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Safe Model-based Off-policy Reinforcement
Learning for Eco-Driving in Connected and

Automated Hybrid Electric Vehicles
Zhaoxuan Zhu, Nicola Pivaro, Shobhit Gupta, Abhishek Gupta and Marcello Canova.

Abstract—Deep Reinforcement Learning (DRL) has recently
been applied to eco-driving to intelligently reduce fuel con-
sumption and travel time. While previous studies synthesize
simulators and model-free DRL (MFDRL), this work proposes a
Safe Off-policy Model-Based Reinforcement Learning (SMORL)
algorithm for eco-driving. SMORL integrates three key compo-
nents, namely a computationally efficient model-based trajectory
optimizer, a value function learned off-policy and a learned safe
set. The advantages over the existing literature are three-fold.
First, the combination of off-policy learning and the use of a
physics-based model improves the sample efficiency. Second, the
training does not require any extrinsic rewarding mechanism
for constraint satisfaction. Third, the feasibility of trajectory is
guaranteed by using a safe set approximated by deep generative
models.

The performance of SMORL is benchmarked over 100 trips
against a baseline controller representing human drivers, a non-
learning-based optimal controller, a previously designed MFDRL
strategy, and the wait-and-see optimal solution. In simulation,
SMORL reduces the fuel consumption by more than 21% while
keeping the average speed comparable while compared to the
baseline controller and demonstrates a better fuel economy while
driving faster compared to the MFDRL agent and the non-
learning-based optimal controller.

Index Terms—Model-based reinforcement learning, generative
models, safety-critical applications, connected and automated
vehicles.

I. INTRODUCTION

W Ith the advancement in the vehicular connectivity and
autonomy, Connected and Automated Vehicles (CAVs)

have the potential to operate in a safer and more time- and
fuel-efficient manner [1]. With Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication, the controller
has access to real-time look-ahead information including the
terrain, infrastructure and surrounding vehicles. Intuitively,
with connectivity technologies, controllers can plan a speed
profile that allows the ego vehicle to intelligently pass more
signalized intersections in green phases with fewer changes in
speed. This problem is formulated as the eco-driving problem,
which aims to minimize the weighted sum of the fuel con-
sumption and the travel time between two designated locations
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by co-optimizing the speed trajectory and the powertrain
control strategy [2], [3].

This field of research has experienced significant momen-
tum in the last decade. [3]–[6] address the eco-driving problem
for vehicles with single power source, whereas [7]–[9] study
the problem with the hybrid electric powertrain architecture.
The latter involves modeling multiple power sources and
devising optimal control algorithms that can synergistically
split the power demand to efficiently utilize the electric energy
stored in battery. Maamria et al. [10] systematically compare
the computational requirements and the optimality of different
formulations. Meanwhile, the difference also exists in the
complexity of the driving scenarios. In [4], [9], the eco-driving
is formulated without considering the real-time traffic light
variability. [3], [6], [8], [11], [12] have explicitly modeled and
considered Signal Phase and Timings (SPaTs) and formulate
and solve the eco-driving problem with optimal control tech-
niques. In this work, the eco-driving problem of Connected
and Automated Hybrid Electric Vehicles (CAHEVs) with the
capability of passing traffic lights autonomously is studied.

Recently, the use of Deep Reinforcement Learning (DRL)
in the context of eco-driving has caught considerable attention.
DRL provides a train-offline, execute-online methodology
with which the policy is learned from the historical data or
the interaction with simulated environments. Shi et al. [13]
modeled the conventional vehicles with ICE as a simplified
model and implemented Q-learning to minimize the CO2

emission at signalized intersections. Li et al. [14] apply an
actor-critic algorithm on the ecological ACC problem in car-
following mode. Guo and Wang [15] proposed MPC-initialized
Proximal Policy Optimization with Model-based Acceleration
(PPOMA) for the problem of active signal priority control for
trams. Pozzi et al. [16] designed a velocity planner considering
the signalized intersection and hybrid powertrain configuration
with Deep Deterministic Policy Gradient (DDPG). Zhu et al.
[17] formulates the eco-driving problem as a Partially Ob-
servable Markov Decision Process (POMDP) and approaches
it with PPO. While the strategies with Model-Free Reinforce-
ment Learning (MFRL) in these studies show improvements
in the average fuel economy and reductions in onboard com-
putation, the methodology has a fundamental drawback. To
teach the agent to drive under complex driving scenarios
while satisfying all the constraints from powertrain and traffic
rules, a complex and often cumbersome rewarding/penalizing
mechanism needs to be designed. Furthermore, under such
setup, the agent learns to satisfy constraints by minimizing
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the expected cost. For scenarios that are rare yet catastrophic,
the scale of the cost penalizing constraint violation needs to
be significantly larger than the learning objective itself [13].
As a result, such extrinsic rewarding mechanism increases the
design period and deteriorates the final performance.

This paper proposes a safe-critical model-based off-policy
reinforcement learning algorithm to solve the eco-driving
problem in a connected and automated mild-HEV. The first
contribution of this work, from the eco-driving application
perspective, is the elimination of the extrinsic reward design
in the eco-driving problem by the design of a Model-based
Reinforcement Learning (MBRL) algorithm. The algorithm
integrates RL with trajectory optimization, which incorporates
the constraints from the powertrain dynamics, vehicle dynam-
ics, and traffic rules in a constrained optimization formulation.
The performance of the agent is meanwhile improved by using
the learned terminal cost function from the RL mechanism.

The second contribution of this work, from the RL algo-
rithm perspective, is the development of Safe Model-based
Off-policy Reinforcement Learning (SMORL), a safe-critical
model-based off-policy Q-learning algorithm for systems with
known dynamics. The algorithm has three unique features
compared to the prior and current MBRL implementations.
First, SMORL is off-policy as opposed to [18]–[21]. While
the use of the model in MBRL increases the sample efficiency
[22], the collection of each individual transition becomes more
computationally expensive as it commonly requires solving
an online optimization problem, as opposed to a feedforward
policy in MFRL. With the use of experience replay [23] in the
off-policy learning, the historical data can be used to greatly
reduce the overall training time. To obtain the value function
from Q function, an actor is explicitly trained as in Twin
Delayed Deep Deterministic policy gradient algorithm (TD3)
[24]. Second, the distributional mismatch between the actor
and critic [25] in MBRL is explicitly addressed to improve
training performance and stability with Batch Constrained Q-
learning (BCQ) [26]. Third, the long-term feasibility of the
policy is considered by extending the safe set [20], [27] to a
higher dimensional setting using deep unsupervised learning.

