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Abstract—Driving in a dynamic, multi-agent, and complex ur-
ban environment is a difficult task requiring a complex decision-
making policy. The learning of such a policy requires a state
representation that can encode the entire environment. Mid-level
representations that encode a vehicle’s environment as images have
become a popular choice. Still, they are quite high-dimensional,
limiting their use in data-hungry approaches such as reinforcement
learning. In this article, we propose to learn a low-dimensional
and rich latent representation of the environment by leverag-
ing the knowledge of relevant semantic factors. To do this, we
train an encoder-decoder deep neural network to predict multiple
application-relevant factors such as the trajectories of other agents
and the ego car. Furthermore, we propose a hazard signal based on
other vehicles’ future trajectories and the planned route which is
used in conjunction with the learned latent representation as input
to a down-stream policy. We demonstrate that using the multi-head
encoder-decoder neural network results in a more informative
representation than a standard single-head model. In particular,
the proposed representation learning and the hazard signal help
reinforcement learning to learn faster, with increased performance
and less data than baseline methods.

Index Terms—Autonomous vehicles, representation learning,
policy learning, multi-task learning.

I. INTRODUCTION

DRIVING in unstructured and dynamic urban environments
is an arduous task. Many moving agents such as cars,

bicycles, and pedestrians affect driver’s behavior and decisions.
To drive a car, a driver, whether a human being or an artificial
agent, needs to perceive and understand other agents’ behaviors,
plans, and interactions in the environment, to react accordingly.
The number of factors in the scene makes the state space of
this problem very large, and safe autonomous driving in this
complexity is an open challenge for the research community
and industry.

A central challenge related to the high complexity of the traffic
environment is representing the environment state.

Manuscript received 28 June 2021; revised 30 September 2021 and 16
December 2021; accepted 31 January 2022. Date of publication 9 February
2022; date of current version 24 October 2022. The work of Eshagh Kargar was
supported by the Academy of Finland under Grant 326346. (Corresponding
author: Eshagh Kargar.)

The authors are with the Department of Electrical Engineering and Automa-
tion, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
(e-mail: eshagh.kargar@aalto.fi; ville.kyrki@aalto.fi).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIV.2022.3149891.

Digital Object Identifier 10.1109/TIV.2022.3149891

In end-to-end methods, immediate sensor measurements are
used directly as the state for the decision-making policy [1], [2].
However, the high dimensionality of the sensor data makes its
direct use challenging, as a vast number of data are needed to
constrain the learning problem [3]. For that reason, mid-level
representations, that render all perceptual inputs together with
static information such as HD-map and route as bird’s eye view
(BEV) images, have recently received increasing attention (see
e.g. [4]–[6]). However, even the mid-level representations may
be so high-dimensional that their use with data-hungry methods
such as Reinforcement Learning (RL) is limited.

To alleviate this, we propose a new multi-task learning ap-
proach to learn low-dimensional and rich representations. In
particular, we combine the recently proposed idea to learn a
low-dimensional latent space of the mid-level image [5] with
the prediction of multiple auxiliary application-relevant tasks. A
single latent representation is extracted from the mid-level input
representations such that the latent representation is enforced
to predict the trajectories of both the ego vehicle and other
vehicles in addition to a bird’s eye view of the scene, using
a multi-head network structure depicted in Fig. 1. All heads of
the network represent the information as images, which allows
their straightforward interpretation. Also, we use the motion
prediction head result and the route to calculate a hazard signal
as an additional input to the policy. This will give the policy
information about hazardous situations and collision chance.

Experiments demonstrate that the auxiliary tasks allow the
latent vector to learn more representative information from the
scene. Therefore, a policy network can be trained faster and
performs better, even with less data than a representation based
on a single-head network trained for the optimal reconstruction
of the scene.

The primary contributions of this work are: (a) a multi-
task network with auxiliary heads to improve the quality of
low-dimensional representations, (b) a hazard signal calculated
by the likelihood between route and predicted trajectories of
dynamic agents, and (c) an experimental study of an RL policy
learning, showing that the learned latent-vector by using auxil-
iary tasks and also the hazard signal, can help the policy to be
(i) trained faster, (ii) perform better, (iii) learn to solve the task
using less data, (iv) and generalize better to new scenarios.

The rest of this paper is organized as follows. The review
of related works in Section II demonstrates that while Re-
inforcement Learning has been used in autonomous driving,
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Fig. 1. Proposed framework. A multi-head Variational Auto-Encoder is
trained using supervised learning to reconstruct a bird’s eye view image of
the scene, plan for ego car, and predict future trajectories of other vehicles.
Route and motion prediction masks are used to calculate a hazard signal.
Low-dimensional encoding of the environment and the hazard signals are used
as state for reinforcement learning.

learning a low-dimensional state space for policy learning needs
to be explored more. In Section III, we provide the required
background in Variational Auto-Encoder (VAE), Reinforcement
Learning, and Deep Q-Network. The problem definition and the
proposed method are described in Section IV, with emphasis on
the two innovations, multi-head VAE for latent representation
learning and hazard signal. Then, Section V presents empirical
evaluation in two driving scenarios showing superior perfor-
mance of the proposed approach compared to state-of-the-art.
Finally, in Section VI we conclude that using task-relevant heads
in VAE and also the generated hazard signal can help to learn
the down-stream driving policy more efficiently.

