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Pose and Semantic Map Based Probabilistic
Forecast of Vulnerable Road Users’ Trajectories
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Abstract—In this article, an approach for probabilistic trajec-
tory forecasting of vulnerable road users (VRUs) is presented,
which considers past movements and the surrounding scene. Past
movements are represented by 3D poses reflecting the posture and
movements of individual body parts. The surrounding scene is
modeled in the form of semantic maps showing, e.g., the course of
streets, sidewalks, and the occurrence of obstacles. The forecasts
are generated in grids discretizing the space and in the form of
arbitrary discrete probability distributions. The distributions are
evaluated in terms of their reliability, sharpness, and positional
accuracy. We compare our method with an approach that
provides forecasts in the form of Gaussian distributions and
discuss the respective advantages and disadvantages. Thereby, we
investigate the impact of using poses and semantic maps. With a
technique called spatial label smoothing, our approach achieves
reliable forecasts. Overall, the poses have a positive impact on
the forecasts. The semantic maps offer the opportunity to adapt
the probability distributions to the individual situation, although
at the considered forecasted time horizon of 2.52 s they play a
minor role compared to the past movements of the VRU. Our
method is evaluated on a dataset recorded in inner-city traffic
using a research vehicle. The dataset is made publicly available.

I. INTRODUCTION

A. Motivation

In the future, automated systems will operate in areas shared
with humans and they must understand human behavior to
make interactions safe, efficient, and comfortable. This is
particularly important for automated vehicles and vulnerable
road users (VRUs) in road traffic. A safe path planning of such
vehicles requires a forecast of behavior and future trajectories
of VRUs. However, future behavior is inherently fraught with
uncertainty. Therefore, this work deals with probabilistic tra-
jectory forecasting of VRUs, such as pedestrians and cyclists.
The goal is the forecast of reliable probability distributions
representing the movement capabilities of the VRUs fitted
to the respective situation. The most important indicator for
future behavior is the past movement. Besides the past tra-
jectory, which is commonly used in the trajectory forecasting
literature, we also include the body posture and movements
of individual body parts. We address this by investigating the
use of so-called 3D poses describing the three-dimensional
positions of numerous joints along the body. Apart from past
movements, the surrounding scenes of the VRUs is decisive
for the future trajectory. It involves other road users, such as
pedestrians, vehicles, static obstacles, lanes, and sidewalks.
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Fig. 1. Illustration of the approach for probabilistic trajectory forecasting.
The model bases its forecasts on the VRU’s past motions, represented
by 3D poses, and semantic maps reflecting the surrounding scene. The
colors correspond to the following semantic classes: static obstacle (black),
dynamic obstacle (orange), sidewalk (yellow), road (dark grey), walkable
vegetation (light blue), person (light green), unkown obstacles (dark green),
and unkown free space (light grey). At the time of forecasting, the pedestrian
is in the center of the map. In this scene, the pedestrian is walking on
the sidewalk. For certain forecasted times, a discrete probability distribution
(represented by the color gradient from red to blue on the right) is forecasted,
expressing the likely future location of the VRU.

To encode such information, we use top-view semantic maps
and consider them during forecasting. The overall approach is
illustrated in Fig. 1. All the data used for trajectory forecasting
is obtained solely using a stereo camera and LiDAR mounted
on a research vehicle and is generated fully automatically.
Such sensors could be incorporated into ordinary vehicles
in the near future. In literature, approaches for forecasting
continuous as well as discrete probability distributions, can
be found. We compare methods of both types to explore
their strengths and weaknesses. Given the importance of the
forecasted probability distributions, e.g., for path planning of
automated vehicles, we focus on evaluating the distributions
in terms of their reliability and sharpness.

B. Related Work

This article mainly investigates probabilistic trajectory fore-
casting of VRUs while considering poses and surrounding
scenes. By now, numerous works have been published re-
garding deterministic trajectory forecasting of VRUs in road
traffic. For example, Keller and Gavrila [1] forecasted trajec-
tories of pedestrians potentially crossing the street by using
Gaussian process dynamical models (GPDMs). Goldhammer
et al. [2] used polynomial approximations of past velocities
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combined with a multi-layer perceptron (PolyMLP) to forecast
the future trajectories of pedestrians and cyclists. However,
forecasts are inevitably subject to uncertainty. An estimation
of uncertainty is useful, for example, for safe path planning
of automated vehicles. Without taking a negligible risk, an
efficient traffic flow is not possible in areas shared by VRUs
and automated vehicles. At the same time, path planning
must consider the movement possibilities of VRUs and the
risk taken must be quantifiable. Hence, methods for trajectory
forecasting, including an estimation of the uncertainty, have
been developed. For this purpose, some research forecasted
several possible trajectories. Gupta et al. [3] used generative
adversarial networks (GANs) and a pooling mechanism to
incorporate dependencies among multiple people for fore-
casting multiple socially acceptable trajectories. By socially
acceptable, the authors mean compliance with social norms,
such as respecting a certain distance. A varying number of
future trajectories were forecasted by memory augmented
neural networks in [4]. However, such a set of forecasts only
represents the uncertainty to a limited extent, and the quality
of the uncertainty estimate is usually not evaluated. Instead,
it is also feasible to forecast probability distributions that are
either continuous or discretized regarding the spatial locations.
Alahi et al. [5] focused on crowed spaces by forecasting
bivariate Gaussian distributions for several pedestrians simul-
taneously via pooling based long short term memory (LSTM).
The authors trained this model by minimizing the negative
log-likelihood. Gaussian distributions describing the cyclists’
future positions were forecasted in [6] using recurrent neural
networks. In [7], forecasted trajectories were extended by
an uncertainty estimation through an unconditional, constant
model and used for path planning of autonomous vehicles.
The authors of [8] proposed a method for forecasting all
possible future positions of pedestrians in a set-based fashion
using reachability analysis, contextual information, and traffic
rules. The uncertainties of trajectory forecasts of cyclists were
estimated in [9] in the form of unimodal Gaussian distributions
with the help of a multi-layer perceptron (MLP). In addition,
an approach to evaluate the reliability of the forecasted uncer-
tainties was presented. Overall, this approach was able to make
reliable forecasts for the motion types start, stop, turn left, and
turn right, while the forecasts for the motion types move and
wait were underconfident. Bieshaar et al. [10] extended single-
output quantile regression to multivariate-targets for trajectory
forecasting of cyclists. These so-called quantile surfaces rep-
resent star-shaped distributions using discrete quantile levels.