The remainder of the paper is organized as follows. Sec.
II presents the simulation environment and the eco-driving
problem formulation. Sec. III introduces the preliminaries of
the mathematical concepts, and Sec. IV presents the main al-
gorithm SMORL. Sec. V explains the detailed implementation
of SMORL on the eco-driving problem, and Sec. VI shows the
training details and benchmarks the performance.

II. ECO-DRIVING FOR CAHEVS

A. Environment

As collecting data in real-world driving data is expensive
and potentially unsafe, a model of the environment is devel-
oped for training and validation purposes. The environment
model, named EcoSim, consists of a Vehicle Dynamics and
Powertrain (VD&PT) model and a microscopic traffic simula-
tor. Fig.1 shows EcoSim and its interaction with the controller
and the learning algorithm. The controller commands three
control inputs, namely, the Internal Combustion Engine (ICE)

EcoSim
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V&PD

Trajectory Optimization
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SMORL

Safe Set 

Experience Replay 

Fig. 1. The Structure of The Environment Model

torque, the electric motor torque and the mechanical brake
torque. The component-level torques collectively determine
the HEV powertrain dynamics, the longitudinal dynamics of
the ego vehicle and its progress along the trip. As in [11],
it is assumed that the ego vehicle is equipped with Dedicated
Short Range Communication (DSRC) sensors, and SPaTs from
signalized intersections become available once they are within
the 500 m range. The DRL agent utilizes the SPaT from
the upcoming traffic light while ignoring the SPaT from any
other traffic light regardless of the availability. Specifically,
the controller receives the distance to the upcoming traffic
light, its current status and its SPaT program as part of
the observation. Finally, a navigation application with Global
Positioning System (GPS) is assumed to be available on the
vehicle such that the locations of the origin and destination,
the remaining distance and the speed limits along the entire
trip are available at every point during the trip.

1) Vehicle and Powertrain Model: A forward-looking dy-
namic powertrain model is developed for fuel economy eval-
uation and control strategy verification. In this work, a P0
mild-hybrid electric vehicle (mHEV) is considered, equipped
with a 48V Belted Starter Generator (BSG) performing torque
assist, regenerative braking and start-stop functions.

The engine is modeled as low-frequency quasi-static nonlin-
ear maps based on steady-state engine test bench data provided
by the supplier. The map of instantaneous fuel consumption
ṁfuel is a function of engine angular velocity ωeng and engine
torque Teng, and the maps of torque limits Tmin

eng and Tmax
eng are

functions of engine angular velocity ωeng.
The battery SoC and voltage Vbatt are governed by a

zeroth-order equivalent circuit model shown as follows:

It =
VOC(SoCt)−

√
V 2

OC(SoCt)− 4R0(SoCt)Pbsg,t

2R0(SoCt)
, (1)

SoCt+1 = SoCt −
∆t

Cnom
(It + Iaux), (2)

where t is the discretized time index, and ∆t is the time
discretization that is set to be 1s in the study. The power
consumed by auxiliaries is modeled by a calibrated constant
current bias Iaux. The cell open circuit voltage VOC and
internal resistance R0 are maps of SoC from a battery pack
supplier.
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The vehicle dynamics model is based on the road-load
equation:

vveh,t+1 =vveh,t + ∆t

(
Tout,t − Tbrk,t

MRw
−
CdρaΩfv

2
veh,t

2M

− g cosαCrvveh,t − g sinα

) (3)

Here, the four terms inside the bracket of the left-hand side
are associated with the forward propulsion force, the tire
rolling resistance, the aerodynamic drag, and the road grade,
respectively. Tbrk is the brake torque applied on wheel, Cd is
the aerodynamic drag coefficient, ρa is the air density, Af is
the effective aerodynamic frontal area, Cr is rolling resistance
coefficient, and α is the road grade.

Besides the aforementioned models, which are directly
associated with either the states or the objective in the eco-
driving Optimal Control Problem (OCP) formulation, BSG,
torque converter and transmission are also modeled in the
study. The BSG is modeled as a quasi-static efficiency map
to compute the BSG torque Tbsg and power output Pbsg. A
torque converter model is developed to compute the losses
during the traction and regeneration modes. The transmission
model is based on a static gearbox, and its efficiency ηtrans

is scheduled as a nonlinear map of the gear number ng, the
transmission input shaft torque Ttrans and the transmission
input speed ωtrans. The detailed mathematical models of these
components can be found in [17].

The forward vehicle model was calibrated and validated
using experimental data from a chassis dynamometer. Vehicle
velocity, battery SoC, gear number, engine speed and fuel
consumption were used to evaluate the model with the ex-
perimental data. Fig. 2 shows the sample results from model
verification over the FTP-75 regulatory drive cycle. Results
indicate that the vehicle velocity and SoC are accurately
predicted by the model. The mismatches in the battery SoC
can be attributed to the assumptions made in the simplified
battery model such as modeling electrical auxiliary loads as
a constant current bias. Further, the final value of the fuel
consumption estimated by the model over the FTP-75 drive
cycle is within 4% of the actual fuel consumption which
verifies that the model can be used for energy and fuel
prediction over real-world routes.

2) Traffic Model: A large-scale microscopic traffic simu-
lator is developed in an open source software Simulation of
Urban Mobility (SUMO) [28] as part of the environment. To
recreate realistic mixed urban and highway trips for training,
the map of the city of Columbus, OH, US is downloaded from
the online database OpenStreetMap [29]. The map contains
the length, shape, type and speed limit of the road segments
and the detailed program of each traffic light at signalized
intersections. Fig. 3 highlights the area that is covered in the
study. In the shaded area, 10,000 random passenger car trips,
each of which the total distance is randomly distributed from
5 km to 10 km, are generated as the training set. Another 100
trips, indicated by the origins (red markers) and destinations
(blue markers) in Fig. 3, are generated following the same
distribution as the testing set. In addition, the departure time
of each trip follows a geometric distribution with the success
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Fig. 2. Validation of Vehicle Velocity, SoC and Fuel Consumed over FTP
Cycle.