II. RELATED WORK

Reinforcement learning is a popular approach to learn a
decision-making policy in autonomous driving [2], [5], [7]–
[13]. Despite the typically data-hungry nature of RL, Kendall
et al. [1] recently demonstrated learning of a lane following
task using real-world data gathered in a single day. However,
the complexity of complex traffic environments requires great
amounts of data since the state space of the decision making
problem is vast.

A solution to the high-dimensional state space is to first learn
a low dimensional representation of the scene from raw sensor
data. The low dimensional representation can then be used as
input to a decision making policy. This can be achieved e.g. by
training a Variational Auto-Encoder (VAE) to form a latent
representation of sensor data such as camera images [14].

Another approach to address the problem of high-dimensional
state space is to use a mid-level representation, such as a bird’s
eye view of the current scene, as the state space. The mid-level
representations can be constructed by engineered perception
modules or by learning the mapping from sensor measurements
to the mid-level representation [15]. Such representations are
useful because they can capture the entire traffic environment
around the vehicle in an interpretable fashion, but their dimen-
sionality will still be high. Thus, techniques that increase the
amount of available data are needed to use the mid-level repre-
sentations directly. For example, Bansal et al. [4] proposed to use
data augmentation to learn to imitate a driving policy using bird’s
eye view images as input. Similar mid-level representations can
also be used for motion forecasting [16]–[20].

It is also possible to combine mid-level input with learning a
low-dimensional representation. Chen et al. [5] trained a VAE to
reconstruct a bird’s eye view image of the scene with rendered
mid-level information, and then used the latent representation
as input to an RL agent.

To further constrain the learned latent representation to be
useful, auxiliary tasks that are semantically relevant to the
driving problem can be used. Hawke et al. [21] proposed to
use auxiliary tasks in the sensor space of camera images that
output segmentation, monocular depth, and optical flow to learn
a better representation. The learned mid-level feature map was
then used to train a policy to output control commands using
imitation learning.

Our work combines the learning of low-dimensional repre-
sentations from mid-level representations with the use of aux-
iliary tasks to further constrain the learned representation. The
proposed approach uses motion prediction of other agents as
one of the auxiliary tasks, which allows us to propose a novel
hazard signal that can be further used in reinforcement learning
to inform of potential collisions during the learning process.

III. BACKGROUND

Next we will outline the required theoretical concepts be-
hind the proposed method, including Variational Auto-Encoders
(VAEs), Reinforcement learning, and Deep Q-Networks.

A. Variational Auto-Encoder

Auto-Encoder (AE) is a type of artificial neural network used
in data embedding and reconstruction with an encoder-decoder
structure aiming to learn a compact and low-dimensional rep-
resentation z for high-dimensional input data x. Variational
Auto-Encoder (VAE) extends AE by mapping input data to a
distribution instead of a value. To learn compact representations,
the latent distribution is subjected to a prior p(z), typically a
normalized Gaussian distribution.

The latent representation is then learned by minimizing the
loss function [22]

Lvae(φ, θ) = −Eqθ(z|x)log(pφ(x|z)) +Dkl(qθ(z|x)||p(z))
(1)
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where qθ(z|x) is the encoder network mapping inputs to latent
space, pφ(x|z) is the decoder network, and Dkl term is the KL-
divergence between the encoder output and the prior. The first
term of (1) corresponds then to the reconstruction error. The
second term enforces the representation to be compact.

In order to improve disentanglement of the representation,
β-VAE was introduced in [23] that instead of considering the
KL-divergence between encoder and prior directly as a cost
term, constrains the KL-divergence by an upper bound. Using
Karush-Kuhn-Tucker conditions, the constrained optimization
can be written using a Lagrangian factor β as an unconstrained
optimization problem as

Lβ−vae(φ, θ)=−Eqθ(z|x)log(pφ(x|z))+βDkl(qθ(z|x)||p(z)).
(2)

When β = 1, this corresponds to the regular VAE. Increasing β
encourages more disentanglement with the cost of reconstruc-
tion quality.

B. Reinforcement Learning

Reinforcement learning aims to find an optimal control policy
π : S → A from states to actions that maximizes total expected
future rewards

R(π) = Eπ

[∑
t

γtr(st, at)

]
(3)

where st, at, r, and γ are state at time t, action at time t, reward,
and discount factor, respectively.

Value-function based RL solves the RL problem by deter-
mining an optimal value function Q : S,A→ R that describes
the expected cumulative rewards when starting from a particular
state and choosing a particular action

Q∗(s, a) = max
π

E

[∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
. (4)

Knowing the optimal value function, an optimal policy π∗ can
then be determined as π∗(s) = argmaxaQ

∗(s, a).

C. Deep Q-Network

In continuous state spaces with unknown dynamics, it is
usually impossible to determine the value function exactly. Deep
Q-Networks (DQNs) [26] are a successful RL algorithm that
use a deep neural network Q(s, a;ψ) to approximate the value
function whereψ are the parameters of the neural network. DQN
also uses a replay bufferD = {(s, a, r, s′)} to store experiences
from past to expedite and stabilize learning. To further stabilize
the learning, DQN defines a target Q-network with parameters
ψ′ which are updated only every τ steps to the current ψ. To
optimize ψ, the Q-learning loss

LDQN (ψ)=EU (D)

[(
r+γmax

a′
Q(s,′ a′;ψ′)−Q(s, a, ψ)

)2
]

(5)
is minimized for a uniform sample of transitions sampled
from D.

