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Dynamic Object Removal and Spatio-Temporal
RGB-D Inpainting via
Geometry-Aware Adversarial Learning

Borna Besi¢, and Abhinav Valada

Abstract—Dynamic objects have a significant impact on the
robot’s perception of the environment which degrades the perfor-
mance of essential tasks such as localization and mapping. In this
work, we address this problem by synthesizing plausible color,
texture and geometry in regions occluded by dynamic objects.
We propose the novel geometry-aware DynaFill architecture that
follows a coarse-to-fine topology and incorporates our gated
reccurrent feedback mechanism to adaptively fuse information
from previous timesteps. We optimize our architecture using
adversarial training to synthesize fine realistic textures which
enables it to hallucinate color and depth structure in occluded
regions online in a spatially and temporally coherent manner,
without relying on future frame information. Casting our inpaint-
ing problem as an image-to-image translation task, our model
also corrects regions correlated with the presence of dynamic
objects in the scene, such as shadows or reflections. We introduce
a large-scale hyperrealistic dataset with RGB-D images, semantic
segmentation labels, camera poses as well as groundtruth RGB-D
information of occluded regions. Extensive quantitative and
qualitative evaluations show that our approach achieves state-
of-the-art performance, even in challenging weather conditions.
Furthermore, we present results for retrieval-based visual local-
ization with the synthesized images that demonstrate the utility
of our approach.

Index Terms—Dynamic Object Detection, Inpainting, Simul-
taneous Localization and Mapping, Semantics, Deep Learning

I. INTRODUCTION

AVIGATION in urban environments pose a significant

challenge for autonomous robots due to the sheer number
of dynamic objects (e.g. pedestrians, vehicles, cyclists) A
dynamic object, in this context is any movable object that
is currently moving through a scene or has an ability to do
so. Such objects continually occlude the scene which hinders
essential tasks such localization, mapping, and reasoning.
Several solutions have been proposed to tackle this problem
from filtering out regions that contain dynamic objects [1],
[2] to assuming a static scene and classifying dynamic
object regions as outliers [3], [4]. More recently, learning-
based methods [5], [6], [7] have shown promising results
by inpainting dynamic object regions in images, with the
background structure behind them. These methods first detect
regions containing dynamic objects at the pixel-level using
semantic segmentation [5] or motion segmentation [8], followed
by synthesizing the background in those regions using an
encoder-decoder architecture. Moreover, there are numerous
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Fig. 1: Point cloud visualization showing the dynamic object removal and
inpainting using our proposed DynaFill model. The point cloud built from:
input RGB-D frames (left), semantic segmentation output with dynamic object
masks (center), and the inpainted RGB-D output (right).

other applications to this inpainting task such as photo editing,
video restoration, augmented reality and diminished reality,
which makes it a widely studied and fundamental task.

Classical computer vision methods typically fall short in
producing visually appealing results as they often include over-
smoothed content with lack of textures, content that does
not match the semantic context and geometry of an occluded
area. Whereas, learning-based methods leverage experience and
learn semantic priors from large amounts of examples which
yields spatially consistent results. However, these methods
still fail at recovering the geometry and yields severe temporal
artifacts when applied to a sequence of images. Video inpainting
methods aim to address the latter by introducing an additional
constraint of temporal coherency. These methods often leverage
optical flow taking advantage of the fact that inpainting
information comes not only from the neighborhood of the target
region in the current frame but also propagates from the context
defined by both past and future frames. However, they make
several assumptions that are often violated in real-world online
applications such as robotics, for example, restrictions on the
motion of the camera, notion of visibility of the occluded region
in past and future frames, illumination changes, perspective
changes of dynamic objects, among others. Moreover, as both
image and video inpainting methods only aim to complete
missing regions, they often leave behind artifacts induced by dy-
namic objects, such as shadows or reflections, which degrades
the performance of certain tasks or yield unappealing results.

In this paper, we propose the novel geometry-aware DynaFill
architecture that synthesizes parts of a scene occluded by dy-
namic objects with plausible color, texture and geometry (Fig. 1)
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from a stream of RGB-D images, while providing effective
solutions to the aforementioned problems. In fact, our method is
agnostic towards a method of detecting or segmenting objects,
and therefore requires only a mask that indicates the pixels to be
inpainted. Our inpainting architecture follows a coarse-to-fine
topology and consists of three sub-networks: coarse inpainting,
refinement image-to-image translation, and depth completion
streams. We employ a semantic segmentation stream to identify
dynamic object regions as a mask extraction front-end for our
inpainting system. First we inpaint the regions on a coarse
scale using the coarse inpainting subnetwork. Subsequently,
the refinement image-to-image translation stream trained in
an adversarial manner, takes the coarsely inpainted image as
input and adds spatially consistent fine details while removing
any artifacts caused by dynamic objects such as shadows or
reflections. The depth completion stream then regresses depth
values in occluded regions, conditioned on the inpainted RGB
image. We propose a recurrent gated feedback mechanism that
adaptively selects relevant information from the previously
inpainted image and fuses them into the refinement image-
to-image translation network to enforce temporal consistency.
By training our entire inpainting network in an end-to-end
manner and by conditioning the depth completion using the
inpainted image as well as utilizing the previously inpainted
depth map in the recurrent feedback, we allow the image and
depth sub-networks to supervise each other. The inpainted
depth information, therefore, allows us to reason about the
geometry of the scene. By employing the inpainted depth in
the process of forward warping of previous inpainted RGB
frames, we achieve a joint level of supervision which makes
our approach geometry-aware.

To the best of our knowledge, the DynaFill model is the
first spatially and temporally consistent RGB-D inpainting
approach that does not rely on future frame information.

To facilitate this work, we introduce a first-of-a-kind large-
scale hyperrealistic dataset of urban driving scenes that con-
tains paired RGB-D images with groundtruth information of
occluded regions, semantic segmentation labels, and camera
pose information. Our dataset consists of a large number of
dynamic objects and weather conditions that make spatio-
temporal inpainting extremely challenging. We perform exten-
sive quantitative and qualitative comparisons with both image
inpainting as well as video inpainting methods that demonstrate
that DynaFill achieves state-of-the-art performance while being
faster than other video inpainting methods. Additionally, we
present retrieval-based visual localization experiments using
the synthesized images that show a substantial improvement
in localization performance.

In summary, the following are the main contributions:

1) The novel DynaFill architecture that consists of a se-
mantic segmentation sub-network, a coarse inpainting
sub-network, a refinement image-to-image translation sub-
network, and a depth inpainting sub-network. We employ
a gated recurrent feedback mechanism that enforces
temporal consistency by adaptively selecting and fusing
relevant information from previously inpainted images.

2) A mechanism that enables the image and depth inpainting
sub-networks to supervise each other. The joint training

of the video inpainting network that uses the output of
the depth completion network improves the performance
of both RGB inpainting and depth inpainting. It makes
our approach the first spatially and temporally consistent
RGB-D video inpainting method that does not require
future frame information.

3) We introduced a large-scale driving dataset for learning
to inpaint dynamic object regions in RGB-D videos. Our
dataset is the first to contain groundtruth information of
occluded regions in RGB-D driving videos.

4) Extensive quantitative and qualitative evaluations of our
proposed model, complemented with detailed ablation
studies and explainable visualizations, and experiments
that demonstrate the utility of our approach as an out-of-
the-box front end for location and mapping systems.

5) We make the code and trained models publicly available
at http://rl.uni-freiburg.de/research/rgbd-inpainting.

