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Abstract—Traffic situations with interacting participants pose
difficulties for today’s autonomous vehicles to interpret situations
and eventually achieve their own mission goal. Interactive plan-
ning approaches are promising solutions for solving such situa-
tions. However, most approaches are only assessed in simulation,
as researchers lack the resources to operate an autonomous ve-
hicle. Likewise, open-source stacks for autonomous driving, such
as Apollo, provide competitive and resource-efficient state-of-the-
art planning algorithms. However, promising planning concepts
from research are usually not included within a reasonable time,
possibly due to resource restrictions or technical limitations.
Without evaluating these novel algorithms in reality, the benefits
and shortcomings of proposed approaches cannot be thoroughly
assessed. This work aims to contribute methodology and imple-
mentation to integrate a novel mixed-integer optimization-based
planning algorithm in Apollo’s planning component and assess
its performance and real-time capability in theory and practice.
It discusses the necessary modifications of Apollo for deployment
on a different vehicle and presents three real-world driving
experiments on a public road alongside a detailed experience re-
port. The driving experiments show a smooth trajectory tracking
performance operating robustly under varying perception data
quality and the real-time capability of the closed-loop system.

I. INTRODUCTION

As long as autonomous vehicles share the road with hu-
man drivers, they need to make decisions interactively and
cooperatively with them. Otherwise, dead-locks or danger-
ous situations may arise. Besides simulating these situations,
testing and validating novel driving functions for motion
or behavior planning requires closed-loop driving tests on
vehicles equipped with a complete software stack. Research
groups are usually unable to develop and operate such a state-
of-the-art autonomous driving stack. Open-source stacks such
as Apollo [1] or Autoware [2] can help research groups to
conduct and validate their research on real demonstrators, not
just in simulation environments. Applying such a stack to a
new car is usually not straightforward: The vehicle actuation
interfaces, network communication, and sensor configurations
vary due to hardware availability, requirements, and local
authorities. Our previous work [3] demonstrates how to apply
the Apollo stack to a street-legal prototype vehicle in Germany.

As our goal is to validate the Mixed Integer Interactive
Planning (MINIVAN) [4–6] algorithm for behavior and motion
planning on the road, this work describes the process of inte-
grating it in the stack. It also provides a thorough evaluation
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Fig. 1. Illustration of one benchmark scenario: An evasive maneuver around
a pedestrian blocking parts of the lane.

in multiple test scenarios on public roads in Germany, Fig. 1
illustrates one. By doing this, we display the applicability,
capabilities, and limitations of MINIVAN in a full-size au-
tonomous vehicle setup. Specifically, we contribute
• a thorough analysis of Apollo’s architecture and planning

module,
• a methodology on extending and working with Apollo,
• the demonstration of mixed-integer planning on a real

road in a full-stack setup,
• and a set of open-source software modules [7] as an

extension for Apollo to interface our Volkswagen Passat.
This paper is structured as follows: After reviewing existing

open-source stacks, the planning approaches of Apollo, and
interactive planning approaches in Sec. II, we introduce our
planner MINIVAN in Sec. III. Starting from the system setup,
Sec. IV introduces our adaptions made to Apollo. We elaborate
on which modules we changed, replaced, or added. The
integration of MINIVAN in Apollo is described in Sec. V.
We discuss the pre- and postprocessing steps and all relevant
software modules in detail. We then evaluate the complexity
of MINIVAN with respect to a growing number of objects in
Sec. VI in simulation to assess real-time capability. Sec. VII
shows results from on-road evaluations analyzing timing and
trajectory tracking aspects. We finish by summarizing our
lessons learned in Sec. VIII, on the Apollo platform and the
system setup and offer our conclusions in Sec. IX.

II. RELATED WORK

This section will discuss open-source autonomous driving
stacks, especially Apollo, focusing on the planning component.
We then briefly discuss interactive planning approaches.
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A. Open-Source Autonomous Driving Stacks
Autoware.AI (formally known as Autoware [8]) is an open-

source software stack for autonomous driving based on the
Robot Operating System (ROS). It contains modules for local-
ization, perception, prediction, and planning. The localization
is based on a High Definition Map (HD-Map), Simultaneous
Localization and Mapping (SLAM), and Global Navigation
Satellite System (GNSS)/Inertial Measurement Unit (IMU)
data. Perception fuses data from camera and lidar sensors.
Planning uses probabilistic and rule-based techniques solving
open space (e.g., parking) and lane following scenarios.