Fig. 2. Illustration of input channels: (a) the bird’s eye view rendered RGB
image, (b) road area, (c) lane lines, (d) lane centers, (e) route, (f) dynamic object’s
pose at the current time-step, (g) motion history of dynamic objects, (h) ego car’s
pose at the current time-step, (i) motion history of the ego car, (j) green traffic
light, (k) yellow traffic light, and (l) red traffic light.

IV. METHOD

The proposed method consists of two parts as illustrated in
Fig. 1. First, a low-dimensional latent representation for bird’s
eye view images is constructed (left). Second, a driving policy is
learned using the low-dimensional representation and a hazard
signal that is formed from predicted future trajectories of other
vehicles (right).

In the following, we first describe the mid-level represen-
tation used as the input (Section IV-A). We then explain how
the latent representation is learned using a multi-head VAE
(Section IV-B). We continue by defining the hazard signal in
Section IV-C. Finally, in Section IV-D we describe the policy
learning.

A. Mid-Level Input Representation

Information in the mid-level input representation includes
road relevant structures, planned route, current and past poses
of ego vehicle and other vehicles, and traffic light state. These
mid-level inputs are selected based on BEV input representation
used in the previous works [4]. Each of these is described using
one or more channels of a 11-channel image, as illustrated in
Fig. 2.

In simulation experiments, the perception and route informa-
tion is provided by the CARLA simulator [24].

The information is represented as follows:
1) Map: The HD-Map information includes drivable areas,

lane lines, center of lane lines, and curbs, as shown in
Fig. 2(b–d).

2) Route: The route from a starting point to the current des-
tination is assumed to originate from an external planning
system such as a standard vehicle navigator. An example
is shown in Fig. 2 (e).

3) Current and Past Poses of Other Vehicles: The current and
past position, orientation, and size of other cars are ren-
dered on two different channels, presented in Fig. 2(f–g).
We consider 1.5s of motion history for dynamic targets in
the scene. This information can come from the perception
module with object detection and tracking algorithms and
can produce other cars’ current and past poses input chan-
nels by rendering these data on a single channel image.
Note that the data from previous time-steps needs to be
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transferred to the coordinate frame of the ego car in the
current time step.

4) Current and Past Ego Vehicle Poses: The current and past
position, orientation, and size of the ego vehicle are ren-
dered on two different channels, described in Fig. 2(h–i).
We consider 1.5s of motion history for ego vehicle. This
information can come from the Localization module.

5) Traffic Lights: The information for different traffic light
colors are rendered on three different channels for green,
red, and yellow as shown in Fig. 2(j–l). Traffic lights’
locations are usually available in the HD-Map, and their
color can be detected using the perception module.

BEV dimensions are 25 m on the left and right side, 37.5 m
in front, and 12.5 m behind the ego car.

B. Learning Latent Representation Using Multi-Head VAE

To constrain the learning of the latent representation, it is en-
forced to learn three task-relevant factors: scene reconstruction,
ego vehicle plan, and predicted motion of other vehicles. To do
this, we use an encoder-decoder VAE which takes the 11-channel
scene as the input to the encoder qθ(z|x). The encoder transforms
its input into a low-dimensional latent distribution z. The latent
distribution is decoded into the three factors such that each
factor is a separate decoder head of the neural network. The
architecture for the multi-head VAE is illustrated in Fig. 1 in the
“VAE training” box.

The three decoder networks are:
1) Scene Reconstruction Head: gets the latent vector z and

reconstructs a three-channel bird’s eye view RGB image
of the scene rgb, rendered based on the 11-channel input
similar to e.g. [5]. The neural network for this head is
expressed by pφ1

(rgb|z).
2) Planning Head: maps the latent vector to a single-channel

bird’s eye view planning mask for the ego vehicle for the
next 2 s. This head is represented by pφ2

(plan|z).
3) Motion Prediction Head: forecasts the next 2s pose of

dynamic agents in the scene. It gets the latent-vector z
and outputs a bird’s eye view mask of other agents’ future
motion. It is expressed by pφ3

(pred|z).
The network architecture for each of the decoder heads is

the same, but the network weights φ1, φ2, φ3 are different. The
multi-head VAE is optimized by minimizing the loss function

L(θ, φ1, φ2, φ3) = − w1Eqθ(z|x)log(pφ1
(rgb|z))

− w2Eqθ(z|x)log(pφ2
(plan|z))

− w3Eqθ(z|x)log(pφ3
(pred|z))

+ w4Dkl(qθ(z|x)||p(z)) (6)

with p(z) a normal distribution prior. The optimization is per-
formed by gradient descent using a dataset of known trajectories
in order to be able to train the planning and prediction heads.