II. RELATED WORK

Exemplar-based inpainting: These methods fill target holes
using texture statistics from adjacent known regions. Thy
typically use various iterative diffusion-based [9], [10] or patch-
based techniques [1 1], [12], [13]. Although these methods yield
visually appealing results, they are not suitable for filling large
holes due to their inability to preserve structure and their large
runtimes make them unsuitable for real-time applications. On
the other hand, fast inpainting methods [14] that trade off
quality for speed produce blurry content with lack of texture
and is geometrically inconsistent.

Learning-based Image Inpainting: In recent years, CNN-
based methods have significantly outperformed earlier works,
both in visual quality and runtime. The introduction of
Generative Adversarial Networks (GANs) [15] has trans-
formed learning-based image inpainting by casting it into
a conditional image generation task. Pathak er al. propose
Context Encoders [7] that employ GAN loss along with pixel-
wise reconstruction loss to generate contents of an arbitrary
image region conditioned on its surroundings. Most of the
initial learning-based methods were limited to inpainting
a single target region of rectangular shape [7], [16], [17].
lizuka et al. [18] and Yu et al. [6] were the first to tackle the
challenge of free-form image inpainting of arbitrary number of
regions. The CM model [ 18] builds upon [7] by incorporating a
global discriminator that considers the entire image to assess if
the inpainting is coherent as a whole and a local discriminator
that only considers a small area centered at the completed
region to ensure local consistency. DeepFill v2 [6] builds
upon partial convolutions [19] and contextual attention [17]
by introducing learnable gated convolutions together with
SN-PatchGAN, which alleviates the need for two different
discriminators and substantially stabilizes the training.

More recently, several methods [20], [21] have been intro-
duced to incorporate more prior knowledge into the inpainting
task. Nazeri et al. propose EdgeConnect [20], a two-stage ad-
versarial model in which the first network hallucinates missing
edges in target regions, while the second network performs
inpainting conditioned on the synthesized edges. Deep Image
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Prior [21] demonstrates that the convolutional structure of a
network is sufficient to capture a significant amount of low-level
image statistics for inpainting. In contrast, Bescos et al. [5] for-
mulate the problem as an image-to-image translation task which
enables them to fill holes coarsely and correct regions in the
scene that are correlated with the presence of dynamic objects.

Learning-based Video Inpainting: A complementary class
of methods address the challenge of inpainting temporal image
sequences, typically by formulating it as a learning-based video
inpainting task. Kim et al. [22] model video inpainting as a
sequential multi-to-single frame inpainting problem to gather
features from neighbor frames and synthesize missing content
based on them. Woo er al. [23] tackle the limitation of small
temporal window sizes in existing approaches and propose
the align-and-attend network to alleviate this problem. Copy-
and-Paste Networks [24] adopts a similar approach in which a
context matching module is used as an attention mechanism to
combine the target frame with past and future reference frames
aligned through a learned affine transformation. As opposed
to directly inpainting temporal frames, Xu et al. [25] first
synthesize missing optical flow which is then used to propagate
neighboring pixels to fill missing regions. Chang et al. [26]
present the learnable gated temporal shift module which is
incorporated in both the generator and discriminator networks
to automatically learn to shift frames temporally to its neighbors.
Building upon [21], Zhang et al. [27] propose an approach to
predict both image frames and optical flow maps for video in-
painting by optimizing the network directly on the input video.

While the aforementioned prior work have made significant
contributions, they still do not address the problem of spatially
and temporally coherent RGB-D inpainting when future frames
are not available. Since this is a critical requirement for real-
world online applications, we propose the novel geometry-
aware DynaFill learning framework for removing dynamic
objects and inpainting both color as well as depth structure. Our
proposed coarse-to-fine network adaptively exploits information
from the current and previously inpainted regions using our
gated recurrent feedback mechanism to achieve temporal
coherence. As opposed to existing work, incorporating the
inpainted image for the depth completion and utilizing the
previously filled depth map for image inpainting, enables our
method to achieve geometrically consistent results from end-to-
end optimization of our inpainting architecture. Moreover, our
model yields spatio-temporally coherent and visually congruous
results by performing both temporal inpainting and image-to-
image translation.

Concurrently to this work, a few other approaches have
been proposed. Zhang et al. [28] introduces a novel two-
step algorithm for image completion. After triangulation-
based linear interpolation of available pixels, similar non-
local patches grouped as a tensors are completed using a
solver under the alternating direction method of multiplier
(ADMM) framework. Another interesting recent approach is
DSNet [29] that distinguishes the corrupted region from the
valid ones throughout the entire network architecture, and
generates plausible content by using two novel deep learning
modules, namely, the validness migratable convolution (VMC)

and regional composite normalization (RCN) modules.

III. TECHNICAL APPROACH

The goal of our approach is to remove dynamic objects
from an online stream of RGB-D images, while synthesizing
plausible color, texture and geometry in the occluded regions.
We aim to inpaint regions of any object that is moving
or has a potential to significantly affect the perception of
the scene by background (e.g. parked cars). For brevity, we
call these objects as dynamic in the rest of this paper. Let
7z =(I;, Dy, M,) be the current observed frame at the timestep
¢ that potentially contains dynamic objects, where I, € R3*H>*W
and D, € RF*W denote an image and the corresponding depth
map respectively, both of height H pixels and width W pixels.
A binary mask M, € {0, 1}V indicates which pixels belong
to dynamic objects such as cars, trucks, pedestrians, and
cyclists. Let x, = (I, D)) be its corresponding frame that
does not contain any dynamic objects. We define our task as
observing an input RGB-D stream of a dynamic environment
and transforming it into the equivalent RGB-D stream of a
static environment. Assuming such a transformation function
f exists, the conditional probability distribution for a single
time step can be written as

Pl |z xiu—1] = pf (2, Xa-1) | 2, X1a-1]-

To reduce the complexity of modelling f and to make
the computation feasible, we follow the approach of
Wang et al. [30] and assume that the Markov property holds.
By making the Markov assumption of L-th order, where the
current output depends only on the last L outputs and the
current observation, we obtain

P[xt | 2t xsz:r—l] :P[f(zh xsz:t—l) ‘ 2t xt—L:t—1]~

This allows us to factorize the conditional probability
distribution for the whole stream as

t
plis | zu xaa) =[Pl xiri1) | 2y Xz
i1

Our approach is to model the underlying function f by
learning a function f (2¢y X—r:4—1) = % such that the learned
conditional probability distribution matches the original con-
ditional probability distribution. We represent f with a feed-
forward deep neural network that operates in a recurrent manner.
More specifically, our DynaFill architecture consists of four sub-
networks: semantic segmentation, coarse inpainting, refinement
image-to-image translation, and depth completion. An overview
of our framework is shown in Fig. 2 and block diagrams in
the form of computational graph nodes during the training and
testing phase are shown in Fig. 3.

A. Semantic Segmentation and Coarse Inpainting

The first two sub-networks in our architecture identify the
pixels that belong to dynamic objects and coarsely inpaint the
occluded regions. For obtaining a binary mask that indicates
regions of objects to inpaint, we employ our AdapNet++ [31]
semantic segmentation network that we separately pre-train
on our hyperrealistic dataset with the same training protocol
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Fig. 2: Schematic representation of our DynaFill architecture. The image I; is first coarsely inpainted based on the spatial context in regions occluded by
dynamic objects M;, which is obtained from the semantic segmentation mask S;. Subsequently, the inpainted image from the previous timestep /’;| is warped
into the current timestep using odometry and the inpainted depth map D',_; in our recurrent gated feedback mechanism. The coarsely inpainted image I/, and
the warped image /’;—1,; are then input to the refinement stream that fuses feature maps through a gating network using the learned mask My. An image
discriminator is employed to train the network in an adversarial manner to yield the final inpainted image I’,. Simultaneously, the depth completion network
fills the regions containing dynamic objects in the depth map D;, conditioned on the inpainted image .

as in the original work. Note that any other method that
provides a binary mask of object regions can be directly used
as a replacement. Removing objects based on their semantic
class is useful in a mapping scenario where we want to
obtain a clean static map of the environment, or in cases
of photo editing where a coherent synthesis of the background
is desired. Furthermore, motion segmentation approaches, such
as our previously proposed SMSnet [8], can be employed for
localization or SLAM where only currently moving objects
should be considered. In this work, we aim to remove all the
occurrences of certain semantic object classes that could be
moving. Therefore, the prediction of the semantic segmentation
network is used as an approximation for identifying dynamic
objects, which can produce false negatives for classes on which
the network was not trained on.