Besides forecasts of continuous distributions, distributions
in discretized space are feasible as well. For example, Markov
chains were used in [11] to forecast probabilistic distribu-
tions as occupancy grids considering the pedestrians’ potential
goals. Jain et al. [12] encoded the past in the form of
multi-channel images and forecasts trajectories over long time
horizons using a discrete residual flow network in the form of
probability grids for each forecasted time step.

In addition to the past trajectory of the respective VRU,
the posture and movements of individual body parts can be
represented by 3D body poses and considered in trajectory
forecasting. Quintero et al. [13] performed trajectory forecast-

ing of pedestrians based on 3D poses with several balanced
GPDMs. They were trained on 3D poses for different motion
types, while the most similar model for the individual pedes-
trian behavior was chosen for trajectory forecasting. In [14],
3D poses estimated from a moving vehicle were used for
trajectory forecasting of pedestrians and cyclists. While both
approaches achieved improvements by using poses, they did
not include an estimate of the uncertainty.

The surrounding scenes, e.g., obstacles, lanes, sidewalks, or
vegetation, influence the future trajectories of VRUs. Accord-
ingly, numerous methods considered the surrounding for tra-
jectory forecasting: Xue et al. [15] used an LSTM architecture
for trajectory forecasting of pedestrians with an upstream con-
volutional neural network (CNN) extracting relevant features
from top-view images of the scene. In [16], the surrounding
was expressed through motion heat maps representing the
prior movements of other VRUs, segmented maps describing
the accessible areas, and aerial photography images. This
representation is processed by a CNN and, together with the
past trajectory and data about nearby road users, used to
forecast several possible trajectories by means of a neural
network. Ridel et al. [17] performed a semantic segmentation
on top-view images using residual networks (ResNet). They
encoded the past trajectory in binary 2D grids and forecasted
discrete probability distributions in agent-centric grids for
future time steps using a network architecture consisting
of CNNs and convolutional LSTMs (ConvLSTM). However,
these approaches require current images from infrastructure-
based cameras or drones, which is usually not feasible in
road traffic. In [12], images encoding semantic maps were
used for trajectory forecasting of pedestrians. The images
mask information of maps, e.g., crosswalks, drivable surfaces,
lanes, and traffic light states, which were annotated semi-
automatically, and the history of dynamic objects detected
from LiDAR and camera. The maps were centered on the
respective pedestrian and processed by a CNN. Marchetti et
al. [4] projected semantic labels of static objects aggregated
over time into a top-view map using a LiDAR point cloud
and IMU data from a moving vehicle. Those maps were sub-
sequently used to refine the forecasts to ensure compatibility
with the surrounding.

C. Main Contributions and Outline of this Article

Our main contributions are the following: First, we combine
the past trajectory with 3D poses of pedestrians and cyclists
and maps of the surrounding scenes for discrete probabilistic
trajectory forecasting by means of neural networks. The 3D
poses represent the past motions of different body parts in
great detail. To the best of our knowledge, this is the first time
poses are used for probabilistic trajectory forecasting. We use
semantic maps reflecting both the static (e.g., sidewalks or
obstacles) and dynamic surrounding (e.g., vehicles or other
VRUs) to align the forecasts with the surroundings. We
individually examine the impact of the past trajectory, 3D
poses, and maps on trajectory forecasting.

Second, we analyze the forecasted distributions in detail
with respect to their reliability, sharpness, and positional
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accuracy. We propose a method to calibrate the discrete
probabilistic trajectory forecasting models regarding reliability
and investigate the effects of the resolution of the discrete
probability distributions on the quality of the forecasts, which
has not been studied before in the literature.

Third, we evaluate the advantages and disadvantages of
forecasting discrete versus continuous probability distribu-
tions. For this purpose, we use the approach from [9] as
a continuous comparison method. Since this approach is
originally based solely on the past trajectory, we extend it
to include 3D poses as well.

Fourth, all used data were generated fully automatically
with the help of a single vehicle’s sensors in real road traffic.
In contrast to the literature, neither drones, infrastructure-
based sensors, nor manual annotations were used. Accordingly,
the approach is appropriate for an application in automated
vehicles. The dataset is made publicly available [18].

The remainder of this article is organized as follows: Sec. II
introduces the dataset, while in Sec. III the discrete (Sec. III-A)
and continuous trajectory forecasting methods (Sec. III-B) are
explained. This sections focuses in particular on the network
architecture, the training methodology, and evaluation metrics.
Next, the results are presented in Sec. IV. It covers the
process of hyperparameter optimization, reliability calibration
using spatial label smoothing, the impact of poses, semantic
maps and the cell size, and a comparison of the discrete and
continuous forecasting approaches. Finally, we conclude with
a summary and an outlook on future work (Sec. V).

II. DATASET

The dataset was recorded with a moving vehicle in inner-
city traffic in Aschaffenburg, Germany. The recordings were
taken at different times of the day and year over four years and
under different weather conditions to reflect road traffic vari-
ability. The driven routes cover different types of roads, such as
multi-lane roads, roads with bike lanes, traffic-lighted and non-
traffic-lighted intersections, traffic-calmed areas, crosswalks,
bus stops, and more. Some of the recorded pedestrians and
cyclists were instructed to walk or ride specific routes. The
remaining VRUs were uninvolved and uninstructed individuals
of all ages and agilities. The vehicle was equipped with a
stereo camera behind the windshield, a LiDAR in the vehicle’s
front, and a vehicle localization system. The trajectories of
all VRUs up to a distance of 25 m were recorded using the
stereo camera and a Kalman tracker. To obtain the 3D poses
of the VRUs, first, the 2D poses, i.e., the two-dimensional
coordinates of several joints in the images, were estimated
using the CNN proposed in [19] followed by a reconstruction
of plausible 3D poses using the approach from [20]. More
details on this procedure and an evaluation of its accuracy can
be found in [21]. Compared to 2D poses or other image-based
methods, 3D poses have the advantage of being independent
of the perspective of the recording camera and allow for a
compensation of the vehicle’s own motion.