Fig. 3. Map of Columbus, OH as the Traffic Environment for Training

rate p = 0.01. The variation among the trips used for training
leads to a learned policy that is less subject to local minima and
agnostic to specific driving conditions (better generalizability)
[30].

B. Optimization Formulation

In the eco-driving problem, the objective is to minimize the
weighted sum of fuel consumption and travel time between
two designated locations. The optimal control problem is
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mathematically formulated as follows:

min
{ut}∞t=1

E

[ ∞∑
t=1

[λṁfuel,t + (1− λ)] ∆t · I [st < stotal]

]
(4a)

where ut = [Teng,t, Tbsg,t, Tbrk,t]
T (4b)

s.t. SoCt+1 = fbatt(vveh,t, SoCt, ut) (4c)
vveh,t+1 = fveh(vveh,t, SoCt, ut) (4d)

Tmin
eng (ωeng,t) ≤ Teng,t ≤ Tmax

eng (ωeng,t) (4e)

Tmin
bsg (ωbsg,t) ≤ Tbsg,t ≤ Tmax

bsg (ωbsg,t) (4f)

Imin ≤ It ≤ Imax (4g)

SoCmin ≤ SoCt ≤ SoCmax (4h)

SoCT ≥ SoCT (4i)
0 ≤ vveh,t ≤ vlim,t (4j)
(t, st) /∈ Sred. (4k)

Here, ṁfuel,t is the instantaneous fuel consumption. λ is a
normalized weight on the fuel consumption. ωeng and ωbsg are
the engine and BSG angular velocities, respectively, and they
are static functions of vehicle speed vveh and gear number
ng. fbatt and fveh are the battery and vehicle dynamics,
respectively, introduced in Sec. II-A1. Eqn. (4e) to (4g) are the
constraints imposed by the powertrain components. Eqn. (4h)
and Eqn. (4i) are the constraints on the instantaneous battery
SoC and terminal SoC for charge sustaining, respectively.
Here, the subscript T represents the time at which the vehicle
reaches the destination. SoCmin, SoCmax and SoCT are
commonly set to 30%, 80% and 50% [9], [31]. Eqn. (4j) and
(4k) are the constraints imposed by traffic conditions. The set
Sred represents the set in which the traffic light at the certain
location is in red phase [32]. The problem is formulated as
an infinite horizon problem in which the stage cost becomes
zero once the system reaches the goal set, i.e. the traveled
distance st is greater than or equal to the total distance of the
trip stotal while keeping the terminal SoCT greater than or
equal to SoCT. In addition, anytime that the vehicle violates
the traffic light constraints, i.e. Eqn. (4k), the trip is considered
a failure and the goal set is not reached.

To solve the aforementioned optimization formulation as an
OCP, a MBRL algorithm is proposed, and the preliminaries of
the algorithm are included in the next section.

III. PRELIMINARIES ON MBRL

The nonlinear, stochastic, time-invariant system is consid-
ered in this work:

xt+1 = f(xt, ut, wt)

xt ∈ X ⊆ Rn, t ∈ N+

ut ∈ U(xt) ⊆ Rm, t ∈ N+

wt ∈ W ⊆ Rp, t ∈ N+.

(5)

Here, xt, ut and wt are the state, control, and uncertainty at
time t. X and U are the feasible sets for states and inputs,
respectively. The uncertainties are assumed to be independent
and identically distributed (i.i.d.).

Let π : X → U be a feasible deterministic policy and Π
be the set of all feasible deterministic policies. The objective

of the OCP is to reach the goal set G ⊆ Rn while finding
the optimal policy π∗ that minimizes the expectation of the
discounted sum of the costs defined as follows:

π∗ = argmin
π∈Π

η(π), where

η(π) = Ewt

[ ∞∑
t=0

γtc (xt, ut)

]
,

where ut = π(xt).

(6)

Here, γ is the discount factor that prioritizes the immediate
rewards and ensures the sum over the infinite horizon remains
finite.

As in [21], the following assumption is made.

Assumption III.1 (Costs). The cost is zero for the states inside
the goal set G and positive for the states outside, i.e. ∃ε > 0
such that c(x, u) > εIGC(x) where I is the indicator function
and GC is the complement of the goal set G.

As in [21], [27], [33], the following definitions are given.

Definition III.1 (Robust Control Invariant Set). A set C ⊆ X
is said to be a robust control invariant set for the system Eqn.
(5) if for all x(t) ∈ C, there exists a u(t) ∈ U such that
f(x(t), u(t), w(t)) ∈ C, for all w(t) ∈ W and t ∈ N+.

Definition III.2 (Robust Successor Set Suc(S)). For a given
set S, its robust successor set Suc(S) is defined as

Suc(S) = {x′ ∈ Rn : ∃x ∈ S,∃w ∈ W
such that x′ = f(x, π(x), w)} .

(7)

Definition III.3 (Robust Reachable Set RN (xj0)). For a given
initial state xj0, the N-step robust reachable set RN (xj0) of the
system defined in Eqn. (5) in a closed loop policy π at iteration
j is defined recursively as

Rπi+1(xj0) = Suc(Rπi (xj0)) ∩ X ,
Rπ0 (xj0) = xj0,

(8)

where i = 0, 1, . . . , N − 1.

Definition III.4 (Safe Set). The safe set SSj contains the full
evolution of the system at iteration j,

SSj =

{ ∞⋃
k=0

Rπk (xj0)
⋃
G

}
. (9)

As shown in [27], the exact form of the safe set in 9 is a
robust control invariant set. As calculating its exact form is
intractable, especially for high dimensional nonlinear system,
it is, in practice, approximated as

S̃S
j

=
⋃

k∈Mj

xk, (10)

where xk = {xkt : t ∈ N+} is the trajectory at iteration k, and
Mj = {k ∈ [0, j) : limt→∞ xkt ∈ G} is the set of indices of
which the trajectories were successfully driven to the goal. As
the safe set in this work is constantly evolving during training,
the iteration index j will be neglected in the remaining work.