We first pass the image from the current timestep I; through
the semantic segmentation network to obtain a semantic mask
S, €{0,1,....,n. W where n. is the number of semantic
classes. We then extract a binary target region mask M, from the
semantic mask. Subsequently, we concatenate I, ® (1w — M;)
with M, along the channel dimension and feed it into the coarse
inpainting network which has a fully convolutional encoder-
decoder topology. Here, I; ® (14w — M;) ignores regions that
contain dynamic objects by setting the values of those pixels
to zero, ® denotes the Hadamard product and 1, € {1}V
denotes a matrix of ones. The encoder of the coarse inpainting
network is built upon the ResNet-50 [32] architecture with
pre-activation residual units and the decoder consists of three
upsampling stages where in each stage we perform bilinear
upsampling by a factor of two, followed by a 3 x 3 convolution
with stride 1 and pad 1. We progressively halve the number
of channels in each of the convolutions in the decoder and
employ a 1 x 1 convolution with stride 1 in the end to reduce

gle number of channels to 3. The final coarse inpainting result
I, is obtained by combining the masked part of the output of
the coarse inpainting network f, and the unmasked part of its
input /,, as

7;:It®(1H,W_Mt)"_f[lt@(ll-l,w_Ml‘)aMt]@Mh 1

where the values in the input and output image are in the
range of [—1,1]. We optimize the network by minimizing the
51 distance between the predicted pixels in the target region
I, and the corresponding groundtruth pixels I; through loss
function ./ given by

2= =|(T-1)om @)

X

. Lo . . .
where I, is a coarsely inpainted image, I, is the corresponding
groundtruth image without dynamic objects and M, is a mask
indicating target regions, i.e. pixels belonging to dynamic
objects that need to be inpainted.

B. Refinement Image-to-image Translation

We employ the refinement image-to-image translation sub-
network to add fine details to the target region as well as
to correct surrounding areas that may contain shadows or
reflections. Since we remove all dynamic objects from the
image, any present optical flow can only be induced by the
ego-motion of the camera. Therefore, we propose a recurrent
gated feedback mechanism in which we use odometry data
coupled with the inpainted depth map to warp the inpainted
image from the previous timestep into the current frame to
induce temporal context. We define the relative transformation
between the poses of two frames at timesteps #; and #, in
the form of a rotation matrix Ry, € R3*3 and a translation
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Fig. 3: Tllustration of the computational graphs of our DynaFill model during the (a) training phase together with loss functions, and the (b) testing phase.

vector t,,_;, € R®. Using the depth map Dy, a pixel (u,v) of
the inpainted image at timestep #; can be transformed to the
new homogeneous coordinates («',v',w’) at timestep #, as

!

u u ¢
V| =KRy KT v KR 3)
W/ 1 151 (l/l, V)

where K € R**3 is the intrinsic camera matrix and Dy, (u, v)
is the depth. Note that the valid new image coordinates in the
two dimensional Euclidean space is obtained by dividing the
homogeneous coordinates by w’. The result of the warping
operation is an image /;, _;, (approximation of /;,) and a mask
M;, _, indicating the pixels at timestep #, that have been warped
from timestep #; and are not occluded.

In order to refine the coarsely inpainted image, we employ the
same building blocks described in Sec. III-A. The sub-network
consists of two encoders that take the coarsely inpainted image
AI? and the inpainted image from the previous timestep that
has been warped into the current timestep I (—1—¢ as input
(shown in Fig. 2). That is, during the training the previously
inpainted RGB image I’;,_| is warped forward using the
ground truth odometry and the previously inpainted depth
D’',_1. At inference time, we use SVO 2.0 [33] for estimating
the odometry. Since our architecture predicts an inpainted
RGB frame at each time step, we can use this information to
reduce the error induced by dynamic objects in the odometry
estimation. For each time step, we use best estimates of two
consecutive inpainted RGB frames. That is, we estimate the
odometry between steps t — 1 and ¢ by using previous refined
static RGB frame 7;,1 and the current coarsely inpainted RGB
frame 7; This is feasible since the odometry is only required
in the refinement sub-network.

We then employ a gating module that takes the output feature
maps of the two encoders ¥; and ¥;_;_,; concatenated along
the channels as input and learns a mask M. The gating module
consists of five 3 x 3 convolutions with stride 1 and padding 1,
each halving the number of channels. Subsequently, we add a
1 x 1 convolution that yields a single-channel My mask. The
output of the gating module is then used compute the fused
feature maps as

W, =My O +(1-Mg) 0¥ 1. )

Finally the resulting fused feature map is fed into the decoder
which yields the refined inpainted image i;. Note that both
the encoders and the decoder has a topology similar to that
described in Sec. I1I-A. Similar to the coarse inpainting network,
we use the L; pixel-wise reconstruction loss DS,”LII to supervise
this sub-network. However, since the task here is image-to-
image translation, we compute the loss over all the pixels in the
image. To focus on the consistency of image patch features, we
also use the perceptual loss f\f, and style loss ,,Sfé computed as

2 VGG

L= | ¥ - 5)
i
L=Y |6 -6 . 6)

13
where WY and ¥ represent the VGG-16 [34] feature
maps for the groundtruth image without dynamic objects
and the output of the refinement image-to-image translation
network. Similarly, GY9° and G;°° are their corresponding
Gram matrices at layer i € {relu2_2, relu3_3, relu4_3}.

For adversarial training, we use a discriminator that takes
the groundtruth inpainted image I}, the inpainted output image
f; and the corresponding target region mask M;, concatenated
channel-wise. The discriminator consisting of six sequential
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strided convolution layers with kernel size 5 and stride 2, is
used to learn and discriminate feature statistics of Markovian
patches producing a 3D feature map tensor ¥ as output. We
adopt the SN-PatchGAN hinge loss [6] £/, to train our model
under the generative adversarial framework as

Lian = Lo+ Lon 7
where
L8 = Y (i,j,k), ()
GAN CxHle;{
1 .
L= o T RALUD - (1 7.0)
" ©)

+ Y ReLU [1+f/(i,j,k)]}7
ik
Y € ROHW and vy € REHW are outputs of the image
discriminator for both the fake input I and the real input
I. We employ the SN-PatchGAN hlnge loss element-wise
on the output feature map, effectively defining C x H x W
discriminators focusing on different locations and different
semantics. The receptive field of each neuron in the output map
covers the entire input along its spatial dimensions, therefore
separate global and local discriminators are not required.
The overall loss function of the refinement network is
computed as

=M. L ML N LMWL (10)

1

where l{l, k\i., lé and lgAN are the loss weighting factors.