Further, semantic maps were generated describing the par-
ticular scene. For that purpose, semantic segmentation of
the stereo camera images was performed using the approach

from [22]. To create a top-view semantic map, the semantic
information about the surrounding was fused with an occu-
pancy map based on the point cloud of the LiDAR. In this
way, the high positional accuracy of the LiDAR is combined
with the density of the camera images. The maps contain
ns = 8 semantic classes: Static obstacles include all types
of non-movable barriers that are not negotiable by pedestrians
and cyclists. Among these are, e.g., buildings, walls, fences,
traffic signs, or vegetation. Dynamic obstacles, on the other
hand, comprise all types of moving or parked vehicles. The
other classes are sidewalk, road, walkable vegetation, such as
meadows, and person including pedestrians and cyclists. The
remaining two classes are unknown obstacles and unknown
free space. They cover areas for which the semantic class could
not be determined. By aggregating all data in the dataset, a
map of the driven roadways was created, containing only the
invariant semantic classes. This initial map is subsequently
enhanced at each point in time by the measurements of
the immediate past resulting in an up-to-date map including
moving elements. In a real-world application, the initial map
could be replaced by commercially available high precision
maps, and the current maps could be shared between multiple
vehicles. The maps have a spatial resolution of 0.35×0.35 m2

and a temporal frequency of 25 fps. Each pixel is classified as
one of the eight classes.

The dataset contains 2351 trajectories of pedestrians and
1075 trajectories of cyclists with corresponding 3D poses and
semantic maps. Each point in time of the trajectories was
manually annotated with a motion type. The motion types
comprise the states wait, start, move, and stop for pedestrians
and cyclists. Additionally, a distinction is made between the
motion types turn left and turn right for cyclists. These two
motion types do not exist for pedestrians because they are
difficult to annotate even for humans due to the agility of
pedestrians. These annotated motion types are used solely for
a differentiated evaluation in Sec. IV-C. About 60 % each of
the pedestrian and cyclist data is used as the training set, 20 %
as validation set, and the remaining 20 % as the test set. It was
ensured that the same location does not occur in different sets
and that the motion types are distributed as equally as possible.
This is important to guarantee the generalization ability to
arbitrary locations and for a fair comparison with methods
without knowledge of the surrounding. To ensure rotational
invariance, the trajectories, poses, and semantic maps are
randomly rotated and augmented by a factor of 3 through
repeated random rotation.

The dataset including trajectories, 3D poses, semantic maps,
and motion types has been made publicly available [18]. All
the data were recorded in accordance with the guidelines of
the University of Applied Sciences Aschaffenburg and German
privacy laws.

III. METHOD

A. Discrete Probabilistic Trajectory Forecast
This work aims at forecasting probability distributions

describing the possible future locations of the VRUs dis-
cretized in time and space. Therefore, we forecast the dis-
tribution p̂tf for the forecasted time horizons tf ∈ Tf for
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which
∑
~g∈G p̂tf (~g) = 1. Here, G ⊂ R2 is a grid centered

on the current position of the respective VRU with cell
size e2 discretizing the space and p̂tf (~g) denotes the forecasted
probability for a cell with center point ~g.

1) Input Features: We train and analyze three models
based on different feature sets for trajectory forecasting:
The model based on the past trajectory, referenced hereafter
by the abbreviation d t (discrete forecasting model based
on past trajectory), uses the VRU’s two-dimensional head
position of the ground plane for each time ti in the ob-
servation period Ti. Accordingly, the feature set is given
by fd t = {[xHead,ti , yHead,ti ] | ti ∈ Ti}. The origin of the
corresponding coordinate system is the head position at the
current time tc.

The second model d tp (discrete forecasting model based
on past trajectory and poses) additionally uses 3D poses as
input. Instead of the head position, the feature vector for
time ti consists of the three-dimensional position of 13 joints
along the body. A sequence of 3D poses with associated
joint positions is shown in Fig. 1. The coordinate system
remains the same. All 3D poses are scaled in 3D space to
have the same width of the hips. Again, the final feature set
is obtained by concatenating the observation period: fd tp =
{[xHead,ti , yHead,ti , zHead,ti , ..., zLFoot,ti ] | ti ∈ Ti}. The
feature sets of both models are normalized over all training
samples using the statistical z-transformation.

Finally, the third model d tpm additionally uses the seman-
tic map mtc at current time tc to adapt the trajectory forecasts
to the particular scene. The origin of the semantic map is the
current head position of the respective VRU. The semantic
maps have the same dimensions and cell size as the forecasted
grid G. They are converted into multichannel images. Each
channel represents a binary image encoding the presence or
absence of one of the eight semantic classes mentioned above
at each particular location.

2) Network Architecture: The neural network has a two-
stream architecture (Fig. 2). The trajectory net is responsible
for processing the past trajectory and the 3D poses. Accord-
ingly, depending on the model, the feature sets fd t or fd tp
serve as input for this stream. It consists of several fully
connected layers, each followed by a Rectified Linear Unit
(ReLU) activation function. The number of layers and the
number of neurons per layer are hyperparameters chosen in
an optimization step in Sec. IV-A. As a result, this network
segment yields a feature map of size h2 with |Tf | channels.
The dimensions correspond to those of the final network out-
put p̂. The second stream, called semantic map net, processing
the semantic map consists of convolutional layers, each with
a 3× 3 filter and ReLU activation. This stream is omitted for
the models d t and d tp, as they do not consider the semantic
map. The two streams’ feature maps are concatenated along
the channel dimensions and processed in the so-called fusion
net by further convolutional layers, again with 3× 3 filter and
ReLU activation. The number of convolutional layers and the
number of filters of each convolutional layer are additional
hyperparameters. Other activation functions, filter sizes, and
the addition of pooling layers did not improve the forecasts.
The last layer is a linear convolution with 1×1 filter producing

a grid for each forecasted time horizon. Finally, a softmax
activation function is applied for each grid to obtain the final
probability distributions. We have also tested other network ar-
chitectures, such as UNets [23] or ConvLSTMs [24], achieving
similar results.