5

For any policy π, the value function V π : X → R, the
Q function Qπ : X × U → R and the advantage function
Aπ : X × U → R are defined as follows:

V π(xt) =

Eπ

[ ∞∑
i=t

γi−tc (xi, ui) |xt

]
, xt ∈ SS

∞, otherwise.
(11)

Qπ(xt, ut) =

Eπ

[ ∞∑
i=t

γi−tc (xi, ui) |xt, ut

]
,
xt ∈ SS
ut ∈ U

∞ otherwise.
(12)

Aπ(xt, ut) = Qπ(xt, ut)− V π(xt). (13)

IV. PROPOSED METHOD

In this work, an off-policy model-based deep reinforcement
learning algorithm with an approximated safe set is proposed.
At any given time t during policy execution, the following
trajectory optimization problem with a receding horizon of H
steps is solved:

min
{ũk}t+H−1

k=t

E

[
t+H−1∑
k=t

γk−tc(x̃k, ũk) + γHV π(x̃k+H)

]
s.t. x̃k+1 = f(x̃k, ũk, wk)

x̃t = xt

x̃k ∈ X , k = t, . . . , t+H − 1

x̃t+H ∈ S̃S
ũk ∈ U , k = t, . . . , t+H − 1,

(14)

where x̃ and ũ are the variables for states and control actions
in the predicted trajectory. Compared to the formulation in
[18], the state x̃k and action ũk are explicitly constrained to
be within the feasible region in the receding horizon and the
terminal state x̃t+H to be within the safe set S̃S. With the
presence of uncertainties in the dynamic system, solving the
exact form of the above stochastic optimization problem can be
challenging. In [20], [21], [34], Cross Entropy Method (CEM)
[34] is used to solve the problem with unknown dynamics as
a chance constraint problem. In Section II-B, techniques will
be discussed to simplify and solve the optimization in the eco-
driving problem.

As most of the model-based deep reinforcement learning
methods with trajectory optimization in literature learn the
value function as the terminal cost for the MPC [18], [19],
[21], [34], the learning algorithm becomes on-policy. While
the trajectory optimization increases the sample efficiency
and helps exploration [18], solving the trajectory optimiza-
tion problem makes each data sample more computationally
expensive. As a result, the training wall time is not neces-
sarily reduced. In this work, the off-policy Q-learning [35] is
instead proposed. To use the learned Q function in trajectory
optimization, the following equation needs to be solved:

min
{ũk}t+Hk=t

E

[
t+H−1∑
k=t

γk−tc(x̃k, ũk) + γHQπθ (x̃t+H , ũt+H)

]
,

(15)

where Qπθ is the approximated Q function parametrized by θ.
Compared to solving Eqn.(14), solving Eqn. (15) requires one
extra computational step:

V π(x̃t+H) = min
ũt+H

Qπθ (x̃t+H , ũt+H). (16)

Depending on the dimension of the problem, solving Eqn.
(16) can be computationally intractable, especially for online
control. Several algorithms, e.g. DDPG [36], TD3 [24] and
dueling network [37] are proposed to obtain the value function
from the Q function. In this work, the off-policy actor-critic
algorithm TD3 is used since it reduces the overestimation and
is shown to be more stable than DDPG. Specifically, with the
sample (xj , uj , cj , x

′
j) from the experience replay buffer D

[23], the target for the Q function during training is constructed
as follows,

yj = cj + γ max
i=1,2

Qθ′i(x
′
j , u
′
j), (17)

u′j = πφ′(x
′
j). (18)

Here, Qθ1 and Qθ2 are two independently trained critic net-
works. Qθ′1 and Qθ′2 are the corresponding target networks.
πφ and πφ′ are the actor network and its target network,
respectively. The critics are then updated following

θi ← θi − α∇θi

 1

N

N∑
j=1

(yj −Qθi(xj , uj))
2

 , i = 1, 2,

{
(xj , uj , cj , x

′
j) ∼ D

}N
j=1

.

(19)
where α is the learning rate, and N is the batch size.

In the off-policy learning algorithm used here, the behavior
policy is the trajectory optimization where state and action
constraints within the receding horizon are satisfied thanks
to the constrained optimization formulation. However, the
trained actor πφ makes decisions solely based on the Q
function. The resulting mismatch between the distribution of
state-action pairs induced by the actor πφ and that collected
by the behavior policy results in extrapolation error leading
to unstable training [25]. In the eco-driving problem, the
trajectory optimization ensures the power is solely generated
from ICE when the battery SoC is at the lower limit SoCmin.
Accordingly, no state-action pair resembling low SoC and
high motor torque can be collected, which leads to extrapola-
tion in the Q function near the region. The error can eventually
cause unstable training or inferior performance.

To address the extrapolation error induced by the mismatch
in distributions, Batch Constrained Q-learning (BCQ) [26]
originally proposed for offline reinforcement learning is used.
Here, a generative model, specifically a Variational Autoen-
coder (VAE) [38], Gω(x) is trained to resemble the state-action
distribution in the experience replay buffer. The background
on VAE and the training objective are covered in Appendix
A. Note that samples from the generative model a′ ∼ Gω(x′)
should ideally match the distribution collected by the behavior
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policy. Instead of selecting action following Eqn. (18), the
action is now selected as

u′j = argmin
uj,k+ξφ(xj ,uj,k,Φ)

[
max
i=1,2

Qθ′i(x
′
j , uj,k + ξφ(xj , uj,k,Φ))

]
,{

uj,k ∼ Gω(x′j)
}n
k=1

.
(20)

Here n is the hyperparameter that is the number of actions
sampled from the generative model. The action u′ used for
the target value for the Q function is selected as the best
among the n sampled ones. Note that there is no longer
an actor network mapping from state to action. Instead, to
ensure the agent can learn on top of the actions sampled from
the generative model imitating the behavior policy from the
experience buffer, a perturbation network ξφ whose output is
clipped between [−Φ,Φ] is trained. The perturbation network
ξφ is updated by deterministic policy gradient theorem from
[39] as

φ← φ− α∇φ

 1

N

N∑
j=1

Qθ1(xj , uj + ξφ(xj , uj ,Φ))

 . (21)

To reduce the accumulating error from bootstrapping, all the
target networks are updated with a slower rates as

θ′i ← τθi + (1− τ)θ′i, i = 1, 2, (22)
φ′ ← τφ+ (1− τ)φ′, (23)

where τ is a constant on the order of 10−3 to 10−1.
In Eqn. (14), the terminal rollout state is constrained within

the safe set. Since the safe set is an approximation to the robust
control invariatn set, the constrain ensures that there exists
policies that can safely drive the terminal state to the goal set.
In [20], [21], the safe set is approximated by kernel density
estimation, which typically works well only for problems
in low dimensions. Here, we extend the approximation to
high-dimensional setting by using deep generative models.
Following the notion in [20], the safe set is approximated as

S̃S = {x : pψ(x) ≥ δ}, (24)

where pψ : X → [0, 1] is the probability that a state is inside
the safe set parametrized by ψ, and the constant δ regulates
how exploratory the controller is. Note that the generative
model used for the safe set approximation needs to model the
probability explicitly and can be slow in sampling, whereas the
generative model resembling the distribution of state-action
pairs in the experience replay needs to be fast in sampling
while the explicit probability is not required.