Autoware.Auto [9] is a recent reimplementation based on
ROS 2 of Autoware.AI [2] with well-defined interfaces and
an additional focus on functional safety. It is developed under
the Autoware Foundation. Currently, the new stack supports
valet parking but no comprehensive on-lane driving.

Baidu’s Apollo [1] is an open-source autonomous driving
stack with its customized middleware. The framework has
been adapted or used in various works. Wang et al. [10]
connected Apollo to a motion planning benchmark tool [11].
Fremont et al. [12] used Apollo to demonstrate the simulation
to reality gap for a scenario-based testing approach.

Apollo comes with Cyber RT [13], a customized middle-
ware for autonomous driving. Like popular robotic middle-
wares, Cyber RT is based on a publish-subscribe principle
to interconnect different software components. The system
is fully distributed and offers easy-to-use C++ and Python
Application Programming Interfaces (APIs) to integrate new
components. Similar to ROS 2, no central core component
has to be started; each component is launched as a separate
task in the userspace. Cyber RT resolves the components’ data
input/output dependencies and correctly links the components
in a directed acyclic graph. The message format of Cyber RT
is based on Google Protocol Buffers.

Apollo and Autoware have a similar scope, as both aim to
provide an Software Development Kit (SDK) in conjunction
with algorithms such as planning or data fusion. Raju et
al. [14] have compared the functional components between
Apollo and Autoware.AI and state that the functional modules
in Apollo are more robust and performant at the cost of leaving
the generic ROS environment. Apex.AI offers a middleware
called Apex.OS that extends ROS 2 and promises hard real-
time capability. However, studying and comparing potential
advantages of the Autoware products over Apollo regarding
hard real-time requirements were out of scope for this work.

We decided to deploy Apollo on our vehicle since Apollo
already supports on-road driving, is developed rapidly, and
follows a modern software design. We described our vehicle
setup in [3]. We have since updated our system to Apollo v5.5.

Hardly any other publically available comprehensive stacks
exist. NVIDIA’s DriveWorks [15] is a SDK for developing
driving functions. It also provides reference implementations
for perception, localization, and planning. However, the stack
is not open source and only supports NVIDIA hardware.

B. The Apollo Planning Module
Apollo’s planning module offers several planning algo-

rithms [16]. All are based on the same interface and take the

vehicle ego state and the predicted positions or trajectories of
obstacles as an input. A new planning is triggered for each
new prediction message. The code is barely documented but
follows modern and understandable coding patterns.

1) Public Road Planner: The public road planner is de-
signed as a modular and holistic approach to generate suitable
trajectories for various kinds of distinct driving situations by
decoupling the selection of the current situation from the
actual planning algorithm and its parametrization. Based on
the scenario the vehicle is currently in, a predefined set of tasks
is executed. This modular and flexible implementation comes
at the downside of various switching and blending layers in
the planner. Four classes of situations can be handled:

1) Lane Following and Overtaking: Track the desired ve-
locity in a particular lane or follow the vehicle in front,
perform lane changes and overtaking of slow vehicles.

2) Intersections: Handle signalized and unsignalized in-
tersections with or without traffic signs according to
the (American) traffic rules. When approaching a stop
sign or performing an unprotected turn at a signalized
intersection, the vehicle first comes to a complete stop
and then creeps in the intersection to find a safe gap.

3) Parking: Maneuver from a lane into a parking spot
or reverse. Here the Open Space Planner described in
Sec. II-B2 is triggered.

4) Emergency: In case of failures, two emergency maneu-
vers are possible. Either the Open Space Planner drives
the vehicle to the curb, or the vehicle stops in the current
lane while preventing rear collisions.

The actual motion planning uses path-velocity decomposition.
First, the vehicle state is translated into the Frenet frame.
For this, a smooth reference line (up to the curvature deriva-
tive) is generated from the reference line using Quadratic
Programming (QP). Second, the lane boundaries and static
obstacles in front of the vehicle are converted into the Frenet
frame. Selecting a homotopy to either pass an obstacle on
the right or left side is usually a non-trivial task [17]. Apollo
solves the homotopy class selection problem with a heuristic
search. Third, a QP for the lateral deviation from the reference
line is defined. The longitudinal interval on the reference
line is set to a fixed resolution. The optimization problem
models constraints to be kinematically feasible collision-free.
It minimizes lateral reference deviation and lateral movement
in a piecewise-jerk fashion. For longitudinal movement along
the reference line, a similar QP is defined. Moving obstacles
are considered by setting an appropriate reference speed for
following a vehicle or merging in. Longitudinal and lateral
trajectories are then combined and transformed back from
the Frenet frame to the Cartesian space [18]. The algorithms
have proven to master various on-road driving scenarios and
compute smooth and collision-free results. The computation
time is comparably low on standard hardware.