C. Generation of Hazard Signal

To quantify the degree of conflict between ego car’s and other
vehicles’ trajectories, we calculate a hazard signal h as the

log-likelihood that the predicted motion of other vehicles and
known planned route are equal under Gaussian noise.

h=logP (route− pred = 0)=
∑
i

logP (routei−predi=0)

(7)
where the difference has Gaussian distribution, (routei −
predi) ∼ N(0, 1) for each pixel i independently. By substituting
the normal distribution density function to (7), we get

h = −
∑
i

(routei − predi)
2

2
+ c. (8)

Thus, in the end the hazard signal is the sum of squared difference
between pixel values between own route and predicted routes of
other agents represented as images.

The calculated hazard signal is used in addition to the latent
encoding as input to the RL policy as shown in Fig. 1.

D. Policy Learning Using DQN

In order to evaluate the learned latent space, a DQN policy
learning is considered as a down stream task. The DQN policy
can be replaced with any other policy learning method. The latent
encoding of the current state and the current hazard signal value
form the input space to a DQN agent such that s = (μz, h),
with μz representing the mean of the current latent encoding
(see Fig. 1). The action space is a vector of three values for
throttle, brake, and steering angle, a = (at, ab, as), such that
each dimension is discretized into discrete choices.

The reward function is a sum of terms related to collisions,
performance, obeying traffic rules (staying in lane, obeying
traffic lights), and comfort:

r = rc + rv + ro + rα + rw + rtl + c (9)

where rc is a collision penalty, rv is a speed reward term to match
desired speed, ro is an out-of-lane penalty, rα is the steering
angle penalty to improve driving comfort, rw is penalty for high
lateral acceleration, rtl is the penalty term for passing red traffic
lights, and c is a constant time penalty [5]. Section V-B reveals
more details about the weight for each reward term. The policy
is then learned using standard DQN.

V. EXPERIMENTS

We performed simulation experiments to study the following
questions:

1) How much is the effect of auxiliary heads and the gener-
ated hazard signal?

2) How our method with auxiliary heads and the hazard
signal performs compared to baselines?

3) Can we decrease the dataset size by using auxiliary heads?
4) Can latent space learn about the scene structure, future

potential trajectories for the ego agent and other agents?
5) How is the generalization capability of the proposed

method compared to other methods?



KARGAR AND KYRKI: INCREASING THE EFFICIENCY OF POLICY LEARNING FOR AUTONOMOUS VEHICLES 705

Fig. 3. Scenarios: (a) roundabout and (b) 5-way intersection.

In the following sections, first, the simulation environment
and data collection have been described. Then, the implemen-
tation details of the multi-head VAE and policy network archi-
tectures and also the reward function are detailed. After that,
the effect of different heads in the multi-head VAE is evaluated
to answer question 1. The proposed method is then compared
with state-of-the-art methods to answer question 2. Dataset size
effect is evaluated next to answer question 3. Then, a qualitative
analysis of the learned latent-vector is done to answer question
4. Finally, to answer question 5, the generalization capability
of the proposed approach is evaluated. All experiments were
repeated for a set of five identical random seeds for each case.

A. Simulation Environment and Data Collection

To collect the dataset to train the multi-head VAE, we used
the CARLA simulator [24], an open-source simulator for au-
tonomous driving, to collect the dataset. We designed two
scenarios to collect the dataset: a roundabout and a complex
intersection shown in Fig. 3. There are no traffic lights at the
roundabout, but there are several at the intersection. For data
collection phase for VAE training, we start from a random
position around the start positions shown in the figure and
select the destination randomly in the city. But for RL training
phase, to add stochasticity, start and end positions are considered
randomly around the positions shown in the figure.

For the data collection phase, 100 vehicles were spawned ran-
domly in Town number three in CARLA and near the designed
scenarios. We used CARLA autopilot mode to drive and collect
a dataset.

By recording all agents’ poses in each time-step during driv-
ing, we had the required information to create the dataset without
any manual labeling. To create the ground truth data for motion
prediction and planning heads, we used the ego car’s pose and
other agents in the next time-steps, transformed them into the
current ego vehicle’s coordinate frame, and rendered them on
a binary image. So it did not require manual labeling and was
done in a self-supervised manner. The dataset size is around
200 k frames.

For the RL policy learning phase, we used curriculum learning
and increased number of agents from zero to 100 to increase
the difficulty level step-by-step. We also set 20 percent of cars
to ignore traffic lights and have aggressive driving behavior

in both data collection for multi-head VAE training and RL
policy training. Therefore, there is a need for multi-agent inter-
action and attention to other cars’ movements in the intersection
scenario.

B. Implementation Details

Fig. 1 shows the multi-head VAE architecture in the “VAE
training” box. The encoder was a ResNet-18 [25] in which
the first Convolutional layer had changed to get a BEV
64 × 64 × 11 input tensor. The output feature vector of the
ResNet network had the size of 512. Then we used two fully
connected layers with 20 neurons to output μ and σ vectors for
a Gaussian distribution on latent-space. Then the latent-vector
was sampled from this distribution. There were three decoder
heads with similar architecture but different weights. We used
a network similar to ResNet-18 but in inverse order for decoder
heads. The output of planning and prediction heads had one
channel, but the reconstruction head had three channels for the
output RGB image.

The weights used for the loss terms were w1 = 1, w2 =
1, w3 = 50, and w4 = 50 and were found using grid search.

