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Abstract—Digital Twin, as an emerging technology related to
Cyber-Physical Systems (CPS) and Internet of Things (IoT), has
attracted increasing attentions during the past decade. Concep-
tually, a Digital Twin is a digital replica of a physical entity in the
real world, and this technology is leveraged in this study to design
a cooperative driving system at non-signalized intersections,
allowing connected vehicles to cooperate with each other to
cross intersections without any full stops. Within the proposed
Digital Twin framework, we developed an enhanced first-in-first-
out (FIFO) slot reservation algorithm to schedule the sequence
of crossing vehicles, a consensus motion control algorithm to
calculate vehicles’ referenced longitudinal motion, and a model-
based motion estimation algorithm to tackle communication delay
and packet loss. Additionally, an augmented reality (AR) human-
machine-interface (HMI) is designed to provide the guidance to
drivers to cooperate with other connected vehicles. Agent-based
modeling and simulation of the proposed system is conducted in
Unity game engine based on a real-world map in San Francisco,
and the human-in-the-loop (HITL) simulation results prove the
benefits of the proposed algorithms with 20% reduction in travel
time and 23.7% reduction in energy consumption, respectively,
when compared with traditional signalized intersections.

Index Terms—Connected vehicles, cooperative driving, non-
signalized intersections, Digital Twin, human-machine interface

I. INTRODUCTION

A. Background

BY design, an intersection is a planned location where
vehicles traveling from different directions may come

into conflict, and its functional area extends upstream and
downstream from the physical area of the crossing streets.
A report from U.S. Department of Transportation indicates
that, approximately 2.4 million intersection-related crashes
occurred in 2007, representing 40% of all reported crashes
and 21.5% of traffic fatalities [1]. This shows that intersections
represent a disproportionate share of the traffic safety issue.
Among all intersection-related crashes, “inadequate surveil-
lance” and “false assumption of other’s action” are the top
two driver attributed critical reasons, which are much lower
ranked in non-intersection-related crashes [2].

Traffic signals have been playing a crucial role in achieving
safer performance at intersections. Researchers and practition-
ers have shown that the appropriate installation and operation
of traffic signals can reduce the severity of crashes [3]. How-
ever, the addition of unnecessary or inappropriately-designed
signals has adverse effects on traffic safety and mobility. In
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addition, the dual objectives of safety and mobility conflict
in many cases. The design and operation of traffic signals at
intersections require choosing elements that may lead to trade-
offs in safety and mobility.

The emergence of connected vehicle technology during the
past decades brings other possibilities to our transportation
systems. Specifically, the level of connectivity within our
vehicles has greatly increased, allowing these “equipped”
vehicles to behave in a cooperative manner not only among
themselves through vehicle-to-vehicle (V2V) communication,
but also with other transportation entities through vehicle-to-
infrastructure (V2I) communication, vehicle-to-network/cloud
(V2N/V2C) communication, vehicle-to-pedestrian (V2P) com-
munication, etc. (namely V2X communications).

The advancements of V2X communications makes the
Digital Twin technology more feasible for connected vehicles.
Although there is no universal definition of the Digital Twin,
its basic concept is essentially the same across multiple studies
[4], [5]: A Digital Twin is a digital replica of a physical entity
in the real world. With V2X communications, the Digital Twin
technology enables real-time monitoring and synchronization
of multiple real-world vehicles via their digital replicas. It
has gained increasing momentum very recently in various
connected vehicle studies [6]–[10], and we also adopt this
technology to develop a cooperative driving system at non-
signalized intersections in this study.

B. Literature Review

Cooperative driving at non-signalized intersections has been
a popular topic in the research field of intelligent transportation
systems along with the development of V2X communication.
Since intersections are one of the most common traffic conflict
situations, much work has been conducted to increase traffic
safety and improve traffic flow by applying V2V communi-
cation and/or V2I communication. Most of the related work
have been reviewed by Rios-Torres and Malikopoulos [11] and
Wang et al. [12], where some representative ones are covered
in this subsection.

Pioneering work of cooperative driving at non-signalized
intersections was conducted by Dresner et al., who proposed
a multi-agent Autonomous Intersection Management (AIM)
[13]. Their simulation study shows that their reservation-based
approach outperforms current intersection designs (with traffic
lights or stop signs). Fajardo et al. further developed a first-
come-first-served (FCFS) reservation system for connected ve-
hicles based on aforementioned study, where the microscopic
traffic simulation shows the proposed system significantly
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reduces delay compared to a traditional traffic signal [14].
The reservation scheme have been also investigated by de La
Fortelle [15] and Zhang et al. [16].

The “virtual platoon” concept was proposed by Neuendorf
et al. with a decentralized motion controller designed for
connected vehicles to cross the intersection [17]. Medina et
al. further developed an automated intersection system with
a similar approach, consisting of 1) a supervisory level with
target vehicle assignment, and 2) an execution level with
motion control design [18]. Some additional studies that adopt
the similar virtual platoon methodology include the multi-
agent motion management protocol developed by Jin et al.
[19], and the distributed conflict-free cooperation proposed by
Xu et al. [20].

Optimization-based approaches have also been widely
adopted by many theoretical work in this research field.
Related work can be basically categorized into several types,
with the aims to optimize travel time [21]–[23], minimize
energy consumption [24], or a combination of both [25]–
[27]. However, depending on how optimization problems are
formulated, sometimes they could only be solved numerically
with high computational load, which limits their real-time
implementations [11].