C. Depth Completion

In order to regress the depth values in regions occluded
by dynamic objects, we build upon a sparse-to-dense depth
completion network [35] and adapt it to the depth inpainting
task. The sub-network is a self-supervised deep regression
model that obtains the supervision signal for regressing the
missing depth values through inverse image warping. The
architecture follows an encoder-decoder topology with skip
connections, where the encoder is based on the ResNet-18
model [32] and takes the inpainted image I, concatenated
with the corresponding depth map D, with pixels in regions
containing dynamic object set to zero using the binary target
region mask M, from Sec. III-A. The decoder consists of 3 x 3
transpose convolutions, each of which upsamples the feature
maps by a factor of two while halving the number of channels
and fusing the corresponding encoder feature maps through skip
connections. Finally, a 1 x 1 convolution reduces the number
of feature channels to one and yields the inpainted depth map
at the same resolution as the input.

The task of depth completion is in the core of our geometry-
aware approach, with inpainted depth maps providing the
network with information about the scene geometry. The
geometry awareness of our model comes from the fact that
inpainted RGB images and inpainted depth maps supervise each
other, as explained in Sec. III-B. Consequently, inpainting the
current RGB frame using the color information from previous

frames is possible only if previous frames have been properly
warped, i.e. only if the depth completion is correct. While RGB
supervises depth completion in a form of a network input, the
inpainted depth map supervises the inpainting of subsequent
RGB frame through forward warping.

We train the depth completion network by optimizing the
pixel-wise reconstruction loss XLDI and a smoothness loss

ZLihooth 33
=2 -
b

smooth —

o]

; Y

) 12)

where D] is the groundtruth depth map without dynamic objects
and 5’ is the output of the depth completion network. The
reconstruction loss computes the L; distance between the
prediction D ¢ and the groundtruth D, for pixels in the target
regions. While the smoothness loss penalizes the L;-norm
of the Laplacian of predicted depth map D' ; to encourage
smooth predictions, i.e. to avoid discontinuities and introduce
neighboring constraints.

The overall loss function of the depth completion network
is computed as

)’L 1 + 2’smooth smoothﬂ ( 13)

where PLEI and AL . are the loss weighting factors.

D. Loss-Aware Scheduled Teacher Forcing

Given the fact that our overall architecture functions in a
recurrent manner, we train our model with a variant of teacher
forcing that emerges from the maximum likelihood criterion.
Explicitly scheduling the decay probability of teacher forcing
requires a prior estimate about the speed of convergence of the
optimization process. However, providing a good estimate while
learning very complex tasks is nearly infeasible. Nevertheless,
we can determine a good value of the loss function or a metric
at which the model can be considered to be fully trained for
a given dataset. We use this insight and introduce a simple
extension called loss-aware scheduled teacher forcing. Instead
of defining the decay schedule as a function of the number of
iterations, we decay the teacher forcing probability based on
the current value of the loss function. In our case, we use the
mean of fLII of the last 20 mini-batches to linearly decay the
probability of teacher forcing prr as

1’ . "iﬂ[l,l > dstart

= ”(fl{ 7dcnd I
pre= W—demjv dstart > $1f| > dong (14)

0, lel < dend

where dgre and denq denote loss values at which the decay
starts and ends. Note that here we consider loss functions (and
metrics) that are monotonically decreasing over time.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe the data collection method-
ology in Sec. IV-A and the training procedure that we employ
in Sec. IV-B. We then present quantitative comparisons of our
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Fig. 4: Examples from our dataset showing paired dynamic (D) and static (S) scenes. Each image has a corresponding depth map, semantic segmentation labels
and camera pose information. The first three columns show frames containing dynamic objects while the next three columns show their perfectly aligned static
counterpart. Rows (a) - (c) visualize the diversity of the dataset across different weather conditions.

DynaFill model against state-of-the-art methods in Sec. IV-C,
followed by detailed ablation studies to gain insight on the
improvement in performance due to various architectural com-
ponents in Sec. IV-D. Subsequently, we present visualizations
of the learned gating mask in the recurrent gated feedback
mechanism in Sec. IV-E and qualitative results in Sec. IV-F.
Finally, we present a case study on employing our model as a
preprocessor for retrieval-based visual localization in dynamic
urban environments in Sec. IV-G.

A. Dataset

As there are no publicly available RGB-D datasets with
groundtruth for inpainting dynamic objects in urban scenes,
we generated a hyperrealistic synthetic dataset using the
CARLA [36] simulator. In order to have pixel perfect aligned
frames, we run two instances of the CARLA simulator in
parallel. The first instance with a maximum number of dynamic
actors and the second instance without any dynamic actors.
The instances were run in a synchronous mode where they
wait for a control input before simulating the next frame. To
ensure both the instances are synchronized, we used autopilot
controls provided by the first simulation in both of the instances.
Since the simulations tend to diverge over time, we keep track
of the error between the poses of the two recording vehicles
and automatically restarted the instances if the error threshold
exceeds. We set the threshold empirically to 0.005m (in L;
space) and 0.01°. In order to uniformly cover the entire map,
regardless of the random decisions of the autopilot, we manually
modelled the map as a graph with each intersection being a
node and each street being an edge. This enables us to terminate

the data generation process after all streets (i.e. edges) have
been visited.

Our dataset consists of 6-DoF groundtruth poses and aligned
RGB-D images with and without dynamic objects, as well
as groundtruth semantic segmentation labels. The dataset was
collected in several weather conditions including ClearNoon,
CloudyNoon, WetNoon, WetCloudyNoon, ClearSunset, Cloudy-
Sunset, WetSunset, and WetCloudySunset. Fig. 4 shows exam-
ples from our dataset in the different weather conditions. The
images were acquired at a resolution of 512 x 512 pixels with
a field of view of 90° using a front-facing camera mounted on
the car. The images are formatted as 3 channels with integer
values in range of [0,255] and the depth maps have real number
values normalized to the range of [0, 1] where 1 represents the
maximum measureable distance determined by CARLA which
is 1000m. The semantic segmentation labels are formatted as
single channel images with integer values in range of [0, 12]
which represents 13 semantic classes. The semantic classes
contained in the dataset are building, fence, pole, road line, road,
sidewalk, vegetation, wall, traffic sign, other, pedestrian, vehicle
and an ignore class. Moreover, we provide 6-DoF camera poses
for each of the frames in the dataset which are represented as
6-dimensional vectors containing x,y,z coordinates expressed
in meters and roll, pitch and yaw angles expressed in degrees
ranging from —180° to 180°. The camera poses are defined in
the coordinate system of Unreal Engine which is left-handed
with x being forward, y right and z up. The image data was
collected using a front-facing camera mounted on the vehicle
with a relative translation 7 = [2.0 0.0 1.8]m in the local
vehicle coordinate frame. We obtain the camera intrinsics from
CARLA’s Unreal Engine parameters. The images were acquired
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at 10Hz and we split the data into training and validation
sets. The training set was collected in the Town0Ol map and
consists of 77,742 RGB-D images. While the validation set
was collected in the Town0O2 map and consists of 23,722
RGB-D images. The dataset that we introduce in this work
is the first temporal RGB-D inpainting dataset which consists
of aligned dynamic scenes and their static equivalent. We
make the dataset, code and models publicly available at
http://rl.uni-freiburg.de/research/rgbd-inpainting.

B. Training Protocol

We train our model on RGB-D images of 256 x 256 pixels
resolution with groundtruth odometry and object masks. We
employ a series of data augmentations on the RGB images,
with parameters sampled uniformly within specific ranges. We
modulate the brightness [0.7.1.3], contrast [0.8,1.2], saturation
[0.8,1.2] and hue [—0.15,0.15]. Additionally, we also randomly
horizontally flip the images. We use the groundtruth odometry
in the recurrent gated feedback while training and estimates
from [38] during inference. We use the PyTorch deep learning
library for implementing our DynaFill architecture and we train
the model on NVIDIA TITAN X GPUs.