The DQN policy, which is shown in the “RL training” box
in Fig. 1, is a network with three fully-connected layers with
128, 64, and nine (output) neurons that gets the input vector
with the size of 21 and generate the control commands. Output
control commands of the policy network are: (1) acceleration
∈ {−0.3, 0, 0.3} which positive value is for throttle, negative
value for brake, and zero for braking and throttle, and (2) steering
∈ {−0.15, 0, 0.15}.

The terms of the reward function (9) were set as follows:
The collision penalty rc was set to rc = −200 if there is a
collision, otherwise rc = 0. The speed reward rv was set to the
ego vehicle’s speed, 10 m/s, and if rv > 10 m/s then a penalty
of −10 will be added to the reward function. The going out
of lane penalty ro was set to ro = −1 if the distance between
the ego vehicle’s position and the planned route is more than
2.5 m, otherwise ro = 0. The steering angle penalty rα was set
to rα = −0.5× α2. The high lateral acceleration penalty rw was
set to rw = −0.2× w, where w is the lateral acceleration. The
passing red traffic lights penalty term rtl (only in the intersection
scenario) was set to rtl = −10 if the ego vehicle passes a red
traffic light, otherwise rtl = 0. Finally, the constant time penalty
c was set to −0.1 to prevent the car from stopping.

C. Effect of Different Heads and the Hazard Signal

To answer question 1 and see the effect of each head on the
learned latent-vector and the proposed hazard signal, a down-
stream RL task, DQN agent, was considered. The VAE with
a reconstruction head proposed in [5] was considered as the
baseline (dqn_rec). Four other models are trained to analyze
the effect of each head and the hazard signal: (a) VAE with
reconstruction and planning heads (dqn_rec_plan), (b) VAE with
reconstruction and motion prediction heads (dqn_rec_pred), (c)
VAE with reconstruction, planning, and motion prediction heads
(dqn_rec_plan_pred), and (d) VAE with auxiliary hazard signal
in addition to three heads in case c (dqn_rec_plan_pred_hzrd).
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Fig. 4. Analysis of the effect of different VAE decoder heads and the hazard
signal on the down-stream RL task’s performance in two scenarios: (a) round-
about and (b) 5-way intersection.

All networks are trained using the full dataset. Then the
encoder of each case was used as the feature extractor for the
DQN agent. The encoder weights were fixed, and we only trained
DQN weights in this phase. For case d, the DQN agent also used
the hazard signal. Fig. 1 shows the full model used in case d.

Fig. 4 shows the comparison. Our proposed method
(dqn_rec_plan_pred_hzrd) outperformed all other cases,
achieved a higher mean reward, and solved the task in both
roundabout and intersection scenarios. The baseline method
(dqn_rec) cannot solve the task, but by adding the planning head,
the agent can finally solve the task in some episodes and reach the

destination. We can also see the effect of planning and prediction
heads by comparing the VAE with reconstruction and prediction
heads (dqn_rec_pred) against the VAE with reconstruction and
planning heads (dqn_rec_plan). It shows that the motion pre-
diction head that has information about other dynamic agents’
future motion can be more beneficial than the planning head and
improve the down-stream task’s performance by a large margin.
We can also see that using both planning and prediction heads
in addition to the reconstruction head (dqn_rec_plan_pred) can
outperform using planning and prediction heads separately. Note
that reaching the destination threshold shown in the charts isn’t
an exact value, but rather an area resulting from several runs
of the full method (dqn_rec_plan_pred_hzrd) with different
random seeds.

D. Comparison to Baselines

This section compares our method with four baseline ap-
proaches in order to answer question 2. The proposed multi-
head VAE with three decoder heads and also the calcu-
lated auxiliary hazard signal as input to the DQN agent
(dqn_rec_plan_pred_hzrd), shown in Fig. 1, was compared with:
(a) an encoder and a policy network which are trained end-to-
end using RL, similar to the DQN work on Atari games [26],
to get the BEV input tensor and generate control commands
(dqn_cnn_e2e), (b) a single-head VAE with a reconstruction
head (dqn_rec) [5] which was pre-trained using supervised
learning and then the weights were fixed, and the encoder
was used as the feature extractor for BEV input tensor, (c)
SAC-AE (sac_ae) [27], a variant of the standard SAC, which
is more sample efficient than standard SAC and performs better
in environments with image inputs, and (d) CURL (curl) [28]
which uses a contrastive unsupervised representation learning
approach for RL algorithms. Then the DQN agent used the
encoded latent-vector as input to generate control commands.

Fig. 5 shows the comparison in two scenarios in terms
of average reward. As can be seen, our proposed method
(dqn_rec_plan_pred_hzrd) could solve both tasks and exceeded
other methods by a considerable margin. Following our method,
none of the baselines could solve the roundabout scenario, and
VAE with reconstruction head (dqn_rec) performed better than
other baselines. In the intersection environment, CURL (curl)
worked very well and was able to accomplish the task in some
runs and outperformed other methods. The next best was the
VAE with reconstruction head (dqn_rec). The SAC-AE (sac_ae)
also performed poorly in this environment.