3) Training: We train the models d t and d tp by min-
imizing the cross entropy (Eq. 1) between the forecasted
distribution p̂tf ,i and target distribution ptf ,i for all N training
samples and forecasted time horizons Tf .

L = − 1

|Tf |
∑
tf∈Tf

1

N

N∑
i=1

∑
~g∈G

ptf ,i(~g) log(p̂tf ,i(~g)) (1)

The cross entropy with one-hot encoded target tends to pro-
duce overconfident, i.e., to narrow, probability distributions
that are not reliable. Typically, in order to avoid overcon-
fidence, label smoothing with uniform distribution over the
classes is applied. However, in our case, the grid cells are
spatially related. Therefore, we use spatial label smoothing:
Instead of a uniform distribution we use a Gaussian distribu-
tion ptf ,i(~g) = N~ytf ,i,σtf

(~g) with the actual grid position ~ytf ,i
as expected value and standard deviation σtf as target distribu-
tion. The standard deviations are additional hyperparameters.
Their effects are examined in Sec. IV-B.

For model d tpm the loss function (Eq. 1) is used to
consider obstacles in the surroundings. For this purpose we
define obstacles ctf ,i(~g) for sample i equaling 1 if there is an
obstacle at the cell with center point ~g and 0 otherwise. In
this context, we declare obstacles as objects of the semantic
classes static obstacles and dynamic obstacles. Thus, ctf ,i can
be derived from the semantic map mtf ,i at the respective
time. Instead of the Gaussian distribution a modified Gaussian
distribution ptf ,i(~g) = N

ctf ,i

~ytf ,i,σtf
(~g) is used as target equaling

0 at locations with obstacles. The probabilities are scaled such
that

∑
~g∈G ptf ,i(~g) = 1.

4) Evaluation Method: Several scores describing different
properties are used to evaluate the estimated probability dis-
tributions. They are introduced and explained in this section.

a) Reliability: The reliability measures whether the vari-
ances of the distributions are estimated correctly. In [9],
reliability is calculated by comparing confidence intervals of
the forecasts with the observed frequency of actual positions
within the interval. In the following, we use a similar approach
adapted to the discrete probability distributions. In favor of
clarity, we omit the index for the respective forecasted time
horizon tf below. The procedure is the same for all forecasted
time horizons. We define a set of cell center points Φ for
which the associated cells have forecasted probabilities p̂(~g)
greater than the forecasted probability at the cell of the
actual position p̂(~y) for each sample (Eq. 2). The respective
confidence level C given the actual grid position ~y and the
forecast p̂ is obtained by adding the forecasted probabilities
of all cells with the center points within the set (Eq. 3).

Φ(~y, p̂) = {~g ∈ G | p̂(~g) ≥ p̂(~y)} (2)

C(~y, p̂) =
∑

~g∈Φ(~y,p̂)

p̂(~g) (3)
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Fig. 2. Two stream network architecture with the so-called trajectory net processing the input trajectories and poses and the semantic map net receiving the
semantic maps. Boxes represent the feature maps with their dimensions given in the lower-left corner and the number of channels on top of each box.

The observed frequency fo in the dataset with M samples is
calculated according to Eq. 4 for a given confidence level 1−α.
A measure of reliability is obtained by comparing the ob-
served frequencies to the given confidence levels. Ideally, they
should be identical. A visualization is achieved by plotting
the observed frequency given the confidence level, whereby
the diagonal describes perfect reliability (see Fig. 3 for an
example).

fo(1− α) =
1

M

M∑
i=1

{
1, if C(~yi, p̂i) ≤ 1− α
0, otherwise

(4)

For a numerical evaluation of the reliability, we use a
score similar to the widely used Expected Calibration Er-
ror (ECE) [25] (Eq. 5). Here, the range of possible confidence
levels is partitioned into B bins. The score is given by the
averaged sum of the absolute difference between the observed
frequency and given confidence level weighted by the number
of forecasts jb within the respective confidence level bin. It is
averaged over all forecasted times Tf , to gain a score for the
entire forecasts.

ECE =
1

|Tf |M
∑
tf∈Tf

B∑
b=1

jb,tf |(1− αb)− fo,tf (1− αb)| (5)

This score is related to the definition of reliability obtained by
a decomposition of the Brier score [26] and is used for model
calibration in Sec. IV-B.

b) Sharpness: In order to evaluate the sharpness of the
forecasted distributions, we determine the area covered by a
specific confidence level. For this purpose we search for a
threshold τ = max(ξ) such that

∑
{p̂(~g) | p̂(~g) ≥ ξ} ≥ 1−α.

The area of a given confidence level and sample is then given
by:

A(1− α) = |{~g | p̂(~g) ≥ τ}|e2 (6)

The sharpness S (Eq. 7) is defined as the mean area Atf
of all samples of the forecasted time horizon tf normalized

to the time horizon and averaged over all forecasted time
horizons Tf .

S(1− α) =
1

|Tf |
∑
tf∈Tf

Atf (1− α)

tf
(7)

c) Positional Accuracy: The weighted average Euclidean
error (WAEE) is used to evaluate the positional accu-
racy (Eq. 8). For a given forecasted time horizon, this metric
determines the average sum of the M Euclidean distances
between each cell center point ~g in the grid and the actual
grid position ~yi,tf weighted according to the forecasted prob-
ability p̂i,tf for the cell with that center position.

WAEEtf =
1

M

M∑
i=1

∑
~g∈G

p̂i,tf (~g)‖~g − ~yi,tf ‖2 (8)

To gain a metric evaluating the forecasts over all fore-
casted time horizons, we calculate the average spe-
cific WAEE (ASWAEE). The metric normalizes and averages
the WAEE according to the forecasted time horizon (Eq. 9). It
is the probabilistic equivalent of the average specific average
Euclidean error introduced in [2].