In terms of real-world experimental implementations of
the cooperative driving system at non-signalized intersections,
Quinlan et al. designed a mixed reality platform of afore-
mentioned AIM, where the vehicle can interact with multiple
virtual vehicles in a simulation at a real intersection in real
time [28]. Additionally, a few experimental implementations
were conducted by European research organizations, such as
the Cybercars and Cybercars-2 projects in France [15], [29].

C. Contributions of this Study

Most existing theoretical and experimental research re-
garding the topic of cooperative driving at non-signalized
(alternatively as “unsignalized” or “signal-free”) intersections
put their focuses on designing either the motion planning
algorithms (to schedule the sequences of vehicles), or the
motion control algorithm (to generate referenced motions of
vehicles). Since they mostly assumed a pure connected and
automated vehicle (CAV) environment (which will not be
realistic in the near future), very few of them discussed the
human-machine interface (HMI) design for drivers, namely
how to provide the guidance to the human driver of a human-
driven connected vehicle to cooperatively drive through non-
signalized intersections with other CAVs.

Additionally, a strong assumption has been made in most
related studies that, V2X communication performs perfectly
in their proposed cooperative driving systems. However, in
any wireless communication networks, due to the uncertain
reliability of wireless communication links, communication
time delays [30] and packet losses [31] are unavoidable in the
information sharing process among connected vehicles. Along
with such time-delayed and partially dropped measurements
of other connected vehicles’ motions, a motion estimation
algorithm needs to be designed for the ego vehicle to get a
more precise knowledge of others.

Based on the statements above, this study makes the fol-
lowing contributions to this field of research:

• A Digital Twin system architecture is built for connected
vehicles, where software modules (motion module and
communication module) and their algorithms are devel-
oped in the digital world, and hardware modules are also
specified in the physical world of connected vehicles.

• The HMI is designed with augmented reality (AR), where
vehicle Digital Twins are visualized to the vehicle driver
as reserved slots, assisting the driver to conduct cooper-
ative driving behavior with other connected vehicles at
non-signalized intersections.

• Unlike many existing studies that only cover one part
of the cooperative driving system, we develop an en-
hanced first-in-first-out (FIFO) slot reservation algorithm
to schedule the vehicle sequences, and a consensus
motion control algorithm to generate the vehicle speed
trajectories. More importantly, we also propose a model-
based motion estimation algorithm to tackle the com-
munication issues, including communication delay and
packet loss.

• Instead of running simplified numerical simulations, we
conduct agent-based modeling and simulation of the pro-
posed system with Unity game engine. A real-world cor-
ridor with four consecutive non-signalized intersections is
built in the simulation environment, where human-in-the-
loop (HITL) simulation is conducted with the guidance
provided by AR HMI.

D. Organization of this Study

The remainder of this study is organized as follows: Section
II introduces the problem statement and system architecture
of this study. Section III proposes the cooperative driving
methodology, which includes the enhanced FIFO slot reser-
vation algorithm, the consensus motion control algorithm,
and the model-based motion estimation algorithm. Section IV
introduces the Digital Twin-assisted AR HMI to guide the
driver for cooperative driving at non-signalized intersections.
Section V conducts the agent-based modeling and simulation
of the proposed system with Unity game engine, where HITL
simulation results are evaluated and sensitivity analysis is also
conducted. Finally, the study is concluded with some future
directions in section VI.

II. PROBLEM STATEMENT AND SYSTEM ARCHITECTURE

In this study, the Digital Twin technology is adopted to
develop a cooperative driving system that allows connected
vehicles to cooperate with each other at non-signalized inter-
sections. Such connected vehicles can either be driven by hu-
man drivers with AR HMI, or driven by automated controllers
as CAVs. As we adopt the Digital Twin architecture [9], all
connected vehicles in the physical world of this cooperative
driving system are connected through the digital world of the
system. The proposed cooperative driving system does not
specify or require a specific wireless communication technol-
ogy, which means vehicles can potentially be connected with
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Fig. 1. The Digital twin architecture of the proposed cooperative driving system at non-signalized intersections, where the human-driven connected vehicles
are equipped with the Digital Twin-assisted HMI

others at non-signalized intersections through Dedicated Short-
Range Communications [32], Cellular Vehicle-to-Everything
(C-V2X) [33], or a combination of both.

As can be seen from the Digital Twin architecture Fig.
1, there are two major modules in the digital world of the
system: the motion module and the communication module.
The motion module streamlines the cooperative driving ma-
neuvers with four components: map matching, path planning,
enhanced FIFO slot reservation, and consensus motion control.
The communication module, on the other hand, analyzes the
communication performance among multiple crossing vehicles
at an intersection, and then applies the model-based motion
estimation algorithm to tackle the communication issues. The
estimated motions of target vehicles are also considered as
inputs to the motion control component of the motion module.
All components in the digital world of the system are discussed
in the next section with greater details.

The components in the physical world of this system are
all equipped on the connected vehicles, including localization,
CAN BUS (for motion measurement), perception (optional
as additional information sources to V2X communication),
gateway (for data transmission), and the Digital Twin-assisted
AR HMI (for visualized driver assistance). According to the
focus of this study, the former four components will not be

introduced with more details, where their functionalities in a
cooperative driving system can be referred to our previous
study [12]. The Digital Twin-assisted AR HMI is proposed
later in Section IV.

III. COOPERATIVE DRIVING METHODOLOGY
CONSIDERING COMMUNICATION ISSUES

In this section, the cooperative driving methodology at
non-signalized intersections is proposed, which runs in the
digital world of the system and allows connected vehicles
to cooperate with each other even under the presences of
communication delay and packet loss. As can be seen from
Fig. 1, the first two components in the motion module are map
matching and path planning.