2) Open Space Planner: The Open Space Planner is a
dedicated module for maneuvering in free-space scenarios
without a lane structure, such as parking. As a basis, the
Hybrid-A* path planning algorithm is used. In a subsequent
step, the curvature of this collision-free path is smoothed
using the Dual-Loop Iterative Anchoring Path Smoothing
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algorithm [19]. Afterward, a speed profile along the path is
generated by formulating a constraint QP that minimizes the
jerk [19, 20]. The planning algorithm shows a fast, reliable
performance in simulated and real-road scenarios.

3) Limitations of the Apollo Planner: The planning module
produces good baseline results in most of the tested scenarios.
Nevertheless, we identified the following shortcomings of
Apollo’s current planning module:

1) Lack of interactive or cooperative planning,
2) Lack of transferability to arbitrary situations,
3) Trajectories are not C3-smooth.

We now discuss them in more depth.
The trajectory planners have an excellent performance in

terms of evaluation time. A planning frequency of 100 ms is
easily achieved. Due to this property, the planner is reactive
to dynamic obstacles around the vehicle. However, it is barely
interactive as it avoids the predicted trajectories of dynamic
obstacles without the intention to influence or negotiate with
others. The applied path-velocity decomposition in the planner
also prevents the creation of interactive trajectories.

Apollo’s rule-based planning module is designed for a
specific set of driving maneuver classes, such as lane following
or lane changing. For each of those, the detected traffic
participants are processed differently before being fed to the
planner. Designing this and tuning the triggering and translat-
ing between those requires significant engineering effort. No
template or generic methodology is (yet) available to enhance
the number of supported maneuver classes.

Apollo’s trajectory planner imposes constraints on the con-
troller stabilizing the trajectory. For example, the trajectories
are not always C3-smooth, and therefore, the tracking con-
troller has to smooth the trajectory to achieve a smooth driving
behavior. This smoothing, however, modifies the planned tra-
jectory and thus might not satisfy all objectives and constraints
of the planner anymore.

The shortcomings of the Apollo planner motivate us to
replace it with a more generic planning implementation that
can generate interactive plans for multiple agents.

C. Interactive Planning

Game-theoretic approaches offer an elegant way to model
interactions and dependencies between agents [21–24]. Based
on the collaborative premise, the ego agent can incorporate fu-
ture interactions with human-driven vehicles into its planning
scheme. A decision tree often realizes the game-theoretic set-
ting by sampling primitive actions, which has the disadvantage
that the search-space discretization may eliminate solutions in
convoluted solution spaces.

With Reinforcement Learning (RL) interactive behavior
does not need to be modeled explicitly using models or multi-
agent settings but can be learned implicitly from data. RL
can be considered an offline planning algorithm and thus
inherently will be tasked during execution to generalize to
unforeseen environments. Past works employed prediction or
formal methods for safe exploration [25–27], counterfactual
reasoning for safe execution [28], learning on abstract seman-
tic representations [29], or fusing learning with search-based

techniques [30–32]. However, safety, non-interpretability, and
efficiency of training data are just some of the problems that
remain before their usage in safety-critical applications.

Optimal control approaches have employed Mixed-Integer
Progamming (MIP) for cooperative multi-agent planning [33–
35], as it can find an optimal solution to the usually com-
binatoric problem. However, some approaches [33, 34] only
work for straight driving on straight roads, as they cannot
encode the non-holonomy in the optimization problem. Similar
problems can be expected from [35], where the abstracted
discrete lateral action and state-space will complicate applying
this approach in reality. Our previous work [4, 5] mitigates
these shortcomings and can be applied to arbitrary roads or
driving situations, which we will apply to reality in this work.

III. THE MINIVAN MODEL

In the following, we briefly describe the Mixed Integer
Interactive Planning (MINIVAN) algorithm that is used for
motion planning in this work. The model is solved using
Mixed-Integer Quadratic Programming (MIQP). For a detailed
model formulation, we refer to our previous works [4, 5]. The
implementation is available as open-source software [6].