We ran the trained models in two different scenarios to com-
pare different methods in terms of crash percentage and success
rate. The reported results in [5] for DDQN [29] algorithm show
0% success rate of reaching the goal position in the roundabout
scenario and we found the same results for the dqn_rec method.
However, our method performed better and reached the success
rate of 5± 2% in three different runs, each consisting of 100
episodes. But it was not sufficient to get a good understanding
of the performance differences. Therefore, instead of using DQN
for both lateral and longitudinal control, we decided to use DQN
for speed control only and use a PID controller for steering
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Fig. 5. Comparison of the proposed method against baselines in two scenarios:
(a) roundabout and (b) 5-way intersection.

control. We only did this for the results reported in the Tables I,
II, and III, not for the charts. Also, note that the reported numbers
for crash and success in each case do not necessarily add up to
100% and the ego car also can reach the maximum episode time.
Additionally, we set 50% of cars to ignore traffic lights in the
5-way intersection scenario to make a more complex interactive
scenario.

Tables Iand II show the crash percentage and success rate
for different methods in two scenarios for different numbers of
spawned cars in the city, respectively. When we reduced the
number of spawned cars, all methods performed better. In both
scenarios, our method had a lower crash percentage and a higher

TABLE I
THE CRASH PERCENTAGE IN 3 RUNS, 100 EPISODES EACH, FOR TWO

SCENARIOS: ROUNDABOUT AND 5-WAY INTERSECTION

TABLE II
THE SUCCESS RATE IN 3 RUNS, 100 EPISODES EACH, FOR TWO SCENARIOS:

ROUNDABOUT AND 5-WAY INTERSECTION

TABLE III
THE RATE OF PASSING TRAFFIC LIGHT IN 3 RUNS, 100 EPISODES EACH, FOR

THE 5-WAY INTERSECTION SCENARIO WHEN 100 CARS ARE

SPAWNED IN THE CITY

success rate. Following that, in the roundabout scenario, SAC-
AE (sac_ae) and then VAE with reconstruction head (dqn_rec)
performed better than the others.

After our method, SAC-AE (sac_ae), CURL (curl), and VAE
with reconstruction head (dqn_rec) all performed almost iden-
tically in the 5-way intersection scenario. This emphasizes the
importance of motion prediction and hazard signals that assist
ego cars to handle interactions with aggressive vehicles at an
intersection. Note that the episode was not terminated when the
car passed a red traffic light in the intersection scenario, and the
reported success rate numbers indicate the car reached the goal
position even when it passed a red traffic light.

To compare the performance of methods in terms of respect-
ing traffic lights, we evaluated them in the 5-way intersection
scenario. The results are detailed in Table III. As we didn’t see
much difference in the performance of different algorithms with
a lower number of spawned cars, we only reported the case for
100 spawned cars in the city.

Our method outperformed others by a large margin, as shown
in Table III. This is because of the motion planning head, which
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has to imitate the driving experience of expert drivers in order
to learn the correct driving response in this situation, red traffic
light.

E. Effect of the Dataset Size

In this part we try to investigate question 3. Several models
were trained using different dataset sizes to show the ben-
efit of using multiple decoder heads and the hazard signal
on the learned latent-vector and the down-stream task’s per-
formance. The full model, shown in Fig. 1, was trained us-
ing the full dataset (dqn_rec_plan_pred_hzrd_full), half of the
dataset (dqn_rec_plan_pred_hzrd_half), and a quarter of the
dataset (dqn_rec_plan_pred_hzrd_quart). We then compared
them against the baseline VAE [5] with just a reconstruction
decoder (dqn_rec) trained on the full dataset. For our proposed
method, a DQN agent was trained to get the concatenation
of the latent-vector and the hazard signal and output control
commands. Note that for the baseline, there is no hazard signal,
as there is no prediction head.

The results, shown in Fig. 6 for two scenarios, present better
performance of our proposed method even when it was trained
with a quarter of the dataset. The case trained with half of the
dataset can solve the intersection scenario for some runs, but the
model trained with a quarter of the dataset cannot; however, it
outperformed the baseline.

F. Qualitative Analysis

In this section, we explore the latent-space to answer question
4. The learned latent-vector has 20 elements some of which have
almost zero standard deviation and changing their value do not
cause any difference in outputs. We tested several latent space
sizes. Low latent sizes push the network to mix information in
latent elements. So, the disentanglement of latent elements will
be lower, and by changing the latent element’s value, multiple
elements will change in the reconstruction heads. On the other
hand, by considering higher latent space sizes, most of the
elements will be zero, and it doesn’t guarantee to have more
disentanglement in latent space. We selected 20 as a number
in between, but we have some latent elements close to zero
with a low standard deviation. Note that we do not try to solve
the disentanglement problem here. Fig. 7 shows the results for
three latent elements. We used a sample input from dataset and
encoded it to get the latent-vector. Then for each latent element
i, we changed its value from μi − σi to μi + σi while other
latent elements were fixed. By exploring latent-space, we see
changes in different factors in the scene such as road structure,
traffic light color, route, dynamic objects pose, planning, and
motion prediction. This shows the meaningfulness of the learned
latent-space. We can also see the harmony between different
heads’ outputs when changing latent values.

G. Generalization Analysis

In order to answer question 5, we evaluated the generalization
capability of the proposed method by running the trained model
on the 5-way intersection scenario in a new 4-way intersection

Fig. 6. Analysis of the effect of different dataset sizes on the down-stream RL
task in two scenarios: (a) roundabout and (b) 5-way intersection.

scenario, shown in Fig 8, without any further training and fine-
tuning.