With regards to map matching in this system, its main func-
tionalities are position synchronization and geo-fencing. A pre-
built map is stored in the digital world, with information such
as intersection geometry, road type, road length and width, link
ID and lane ID, waypoints, direction, road speed limit, and
etc. At each time step, connected vehicles’ coordinates (i.e.,
longitude, latitude, and altitude) received from the GNSS are
synchronized to the pre-built map, and then the geo-fencing
function can be applied to verify whether the other components
of the motion module will be applied based on vehicles’
positions and conditions.
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Regarding to path planning, it generates the lane-level path
for vehicles to pass the intersection based on their origins
and destinations. As can be seen in the intersection geometry
illustrated in Fig. 1 above the “Path Planning” sign, there are
16 crossing conflicts, 8 merging conflicts, and 8 diverging
conflicts at a four-leg single-lane intersection. Therefore, once
the paths of different crossing vehicles are generated, the
ego vehicle can identify its target vehicle if there exists a
conflict point along their paths. Furthermore, based on the
intersection geometry, each vehicle’s distances to different
conflict points (with respect to different target vehicles) can
also be calculated accordingly. These information will be fed
into the downstream of the motion module, as well as the
communication module.

For the sake of simplicity, the technical details of the map
matching component and the path planning component are not
covered in this study. However, they both are implemented in
our agent based modeling and simulation, which is covered in
section V.

A. Enhanced FIFO Slot Reservation

The slot reservation component in the digital world of the
system takes as inputs the current status of approaching vehi-
cles and their planned paths through the intersection. Then, it
schedules the sequences of vehicles to cross the intersection
by querying the slot pool. Once the slots are reserved, the ego
vehicle can connect and cooperate with its target vehicles that
have conflicting paths with itself based on the motion control
component and motion estimation component.

Different from the traditional first-in-first-out (FIFO) or
first-come-first-served (FCFS) policy [13], which simply as-
signs a vehicle with a slot when it enters a pre-defined geo-
fence, we develop an enhanced FIFO slot reservation algorithm
that accounts for the estimated time of arrival (ETA) as well.
ETA quantifies a specific period of time ti that vehicle i
is estimated to travel from its current location to a specific
conflict point at the intersection. If we assume vehicles will
cross the intersection at the intersection speed limit vlim, and
vehicle i’s preferred acceleration ai is known, we can divide
vehicle i’s approaching scenario into two categories:

• If vehicle i already reaches the speed limit vlim while
approaching: Vehicle i will cruise to the conflict point at
the intersection, and the temporary ETA ttempi is given
by

ttempi =
di
vi

(1)

where di is the longitudinal distance from vehicle i’s
current position to the conflict point at the intersection,
and vi is the current longitudinal speed of vehicle i.

• If vehicle i’s current longitudinal speed is slower than the
speed limit vlim while approaching: Two subcategories
will be further defined: a) Vehicle i cannot accelerate to
vlim given its preferred acceleration ai and its current
distance to the conflict point at the intersection di; b)
Vehicle i can accelerate to vlim. Specifically, the esti-
mated speed profiles of these two subcategories can be

visualized as Fig. 2, and the temporary ETA ttempi can
be given accordingly as below

ttempi =
−vi +

√
v2i + 2aidi
ai

, if profile 1

ttempi =
2amaxdi + (vlim − vi)2

2amaxvlim
, if profile 2

(2)

(a) Acceleration profile 1 (b) Acceleration profile 2

Fig. 2. Two different acceleration profiles: a) vehicle i cannot accelerate to
the speed limit vlim, and b) vehicle i can accelerate to the speed limit vlim

Algorithm 1: Enhanced FIFO slot reservation algorithm
for crossing vehicles at a non-signalized intersection

Data: Ego vehicle i’s path pi from the current link to the
next link, i’s distances to conflict points di, i’s
longitudinal position ri, i’s longitudinal speed vi, i’s
longitudinal acceleration ai, car-following time
headway th, reservation-trigger time constant tθ ,
reservation-trigger geo-fence distance constant dθ

Result: Ego vehicle i’s reserved slot si, i’s target vehicles j
1 Ego vehicle i enters the current link;
2 while i is not assigned si at the current intersection do
3 Calculate temporary ETA ttempi based on Eq. (1) and (2);
4 if There is/will be an immediate preceding vehicle k on

the same lane of vehicle i then
5 Update ti based on Eq. (3);
6 else
7 ti = ttempi ;
8 end
9 Calculate di based on pi, ri and intersection geometry;

10 if ti <= tθ || di <= dθ then
11 Query conflicting vehicle j whose path

pj ∩ pi ! = ∅ ;
12 Query the slot pool regarding the maximum slot

number of all conflicting vehicles smaxj ;
13 Assign slot number to the ego vehicle

si = smaxj + 1;
14 Connect with conflicting vehicle j as i’s target

vehicle, and execute motion control and motion
estimation algorithms;

15 end
16 end
17 while i leaves the current link do
18 Reset the slot number si = 0;
19 Disconnect all target vehicles;
20 end

Based on either of aforementioned two categories, an ad-
ditional step in our slot reservation algorithm is that, the
temporary ETA value of vehicle i is further updated by the
ETA value of its immediate preceding vehicle k. This means
the traffic condition is also considered in the calculation of
ETA, since a following vehicle’s ETA cannot be earlier than its
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preceding vehicle’s ETA, where a constant car-following time
headway theadway must be guaranteed as the delay in between.
Therefore, the ETA of vehicle i is finally given as

ti = max
(
ttempi , tk + theadway

)
(3)

The enhanced FIFO slot reservation algorithm can then
be proposed as Algorithm 1. As can be seen from line 10
of Algorithm 1, the FIFO condition that triggers vehicle i’s
slot reservation request is both time-based and location-based:
Either its ETA is lower than a predefined time constant tθ,
or it enters a pre-defined geo-fence of this intersection. This
FIFO enhancement prevents some corner cases such as vehicle
i enters the geo-fence earlier, but has a much lower speed (i.e.,
expected to arrive at the intersection later) than its conflicting
vehicle j coming from another leg of the intersection. In that
case, the conflicting vehicle j needs to significantly decelerate
to follow vehicle i to cross the intersection, which dampens
overall traffic throughput and energy efficiency.