Due to the aforementioned consideration, the autoregressive
model with Long Short-term Memory (LSTM) [40] is used.
The description of the model as well as the training objective
is included in Appendix B. In Sec.V, the use of the autore-
gressive model in the application of eco-driving is motivated
as the dimension of the problem can get large once the future
conditions are sampled discretely.

In summary, Safe Model-based Off-policy Reinforcement
Learning (SMORL) is proposed. The algorithm builds on
SAVED [20] and extends it to be an off-policy algorithm
with the methods proposed in BCQ. The detailed step-by-step
algorithm is included in Algorithm 1.

V. IMPLEMENTATION DETAILS

A. Trajectory Optimization

Specific to the eco-driving problem, the state vector xt
is defined as a vector with 88 states. A description of the
states are listed in Tab. I. Here, the first seven elements of
the state vector are the battery SoC, the vehicle speed vveh,
the current speed limit vlim, the next speed limit v′lim, the
distance to the next speed limit slim, the distance to the
upcoming traffic light stls and the total remaining distance
srem. The remaining 81 elements are the sampled upcoming
traffic light status in the next 80 seconds xtfc. For example,
if the upcoming traffic light has 20 seconds remaining for the
current red phase and will remain in green for the rest of the
80 seconds, the first 21 elements of the sampled upcoming
traffic light status are 0, and the rest are set to 1. Compared
to the manually extracted feature representation in [17], the
sampled representation reduces the discontinuity and results
in a better performance.

As the vehicle considered in this study is assumed equipped
with connected features, e.g. advanced mapping and V2I
connectivity, and surrounding vehicles are not included in the
study, it is assumed that the ego vehicle can deterministically
predict the uncertainties from driving conditions within the
receding horizon in this study. Sun et al. [6] suggest by formu-
lating the problem as a chance constraint or a distributionally
robust optimization problem, uncertainties in SPaT can be
considered without additional computational load.

In Eqn. (4), the receding horizon H is in the time domain.
While it is easier to incorporate the time-based information
such as SPaT received from V2I communication in the time
domain, an iterative dynamic look-ahead process is required
to process any distance-based route feature, such as speed
limits, grade, traffic light and stop sign locations. For example,
the controller requires the speed limits as the constraints to
generate speed trajectory while the speed limits can change
based on the distance traveled by the speed trajectory. In this
study, the value and Q functions are learned in the time domain
for ease of integration with the time-based traffic simulator,
while the trajectory optimization is conducted in the spatial
domain.

As SPaTs and speed limits do not depend on the decision
made by the ego vehicle in the spatial domain, they are
incorporated into the optimization problem as constraints, and
only the vehicle speed, battery SoC and the time at which the
vehicle reaches the given distance are considered as the state
in the trajectory optimization. Define the optimization state
z ∈ Z ⊆ R3 as

zs =
[
vveh,s, SoCs, ts

]T
. (25)

Here, s is the index in the discretized spatial domain with
∆s = 10m, and the dynamics of z in the time and spatial
domains are converted following

∆z

∆s
=

∆z

∆t

∆t

∆s
=

∆z

∆t

1

vveh
. (26)
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Algorithm 1: Safe Model-based Off-policy Reinforcement Learning (SMORL)
Initialize Q-networks Qθ1 , Qθ2 independently, and duplicate target networks Qθ′1 , Qθ′2 .
Initialize the perturbation network ξφ, its target network ξ′φ and VAE Gω = {Eω1 , Dω2}.
Initialize the experience replay buffer D.
Collect N0 successfully executed trajectories with a baseline controller and initialize the safe set S̃S.
for niter ∈ 1, . . . , Niter do

while jth trajectory NOT finished do
Select control action ut by solving trajectory optimization in Eqn. (14).
Sample mini-batch of N transitions (x, u, c, x′) from D.
For each transition, sample n actions u′j from Gω(x′) and n perturbations from ξφ(x′, u′,Φ).
Update the critic networks Qθ1 , the target networks Qθ2 following Eqn. (19) and Qθ′1 , Qθ′2 following Eqn. (22).
Update perturbation network ξφ following Eqn. (21).
Update VAE Gω by maximizing Eqn. (30).

end
if xT ∈ G then

Push the trajectory {(xt, ut, ct, xt+1)}T to D.
Update the safe set S̃S with minibatchs sampled from D following Eqn. (32).

end
end

TABLE I
THE STATE AND ACTION SPACES OF THE ECO-DRIVING PROBLEM

Variable Description

X

SoC ∈ R Battery SoC
vveh ∈ R Vehicle velocity
vlim ∈ R Speed limit at the current road segment
v′lim ∈ R Upcoming speed limit
dtfc ∈ R Distance to the upcoming traffic light
d′lim ∈ R Distance to the road segment of which the

speed limit changes
drem ∈ R Remaining distance of the trip

xtfc ∈ {0, 1}81 Sampled status of the upcoming traffic light

U
Teng ∈ R Engine torque
Tbsg ∈ R Motor torque
Tbrk ∈ R Equivalent brake torque

As a result, the trajectory optimization is formulated as

min
{ũ}st+Hs−1

k=st

st+Hs−1∑
k=st

γtkc(z̃k, ũk) + γtHsV π(G(xt, zHs))

(27a)
where:

c(x̃k, ũk) = (λṁfuel,k + (1− λ))
∆s

vveh,k
· I [sk < stotal]