The overall loss function . that we use to optimize the
DynaFill architecture can be expressed as

&=L 4] L AL A A L AL
A LR+ AL oL

smooth=~smooth

where the loss weighting factors for the refinement image-to-
image translation sub-network are l{l =1.0, l\i, =0.3, QL(I; =
0.3, and Ag ax = 1.0. Analogously, the loss weighting factors for
the depth completion sub-network are 1 =0.01 and A0, =
0.001.

During the training, we use our loss-aware extension of
scheduled teacher forcing. Instead of defining the decay
schedule as a function of the total number of iterations, we
decay the teacher forcing probability based on the value of
the loss function, for which it is much easier to estimate the
final value. We set dgiyr = 0.06 and depng = 0.01. We update the
weights of the network with the ADAM optimizer with an initial
learning rate of a = 10~*, and first and second momentum
decay rates of ; =0.5 and 3, = 0.999 respectively. In order
to ease the optimization, we first pre-train each of the sub-
networks: depth completion with a mini-batch size of 24 on two
GPUgs, coarse inpainting with a mini-batch size of 104 on four
GPUs and refinement image-to-image translation with a mini-
batch size of 48 on four GPUs. We then fine-tune the entire
architecture by initializing the model with the aforementioned
pre-trained weights with a mini-batch size of 36 on four GPUs.
Additionally, we use early stopping with a patience of 10
epochs to avoid overfitting.

C. Comparison with the State-of-the-Art

As there are no end-to-end learning-based RGB-D video
inpainting techniques, we compare against both single image
inpainting methods (Empty Cities [5], Context Encoders [7],
DeepFill v2 [60]) as well as video inpainting methods (Deep

Video Inpainting [22], Deep Flow-Guided Video Inpaint-
ing [25], LGTSM [26]). Additionally, we create two strong
RGB-D inpainting baselines to compare against, by combining
the state-of-the-art image inpainting model DeepFill v2 [6]
with the state-of-the-art monocular depth prediction approach
BTS [37], and the state of the art video inpainting approach
LGTSM [26] with BTS. Here the inputs to the depth prediction
networks were the inpainted images from DeepFill v2 or
LGTSM, respectively. We used the publicly available implemen-
tations of these networks to train the models on our proposed
dataset. We report the quantitative performance in terms of sev-
eral standard metrics that cover both image and video inpaint-
ing quality, namely L1 distance, Fréchet Inception Distance
(FID) [39], Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM) [40], Fréchet Video Distance
(FVD) [41] and Learned Perceptual Image Patch Similarity
(LPIPS) [42]. We present results for depth inpainting in terms
of the Root-Mean-Square Error (RMSE) in Tab. I and Tab. III.

As our model performs both inpainting and image-to-image
translation, we perform two sets of evaluations by computing
the metrics only for the inpainted region (inpainting task)
and for the entire image (image-to-image translation task).
Tab. I and Tab. II shows comparisons from this experiment.
We observe that our proposed DynaFill model exceeds the
performance of competing methods in all the metrics and for
both tasks, thereby achieving state-of-the-art performance. For
inpainting, our model achieves an improvement of 1.46 in the
FID score and 34.57 in the FVD score over the previous state-
of-the-art DeepFill v2. While for image-to-image translation,
DynaFill achieves an improvement of 0.08 in the FID score
and 57.39 in the FVD score. The large improvement in the
FVD scores demonstrate the temporal consistency achieved
by our method, while still being faster in inference than
other video inpainting methods that even use future frame
information. Additionally, the lower value of the RMSE metric
achieved by our DynaFill model in comparison to the RGB-
D baselines, indicates that our approach effectively utilizes
depth information, as opposed to just performing direct depth
completion on top of the inpainted RGB image. Our model
improves the depth inpainting by more than 2m in RMSE over
(DeepFill v2 + BTS) and (LGTSM + BTS).

D. Ablation Studies

In this section, we systematically study the impact of various
architectural components in our proposed DynaFill model. We
use FID and FVD scores as the primary evaluation metrics
for temporal image inpainting and the RMSE metric for depth
inpainting. However, we also report the other image and video
inpainting metrics for completeness.

1) Detailed Study on the DynaFill Architecture: In Tab. III,
we present results of the ablation study to assess the influence
of various design choices on the performance of our proposed
image-to-image translation model. The basic model A consist-
ing of disjoint individually trained coarse inpainting and depth
completion networks only with the pixel-wise L; reconstruction
loss and depth smoothness loss achieves an FID score of 9.40,
FVD score of 120.52 and a RMSE of 9.36m. In model B, we
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TABLE I: Performance comparison of our DynaFill model against image as well as video inpainting methods.

Method | L14 FID| PSNRt SSIMt FVD]  LPIPS| | Time [ms] | | RMSE [m] |
Empty Cities [5] 0.0058  3.6940  37.8351 09714  200.5015  0.0248 12.3038 -
Context Encoders [7] 0.0068 56306 344159 09590  214.0140  0.0272 23.3914 -
DeepFill v2 [6] + BTS [37] 0.0080  3.3183  36.1598  0.9647 1782610  0.0345 24.4074 9.8063
Deep Video Inpainting [22] 0.0452 160718 285660  0.7643  346.0854  0.2207 85.2701 -
Deep Flow-Guided Video Inpainting [25] 0.0143  17.3782  33.0311 09632  903.7222  0.0343 1597.5020 -
LGTSM [26] + BTS [37] 0.0075  3.5670  36.5204  0.9701  344.8208  0.0231 226.0164 9.9751
DynaFill (Ours) | 0.0051 18571  39.5513 09780  143.6950 00172 | 521756 |  7.7820

TABLE II: Comparison with image-to-image synthesis methods.

Method ‘ FID PSNR  SSIM FVD LPIPS
Empty Cities [5] 24112 37.2937 09479 857118 0.0376
Context Enc. [7] 113.5832 21.9931 0.4637 1724.43 0.4359
DeepFill v2 [6] 1.0836  36.6502 0.9464 852216 0.0270
DynaFill (Ours) | 1.0025 38.8672 0.9651 27.8344 0.0124

concatenate the inpainted image with the depth map and feed
it as an input to the depth completion network, and train it
end-to-end with the coarse inpainting network. This leads to a
small drop of 3.37 in the FID score and an increase of 7.72
in the FVD score which indicates that the smoothness loss
employed on the depth completion network causes the coarse
inpainting network to produce a blurry output. However, this
improves the performance of the depth completion network
yielding a RMSE of 8.94m. In order to optimize the joint model
more effectively, we employ our loss-aware scheduled teacher
forcing in model C which also prevents the gradient from the
depth completion network to flow into the coarse inpainting
network. This leads to an improvement over model A in both
the FID and FVD scores by 1.36 and 29.70 respectively.

Subsequently, we introduce temporal context in model D by
incorporating our recurrent gated feedback mechanism in the
refinement network. This leads to an improvement of 0.97 in
the FID score, 45.26 in the FVD score, and a large improvement
yielding a RMSE of 8.11m. These resulting metrics show the
importance of mutual supervision of RGB and depth networks,
and employing inpainted depth maps to achieve the geometry-
aware approach. Visualizations analyzing the learning gating
masks are shown in Sec. [V-E. We then employ adversarial
training in model E which enforces the distributions of both
spatial and temporal features of the generated frames to be
indistinguishable from the groundtruth. This model achieves
an FID score of 1.47, a FVD score of 46.99, and also reduces
the RMSE by 0.21m as the depth inpainting is conditioned
on better image inpainting. Finally, we guide the optimization
process by enforcing perceptual and style consistency of learned
features which further improves the FID and FVD scores by
0.47 and 19.16 respectively, in addition to improving the RMSE
by 0.13m.