B. Consensus Motion Control

The motion control component in the digital world of the
system takes as input the assigned slots and the target vehicles
of the ego vehicle, and then computes its referenced motion.
First, given the longitudinal dynamics of a vehicle i as the
following equations:

ḋi(t) = vi(t)

v̇i(t) = ai(t)

ai(t) =
1

mi
[Fneti(t)−GiTbri(t)− cvivi(t)2

− cfivi(t)− fdragi(t)]

(4)

where di(t), vi(t), and ai(t) denote the longitudinal distance
to the conflict point, longitudinal speed, and longitudinal
acceleration of vehicle i at time t, respectively; mi denotes
the mass of vehicle i; Fneti(t) denotes the net engine force of
vehicle i at time t, which mainly depends on the vehicle speed
and the throttle angle; Gi denotes the effective gear ratio from
the engine to the wheel of vehicle i; Tbri(t) denotes the brake
torque of vehicle i at time t; cvi denotes the coefficient of
aerodynamic drag of vehicle i; cfi denotes the coefficient of
friction force of vehicle i; fdragi(t) denotes the mechanical
drag of vehicle i at time t.

We can then derive the following equations from the prin-
ciple of vehicle dynamics when the braking maneuver is
deactivated, i.e., vehicle i is accelerating by the net engine
force:

Fneti(t) = d̈i(t)mi + cviḋi(t)
2 + cpiḋi(t) + fdragi(t) (5)

and we have the following equation when the braking maneu-
ver is activated, i.e., vehicle i decelerates by the brake torque:

Tbri(t) =
ḋi(t)mi + cviḋi(t)

2 + cpiḋi(t) + fdragi(t)

Gi
(6)

Note that the net engine force is a function of the vehicle
speed and the throttle angle, which is typically based on the

steady-state characteristics of engine and transmission sys-
tems. The associated mathematical derivations can be referred
to [34].

Based on the existing literature [35], the motion control of a
connected vehicle is based on a hierarchical strategy, where the
high-level controller generates a referenced motion (the first
two equations in equation (4)), while the low-level controller
commands the vehicle actuators to track the referenced motion
(the last equation in equation (4)). In this study, the motion
control component in the digital world only focuses on the
high-level control part, aiming to generate the referenced
motion of the ego vehicle based on the inputs from its target
vehicles.

Fig. 3. The illustration of vehicle parameters in a V2X communication
environment with an ego vehicle i and its target vehicle j

Given a car-following scenario shown as Fig. 3, where the
ego vehicle i gets information from its target vehicle j through
V2X (e.g., V2V, V2I, or V2N) communication, the motion
consensus can be generalized as a longitudinal control problem
as follows:

di(t)→ dj(t)− dheadway
vi(t)→ vj(t)
ai(t)→ aj(t)

(7)

where dheadway is the desired distance headway between two
vehicles. In order to achieve the motion consensus in equation
(7), a double-integrator consensus-based longitudinal motion
control algorithm [36] can be given as:

ḋi(t) = vi(t)

v̇i(t) = −αijkij · [(di(t)− dj(t) + lj + vi(t) · tgij(t))
+ γi · (vi(t)− vj(t))]

(8)

where αij is the adjacency matrix of the directed graph (i.e.,
V2X communication topology between vehicle i and j); The
term [lj + vi(t) · tgij(t)] is another form of the term dheadway
in equation (7), where tgij(t) is the time-variant desired time
gap between two vehicles, which can be adjusted by many
factors like road grade, vehicle mass, braking ability, and
etc.; The control gains kij and γi in this algorithm are tuned
by a feedforward control algorithm to guarantee the safety,
efficiency, and comfort of this slot-following process, which
can be summarized as:

{kij , γi} = f
(
vi(0), vj(0), di(0)− dj(0)

)
(9)

A lookup-table can be constructed to dynamically calculate
these two control gains based on the initial speeds of two
vehicles, as well as their initial headway. The details of this
feedforward control algorithm can be referred to our previous
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work [36]. With this longitudinal motion control algorithm
equation (8), vehicle i in Fig. 3 is able to converge its
longitudinal speed vi(t) to vehicle j’s longitudinal speed vj(t),
and converge its longitudinal distance di(t) to vehicle j’s
longitudinal distance dj(t) (with a difference in between).

However, the aforementioned algorithm does not consider
the communication delay issue. It is without a doubt that,
whatever information vehicle i receives is not exactly the
current information of vehicle j, due to the unavoidable
transmission time τij(t). Therefore, equation (8) can be further
written into the following form while considering the time-
variant communication delay:

ḋi(t) = vi(t)

v̇i(t) = −αijkij · [(di(t)− dj(t− τij(t)) + lj + vi(t) · tgij(t)))
+ γi · (vi(t)− vj(t− τij(t)))]

(10)

where the referenced acceleration v̇i(t) of vehicle i can be
considered as the referenced motion of the vehicle. However,
in order to tackle the communication issues of time delay
and packet loss, a model-based motion estimation algorithm
is proposed to adjust the referenced motion, and then pass to
the physical world of the system for execution.