ASWAEE =
1

|Tf |
∑
tf∈Tf

WAEEtf
tf

(9)

d) Forecasts of Obstacles Collisions: The impact of
using the semantic maps for trajectory forecasting is difficult to
quantify, as discussed in Sec. IV-C2. However, the proportion
of the probability distribution located at areas occupied by
static obstacles can be measured. This is obviously an incorrect
forecast as long as the semantic maps are assumed to be
correct. We define the so-called occupancy score Otf (Eq. 10)
for a certain forecasted time horizon as the sum of forecasted
probabilities at locations of static obstacles otf ,i. Here, otf ,i
is a binary map with value 1 at locations of static obstacles.

Otf =
1

M

M∑
i=1

∑
~g∈G

p̂tf ,i(~g)otf ,i(~g) (10)
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The metric refers only to static obstacles and not to dynamic
ones, since their movements are again a matter of probability
and therefore collisions of the forecasts with dynamic obsta-
cles are not necessarily wrong.

B. Continuous Probabilistic Trajectory Forecast

We compare our approach for probabilistic forecasting of
trajectories in discrete space with the method from [9] for
forecasting continuous probability distributions. This method
estimates the forecasts’ uncertainty in the form of Gaussian
distributions whose parameters (expected values, variances,
correlation coefficients) are forecasted by a neural network
with feed-forward architecture and fully connected layers. As
input, the approach originally uses the past head positions
of cyclists in an ego coordinate system. The ego coordinate
system has its origin in the current position of the respective
VRU, and the x- and y-axes are defined depending on the
movement direction. We train and optimize the neural network
on our dataset separately for pedestrians and cyclists. This
model is referred to as c t (continuous forecasting model based
on past trajectory). In addition, another model is created for
pedestrians and cyclists, respectively, by extending the input
feature space with poses (model c tp). The poses are rotated
according to the movement direction to obtain compatibility
with the ego coordinate system. The feature set is defined
by fc tp = {ego[xHead,ti , yHead,ti , zHead,ti , ..., zLFoot,ti ] |
ti ∈ Ti}. We refer to these comparison methods hereafter
as continuous models. The evaluation of the continuous fore-
casting models is done equivalent to the discrete models using
reliability, sharpness, and ASWAEE. However, the calculations
are realized by sampling from the continuous probability
distributions.

IV. EXPERIMENTAL RESULTS

A. Hyperparameter Optimization

We train the models d t, d tp, d tpm, c t, and c tp sep-
arately for pedestrians and cyclists, resulting in a total of
10 models. For training the networks, the adaptive moment
estimation (Adam) optimizer [27] is used as well as early
stopping as regularization technique.

We forecast probability distributions for five time hori-
zons Tf = {0.44 s, 0.96 s, 1.48 s, 2.00 s, 2.52 s} using an ob-
servation period of 1 s Ti = {−0.96 s, ...,−0.04 s, 0.00 s}
corresponding to 25 position measurements. The size of
the forecasted grid is defined such that the positions of all
pedestrians or cyclists within our dataset are located certainly
within the grid for all time horizons. For pedestrians the
size is h2 = 67 × 67 px2 and for cyclists 147 × 147 px2

corresponding to 23.45 × 23.45 m2 and 51.45 × 51.45 m2,
respectively. The size of the grids could be chosen smaller
for short time horizons. However, this was not done in favor
of a simpler network architecture and implementation. The
size of a cell equals e2 = 0.35× 0.35 m2, which corresponds
to the resolution of the semantic maps and approximately to
the area occupied by a human being. However, since the cell
size is principally a hyperparameter, its effects are examined
in Sec. IV-C3.

TABLE I
THE SELECTED HYPERPARAMETERS OF THE NETWORK ARCHITECTURE.
NOTE THAT, IN ADDITION TO THE SPECIFICATIONS IN THE TABLE, THE

FUSION NET ALWAYS CONCLUDES WITH A CONVOLUTIONAL LAYER WITH
1× 1 FILTER.

parameter d t d tp d tpm

number of hidden layers in trajectory net 4 5 5
number of neurons in trajectory net 150 50 50
number of conv in semantic map net - - 1
number of filters in semantic map net - - 8
number of conv in fusion net 2 2 2
number of filters in fusion net 10 20 20

The hyperparameters are optimized by parameter sweeps
using the validation dataset. Afterward, the networks obtaining
the lowest ECE on the validation data are trained on a com-
bined set of training and validation data and evaluated on the
test dataset. All hyperparameters of the network architecture
are optimized only for pedestrians and adopted for cyclists
to keep the computational cost reasonable. The resulting
parameters of the discrete models are summarized in Tab. I.
The final networks of models c t and c tp each consist of 2
hidden layers with 100 neurons per layer.

B. Reliability Calibration

One focus of this work is the forecast of reliable probability
distributions, as they have a safety-relevant meaning, e.g., for
path planning of autonomous vehicles. However, the use of the
cross entropy as loss function leads to overconfident distribu-
tions, which are critical for an application, e.g., path planning
of automated vehicles. The left plot in Fig. 3 shows the
reliability diagram for the model d tp for pedestrians trained
using the cross entropy evaluated on the validation dataset. The
curves fall below the ideal diagonal for all forecasted time
horizons, which characterizes an overconfident distribution.
There are considerable differences in the reliability of the dif-
ferent forecasted time horizons: For increasing time horizons,
the reliability approaches more and more the diagonal. Overall,
an ECE of 8.6 % is achieved. A popular approach to calibration
is temperature scaling [28]. Therefore, we performed temper-
ature scaling separately for each forecasted time horizon on
the validation dataset. While the reliability indeed improves
with an ECE of 6.4 %, spatial label smoothing as described
in Sec. III-A3 achieves better results on our dataset. Here,
the ECE is reduced to 4.6 %. The corresponding reliability
diagram is shown on the right in Fig. 3. The standard deviation
of the Gaussian distribution was optimized separately for each
forecasted time horizon. In each case, the standard deviation
achieving the smallest ECE on the validation dataset was
chosen. For the forecasted time horizons Tf and cell size e2

the standard deviations σ = [0.48e, 0.48e, 0.53e, 0.55e, 0.55e]
were found using model d t for pedestrians and adopted for all
discrete models. Due to the high computational costs required
to optimize the standard deviations, the values were adopted
for cyclists. An adjustment to the respective dataset could lead
to further improvements. The procedure prevents overconfident
distributions. However, the resulting reliability diagram shows
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Fig. 3. Reliability diagrams for model d tp for pedestrians using plain cross
entropy as loss function (left) and spatial label smoothing (right) evaluated on
the validation dataset. The reliability is shown for the forecasted time horizons
0.44 s (black solid line), 1.48 s (dashed red line) and 2.52 s (dotted blue line).
The ideal diagonal is plotted as dashed black line.