Tab. I'V shows the ablation study for assessing how the design
choices influence the model evaluated only for inpainting. Note
that the performance of the depth completion network remains
the same as the RMSE values reported in Tab. III. The baseline
model A consisting of disjoint individually trained coarse

inpainting and depth completion networks with pixel-wise
L; reconstruction and depth smoothness losses respectively,
achieve an FID score of 4.02, an FVD score of 263.45 and
RMSE of 9.36m. In model B, we concatenate the inpainted
image with the depth map and feed it as an input to the depth
completion network, and train it end-to-end with the coarse
inpainting network which leads to a small drop in the FID
score by 1.58 and 63.90 in the FVD score, however it improves
the performance of the depth completion network yielding an
RMSE of 8.94m. Notably, this shows that the smoothness
loss causes the coarse inpainting sub-network to output blurry
images. In model C, we employ our loss-aware scheduled
teacher forcing which yields an improvement over model A
in both FID and FVD scores by 0.54 and 49.40. This can be
attributed to the fact that it helps improve the optimization and
it additionally stops the gradient from the depth completion
network to flow into the coarse inpainting network which
prevents blurry outputs. Furthermore, in comparison to model C,
model D achieves an improvement of 1.30 in the FID score
and 50.11 in the FVD score by refining the coarsely inpainted
frame and incorporating temporal context using our recurrent
gated feedback mechanism. Subsequently, Model E which is
optimized in the generative adversarial framework achieves an
FID score of 2.14 and an FVD score of 158.96. Finally, we
enforce perceptual and style consistency in model F which
further leads to an improvement of 0.28 and 15.27 in the FID
and FVD scores respectively.

We observe that the overall performance of the models in
this ablation study is worse while evaluating for inpainting in
comparison to image-to-image translation which is reported in
Tab. III. This can be attributed to the fact that inpainting models
generate content only inside target regions while keeping
the rest of the regions in the image intact. Therefore, they
are unable to correct regions corelated with the presence of
dynamic objects, namely shadows or reflections. Image-to-
image translation models do correct regions surrounding the
dynamic objects. Most importantly, this indicates that the
evaluation metrics are able to distinguish between visually
appealing and unappealing results.

2) Evaluation with Varying Amounts of Noise: Measure-
ments and estimates made from them in real-world scenarios
are far from ideal, typically containing a certain amount of
noise. In this section, we investigate the effects of noisy data
inputs, namely semantic mask, odometry and depth, and report
the performance by employing a real-world visual odometry
system during inference.
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TABLE III: Ablation study on the topology of our DynaFill architecture showing the impact due to the various network components.

Model | Configuration | RGB | Depth
| JT TF RN GAN PSL | LI| FID| PSNRt SSIM{ FVD| LPIPS | | RMSE [m] |
A - - - - - 0.0270 9.4045 33.4402 0.9175 120.5195 0.0587 9.3649
B v - - - - 0.0172 6.0380 35.8415 0.9374 128.2434 0.0334 8.9366
C v v - - - 0.0170 4.6829 36.1967 0.9425 98.5418 0.0272 9.3043
D v v v - - 0.0158 3.7079 36.5717 0.9441 53.2797 0.0252 8.1100
E v v v v - 0.0123 1.4747 38.2600 0.9600 46.9936 0.0164 7.8952
F v v v v v 0.0112 1.0025 38.8672 0.9651 27.8344 0.0124 7.7701

JT = Coarse inpainting and depth completion trained jointly, TF = Teacher forcing, RN = Refinement network, PSL = Perceptual & Style losses

TABLE IV: Ablation study on the topology of DynaFill evaluated only for inpainting, showing the impact due to the various network components.

Model | Configuration | RGB

‘ JT TF RN GAN PSL ‘ L1| FID | PSNR 1 SSIM 1 FVD | LPIPS |
A - - - - - 0.0059 4.0209 38.3690 0.9734 263.4455 0.0229
B v - - - - 0.0061 5.6052 37.7146 0.9722 327.3409 0.0285
C v v - - - 0.0055 3.4841 38.9247 0.9749 214.0470 0.0222
D v v v - - 0.0051 2.1856 39.6628 0.9786 163.9389 0.0187
E v v v v - 0.0051 2.1354 39.7122 0.9787 158.9624 0.0185
F v v v v v 0.0051 1.8571 39.5513 0.9780 143.6950 0.0172

JT = Coarse inpainting and depth completion trained jointly, TF = Teacher forcing, RN = Refinement network, PSL = Perceptual & Style losses
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Fig. 5: Effect of noisy inputs on the performance of our DynaFill model. While relatively accurate odometry is essential for ensuring both spatial and temporal
consistency, the semantic mask noise causes instability only in the temporal domain due to mask flickering. Noisy depth maps, on the other hand, have

negligible influence on the overall performance.

Noisy Inputs: In order to compare effects of noise for each of
the inputs, we introduce a single independent variable p, € [0, 1]
which we use to control the amount of noise. To model the
semantic segmentation noise, we approximate each blob in a
dynamic objects binary mask with 20% of all pixels in the cor-
responding contour. We then offset each pixel p;; = [u,- i Vi j]
from the i-th contour by (p;; —¢;) /||lp;; —cill2- & where c; is
the center pixel of the i-th blob and & ~ N (0, (pnc,')2 . Here,

we use 0; =r;/5, where r; = max || p;; — pill2/2 is the radius
of i-th contour.

For depth noise, we first deform shapes in exactly the same
way as for semantic masks but for pixels of all semantic classes
(except road and sidewalk). Additionally, we apply Sobel filter
in x-direction and set all pixels in the original depth map that
are above the threshold Tsope; to 0. In our case, we set Tsopel
= 5. Pixel-wise noise is then simulated using Kinetic depth
noise model, where we also multiply its standard deviation by
pn and make sure that the offset does not exceed Sm. In the

end, all the pixels with the maximum depth value are also set
to 0 with probability py.

Finally, we model odometry noise by adding & ~
N (O, (pHO',)Z) to positional (x, y, z) and eg ~ N (0, (pnGR)z)
to rotational (roll, pitch, yaw) degrees of freedom. We set
o; = 1 m and og =45°. To get a better understanding of artifacts
that we induce in the inputs, we visualize the simulated noisy
image data in Fig. 6.

Results of experiments presented in Fig. 5 show the model
is most sensitive to odometry noise. The results also show
how crucial well-estimated odometry is in our approach which
relies on properly aligned frames to be able to exploit the
temporal context. However, both FID and FVD scores indicate
that our system is robust enough to allow for 10% to 20%
odometry noise margin to other competing methods. In contrast,
the semantic mask noise is more tolerable, where the FID
score show a diminished influence in the spatial domain which
can be attributed to the refinement network being able to
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Fig. 6: Visualization of simulated noisy image inputs for various percentages
of noise p,. We perform random shape deformations based on the semantic
classes of objects by approximating them as 2D contours and adding offsets
to the points they contain. Additionaly, for depth maps, we drop pixels near
object boundaries and we employ pixel-wise noise on depth maps which is
usually encoutered in real-world settings.

synthesize and correct regions that were not explicitly masked,
as demonstrated in Sec. IV-F. However, the FVD scrores
indicate a negative influence on the temporal consistency due
to the semantic mask flickering between consecutive frames.
Finally, the least sensitive input is the depth map for which both
metrics demonstrate negligable decrease in performance (1.25
and 32.14 at p, =1 for FID and FVD scores, respectively).