C. Model-Based Motion Estimation for Communication Delay
and Packet Loss

Time delay and packet loss are two major issues that impair
the performance of V2X communication in connected vehicle
applications. Different from most of the existing literature
that tackle these two issues separately [30], [31], we propose
a model-based motion estimation algorithm in this study to
address them at the same time, allowing connected vehicles
to conduct cooperative driving maneuver at non-signalized
intersections with moderate communication delay and packet
loss.

As stated below, Algorithm 2 is the main function of the
proposed motion estimation algorithm, where Algorithm 2.1,
Algorithm 2.2, and Algorithm 2.3 are called in this main
function.

Algorithm 2.1: This algorithm estimates vehicle j’s future
longitudinal speed trajectory when it does not have any target
vehicle to follow. In this case, vehicle j will converge to
its target speed vj(t → ∞), which is a known and preset
value. Specifically, this algorithm is proposed based upon the
Intelligent Driver Model (IDM) [37], where the estimated
speed of vehicle j at time step (t+ k) is given as follows:

ṽj(t+k) = ṽj(t+k−1)+amax
j ·

[
1−

(
ṽj(t+ k − 1)

vj(t→∞)

)σ]
·δt

(11)
where k ⊆ [1, N ], and ṽj(t) = vj(t); amaxj is a preset constant
denoting vehicle j’s maximum changing rate of longitudinal
speed; σ is the free acceleration exponent defined by IDM,
which characterizes how the acceleration of the vehicle de-
creases with speed, namely, σ = 1 corresponds to a linear de-
crease, while σ →∞ leads to a constant acceleration; δt is the
duration of a prediction time step. Based on this algorithm, the

Algorithm 2: Main function of the motion estimation
algorithm, with three algorithms being called inside

Result: Vehicle j’s estimated longitudinal motion Ṽj(t) and
D̃j(t) in the future horizon [t+ 1, t+N ]

1 Vehicle i associates with its target vehicle j;
2 while communication between vehicle i and j is currently on

do
3 if n = j == 0, namely vehicle j is the leader of a

communication topology and does not have any target
vehicle then

4 Vehicle j estimate its future longitudinal speed
trajectory Ṽj(t) based on Algorithm 2.1;

5 Vehicle j cumulatively estimates its future
longitudinal distance trajectory D̃j(t) based on
Algorithm 2.2;

6 else
7 for n == 1→ j do
8 if Vehicle n is connected to its target vehicle

n− 1, namely no packet loss is in presence at
this time step t then

9 Vehicle n estimates its future longitudinal
speed trajectory Ṽn(t) based on Ṽn−1(t)
and D̃n−1(t) with Algorithm 2.3;

10 else
11 Vehicle n’s future longitudinal speed

trajectory estimate stays the same since no
information update Ṽn(t) = Ṽn(t− 1);

12 end
13 Vehicle n cumulatively estimates its future

longitudinal distance trajectory D̃n(t) based
on Ṽn(t) with Algorithm 2.2;

14 end
15 Vehicle j’s estimated motion Ṽj(t) and D̃j(t) can

be derived when n == j;
16 end
17 Vehicle j sends Ṽj(t) and D̃j(t) to its following

vehicle i;
18 end
19 while communication between vehicle i and j is currently off

due to packet loss do
20 if Packet loss period exceeds the safety threshold then
21 Trigger the fail-safe plan and transfer the upcoming

non-signalized intersection into an all-way stop;
22 else
23 At time step (t+ k) ⊆ [t+ 1, t+N ], vehicle i

extras ṽj(t+ k) from Ṽj(t), and d̃j(t+ k) from
D̃j(t), and uses them as the inputs of the motion
control algorithm;

24 end
25 end
26 Vehicle i disassociates with its target vehicle j;

future longitudinal speed trajectory of vehicle j can be given
as Ṽj(t) =

(
ṽj(t+1), ṽj(t+2), ..., ṽj(t+k), ..., ṽj(t+N)

)
.

Algorithm 2.2: This algorithm estimates vehicle n’s future
longitudinal distance trajectory D̃n(t) based on its estimated
longitudinal speed trajectory Ṽn(t), which is given as:

d̃n(t+ k) = d̃n(t+ k − 1) + ṽn(t+ k − 1) · δt (12)

where k ⊆ [1, N ], and d̃n(t) = dn(t). Based on this algorithm,
the future longitudinal position trajectory of vehicle n can be
given as D̃n(t) =

(
d̃n(t+1), d̃n(t+2), ..., d̃n(t+k), ..., d̃n(t+

N)
)

.
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Algorithm 2.3: This algorithm estimates vehicle n’s future
longitudinal speed trajectory when it has a target vehicle
(n − 1) to follow, meanwhile also considers the presence of
communication delay τn(n−1)(t+ k):

• When τn(n−1)(t + k) < δt, namely the communication
delay is less than the duration of a prediction time step,
the target vehicle (n−1)’s longitudinal speed is assumed
unchanged during this delayed period:

ṽn−1(t+ k) = ṽn−1

(
t+ k − τn(n−1)(t+ k)

)
(13)

• When τn(n−1)(t + k) >= δt, namely the communica-
tion delay is equal to or longer than the duration of a
prediction time step, then

ṽn−1(t+ k) = ṽn−1

(
t+ k − τn(n−1)(t+ k)

)
+
τn(n−1)(t+ k)

δt
· ˙̃vn−1

(
t+ k − τn(n−1)(t+ k)

) (14)

In either case, target vehicle (n− 1)’s longitudinal distance
can be adjusted by:

d̃n−1(t+ k) = d̃n−1(t+ k− 1)+ ṽn−1(t+ k) · τn(n−1)(t+ k)
(15)

Then, vehicle (n − 1)’s future longitudinal motion at each
time step is used to estimate vehicle n’s future longitudinal
speed as:

ṽn(t+ k) = ṽn(t+ k − 1)− αn(n−1)kn(n−1)

·

[(
d̃n(t+ k)− d̃n−1

(
t+ k

)
+ ln−1 + ṽn(t+ k) · tgn(n−1)(t+ k)

))
+ γn ·

(
ṽn(t+ k)− ṽn−1(t+ k

))]
(16)

Parameters of this algorithm are set according to the con-
sensus motion control algorithm equation (8). Based on this
algorithm, the future longitudinal speed trajectory of vehicle
n can be given as Ṽn(t) =

(
ṽn(t + 1), ṽn(t + 2), ..., ṽn(t +

k), ..., ṽn(t+N)
)

.