TABLE II
ACHIEVED ECE IN % OF ALL MODELS FOR PEDESTRIANS STRUCTURED

BY MOTION TYPES.

model all wait start move stop

c t 4.9 12.5 4.5 4.4 4.1
d t 7.1 6.0 9.5 6.7 10.3

c tp 3.4 8.2 3.3 3.2 4.2
d tp 4.5 5.4 3.5 4.3 8.2

d tpm 3.8 6.9 3.7 3.9 6.4

S-shaped curves, especially for short forecasted time horizons.
This effect is caused by discretization and will be discussed in
more detail in Sec. IV-C3. It should be noted here that reliable
models can also be achieved using small network sizes, i.e., a
small number of layers and neurons. But those networks are
not able to make sharp forecasts at the same time because they
are not able to learn the movement behavior precisely.

C. Comparison of the Various Methods

In the following, the results of the final network configu-
ration of each of the five models for pedestrians and cyclists
are presented. All results are measured on the separate test
dataset. Quantitative results following the evaluation metrics
defined in Sec. III-A4 are provided for all models in Tab. II
to IV for pedestrians and for cyclists in Tab. V to VII. Here,
the results are distinguished for the different motion types. We
discuss the impact of using poses and semantic maps on the
forecasts and investigate the influence of the cell size on the
forecasting results. Last but not least, we compare the discrete
and continuous trajectory forecasting models.

1) Impact of Poses: For pedestrians, with regard to posi-
tional accuracy, the use of poses results in a 9.7 % reduction of
the ASWAEE for the continuous forecasting approach (motion
type all for models c t and c tp in Tab. IV). For the dis-
crete method, an improvement of 7.2 % is achieved (motion
type all for models d t and d tp in Tab. IV). Meanwhile,
improvements are also observed in the reliability (Tab. II) and
sharpness (Tab. III) for both the discrete (d t and d tp) and
continuous (c t and c tp) approaches. Fig. 4 shows a compar-
ison of discrete forecasts with and without the use of poses

TABLE III
SHARPNESS S(0.95) IN m2

s
OF ALL MODELS FOR PEDESTRIANS.

model all wait start move stop

c t 2.89 2.65 3.43 2.74 3.23
d t 3.11 3.41 3.41 2.86 3.30

c tp 2.35 2.28 2.67 2.24 2.52
d tp 3.03 2.98 3.32 2.93 3.17

d tpm 3.34 3.72 3.68 3.06 3.49

TABLE IV
ASWAEE IN m

s
OF ALL MODELS FOR PEDESTRIANS.

model all wait start move stop

c t 0.57 0.51 0.65 0.56 0.61
d t 0.60 0.54 0.67 0.60 0.64

c tp 0.51 0.50 0.56 0.50 0.55
d tp 0.56 0.53 0.59 0.55 0.60

d tpm 0.57 0.55 0.62 0.55 0.61

TABLE V
ECE IN % OF ALL MODELS FOR CYCLISTS STRUCTURED BY MOTION

TYPES.

model all wait start move stop turn turn
left right

c t 6.83 15.34 12.71 6.87 4.53 12.26 20.68
d t 5.90 13.06 10.63 5.58 7.04 17.20 21.78

c tp 3.84 11.07 6.05 3.22 7.80 6.68 9.51
d tp 7.56 11.75 9.41 7.59 8.19 19.15 21.45

d tpm 8.99 11.46 12.27 9.09 9.30 18.99 19.49

TABLE VI
SHARPNESS S(0.95) IN m2

s
OF ALL MODELS FOR CYCLISTS.

model all wait start move stop turn turn
left right

c t 4.72 1.76 6.41 4.84 5.51 9.34 7.34
d t 4.61 2.48 6.61 4.66 5.57 8.19 7.52

c tp 5.38 2.56 12.22 5.26 7.14 14.92 14.35
d tp 3.47 2.01 5.36 3.48 4.13 5.87 5.87

d tpm 3.33 1.70 5.03 3.37 3.81 6.14 5.85

TABLE VII
ASWAEE IN m

s
OF ALL MODELS FOR CYCLISTS.

model all wait start move stop turn turn
left right

c t 0.68 0.37 0.93 0.69 0.79 1.10 1.08
d t 0.67 0.37 0.88 0.67 0.79 1.04 1.06

c tp 0.64 0.40 1.09 0.63 0.79 1.18 1.15
d tp 0.63 0.37 0.81 0.64 0.76 0.99 1.00

d tpm 0.62 0.37 0.82 0.63 0.74 0.99 0.99
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Fig. 4. Comparison of two exemplary forecasts of the models d t (left)
and d tp (right) for pedestrians and a forecasted time horizon of 2.52 s. The
forecasted distributions are illustrated using the logarithmic color scale on the
right ranging from red (high probability) to blue (low probability). The past
trajectory is represented by a white line/point and the actual position by a
white cross. The semantic maps can be seen in the background. (Best viewed
on screen).

to exemplify their effects. The example in the top row shows
the forecasts 2.52 s into the future of a pedestrian waiting at
the curbside. The forecast based on the past trajectory (left)
indicates continued standing as the most likely event and a low
probability of starting in different directions. In comparison,
the model d tp (right) can take the body orientation provided
by the 3D poses into account. Accordingly, the forecast of a
possible starting is made mainly towards the road. The second
example (lower row) presents a pedestrian who initially stands
at the curbside and then crosses the road. In contrast to the
trajectory based model, the model d tp using poses detects
the pedestrian’s intention to start walking and forecasts a
multimodal distribution covering a possible standing as well
as crossing the street. This is an advantage of the discrete over
the continuous methods used in this article, which cannot make
multimodal forecasts. Overall, the forecasts for pedestrians are
consistently improved by using poses for both the continuous
and discrete approach. All motion types benefit from the
additional information provided by poses. The improvement is
indicated by better positional accuracy and reliability coupled
with enhanced sharpness.