Due to no further training on the new scenario, the perfor-
mance of all algorithms was lower than the 5-way intersection
scenario in terms of crash percentage and success rate met-
rics. Nevertheless, our method outperformed other methods, as
shown in Table IV. Furthermore, we realized that sometimes the
car sticks and doesn’t move at all, which can be due to changing
the scene and out of distribution input image. The results also
reveal that the passing traffic light metric does not change that
much in the new 4-way intersection, which illustrates that the
network has learned about the traffic light colors and rules and
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Fig. 7. Latent-space exploration. The left plot shows the violin-plot of the
learned latent-space – mean, standard deviation, min, and max – for training
dataset. The right hand side figures show outputs of the multi-head VAE when
the ith latent element is changed from μi − σi to μi + σi. μi, σi are mean
and standard deviation of the ith element for the whole training dataset. We
show only the results of exploring three latent elements: 4th, 17th, and 20th. A
video with more examples of latent space exploration can be found at: https:
//youtu.be/5Tk8j6LXBmAhttps:// youtu.be/ 5Tk8j6LXBmA.

Fig. 8. The 4-way intersection for generalization analysis.

TABLE IV
THE CRASH PERCENTAGE, SUCCESS RATE, AND RATE OF TRAFFIC LIGHT

PASSING IN 3 RUNS, 100 EPISODES EACH, FOR THE TRAINED MODEL ON THE

5-WAY INTERSECTION SCENARIO AND EVALUATED IN THE 4-WAY

INTERSECTION SCENARIO

can generalize to new scenarios. But the new road and scene
structure causes weaker performance in the crash percentage
and success rate.

VI. CONCLUSION

Machine learning presents an important avenue to handle
the complexity of situations in autonomous driving but its
applicability is significantly hindered by the huge amounts of
data needed for learning. In this paper, we proposed a multi-head
VAE network with a bird’s eye view input and task-relevant
heads to learn efficient latent-space representations. These rep-
resentations can then be used to train a driving policy more
efficiently. Experimental comparison against baselines in two
scenarios showed that the use of task-relevant heads in represen-
tation learning improves policy learning in four ways: the policy
quality is better, the learning converges faster, policy learning
requires less data, and the learned policy generalizes better to
new scenarios. The proposed approach can be easily extended
to other task-relevant factors if they can be encoded as images.

In real traffic environments, multiple vehicles with different
driving policies interact with each other. In this case, general-
ization capability of a representation would likely benefit from
disentanglement of that representation with respect to the differ-
ent actors. The use of multi-task learning similar to this paper
thus seems to provide a valuable avenue towards autonomous
driving in complex traffic conditions.

ACKNOWLEDGMENT

The authors would like to thank CSC-IT Center for Science,
Finland, for generous computational resources and also would
like to thank the computational resources provided by the Aalto
Science-IT project.

REFERENCES

[1] A. Kendall et al., “Learning to drive in a day,” in Proc. IEEE Int. Conf.
Robot. Automat., 2019, pp. 8248–8254.

[2] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban
autonomous driving with latent deep reinforcement learning,” IEEE Trans.
Intell. Transp. Syst., to be published, doi: 10.1109/TITS.2020.3046646.

[3] M. Müller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driving pol-
icy transfer via modularity and abstraction,” in Proc. 2nd Annu. Conf.
Robot Learn., (CoRL), Zürich, Switzerland, 29–31, ser. Proc. Mach.
Learning Res. (PMLR), vol. 87, 2018, pp. 1–15. [Online]. Available:
http://proceedings.mlr.press/v87/mueller18a.html

[4] M. Bansal, A. Krizhevsky, and A. S. Ogale, “Chauffeurnet: Learn-
ing to drive by imitating the best and synthesizing the worst,” in
Robot, Sci. Syst. XV, Univ. Freiburg, Freiburg, Germany, vol. 15,
2019.

[5] J. Chen, B. Yuan, and M. Tomizuka, “Model-free deep reinforcement
learning for urban autonomous driving,” in Proc. IEEE Intell. Transp.
Syst. Conf., 2019, pp. 2765–2771.

[6] E. Kargar and V. Kyrki, “Vision transformer for learning driving policies
in complex multi-agent environments,” 2021, arXiv:2109.06514.

[7] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker, “High-
level decision making for safe and reasonable autonomous lane changing
using reinforcement learning,” in Proc. IEEE 21st Int. Conf. Intell. Transp.
Syst., 2018, pp. 2156–2162.

[8] P. Wang and C.-Y. Chan, “Formulation of deep reinforcement learning
architecture toward autonomous driving for on-ramp merge,” in Proc.
IEEE 20th Int. Conf. Intell. Transp. Syst., 2017, pp. 1–6.

https://youtu.be/5Tk8j6LXBmA
https://youtu.be/5Tk8j6LXBmA
https://youtu.be/5Tk8j6LXBmA
https://dx.doi.org/10.1109/TITS.2020.3046646
http://proceedings.mlr.press/v87/mueller18a.html


710 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 7, NO. 3, SEPTEMBER 2022

[9] T. Shi, P. Wang, X. Cheng, C.-Y. Chan, and D. Huang, “Driving de-
cision and control for automated lane change behavior based on deep
reinforcement learning,” in Proc. IEEE Intell. Transp. Syst. Conf., 2019,
pp. 2895–2900.