IV. DIGITAL TWIN-ASSISTED AR HMI
In this section, we propose an AR HMI to visualize the

Digital Twins of target vehicles based on the slot reservation,
motion control, and motion estimation algorithms proposed in
the previous section. This Digital Twin-assisted AR HMI can
provide the guidance to the driver of a human-driven connected
vehicle to cooperatively drive through non-signalized inter-
sections with other connected vehicles (both human-driven
ones and CAVs). It should be noted that, this AR HMI is
an optional module of the proposed Digital Twin-assisted
cooperative driving system, which shows one possible HMI
design among others for human-driven connected vehicles.
The challenges brought by this AR HMI design, such as user
compliance, fall outside of the scope of this study.

The design of the Digital Twin-assisted AR HMI from
the driver’s field-of-view is illustrated in Fig. 4. The ego

vehicle is approaching a non-signalized intersection, where
the two red slots are the Digital Twins of two target vehicles
approaching from other legs of this intersection, reserved by
the aforementioned enhanced FIFO slot reservation algorithm.
The driver of this ego vehicle is guided to drive the vehicle
to keep in the green available slots, so it can avoid collision
while crossing the intersection.

Specifically, the slot adjustment algorithm is proposed as
Algorithm 3, where the positions and sizes in the world
referenced frame of the red reserved slots are calculated based
on the outputs from the slot reservation, motion control, and
motion estimation algorithms. Specifically, the length lsj of the
reserved slot is adjusted by the time gap tgij , which considers
the following clearance as a redundancy design of the system.
The value of “2” in front of the vi∗tgij term can be tuned based
on V2X communication performances or motion estimation
confidence of the system, where a higher value means more
redundancy.

Fig. 4. Driver’s field-of-view of the AR HMI, where those two red slots stand
for the Digital Twins of two target vehicles approaching from other legs of
this intersection

Fig. 5. Coordinate transformation of the slot from the world referenced frame
to AR HMI referenced frame
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Algorithm 3: Slot adjustment in the world referenced frame
Data: Ego vehicle i’s longitudinal speed vi, i’s lateral

position xi, i’s target vehicle j, i’s longitudinal
distance to the conflict point di, j’s estimated
longitudinal distance to the conflict point d̃j ,
car-following time gap tgij , j’s length lj , j’s width wj

Result: j’s reserved slot’s longitudinal distance to the
conflict point dsj , lateral position xsj , length lsj ,
width wsj

1 for Ego vehicle i’s target vehicle j do
2 while i does not cross the conflict point Oij do
3 Calculate j’s reserved slot’s longitudinal distance to

the conflict point dsj = d̃j ;
4 Set j’s reserved slot’s lateral position xsj = xi;
5 Calculate j’s reserved slot’s width wsj = wj ;
6 Calculate j’s reserved slot’s length

lsj = lj + 2 ∗ vi ∗ tgij ;
7 end
8 while i crosses the conflict point Oij do
9 Reset the slot information dsj , xsj , wsj , lsj ;

10 end
11 end

Once the positions and sizes of the slots are calculated in
the world referenced frame, the next step is to transform those
coordinates into a format that can be visualized on the AR
HMI of the vehicle. The AR HMI is expected to be displayed
on an image plane, such as on the windshield (i.e., in the
format of head-up display), or on an external screen (e.g.,
vehicle infotainment system or mobile device). A front-view
camera is needed to identify the road geometry, so the slots
can be correctly overlaid on the road surface from the driver’s
field-of-view. Therefore, we develop a coordinate transforma-
tion algorithm based on the pinhole camera projection model,
which is illustrated in Fig. 5.

The extrinsic parameter matrix in this algorithm identifies
the transformation between the world referenced frame and
the AR HMI referenced frame. It consists of a 3× 3 rotation
matrix R and a 3 × 1 translation vector t. Given a 3D point
of the slot in the world referenced frame pw(xw, yw, zw), its
corresponding point pa in the AR referenced frame can be
calculated as

pa =
[
R t

]
3×4


xw
yw
zw
1


4×1

(17)

Then, the intrinsic parameter matrix is applied, which
contains the parameters of the AR HMI’s projection device,
such as the focal length and lens distortion. Let (u0, v0) be
the coordinates of the principle point of the image plane (i.e.,
image center), dx and dy be the physical size of pixels, and
f be the focal length, the projected point pi(u, v) on the AR
HMI image plane can be calculated as

pi =

zadx/f 0 −zadxu0/f
0 zady/f −zadyv0/f
0 0 za


3×3

(
pa
)
3×1

(18)

Therefore, given the position and size of any slot in the
world referenced frame, we are able to transform the slot to

the AR HMI image plane, so it can be properly shown to the
driver of the vehicle.