For cyclists, the ASWAEE is improved by 6.0 % for the
continuous method (c t and c tp in Tab. VII) and 4.9 % for
the discrete approach (d t and d tp in Tab. VII) by using
poses. For the continuous model, the poses also lead to a
considerable improvement in reliability (Tab. V) with slightly
larger distributions with respect to the area (Tab. VI). The area
covered by a confidence level of 95 % is huge for turning
cyclists since, in such situations, there is great variability
and uncertainty. This is also evident from the high values
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Fig. 5. Comparison of exemplary forecasts of the models d t (left) and
d tp (right) for cyclists and a forecasted time horizon of 2.52 s.

obtained for the ASWAEE for these motion types (turn left and
turn right in Tab. VII). While the use of poses improves the
positional accuracy (Tab. VII) for the discrete method (model
d tp vs d t), the reliability (Tab. V) is only enhanced for the
motion types wait, start, and turn right. For the remaining
motion types, the reliability deteriorates as the model tends
to forecast overconfident distributions. This is evident in low
values for the sharpness (d tp in Tab. VI) and could be
remedied by a separate optimization of the standard deviations
for the spatial label smoothing. Fig. 5 presents an exemplary
forecast for cyclists with (right) and without (left) poses. In
this situation, a cyclist wants to turn left at an intersection.
First, the cyclist stands in order to let oncoming traffic pass
before initiating the turn. Similar to what we have seen with
pedestrians, the model d tp forecasts a multimodal distribution
that covers continued standing as well as turning. The poses
also provide the movement direction of the cyclist.

2) Impact of Semantic Maps: The semantic maps’ impact
on the forecasts is difficult to evaluate because no measure
is known that allows for a quantification of the benefits.
The meaning of the surrounding scene can be quite different
from case to case. Therefore, identifying potential relations
and the definition of reasonable measures are difficult. For
pedestrians, the additional use of the semantic maps leads to
better reliability (d tpm in Tab. II) while the ASWAEE (d tpm
in Tab. IV) remains roughly the same compared to model d tp.
For cyclists, the ASWAEE also remains similar (d tp vs d tpm
in Tab. VII), while the reliability (Tab. V) deteriorates due to
overconfident forecasts. However, these measures reflect the
influence of semantic maps only to a limited extent. Therefore,
in the following, we illustrate the impact of semantic maps
qualitatively by some examples. In addition, we consider the
occupancy score Otf as introduced in Sec. III-A4 since it
allows the quantification of the influence of obstacles on the
forecasts. Tab. VIII reports the occupancy score for pedestrians
and cyclists, the different discrete models, and each forecasted
time horizon. For each model, the values for cyclists are
smaller than those for pedestrians (e.g. row 3 vs row 6). This
is plausible since cyclists are usually on the road and thus have
a greater distance to static obstacles. Moreover, the generally
small values in Tab. VIII indicate a relatively small impact
of the static obstacles on the forecasts in our dataset and the
forecasted time horizons considered here. The score represents
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TABLE VIII
OCCUPANCY SCORE Otf IN % OF ALL DISCRETE MODELS FOR DIFFERENT

FORECASTED TIME HORIZONS AND VRU TYPES.

model 0.44 s 0.96 s 1.48 s 2.00 s 2.52 s

pedestrians
d t 0.39 0.58 0.90 1.35 1.99
d tp 0.37 0.53 0.77 1.12 1.58
d tpm 0.26 0.37 0.48 0.58 0.68

cyclists
d t 0.13 0.16 0.28 0.41 0.64
d tp 0.13 0.16 0.27 0.40 0.63
d tpm 0.09 0.12 0.17 0.17 0.17
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Fig. 6. Comparison of exemplary forecasts of the models d tp (left) and
d tpm (right) for pedestrians and a forecasted time horizon of 2.52 s. For
better visibility, the past trajectory is shown as black line here.

the average over the entire dataset. While for most pedestrians
and cyclists, the future trajectory is sufficiently determined by
the past trajectory and poses, obstacles are indeed important
for individual examples. For the models d t and d tp without
use of the semantic maps, the score in Tab. VIII rises as the
forecasted time horizon grows, indicating an increase in the
importance of the obstacles for the forecasts. The scores for all
time horizons are reduced by considering the semantic maps
for both pedestrians and cyclists (d tpm in Tab. VIII) which
means that the forecasts of this model collide less with static
obstacles. It should be noted that the optimal score is not
necessarily zero, since the semantic maps contain errors that
can be considered by the forecasting models. Fig. 6 illustrates
the forecasts of model d tp (left) and d tpm (right) of a
pedestrian walking on the sidewalk alongside a house wall.
While the forecasted distribution of model d tp is approx-
imately symmetric with respect to the movement direction,
model d tpm considers the house wall resulting in a skewed
distribution. For cyclists, model d tpm in particular takes into
account the course of the road and the curbside. An example
of this can be seen in Fig. 7. It shows a cyclist who is just
entering an intersection. In addition to driving straight and
turning left, model d tpm also forecasts a low probability for
turning right following the curb.

3) Impact of Cell Size: To investigate the effects of the
grid cell size, the model d tp is trained for pedestrians with
a cell size of e2 = 0.175 × 0.175 m2 and compared with the
previously reported results using a cell size of 0.35×0.35 m2.
Increasing the resolution offers two potential advantages: First,
the model can provide a finer resolution of the forecasted
distribution, and second, the actual position used to train the
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Fig. 7. Comparison of exemplary forecasts of the models d tp (left) and
d tpm (right) for cyclists and a forecasted time horizon of 2.52 s.

