save computations for
background points and multiple iterations. For the DBSCAN
distance function, instead of directly using vanilla distance

function, we propose a weighted distance function to deal with
the resolution differences of the LiDAR data. The resolution
of the vertical dimension is twice fewer than the horizontal
one, which leads to sparser vertical values compared with
the horizontal ones. Therefore, a resolution weighted distance
function is defined as

Dis. =

√
2 (x2 − x1)

2
+ 2 (y2 − y1)

2
+

(z2 − z1)
2

2
(9)

This distance function scales up the coordinates X and Y as
well instead of scaling down the coordinate Z alone since
scaling down the coordinate z alone cannot help segmentation
if the distance is dominated by the horizontal one.

IV. EXPERIMENTAL RESULTS

We evaluate our model on the KITTI dataset and empir-
ically showcase the strengths and weaknesses of the pro-
posed approach. First, we compare the vanilla segmentation
frameworks with our range-aware framework using different
backbones on the KITTI 3D object detection benchmark [19].
We show that our RangeSeg outperforms on accuracy and
inference speed. Second, the comparison of different distance
functions on DBSCAN shows that the proposed distance func-
tion helps improve the accuracy. Third, we compare RangeSeg
with related works on the KITTI raw data, where the accuracy
gets lots of improvement with the same inference speed.
Fourth, we implement RangeSeg on NVIIDA® JETSON AGX
Xavier, which gets real time performance even on such small
embedded system. Finally, the experiment results on synthetic
foggy KITTI data [26] show that our approach is still robust
in the foggy weather. The evaluation metric used in this paper
is mean class IoU (mIoU).

A. KITTI 3D Object Detection Benchmark

a) Implementation Details: We encode the front 90° into
a 64×512×3 tensor with 3 features: intensity, range and occu-
pancy. The value range of intensity is already within [0,1], and
occupancy is either 0 or 1. Therefore, we normalize the range
features to be within [0, 1]. In addition, the random horizontal
flip with probability 0.5 is applied as the augmentation. For
ground truth, we treat the points in the bounding boxes as the
objects while the remains are background due to the limitations
of the KITTI annotations.
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Fig. 6: The visualization results of instance segmentation for different scenes. For each scene, the images from top to bottom
are raw images, ground truth, prediction by RangeSeg, prediction by RIU-Net. Though RIU-Net has good good real time
performance and good accuracy for simple scenes, its false negative results become obvious for small or far objects when
compared to the proposed approach.

b) Range-Aware Framework: Table I summarizes the
comparisons between the vanilla segmentation frameworks
and range-aware framework. For ResNet based backbone, the
range-aware ResNet18 leads the ResNet18-UNet by 3.9%. The
improvements are more significant on small objects such as
pedestrians and cyclists by 3.2% and 6.5%, respectively. The
range-aware ResNet18 even outperforms ResNet34-UNet by
0.3%. For LaserNet based backbone, the range-aware LaserNet
leads LaserNet-DLA by 1.9%. Moreover, the results on top
16 rows of range images show that RangeSeg helps improve
detection of the far and small objects since the far objects only
lie in the top of images.

c) Inference Speed: Table I shows the inference speed on
the Nvidia TITAN Xp. The range-aware ResNet18 improves
3.9% than ResNet18-UNet with only 27% fps loss, while
improves 0.3% than ResNet34-UNet with extra 7% speedup.
Range-aware LaserNet improves 1.9% of mIoU than LaserNet-
DLA with extra 42% speedup since the heavy decoder helps
improvements on mIoU with computation overhead, but the
low complexity light decoder helps overcome the problems.

d) Ablation Study: Table II shows the ablation study on
several design parameters. For loss function, the combination
of cross-entropy loss (xent) and Lovász-softmax loss gets the
best results because the Lovász-softmax loss is unstable alone
even with its direct optimization on mIoU. In addition, both

Loss Norm. Aug. Range mIoU(%)

xent - - - 45.8
focal - - - 20.6

lovász - - - 39.6
focal+lovász - - - 56.7
xent+lovász - - - 59.1

xent+lovász + - - 59.8
xent+lovász + + - 63.2

xent+lovász + + no lossrange 62.0
xent+lovász + + lossrange 65.9

TABLE II: Ablation study on the loss function, data pre-
processing and range-aware loss.