Odometry During Inference: During inference time, the
odometry has to be estimated from the incoming frames
which are usually highly dynamic and the estimates often
contains significant error. However, since our architecture
predicts an inpainted RGB frame at each timestep, we can
use this information to reduce the error induced by dynamic
objects. For each timestep, we use best estimates of two
consecutive inpainted RGB images. That is, we estimate the
odometry between steps ¢+ —1 and ¢ by using the refined
inpainted RGB image from the previous timestep 7;,1 allsl

the coarsely inpainted RGB image from the current timestep /,.

This is possible due to the odometry being required only in the
refinement sub-network. For estimating the odometry, we use a
monocular visual odometry system SVO 2.0 [33]. We evaluate
the performance of our DynaFill model for two cases: while
using odometry predicted from the best inpainted images (best)
and while using odometry predicted from images containing
dynamic objects (dynamic). The corresponding metrics are
used as reference values in Fig. 5. This experiment indicates
that using best inpainted images significantly improves the
performance over estimating the odometry on raw dynamic
frames, while the overall performance (in terms of FID and
FVD) remains comparable with the closest baseline methods.

E. Visualization of Learned Gating Masks

Our refinement image-to-image translation sub-network
employs our recurrent gated feedback mechanism that learns
a gating mask which is utilized for fusing features from the
inpainted image from the previous timestep and the coarsely
inpainted image from the current timestep. We visualize the
learned gating masks My to better interpret the learned feature
selection process. Fig. 7 shows the visualizations from this
experiment. For each input pair of images of height H and

width W, the gating branch outputs a single-channel mask of
spatial size % X % In order to visualize the gating masks
together with the input and output images, we first upsample
the gating mask to H x W using Lanczos interpolation of order
4 over 8 x 8 pixel neighborhood. Subsequently, we employ
the jet color map on the masks. Values close to 0 visualized
with colors closer to blue indicate features that are selected
from the inpainted image from the previous timestep, while
values close to 1.0 which are visualized with colors closer to
red indicate the features that are selected from the coarsely
inpainted image from the current timestep.

Fig. 7 (a) shows that the network uses the inpainted image
from the previous timestep to suppress the shadow of the
car and the reflection on the wet road while taking other
parts of image almost exclusively from the coarsely inpainted
image from the current timestep. Similarly, Fig. 7 (b) and
Fig. 7 (c) also demonstrate that the shadows are removed
using information from the inpainted image from the previous
timestep and most other regions are taken from the coarsely
inpainted image from the current timestep. We can also observe
that for the areas that are occluded in the inpainted image
from the previous timestep (e.g light pole on the right in
Fig. 7 (b)), the network uses most of the features from the
coarsely inpainted image from the current timestep (indicated
by red in My). Furthermore, Fig. 7 (c) shows a scene without
strong contrast and brightness discontinuities between the
inpainted image from the previous timestep and the coarsely
inpainted image from the current timestep. We observe that
in this case the network uses the same amount of information
from both images (indicated by green in My) to refine the
target regions.

E Qualitative Evaluations

We qualitatively evaluate the performance of our proposed
Dynafill model against the best performing previous state-of-
the-art method DeepFill v2 and Empty Cities in Fig. 8. We
particularly study the hard cases for dynamic object removal
where the objects are either close to the camera or in the
image boundaries. We observe that DeepFill v2 produces
severe visual artifacts described by excessive and noisy patch
replication while Empty Cities fails to completely remove
the foreground objects and synthesizes blurry content in the
target regions. DynaFill yields realistic colors and textures
that are geometrically consistent with seamless boundary
transitions as well as shadow/reflection removal. This can
be attributed to effectively integrating both local spatial as
well as temporal context by warping inpainted frames from
the previous timesteps and fusing the feature maps using the
learned mask in our recurrent gated feedback mechanism which
enables adaptive reuse of information. Accurately inpainting
occluded regions with information from the previous frames and
inpainting them demonstrates that our network is able to reason
about the geometry of the environment through inpainted depth
maps. Additionally, we present qualitative results of the entire
output of our network that contains both inpainted images and
the corresponding inpainted depth maps in Fig. 9. We can see
that our network yields consistent results by regressing depth
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Fig. 7: Visualization of the learned gating mask My from the refinement image-to-image translation sub-network. We colorize the gating mask with the jet
color map for better visibility. We also show the input image I;, the input depth map D;, the output of the coarse inpainting sub-network /,, the output of
the refinement image-to-image translation sub-network 7;, and the inpainted depth map D ;. From these vizualizations, we can interpret the process that the
network employs to fuse spatio-temporal features. We observe that gating masks indicate that the network primarily uses the previous frame information

(indicated by blue) to correct regions that remain inconsistent after the removal of dynamic objects, namely shadows or reflections.

Input+Semantics Empty Cities [5] DeepFill v2 [6] DynaFill (Ours)

(b)

(©)

Fig. 8: Qualitative comparison with previous state-of-the-art methods on the
validation set. We highlight the results by zooming in on parts of the scene
occluded by dynamic objects in the input image.

values in regions occluded by dynamic objects, conditioned
on the inpainted images and by temporally warping inpainted

images from previous timesteps using the inpainted depth maps.

Moreover, to illustrate complex inpainting scenarios in urban
driving scenes, we show the aggregated textured pointclouds
in Fig. 10. Note that we do not perform scan matching, we
only aggregate scans along a single trajectory. We observe
that DynakFill is able to successfully recover large parts of
the scene that are not visible over the entire duration of a

RGB Input Depth Input  DynaFill Output DynaFill Output

Fig. 9: Qualitative results of DynaFill. By conditioning depth completion on
the inpainted image and incorporating the previously inpainted depth map in
recurrent gated feedback, our model yields geometrically consistent results.

trajectory and the results demonstrate color, geometric and
temporal consistency in the inpainted outputs.

We qualitatively evaluate the spatio-temporal consistency
achieved by DynaFill over sequences of 5 consecutive frames
in Fig. 11. We compare against the state-of-the-art image-
to-image translation-based dynamic object removal method
(Empty Cities [5]), image inpainting (DeepFill v2 [44]) and
video inpainting models (LGTSM [26]). While DeepFill v2
typically performs well at inpainting target regions, it yields
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Fig. 10: Point cloud visualization of our RGB-D network outputs for multiple
streams. DynaFill successfully recovers even bigger parts of the scene that
are not visible over the entire duration of a trajectory due to being occluded
by dynamic objects.

visually unappealing results due to its inability to remove
any effects induced by dynamic objects such as shadows or
reflections. Moreover, it suffers from noisy patch replication
which produces flickering between neighboring frames, es-
pecially in regions with frequent brightness changes. This
leads to temporally inconsistent results. LGTSM being a video
inpainting model, yields inconsistent results when there is
large motion between frames despite the fact it uses the
future frame information. Although it often maintains temporal
consistency, large motions cause noisy results in the spatial
domain and we also observe that it replicates shadows induced
by vehicles, into neighboring inpainted frames. Finally, Empty
Cities performs dynamic-to-static image translation aimed
at removing artifacts induced by dynamic objects such as
shadows or reflections, together with inpainting dynamic objects
regions. We observe that the hallucinated content inside the
masked regions is often over-smoothed with inaccurate color
(e.g. in saturation) and geometrical inconsistencies (e.g. wavy
curbs) between frames which causes prominent silhouettes of
dynamic objects that are visible over time. In contrast to these
methods, our proposed DynaFill model accurately removes
dynamic objects and corrects correlated regions containing
shadows or reflections, while being spatio-temporally con-
sistent and robust to illumination changes. It only uses the
previous inpainted frame information in a recurrent manner,
thereby it directly handles large motion between consecutive
frames and the inference time makes it suitable for real-time
applications. Additionally, videos demonstrating the spatio-
temporal consistency achieved by our DynaFill model is shown
in http://rl.uni-freiburg.de/research/rgbd-inpainting.