TABLE IX
THE ACHIEVED RESULTS OF THE MODEL d tp FOR PEDESTRIANS USING A

CELL SIZE OF 0.175× 0.175m2 FOR EACH MOTION TYPE. FOR
COMPARISON, THE RESULTS OF THE SAME MODEL FOR CELL SIZE

0.35× 0.35m2 ARE PROVIDED IN PARENTHESES.

motion type ECE in % S(0.95) in m2

s
ASWAEE in m

s

all 2.99 (4.48) 2.81 (3.03) 0.53 (0.56)
wait 2.90 (5.42) 3.05 (2.98) 0.49 (0.53)
start 4.94 (3.48) 3.04 (3.32) 0.58 (0.59)
move 2.44 (4.34) 2.63 (2.93) 0.51 (0.55)
stop 7.71 (8.16) 2.91 (3.17) 0.58 (0.60)

model is also resolved more precisely. Both can have a bene-
ficial effect on the forecasting results. However, this comes at
the cost of increased demand for computational and memory
resources. The training time for a single batch of size 40
increases from 7.1 ms to 18.6 ms using an Nvidia RTX 2080 Ti
and the required graphics memory from 1.8 GB to 5.0 GB. The
increase is even greater for cyclists due to the larger grid: Here,
the training time for a single batch increases from 21.9 ms to
83.3 ms and the needed memory from 3.1 GB to 10.3 GB.
As a result, a detailed examination of the effects of the grid
cell size is not possible for cyclists and we limit ourselves
to pedestrians. However, it should be noted here that the cell
size has little effect on the inference time: For pedestrians, the
inference time remains at 1.1 ms for both resolutions, while
for cyclists it increases from 1.1 ms to 1.6 ms. This shows
that the high resource demand for a fine resolution is required
mainly during training and not during the use of the models.

Tab. IX shows the results for pedestrians obtained using the
smaller cell size. Compared to the larger cell size (given in
parentheses in Tab. IX), there is a considerable improvement
in all scores. This model even outperforms the continuous
model c tp in terms of reliability (c tp in Tab. II vs Tab. IX)
while achieving slightly worse results for the ASWAEE (c tp
in Tab. IV vs Tab. IX). A look at the corresponding reliability
diagram on the right in Fig. 8 reveals the main reason for the
improvement in reliability. Compared to the reliability diagram
of model d tp with the larger cell size (on the left in Fig. 8),
the S-shape of the curves is reduced. This particularly affects
short forecasted time horizons, since for them, the forecasted
distributions are spread over relatively small areas.
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Fig. 8. Reliability diagrams for model d tp and pedestrians using spatial
label smoothing and a cell size of 0.35 × 0.35m2 (left) and 0.175 ×
0.175m2 (right) evaluated on the test dataset. The reliability is shown for the
time horizons 0.44 s (black solid line), 1.48 s (dashed red line) and 2.52 s
(dotted blue line). The ideal diagonal is plotted as dashed black line.

4) Comparison of Discrete and Continuous Forecasting
Models: Overall, the continuous models c t and c tp achieve
better results for pedestrians in terms of reliability (Tab. II),
sharpness (Tab. III), and ASWAEE (Tab. IV) compared to the
discrete models d t and d tp with cell size 0.35 × 0.35 m2.
In contrast, for cyclists, using solely the past trajectory as
input, the discrete model achieves better scores (c t vs d t
in Tab. V to VII). The use of poses and semantic maps (d tp
and d tpm), on the other hand, leads to overconfident fore-
casts so that the reliability of the continuous model c tp
is in front. Both approaches have specific advantages and
disadvantages: The used continuous method forecasts a single
Gaussian distribution, so the type of the distribution is fixed
and multimodal distributions cannot be represented. This dis-
advantage can be observed, for example, in the reliability of
waiting pedestrians (c tp vs d tp for wait in Tab. II). Here,
the continuous method c tp cannot express the unlikely but
possible chance of a starting motion. The discrete method d tp
has no such limitations. As the examples have demonstrated,
it can express unsymmetric and multimodal distributions.
However, this comes at the cost of discretizing the space
leading to less accurate forecasts. The positions of the VRUs
can only be forecasted within the chosen grid, and the required
computational resources for the training limit the cell size. The
use of the cross entropy as loss function leads to overconfident
distributions. It can be compensated by spatial label smooth-
ing, but the determination of the necessary parameters is a
tedious process. On the other hand, the discrete method allows
the consideration of the surroundings in the form of semantic
maps. Their impact depends on the particular situation and the
forecasted time horizon. There is no continuous approach in
the literature allowing the consideration of semantic maps. It is
difficult for continuous methods to learn and predict arbitrary
distributions and to adjust them to the semantic maps.

V. CONCLUSIONS AND FUTURE WORK

In this article, we presented an approach for probabilistic
trajectory forecasting of pedestrians and cyclists considering
past movements represented by 3D poses and the surroundings
in the form of semantic maps. The forecasts are generated in
discrete grids allowing the model to learn arbitrary distribu-

tions. The impact of poses and semantic maps on the forecasts
was examined, and the forecasted distributions were evalu-
ated by their reliability, sharpness, and positional accuracy.
We compared our approach with a method for forecasting
continuous Gaussian distributions discussing their respective
advantages and disadvantages. Using the plain cross entropy as
loss function leads to overconfident distributions. This can be
prevented by applying spatial label smoothing. The resolution
of the grids has a non-negligible influence on the quality of the
results. Here, a trade-off must be made, taking into account
the required computational and memory resources. Overall,
the use of 3D poses improves the forecasts, especially through
better detection of motion type changes and body orientation.
To adequately forecast the behavior of VRUs, multimodal
and skewed distributions are advantageous which are possible
with the proposed method. The semantic maps allow a precise
adaptation of the forecasts to the individual situation. While
this leads to major improvements of the forecasts in individual
cases, the semantic maps have an overall subordinate impact
on the entire dataset and the forecasted time horizon of 2.52 s.
However, their impact increases for longer time horizons.
Therefore, the surroundings must be taken into account in
long-term forecasting.

Our future work will focus on using our approach to model
specific motion types to improve the forecasts. A preceding
motion type detection should be used to weigh the individual
models. Furthermore, we want to improve the quality of the
semantic maps contributing to better trajectory forecasts. The
impact of considering semantic maps in motion type detection
of VRUs will also be investigated.
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