(27b)
s.t. SoCk+1 = fbatt,s (z̃k, ũk) (27c)

vveh,k+1 = fveh,s (z̃k, ũk) (27d)

Tmin
eng (ωeng,k) ≤ Teng,k ≤ Tmax

eng (ωeng,k) (27e)

Tmin
bsg (ωbsg,k) ≤ Tbsg,k ≤ Tmax

bsg (ωbsg,k) (27f)

Imin ≤ Ik ≤ Imax (27g)

SoCmin ≤ SoCk ≤ SoCmax (27h)
0 ≤ vveh,k ≤ vlim,k (27i)
(tk, sk) /∈ Sred (27j)

G(xt, zHs) ∈ S̃S. (27k)

Here, st is the spatial index corresponding to the distance
the ego vehicle has traveled at the time t. Hs = 20 is
the prediction step in the spatial domain, making the total
prediction horizon 200 m. G : X × Z → X is the function
that takes the full state xt and the terminal optimization state
zHs and determines the predicted terminal full state x̃t+tHs .
For example, suppose there are 15 seconds left in the current
green phase and tHs in the optimization state is 10 seconds, i.e.
it takes 10 seconds for the ego vehicle to travel the future 200
m, there will be 5 seconds left in the current green phase at
the end of the prediction horizon. The trajectory optimization
problem is solved by Deterministic Dynamic Programming
(DDP) [41]. The optimal deterministic policy µ∗k : Z → U ,
k = 1, 2, . . . ,Hs − 1, along with the optimal cost-to-go
function Jk : Z → R, k = 1, 2, . . . ,Hs can be calculated
through backward recursion as

JHs(z) = V π (G(xt, z)) + PN (z), (28a)
Fk(z, u) = c(z, u) + Pk(z) + Jk+1(fk(x, u)), (28b)

µ∗k = argmin
µk

Fk(z, µk(z)), (28c)

Jk(z) = Fk(z, µ∗k(z)). (28d)

Here, F : Z×U → R is the cost-to-go associated with a given
immediate action and then the optimal policy. Pk : Z → R
and PN : Z → R are penalty functions introduced to ensure
no constraint violation in the predicted trajectory.

Solving Eqn. (28) is computationally intensive yet highly
parallelizable. Considering onboard GPU is readily available
nowadays on self-driving vehicles, a real-time capable CUDA-
based Parallel DDP (PDDP) solver in [32] is used in this
work. In the cases where the stochasticity within the prediction
horizon cannot be ignored, other gradient-free optimization
methods, such as CEM or random shooting method [42], can
be used as the trajectory optimizer.
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Fig. 4. The Network Architecture of the Value and Q Functions.

B. Q Learning

Fig. 4 shows the architecture of the neural network as-
sociated with the Q-learning. Upon receiving the state vec-
tor, the sampled traffic light status wtfc are fed to a pre-
trained autoencoder with Multilayer Perceptron (MLP) of
size (81, 100, 5, 100, 81) for dimensionality reduction. The
remaining states along with the actions are concatenated with
the latent states from the encoder and subsequently fed into
another MLP of size (200, 100, 50) to output the Q function
for critic and the perturbation for the actor. The critic and actor
do not share parameters in this work.

To accelerate the training and improve generalizability,
the state of the vehicle is randomized for every 50 steps
in simulation. When the domain randomization occurs, the
battery SoC and the vehicle velocity vveh,t are sampled
from uniform distributions Uniform(SoCmin, SoCmax) and
Uniform(0, vlim,t), respectively. To guarantee feasibility dur-
ing the trip, the domain randomization is disabled 200m within
signalized intersections or 1000m within the final destination.

C. Safe Set Approximation

In the eco-driving problem, two types of constraints can
induce feasibility issues, namely, the battery terminal SoC
constraint and the constraint imposed by traffic rules at signal-
ized intersections. For the first case, the goal set is considered
not reached when the vehicle is near the destination and it
cannot sufficiently charge the battery back to SoCT in the
remaining distance. For the second case, the trip is considered
failed when the vehicle breaks traffic rules at signalized
intersections, and infeasibility occurs when the vehicle speed
is too high and there is not enough distance to brake to stop
in front of a traffic light in red or stop sign. A conservative
low-speed controller that only uses ICE is used to collect the
initial data for the experience replay buffer. During training,
only samples from the trips that reach the goal set without
violating any constraints are added to the experience replay
buffer.

In the eco-driving problem, the sampled traffic light xtfc

is binary, while the other variables are continuous. As the
PDDP solver also discretizes the continuous state space, we
consider the loss of accuracy with the same discretization
is acceptable. The discretized states as in one-hot form in
each dimension are fed into an LSTM network with 50 units
sequentially as shown in Fig. 9. The outputs from LSTM are
then masked according to the number of categorical classes
in each dimension. Finally, the softmax operator ensures the
outputs to be a proper conditional probability distribution.

As an alternative to LSTM, Causal 1D Convolutional Neural
Networks (Causal Conv1D) [43] was also implemented as
the network for the autoregressive model. The key difference
is that the states in all dimensions can be fed into Causal
Conv1D in parallel, whereas each dimension needs to be fed
into LSTM sequentially. For applications with long sequences,
Causal Conv1D can be more efficient and accurate [44]. For
the specific problem, Causal Conv1D shows no noticeable
advantage over LSTM in either accuracy or inference speed.
As a result, LSTM is chosen as it has fewer hyperparameters.

When the receding horizon (200m) in this study is longer
than the critical braking distance [17], the vehicle will never
violate any constraints imposed by signalized intersections.
Nevertheless, using the safe set to constrain the terminal state
is still essential for the following reason. At the last step of
the receding horizon, the value function V π(x̃t+∆tHs

) needs
to be evaluated numerically for trajectory optimization. Since
only the data from the safely executed trips are added into the
buffer and there is no penalty mechanism for the constraint
violation, the estimation of the critic network is valid only
within the safe set and is subject to extrapolation error outside.
Although the long receding horizon ensures the feasibility of
the actual trajectory regardless of the use of a safe set, the
training is subject to instability and the learned performance
can significantly deteriorate without the constraint from the
safe set.