While we have evaluated our framework on highly realistic
synthetic data, it is important to discuss the feasibility of train-
ing such models directly on real-world data. A straightforward
approach would be to collect a real-world dataset of RGB-D
videos with odometry information and groundtruth containing
the background in the regions occluded by dynamic objects
and train our framework on it. A more promising approach

TABLE V: DenseVLAD [43] query accuracies for different inputs (in %).

Threshold
Query input Top-1 Top-5 | 5m, 10° 0.5m, 5° 0.25m, 2°
Raw 6245 86.62 79.29 68.16 67.08
Inpainted 82.30 95.87 92.13 86.53 85.35
Image-to-image | 81.91 96.95 93.51 87.22 85.94

to mitigate the need for groundtruth without dynamic objects
would be to employ cycle-consistent adversarial networks or
self-supervised approaches, such as training the network on
real-world images with randomly generated masks. Another
promising avenue would be to employ unsupervised domain
adaptation techniques on our trained model. Investigating these
avenues would bring us closer to having an effective solution
in the real world.

G. Retrieval-based Localization

One of the use cases of our temporal RGB-D inpainting
framework is for visual localization tasks. In order to demon-
strate the potential benefits, we performed experiments by
employing our model as a preprocessor for retrieval-based
visual localization on the entire validation set of our dataset.
We use DenseVLAD [43] due to its simplicity and for the fact
of being one of the state-of-the-art methods. In our experiments,
we use N =25-10° (number of descriptors), k = 128 (number
of visual words), d = 8 (final PCA dimensionality). The
descriptors were selected randomly using reservoir sampling.

Using the benchmarking evaluation protocol [45], we report
the percentage of query images with predicted 6-DoF poses
that are within three error tolerance thresholds of (5m, 10°),
(0.5m,5°), and (0.25m,2°). For the sake of completeness, we
also report Top-1 and Top-5 accuracies. Tab. V shows the
results from this experiment. Our inpainting model achieves
an improvement of 12.84%,18.37% and 18.27% over the non-
inpainted image, across all the three thresholds respectively.
While our image-to-image translation model further improves
the performance over the non-inpainted image by 14.2%, 19.1%
and 18.9% respectively.

We further show qualitative retrieval results with different
dynamic object configurations, weather conditions and times of
day in Fig. 12 by comparing with the raw input image query as
a baseline and our DynaFill model as a query preprocessor. The
variance in the extracted descriptors, induced by the movement
of dynamic objects through the scene causes the system to
retrieve frames with substantial pose error as shown in the
quantitative results in Tab. V. We observe that in the qualitative
retrieval results shown in Fig. 12 (a), the yellow color of
the car in the raw image query produces an outlier in the
DenseVLAD descriptor. This causes the localization system to
retrieve a frame that has a similar yellow curve in the lower
left part of the image, i.e. a yellow lane marking. Sensitivity
to specific features in an image, e.g. reflections on a wet
road or very bright colors, may lead the system to retrieve
frames that were recorded at a different time of the day and
from a completely different location. This is best illustrated
by Fig. 12 (b) in which the query result is a large statistical
outlier. Fig. 12 (c) shows an example where the system is
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Fig. 11: Qualitative comparison of spatio-temporal consistency over sequence-18. Our DynaFill model hallucinates spatio-temporally consistent results while
generating background details in regions occluded by the dynamic objects, such as lane markings.

Query (Raw) Result (Raw) Query (Ours) Result (Ours)

Fig. 12: Qualitative evaluation of DenseVLAD [43] retrieval results with
DynaFill as a preprocessor. In contrast to the raw image query which often
results in localization errors, removing dynamic objects and inpainting them
with our model enables the system to retrieve accurate nearest neighbor frames.

able to recognize the approximate area, however irrelevant
descriptor features that are induced by cars overpower the
informative ones causing significant localization errors. More
importantly, we observe that by employing our DynaFill model
as a preprocessor that takes the raw images with dynamic
objects as input and inpaints dynamic object regions with
background content, it suppresses the outliers produced by
DenseVLAD and enables us to accurately localize. We obtain
consistently accurate retrieval results in all the examples shown
in Fig. 12. These results demonstrate substantial improvements
that can be achieved using our model as an out-of-the-box
solution for removing dynamic objects for localization and
mapping systems.

H. Limitations and Future Work

In this section, we discuss the limitations of our approach
and provide directions for future work. Our approach assumes
a paired RGB-D image data is available. Obtaining such
dynamic/static pairs of real-world data with groundtruth pixel-
level labels of dynamic objects is still an extremely arduous task.
Moreover, our method relies on forward warping of previous
frames that improves the performance of the inpainting model,
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but also introduces the sensitivity to inaccurate estimation of
the odometry and depth inpainting. The quality of inpainting
also depends of the quality of the dynamic mask, which in some
cases such as low visibility, can be hard to estimate. Finally,
we operate inside an adversarial framework that comes with
its own downsides. Cumbersome selection of hyperparameters
and long and unstable training processes are just some of the
side effects that we have experienced.

As future work, the joint inpainting of different modalities
can be investigated. That is, inpainting RGB frames together
with their corresponding semantic segmentation can be crutial
in achieving higher levels of spatial consistency. Moreover, em-
ploying odometry for additional forward warping of semantics
and depth can potentially improve the temporal performance
of our method over multiple time steps. Instead of only local-
ization, a SLAM system could be introduced into both training
and testing phases of our system to provide useful information,
with additional constraints guiding the optimization process
and making the training more stable. Such an approach would
incorporate feedback from a built map into the inpainting
process, by exploiting global poses available in our newly
introduced large-scale dataset. Additionally, our dataset shows
a large potential for studying the multimodal cyclic consistency
in generative adversarial networks, applicable to both inpainting
and various other related tasks. One of the ideas is also to
inpaint random parts of images that do not belong to dynamic
objects. This would mean casting the inpainting as a self-
supervised task and is be an important step towards mitigating
the need for such a complex dataset of paired RGB-D image
data.

V. CONCLUSIONS

In this paper, we proposed an end-to-end deep learning
architecture for dynamic object removal and inpainting from
temporal RGB-D sequences. Our coarse-to-fine model trained
under the generative adversarial framework synthesizes spatially
coherent realistic color as well as textures and enforces temporal
consistency using a gated recurrent feedback mechanism that
adaptively fuses information from previously inpainted frames
using odometry and the previously inpainted depth map. Our
model encourages geometric consistency during end-to-end
training of the our inpainting architecture by conditioning the
depth completion on the inpainted image and simultaneously
using the previously inpainted depth map in the feedback
mechanism. As opposed to existing video inpainting methods,
our model does not utilize future frame information and
produces more accurate and visually appealing results by also
removing shadows or reflections from regions surrounding
dynamic objects.

We introduced a large-scale hyperealistic dataset with
RGB-D sequences and groundtruth information of occluded
regions that we have made publicly available. We performed
extensive experiments that show that our DynaFill model
exceeds the performance of state-of-the-art image and video
inpainting methods with a runtime suitable for real-time applica-
tions (~ 20 FPS). Additionally, we presented detailed ablation
studies, qualitative analysis and visualizations that highlight

the improvement brought about by various components of
our architecture. Furthermore, we presented experiments by
employing our model as a preprocessor for retrieval-based
visual localization that demonstrates the utility of our approach
as an out-of-the-box front end for localization and mapping
systems.
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