[10] S. Kuutti, R. Bowden, H. Joshi, R. de Temple, and S. Fallah, “End-to-end
reinforcement learning for autonomous longitudinal control using advan-
tage actor critic with temporal context,” in Proc. IEEE Intell. Transp. Syst.
Conf., 2019, pp. 2456–2462.

[11] N. Deshpande and A. Spalanzani, “Deep reinforcement learning based
vehicle navigation amongst pedestrians using a grid-based state represen-
tation,” in Proc. IEEE Intell. Transp. Syst. Conf., 2019, pp. 2081–2086.

[12] S.-H. Kong, I. M. A. Nahrendra, and D.-H. Paek, “Enhanced off-policy
reinforcement learning with focused experience replay,” IEEE Access,
vol. 9, pp. 93152–93164, 2021.

[13] B. R. Kiran et al., “Deep reinforcement learning for autonomous driv-
ing: A survey,” IEEE Trans. Intell. Transp. Syst., to be published,
doi: 10.1109/TITS.2021.3054625.

[14] R. Bonatti, R. Madaan, V. Vineet, S. Scherer, and A. Kapoor, “Learning vi-
suomotor policies for aerial navigation using cross-modal representations,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 1637–1644.

[15] M. Itkina, K. Driggs-Campbell, and M. J. Kochenderfer, “Dynamic envi-
ronment prediction in urban scenes using recurrent representation learn-
ing,” in Proc. IEEE Intell. Transp. Syst. Conf., 2019, pp. 2052–2059.

[16] H. Cui et al., “Multimodal trajectory predictions for autonomous driving
using deep convolutional networks,” in Proc. IEEE Int. Conf. Robot.
Automat., 2019, pp. 2090–2096.

[17] H. Cui et al., “Deep kinematic models for kinematically feasible vehicle
trajectory predictions,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
IEEE, 2020, pp. 10 563–10 569.

[18] F.-C. Chou et al., “Predicting motion of vulnerable road users using high-
definition maps and efficient convnets,” in Proc. IEEE Intell. Veh. Symp.
4th, 2020, pp. 1655–1662.

[19] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff,
“Covernet: Multimodal behavior prediction using trajectory sets,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 14 074–14 083.

[20] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior prediction,” in
Proc. Conf. Robot Learn., 2019, pp. 86–99.

[21] J. Hawke et al., “Urban driving with conditional imitation learning,” in
Proc. IEEE Int. Conf. Robot. Automat., 2020, pp. 251–257.

[22] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
Proc. 2nd Int. Conf. Learn. Representations, ICLR, Banff, AB, Canada,
Apr. 2014.

[23] I. Higgins et al., “Beta-VAE: Learning basic visual concepts with a
constrained variational framework,” in ICLR, 2017.

[24] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun, “Carla:
An open urban driving simulator,” in Proc. Conf. Robot Learn., 2017,
pp. 1–16.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[26] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, 2015.

[27] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus,
“Improving sample efficiency in model-free reinforcement learning from
images,” in Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, pp. 10 674–10
681, May 2021. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/17276

[28] M. Laskin, A. Srinivas, and P. Abbeel, “CURL: Contrastive unsupervised
representations for reinforcement learning,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 5639–5650.

[29] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proc. 13th AAAI Conf. Artif. Intell., ser. AAAI’16.
AAAI Press, 2016, 2016, pp. 2094–2100.

Eshagh Kargar received the B.Sc. and M.Sc. de-
grees in electrical engineering from the University
of Tehran, Tehran, Iran, in 2013 and 2016, respec-
tively. In 2019, he joined the Intelligent Robotics
Group, Aalto University, Helsinki, Finland, where he
is currently working toward the Doctoral degree. His
primary research interests include robotic perception,
decision making, and learning.

Ville Kyrki (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science from the
Lappeenranta University of Technology, Lappeen-
ranta, Finland, in 1999 and 2002, respectively.

From 2003 to 2004, he was a Postdoctoral Fellow
with the Royal Institute of Technology, Stockholm,
Sweden, after which he returned to the Lappeenranta
University of Technology, holding various positions
from 2003 to 2009. During 2009–2012, he was a
Professor of computer science with the Lappeenranta
University of Technology. Since 2012, he has been

an Associate Professor of intelligent mobile machines with Aalto University,
Helsinki, Finland. His primary research interests include robotic perception,
decision making, and learning.

Dr. Kyrki is a Fellow of the Academy of Engineering Sciences, Finland, and
a Member of Finnish Robotics Society and the Finnish Society of Automation.
He was the Chair and Vice Chair of the IEEE Finland Section Jt. Chapter of
CS, RA, and SMC Societies during 2012–2015 and 2015–2016, respectively,
a Treasurer of IEEE Finland Section during 2012–2013, and the Co-Chair of
IEEE RAS TC in Computer and Robot Vision during 2009–2013. From 2014 to
2017, he was an Associate Editor for the IEEE TRANSACTIONS ON ROBOTICS.

https://dx.doi.org/10.1109/TITS.2021.3054625
https://ojs.aaai.org/index.php/AAAI/article/view/17276
https://ojs.aaai.org/index.php/AAAI/article/view/17276


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