This effect is shown in Fig. 5. Here, the two subplots
on top show the optimized trajectories with and without the
use of a safe set, respectively. The three curves in each plot
are the trajectories from the optimizer at three consecutive
seconds. During the first two seconds, the vehicle is more than
200m away from the traffic light, and thus the constraint from
Eqn. (4k) is not considered in the trajectory optimization. The
subplots on the bottom show the safety status of the terminal
state in the dimension of the vehicle velocity and the time at
which it reaches the end of the receding horizon before the
signalized intersection appears in the receding horizon. Here,
green means the state is considered safe, i.e. pψ(x) ≥ δ,
and red otherwise. Although the actual trajectories, with or
without a safe set, can slow down in time to avoid trespassing
the red light thanks to the sufficiently long receding horizon,
the terminal state without the safe set constraint has a speed
of 20m/s with 20m left before a red light, which is unsafe.
Meanwhile, comparing the bottom two subplots, the terminal
velocity constrained by the safe set progressively reduces as
the vehicle approaches the intersection in the red phase. In
addition, given speed limit here is set to vlim = 22m/s, any
state with a velocity higher than 22m/s is considered unsafe.
It can be noticed that the red region on the top right corners is
incorrectly considered unsafe (false positive). This is because,
by optimality, the agent rarely crosses an intersection in the
green phase with low speed, therefore, these false positive
regions do not affect the performance.

As a summary for all the implementation details, the hyper-
parameters are listed in Tab. II.
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Fig. 5. The Effect Of the Safe Set on Trajectory Optimization.

TABLE II
HYPERPARAMETERS OF THE Q LEARNING AND SAFE SET ESTIMATION

Parameter Value
Weighting factor between fuel and time, λ 0.45
Discount factor, γ 0.995
Optimizer Adam
Learning rate, α 1e-4
Experience buffer size 2e5
Batch size, N 256
Target network update rate, τ 1e-3
Exploration rate, ε 0.2
Perturbation range in physical unit, Φ 30 Nm
Sampled actions from the VAE decoder, n 10
Steps per domain randomization 50
LSTM size for the safe set 50

VI. RESULTS

Both the PDDP optimizer and the neural network training
require GPU. To get the results to be shown, the training took
24 hours on a node with an NVIDIA Volta V100 GPU and
2.4GHz Intel CPU from Ohio Supercomputer Center [45].
As domain randomization is used during training, 5 trips out
of 1000 randomly generated trips are repeatedly selected for
every 25 training episodes to evaluate the performance of the
controller and to quantify the progress of training. During
the evaluation, domain randomization and epsilon greedy are
both deactivated. Fig. 6 shows the evolution of the total costs,
fuel economy and average speed of the 5 evaluation trips.
Compared to the model-free on-policy method in [17], which
takes 80,000 episodes to converge, the sample efficiency of the
off-policy model-based method is significantly improved. In
the meantime, with the constrained optimization formulation
and the safe set, the training quickly learns to respect the
constraints imposed by the terminal SoC and signalized inter-
sections. Furthermore, the fact that the agent does not need any
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Fig. 6. The Evolution of the Total Costs, Fuel Economy, and Average Speed
of the 5 Evaluation Trips.

TABLE III
FUEL ECONOMY, AVERAGE SPEED AND SOC VARIANCE FOR BASELINE,

MODEL-FREE DRL, SMORL AND WS SOLUTIONS

Baseline ADP MFDRL SMORL WS
Fuel Economy

mpg 32.4 39.5 40.8 41.6 47.5

Speed Mean
m/s

14.1 13.9 12.5 14.0 14.5

SoC Variance
%2 12.1 21.6 18.2 52.6 22.6

extrinsic penalty from constraint violation and is still capable
of learning to operate within the safe region significantly
simplifies the design and tuning process as deployed in the
previous reinforcement learning attempts on eco-driving [14],
[16], [17].

Statistically, the performance of the agent trained with
SMORL is compared against the four other strategies, a
baseline strategy with Enhanced Driver Model (EDM) rep-
resenting a human driver and heuristically calibrated energy
management module [46], the hierarchical optimal controller
using Approximate Dynamic Programming (ADP) in [31], the
model-free DRL (MFDRL) agent proposed in [17] and the
wait-and-see (WS) solution. The WS solution assumes the
speed limits and the sequences of all traffic lights of the entire
trip are known a priori, and it is solved by PDDP solver as
well. Despite being non-causal and computational intractable
for online implementation, the solution serves as the upper
bound for the causal control strategies. The four strategies are
evaluated on the 100 random trips as shown in Fig. 3, and the
fuel economy, average speed and variance of the battery SoC
are listed in Tab. III.

Here, compared to the baseline strategy, the SMORL agent
consumes 21.8% less total fuels while maintaining a compa-
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Traffic Light Density for Baseline, SMORL and WS Solution

rable average speed. The benefit in fuel economy is achieved
by avoiding unnecessary acceleration events and by taking
advantage of a wider range of battery capacity as indicated by
the higher SoC variance. The SMORL agent shows dominant
performance in average speed and fuel economy compared
to the previously trained MFDRL strategy and the non-
learning-based ADP strategy. The performance improvement
over MFDRL is primarily due to two aspects. First, the online
trajectory optimization solved by PDDP guarantees the global
optimality within the receding horizon, which is more accurate
and reliable than the actions generated from the one-step
stochastic policy from neural networks as in MFDRL. Second,
the fact that there is no extrinsic penalty to assist constraint
satisfaction ensures that the agent focuses on learning only the
objective of the OCP formulation, i.e. weighted sum of the trip
time and fuel consumption, instead of a carefully designed yet
delicate surrogate learning objective.

In Fig. 7, the average vehicle speed and the fuel economy
of each trip are plotted against the traffic light density. As
the WS solution calculates the global optimal solution with
the knowledge of the full trip, it is able to navigate among
the traffic lights accordingly, as indicated by the surprisingly
increasing fuel economy. This can be due to the fact that when
there are more traffic lights, the vehicle is forced to operate
with a lower speed and lower fuel consumption condition.
On the other hand, as the baseline driver has limited line-
of-sight [46] and the ADP, MFDRL and SMORL controllers
have limited DSRC sensing range, the fuel economy decreases
as the traffic light density increases. Nevertheless, as indicated
by the slope of the fitted curve, the fuel economy of SMORL
is less affected by the increase of the traffic light density
compared to the baseline and ADP controller.