V. AGENT-BASED MODELING AND SIMULATION USING
UNITY GAME ENGINE

A. Modeling and Simulation Environment in Unity Game
Engine

Game engines enable the design of video games for software
developers, which typically consist of a rendering engine for
2-D or 3-D graphics, a physics engine for collision detection
and response, and a scene graph for the management of
multiple elements (e.g., models, sound, scripting, threading,
etc.). Along with the rapid development of game engines in
recent years, their functions have been broadened to a wider
scope: data visualization, training, medical, and military use.
Game engines also become popular options in the development
of advanced vehicular technology [38], which have been used
to study driver behaviors [39], prototype connected vehicle
systems [40], [41], and simulate autonomous driving [42],
[43].

In this study, we adopt Unity game engine to conduct model-
ing and evaluation of the proposed cooperative driving system,
given its advantages of graphics design and visualization, as
well as its easiness to connect with external driving simulators
[44]. As shown in Fig. 6, the map built by LGSVL is adopted
in our study, which is based on the South of Market (SoMa)
district in San Francisco [43]. Shown as yellow lines on the
road surface, centimeter-level routes along the 2nd Street,
Harrison Street, Folsom Street, Howard Street, and Mission
Street are further modeled in this study, so map matching
and path planning features can be enabled in our simulation.
The slot reservation, motion control, and motion estimation
algorithms are modeled for each agent (i.e., connected vehicle)
in this environment through Unity’s C# API. The AR HMI is
also modeled on the ego vehicle through Unity’s visualization
feature, which is briefly shown as Fig. 4.

In this simulation, we set the time-variant communication
delay based on the results of our previous field test regarding
LTE-based V2X communication [9]. Note that this communi-
cation technology normally has higher communication delays
than DSRC, so we adopt it in the simulation as a stress test
of our motion estimation algorithm. Specifically, we set the
communication delay as a normal distribution with a mean
value of 40 ms and a standard deviation of 0.0259.

Additionally, we model the packet loss in the simulation
with a hybrid model, which includes both random packet
loss over the whole simulation period, and certain packet
loss during some specific time periods. The random packet
loss is to simulate the relatively periodic communication
issues, while the certain packet loss is to simulate the non-
line-of-sight (NLOS) scenario when the communication is
obstructed by physical objects in the simulation environment
(e.g., tall buildings or bridges). The packet loss is modelled
and simulated in a more frequent manner than it is supposed
to be in the real world, so we can conduct stress test of our
motion estimation algorithm, similar to the communication
delay setup.
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Fig. 6. The map with a four-intersection (each with four legs) corridor built
in Unity game engine based on the SoMa district in San Francisco

Fig. 7. Driving simulator platform to conduct human-in-the-loop (HITL)
simulation

To evaluate the proposed AR HMI, we conduct HITL sim-
ulation with drivers controlling the human-driven connected
vehicles through the external driving simulator. As shown in
Fig. 7, the driving simulator platform is built with a Windows
desktop (processor Intel Core i7-9750 @2.60 GHz, 32.0
GB memory, NVIDIA Quadro RTX 5000 Max-Q graphics
card), a Logitech G29 Driving Force racing wheel, and Unity
2019.2.11f1.

The invited participants in this simulation are advised to
drive the ego vehicle in the Unity environment. The ego
vehicle starts from the Bryant Street with zero speed, and then
crosses four consecutive non-signalized intersections along the
2nd Street. All other vehicles in the simulation are non-player
characters (NPCs), which run the proposed motion control
and estimation algorithms as CAVs. As a comparison, all
participants also drive the ego vehicle in the baseline scenario,
where all four intersections have traditional fixed-timing traffic
signals. NPC vehicles are randomly generated from all legs
at each intersection, and they are not enabled with any CAV
feature in the baseline scenario.

Fig. 8. A snapshot of the Unity simulation, where connected vehicles
cooperate with each other at a non-signalized intersection

B. Human-in-the-Loop Simulation Results

A snapshot of the Unity simulation is shown as Fig. 8, where
connected vehicles automatically cooperate with each other to
cross this non-signalized intersection without any collision or
full stop. As an example, we pick out one of the trips where
the participant drives the ego vehicle (human-driven connected
vehicle with AR HMI) to cross the first intersection on that
corridor.

The distance-time plot in Fig. 9(a) shows the ego vehicle
is able to keep a relatively safe distance regarding its target
vehicles, including its immediate preceding NPC vehicle 3.
Meanwhile, the ego vehicle also acts as a target vehicle for
NPC vehicle 4, 5 and 6, where NPC vehicle 4 considers
the ego vehicle as its immediate preceding vehicle. Since the
proposed motion control and estimation algorithms are applied
to these three NPC vehicles, they consecutively decelerated
during 5-12 s to maintain a relatively safe distance with their
immediate preceding vehicles.

The process of all seven vehicles reserving slots is shown
in Fig. 9(b), which corresponds to the vehicle trajectories in
Fig. 9(a). Once a vehicle is assigned a slot by our proposed
enhanced FIFO slot reservation Algorithm 1, they immediately
identify their target vehicles and apply the motion control and
estimation algorithms. Once they cross the current intersec-
tion, the reserved slots are reset to zero, waiting for new
assignments while approaching the next intersection. It can
be noticed from this plot that, the ego vehicle (i.e., dark-
red dashed line) is assigned a new slot of 3 after it enters
the next link, even before NPC vehicle 5 and 6 cross the
first intersection. This means the proposed slot reservation
process is independent at each intersection, which continues
running when different vehicles approaching and leaving the
intersection.