the data normalization and augmentation help improve the
accuracy by 3.4%. Further regularized with the range-aware
loss helps optimize the networks to higher accuracy by 3.9%.

e) Impact of λrange and λlovász : This subsection shows
the ablation study of λrange and λlovász . For λrange, we use
the range-aware LaserNet with the same training strategy to
see how λrange improves the accuracy. We train the model
with different values of λrange with as λlovász set to 1.0 . We
can find that the accuracy of the large objects is not affected
by the range loss as shown in Table III. However, the range
loss can definitely improve the accuracy of the small objects
compared with baseline. The accuracy of the cyclist can be
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λrange
IoU(%)

Car Ped. Cyclist Mean

0.00 (baseline) 74.7 64.2 47.2 62.0
0.01 78.2 70.0 45.7 64.6
0.05 78.1 69.3 50.2 65.9
0.10 77.5 70.3 55.6 67.8
0.50 77.5 69.8 55.0 67.4
1.00 77.8 70.7 52.3 66.9

TABLE III: Result comparison of different values for λrange.

λlovász
IoU(%)

Car Ped. Cyclist Mean

0.00 (baseline) 80.1 62.4 50.8 64.5
0.01 79.8 70.7 59.0 69.8
0.05 79.6 70.9 57.8 69.4
0.10 79.0 71.0 58.1 69.4
0.50 78.5 71.1 55.2 68.3
1.00 77.6 70.8 52.6 67.0

TABLE IV: Result comparison of different values for λlovász .

even improved by 8% by setting λrange to 0.1 when compared
with no range loss. Similarly, Table IV shows the tuning result
of λlovász along with λrange set to 1.0. The accuracy of the
cyclist has been improved by 8.2% by setting λlovász to 0.01
when compared with baseline in Table IV.

B. Instance-Level Segmentation

a) Implementation Details: For DBSCAN parameters,
we choose minPts value as twice the minimum number of
points. Also, we choose ε value as the half of the average
object size. After analyzing the data, we can see that the
minimum number of points is about 3.5 in Fig. 1. Thus,we
choose 7 for minPts and 0.7 for ε. We have tested different
distance functions: the original Euclidean distance function,
(A), coordinate Z only scaling, (B), and the proposed function
as (9), (C).

b) Evaluation results: Table V shows the instance-level
segmentation evaluation results. The Z-only scaling distance
function (B) is insufficient to segment instance objects, whose
performance is almost the same as the original function (A). In
contrast, our proposed weighted distance function (C) gets 2%
of mIoU improvement. This post-processing step consumes
only 16.48ms with standard deviation 24.13ms on i9-7900X.
The visualization results of RangeSeg is shown in Fig. 6.
The proposed method can accurately predict the small and
far objects when compared with the previous RIU-Net.

C. Result Comparison on the KITTI Raw Data

Table VI shows the result comparison between RangeSeg
and other related works on the KITTI raw data. We follow
[1] to split the KITTI raw data [20]. We choose the λlovász
as 0.05 and λrange as 0.5 which is the best setting in the
KITTI raw data. RangeSeg outperforms other state-of-the-
art methods. For more detailed comparisons, RangeSeg gets
significant improvements on small objects. Also, RangeSeg
gets 18.6% improvements of mIoU compared to PointSeg with
almost the same inference speed.

Distance IoU(%)
Car Ped. Cyclist Mean

Semantic 77.8 70.2 53.5 67.2

(A) 75.1 53.7 50.5 59.8
(B) 75.2 54.0 49.2 59.5

Ours (C) 74.6 58.1 52.7 61.8

TABLE V: Result comparison of instance segmentation.

Architecture IoU(%) FPSCar Ped. Cyc. Mean

SqueezeSeg [1] 64.6 21.8 25.1 37.2 122.2
PointSeg [8] 67.4 19.2 32.7 39.8 106.7

SqueezeSegV2 [9] 73.2 27.8 33.6 44.9 79.7
RIU-Net [12] 62.5 22.5 36.8 40.6 249.8

Ours(LaserNet) 75.6 49.5 50.1 58.4 109.1
Ours(ResNet18) 75.5 44.1 49.5 56.3 89.2

TABLE VI: Result comparison with the related work.