Fig. 8 shows the comparison among the baseline, ADP,
SMORL and the WS solution on a specific testing trip. For
this specific trip, while the differences in trip time are within
3s, SMORL consumes 24.7% and 11.0% less fuel compared
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Fig. 8. The Trajectory Comparison among Baseline, SMORL and WS.

to the baseline and the ADP strategies, respectively. While
SMORL demonstrates some merits similar to the WS solution,
its inferiority to the WS solution is primarily due to the
fact that only the SPaTs from the upcoming intersection are
available to the controller. Additional comparisons among the
four strategies can be found in Appendix C. The ablation study
for the key components in the algorithm is shown in Appendix
D.

VII. CONCLUSION

In this paper, a safe-critical model-based off-policy re-
inforcement learning algorithm SMORL is proposed. The
algorithm is applied to the eco-driving problem for CAHEV.
Compared to the previous model-free attempts on eco-driving
in the literature, the method does not require any extrinsic
rewarding mechanism, and thus, greatly simplifies the design
process and improves the final performance. With the online
constrained optimization formulation and the approximate safe
set, the learned strategy is capable of satisfying the constraints
in the prediction horizon and restricting the state within the
approximate safe set, which is an approximation to the robust
control invariant set. The performance of the strategy trained
with SMORL is compared to a baseline strategy representing
human drivers’ behavior over 100 randomly generated trips
in Columbus, OH, US. With a comparable average speed, the
strategy from SMORL consumes approximately 22% less fuel.

While the demonstration of the algorithm is on the eco-
driving problem, we believe it can be applied to many other
real-world problems, in particular to those with well-studied
system dynamics, such as robotics and autonomous driving.
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Future studies include the extending the SMORL algorithm
to include the presence of leading vehicles, as well as the
integration and verification of the algorithm in a demonstration
vehicle.

APPENDIX A
VARIATIONAL AUTOENCODER

Let X = {xi}Ni=1 be some data set and Z represent a set of
low-dimensional latent variables, the objective is to maximize
the marginal log-likelihood:

log p(X) =

N∑
i=1

log p(xi) =

N∑
i=1

∫
z

log p(xi|z)p(z)dz

=

N∑
i=1

Ez∼p(z) log p(xi|z),

(29)

As Eqn. (29) is in general intractable, its variational lower
bound is instead maximized:

L(ω1, ω2, X) =−DKL (qω1
(z|X)||p(z))

+ Eqω1
(z|X) [log pω2

(X|z)]
. (30)

Here, DKL is the Kullback–Leibler (KL) divergence, and
p(z) is the prior distribution that is typically assumed to
be a multivariate normal distribution. qω1

(z|X) is the poste-
rior distribution parametrized by ω1. To analytically evaluate
the KL divergence, the posterior is typically constructed as
N (z|µω1(X),Σω1(X)). From a coding theory perspective,
qω1

(z|X) and pω2
(X|z) can be considered as a probabilistic

encoder and a probabilistic decoder, respectively.
To compute the ∇ω1

L(ω1, ω2, X), policy gradient theorem
[47] or Reparametrization trick [38], [47] can be used. The
latter is often used in VAE as it typically leads to a lower
variance.

In practice, the encoder qω1
(z|X) and the decoder pω2

(X|z)
can be any function approximator. An implementation of VAE
as the generative model to sample actions can be found in
https://github.com/sfujim/BCQ. In this work, the latent space
dimension is selected to be 5, and the encoder and the decoder
are both MLPs with 2 layers of 300 hidden units.

APPENDIX B
AUTOREGRESSIVE MODEL WITH LSTM

For any probability distribution, the joint distribution can be
factorized as a product of conditional probabilities as follow:

p(x) =

K∏
i=1

p(x(i)|x(1), ..., x(i−1)),

→ log p(x) =

K∑
i=1

log p(x(i)|x(1), ..., x(i−1)),

(31)

where x(i) is the ith dimension of the discrete input vector
and K is the dimension of the input vector. As shown in Fig.
9, the input vector in one-hot vector form is fed to the LSTM
network in sequence. The ith output of the LSTM network
after the softmax operation becomes a proper conditional
probability p(x(i)|x(1), ..., x(i−1)). The model is trained by

1
0

0

Inputs 
(one-hot)

Outputs
-5
1.2

5.7

......

Softmax

Masks

LSTM

......

Fig. 9. The Network Architecture of Recurrent Autoregressive Model.

minimizing the KL divergence between the data distribution
sampled from the experience replay buffer and the modeled
distribution:

min
ψ

DKL [p∗(x)||pψ(x)]

= min
ψ

Ex∼p∗(x) [− log pψ(x)] + constant
(32)

In this work, the LSTM network has a single layer and 50
hidden size.

APPENDIX C
ADDITIONAL COMPARISON AMONG STRATEGIES

Here, we show the comparison on two additional trips. The
trip shown in Fig. 10 contains a large number of signalized
intersections. As indicated by Fig. 7, the gap between SMORL
and the baseline and the gap between the wait-and-see solution
and SMORL are both amplified by the high traffic density.
The trip shown in Fig. 11 has a very low traffic density
and the speed limits higher. In such case, the difference
between SMORL and the wait-and-see solution becomes less
noticeable. Meanwhile, SMORL was still able to consume less
fuel by using the capacity of the battery more efficiently.

APPENDIX D
ABLATION

In this part, we compare the full SMORL algorithm with
the four intermediate algorithms. All the algorithms presented
below use trajectory optimization solved via the PDDP solver.
Tab. IV shows the difference in configuration and compares the
trained final performance over the 100 trips used for testing.
Here, we see that the safe set and BCQ both have a positive
impact on the trained performance. In fact, the combination
of TD3 and trajectory optimization (Config. 2) does not
provide any show any significant improvement over trajectory
optimization only (Config. 1). In addition, without the use of
the safe set, the controller will deplete the battery SoC to
SoCmin at the end of the trip as the terminal state constraint
cannot be considered unless with the help of extrinsic penalty.

https://github.com/sfujim/BCQ
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Fig. 10. Comparison for High-density Low-speed Scenario.
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Fig. 11. Comparison for Low-density High-speed Scenario.
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