A sample comparison between the proposed non-signalized
intersection scenario and the fixed-timing signalized intersec-
tion scenario is shown in Fig. 10. This speed-distance plot
is created when the same participant drives the ego vehicle
through all four intersections. In the baseline scenario, the
ego vehicle runs into red lights at the first and the fourth in-
tersections, while directly passes the second and the third inter-
sections during green lights. In the non-signalized intersection
scenario, however, the ego vehicle maintains a relatively stable
speed while travelling through all four intersections, without
any full stop at any intersection. Although a higher maximum
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(a)

(b)

Fig. 9. A sample result of connected vehicles crossing the first intersection
in the simulation, where the ego vehicle is driven by a human driver on the
driving simulator platform

Fig. 10. A sample comparison when the ego vehicle travels through the whole
corridor 1) with fixed-timing signalized intersections by traditional driving and
2) with non-signalized intersections by the Digital Twin-assisted cooperative
driving

speed is reached in the baseline scenario, the excessive speed
changes significantly increase the travel time and the energy
consumption.

Based on all trips conducted by the participants in HITL
simulation, an average of 20% reduction in travel time, and
an average of 23.7% reduction in fuel consumption (calculated
by the open-source MOVESTAR model [45] and assuming all
gasoline vehicles) can be achieved by applying the proposed
Digital-Twin assisted cooperative driving system, compared
to the baseline signalized scenario without the Digital Twin
assistance.

(a) (b)

Fig. 11. Simulation results: (a) Maximum error of the ego vehicle’s position
estimation with different prediction time step values; (b) Minimum update
frequency with different prediction time step values

C. Sensitivity Analysis on Motion Estimation Algorithm

Besides HITL simulation, we also conduct sensitivity analy-
sis on our model-based motion estimation algorithm, where we
specifically investigate the impacts of different prediction time
steps of Algorithm 2. “Maximum position estimation error” is
calculated during each trip as the maximum difference between
the estimated longitudinal position D̃n(t) and the ground truth
Dn(t). “Minimum update frame rate” is calculated during
each trip as the minimum frame per second (FPS) value of
the simulation. All connected vehicles in this analysis are
applied with the time-variant communication delay and the
hybrid packet loss introduced in Subsection V.A.

As shown in the simulation results Fig. 11(a) from multiple
trips, when the prediction happens more frequently, the maxi-
mum position estimation error is decreased. Particularly, when
the prediction time step is 0.01 s (i.e., prediction frequency is
100 Hz), the estimation error is always less than 0.2 m based
on the given simulation settings of communication delay and
packet loss. However, when the prediction time step is 1 s
(i.e., prediction frequency is 1 Hz), the estimation error can
reach 5.8 m during the major packet loss. This is caused by the
difference of information granularity, where a more frequent
prediction also means a more frequent information update,
which could happen immediately after the packet transmission
is resumed from packet loss.

On the other hand, a more frequent and accurate prediction
also leads to a higher computational load. Since this simulation
is conducted in Unity game engine, the computational load is
measured by the minimum update frame rate of the simulation.
As shown in Fig. 11(b), When the prediction time step is 0.01
s, the frame rate drops to a minimum of 6 FPS, indicating
the simulation can be run only six frames per second at
that time instant (with existing simulation hardware settings).
However, when the prediction time step is 1 s, the frame rate
is always higher than 19 FPS. This is caused by the difference
of iterations that the proposed motion estimation Algorithm 2
needs to be called.

However, since this simulation is conducted on a single
computer for multiple vehicles in a centralized fashion, the
concern of computational load can be further relieved if
cloud computing or distributed computing can be adopted in
the future. How to find the trade-off between the prediction
accuracy and computational load becomes a critical point of



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 11

this model-based motion estimation algorithm, which will be
further investigated in our following study.

VI. CONCLUSION AND FUTURE WORK

In this study, the Digital Twin technology has been lever-
aged to design a cooperative driving system at non-signalized
intersections, where connected vehicles cooperate with each
other to cross intersections without any full stops. In the digital
world of the Digital Twin architecture, the enhanced FIFO
slot reservation algorithm has been developed to schedule
vehicles’ sequences of crossing the intersection, the consensus
motion control algorithm has been introduced to generate the
referenced motion of vehicles, and the model-based motion
estimation algorithm has been proposed to tackle V2X com-
munication issues. In the physical world, a Digital Twin-
assisted AR HMI has been designed to provide the guidance
to the driver to cooperate with other connected vehicles.

Agent-based modeling and simulation of the proposed co-
operative driving system have been conducted in Unity game
engine based on a real-world map in San Francisco. HITL
simulation results have proved the benefits of the proposed
algorithms with 20% reduction in travel time and 23.7%
reduction in energy consumption, respectively, when compared
with traditional signalized intersections. Sensitivity analysis
has also been conducted to study the impacts of the proposed
motion estimation algorithm’s prediction time step on predic-
tion accuracy and computational load, respectively.

To take this study one step further, legacy vehicles and
vulnerable road users (e.g., pedestrians and bicycles) need
to be considered in the modeling and visualization process.
Particularly, the term “mixed traffic environment” does not
only refer to an environment mixed with different kinds of
vehicles, but also includes vulnerable road users that have the
highest priority in the environment. How to build cooperative
driving systems that allow connected vehicles to cooperate
with legacy vehicles, bicycles and pedestrians at the same time
remains an challenging question to be solved.

Additionally, data measured by on-board perception sensors
on connected vehicles can also be leveraged in the future
to provide additionally sources of motion estimation, which
could significantly decreases the motion estimation error of
the proposed motion estimation algorithm. And comparisons
among our proposed method with other state-of-the-art meth-
ods related to intersection control, such as “Eco-Approach
and Departure” and dynamic/adaptive signal control with
connected vehicles, would be helpful to further validate the
effectiveness of our study.
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