D. Real Time Implementation on Nvidia AGX Xavier

The range-aware LaserNet is implemented on NVIDIA®

JETSON AGX Xavier for embedded system applications.
In our experiment, we use TensorRT FP16 to optimize our
framework. The processing time of data encoding, models and
post-processing is summarized in Table VII. It shows that the
fps is about 19Hz with TensorRT FP16 optimization, which
is much higher than the 10Hz capture frequency of LiDAR
sensors in the KITTI dataset.

E. Synthetic Foggy KITTI Dataset

a) Foggy Dataset Details: An autonomous driving appli-
cation should be robust in every environment. In this experi-
ment, we use our range-aware LaserNet on the synthetic foggy
KITTI dataset [26] with different visibilities. The visibility
is defined as the maximum range that the objects can be
visually seen by human. However, the range of objects can
be detected by LiDAR is half of visibility since the point
clouds are detected by reflection pulses. The experiments use
visibility at 70m and 40m, which is much more extreme than
the worst visibility at 150m in SFSU [27]. The foggy weather
will result in false alarm measurements for range within 2
meters mostly, and low intensity reflections for all points.
Fig 7 shows the birds’ eye view of the LiDAR point clouds in
different weathers. The figure shows that there is a blind zone
due to car roof mounted LiDAR. The points with wrong range
measurements lead to an inner circle as in Fig 7b. Therefore, a
simple defog method is applied that removes the points shorter
than the 2 meters range.

b) Evaluation Results: Table VIII shows the evaluation
results. When directly testing the model on the foggy data, the
accuracy is significantly degraded to 32.0% of mIoU while the
simple defogging (A) only get 8.1% improvements. The reason
is that the distribution of the intensity channel in the foggy
weather is different from that of the clear weather. Therefore,
we train a new model that only contains 2 channels without
intensity (denoted as 2 channels). After defogging on the 2
channels model (B), the accuracy is 52.9%. Combining (A)
and (B) gets a robust accuracy at 54.1% of mIoU.
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Process Time Avg.(ms) Time Std.(ms)

Encoding 4.75 0.97
Model 13.75 0.26

DBSCAN 38.22 50.92

TABLE VII: Process time of each operation on NVIDIA®

JETSON AGX Xavier.

Model Aug. Test IoU(%)
Data Car Ped. Cyc. Mean

3 channels - clear 77.2 70.2 56.2 67.9
3 channels - 70m 52.7 62.3 11.2 32.0
+defog(A) - 70m 60.3 37.9 22.2 40.1

2 channels - clear 76.4 65.3 45.5 62.4
+defog(B) - 70m 52.6 62.7 43.2 52.9

(A)+(B) - 70m 58.2 59.7 44.5 54.1

2 channels 70m clear 72.2 66.4 47.6 62.1
70m 67.7 66.7 47.5 60.6

3 channels 70m
clear 73.2 69.3 49.2 63.9
70m 68.9 68.6 49.3 62.3
40m 62.7 64.2 44.8 57.2

3 channels 40m
clear 72.3 68.8 47.2 62.8
40m 66.8 68.0 47.4 60.7
70m 68.3 67.2 44.0 59.8

TABLE VIII: Results of the range-aware LaserNet tested on
a synthetic foggy data.

Next, we take foggy data as data augmentation. The 3
channels model gets higher mIoU with augmentation. The
mIoU is more than 60% when augmented or tested at 70m
or 40m, respectively. Also, the model trained on visibility at
70m gets 57.2% of mIoU on visibility at 40m while the model
trained on visibility at 40m gets 59.8% of mIoU on visibility
at 70m. This indicates the LiDAR sensors are robust even in
different weather conditions.

V. CONCLUSION

By exploiting the LiDAR data distribution in the au-
tonomous driving application, this paper proposes a range
aware instance segmentation network that can achieve high
accuracy with a heavy decoder and high speed with a light
decoder. The heavy decoder is applied to the top of the range
image where the far and small objects lie in for accurate detec-
tion. The light decoder is applied to the whole range image for
low complexity computation. The proposed weighted distance
metric helps segment instances with a simple post-processing.
Compared with previous works, our range-aware framework is
simple, efficient, fast and has great applications on autonomous
driving in different weathers. While we have only conducted
the experiments on two backbones, further experiments on
state-of-the-art models are a potential area for improvements.
Applying this range aware framework to other LiDAR tasks
is another interesting future research.
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