1) Linear Motion Model: We model the vehicle as a third-
order point-mass system in a global Cartesian frame with
positions px, py , velocities vy , vy , and accelerations ax, ay
as states. Direction-wise jerk in both directions jx and jy are
the inputs of the model. We approximate the vehicle’s shape
using circles for the collision checking. However, the actual
front axle position is not directly known from the linear model
as the vehicle yaw angle is not part of the state space. Its
computation is highly non-linear and cannot be used in MIQP.
We thus define regions in the (vx, vy) plane, allowing us to
obtain an approximation of the orientation based on linear
inequalities only dependent on vx and vy . We impose region-
dependent limits on acceleration and jerk to model the vehicle
dynamics. Computing the upper and lower bounds for sine and
cosine functions of the orientation leads to upper and lower
bounds for the front axle position. For obtaining the lower
and upper bounds for sine and cosine functions of the actual
orientation, we fit linear polynomials on vx and vy .

2) Modeling the Non-Holonomics: To ensure the non-
holonomics of a vehicle for a point-mass system, we need to
constrain the curvature, which again is highly non-linear. We
thus model the non-holonomics as linear constraints on ay . For
this, the curvature is approximated using a linear combination
of vx, vy , ax, and is solved for ay .

3) Road Environment and Obstacle Avoidance: A polygo-
nal representation of the environment is used and deflated with
the radius of the collision circles. Non-convex environment
polygons need to be split into several convex sub-polygons.
We enforce the vehicle to be in at least one of these convex
sub-polygons. This way, the vehicle-to-environment-polygon
collision check becomes a point-to-polygon check for each
circle used to approximate the vehicle. Likewise, we ensure
that the vehicle does not collide with an arbitrary number of
static or dynamic convex obstacle polygons, such as those
obtained from a prediction.
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Fig. 2. Architecture overview of the setup we chose to operate the vehicle. Driver components are visualized using smaller boxes with rounded corners. The
components with main contributions of this work are shown in gray. The object lists from Radar sensors remain unused in this work.

4) Cost function: We choose the weighted sum of position
and velocity distance to the reference trajectory as a cost
function for the ego vehicle. For acceleration and jerk, we
aim to minimize the squared values.

5) Multi-Agent Planning: To facilitate interactive planning,
we define the state space as the set of interacting agents.
Each agent in the optimization problem satisfies the constraints
described before. We employ linear constraints for agent-to-
agent collision checking and a leveraged joint cost function to
model cooperative, egoistic, or altruistic behavior.

IV. ADAPTIONS TO THE DRIVING STACK APOLLO

This section focuses on the extensions we implemented to
run Apollo on our vehicle. These extensions are available as
open-source software [7]. Apollo provides a variety of prebuilt
functionality and a well-structured codebase. We aimed to
introduce minimal changes to the Apollo stack to maintain the
original functionality. Besides parameterization for our vehi-
cle, we used the perception pipeline, the prediction module,
the routing modules, and the Human Machine Interface (HMI)
as implemented in Apollo. We modified the sensor drivers,
implemented a different controller module, and developed sev-
eral adapters and software components to connect the vehicle
hardware with the Apollo stack. Each of these modifications
served a specific need that we elaborate on in this section.
The fact that we were able to introduce these changes into
the existing system rather shows the flexibility of Apollo than
its shortcomings. The customization of the stack to operate
on a different vehicle platform using a modified planning and
control system will be described in this section. Due to the
different sensor sets and driving use-cases, we do not present
a quantitative comparative study of the off-the-shelf Apollo
system and our modifications.

A. System Overview

Apollo follows a classical sense-plan-act architecture pat-
tern. Each component is started as a separate process, and
the messages are exchanged among the components us-
ing Apollo’s custom publish-subscribe middleware Cyber RT.

This middleware makes the integration of customized compo-
nents straightforward. We followed Apollo’s architecture pat-
tern as sketched in Fig. 2 but replaced some components with
custom implementations. We also reflected the architecture by
separating each architectural layer on an individual hardware
computer. For perception and planning, we used two stan-
dard in-vehicle computers. The most significant architectural
change is the separation of the vehicle controller from Apollo,
placing the control layer on a dedicated real-time control unit.

B. Perception Pipeline and Obstacle Motion Prediction

Our sensor setup is different from the recommended Apollo
hardware setup, which led us to implement an adapted percep-
tion pipeline. As we focus on the planning and control layer
here, we only used a minimal set of sensors, mainly a 32-layer
lidar on the roof center, and the differential GNSS system for
localization. The radar and vision pipelines are not used in
this work. The sensor data fusion component thus only post-
processes the objects detected from lidar.

1) Ego Localization: Since our localization hardware is
different from the Apollo reference vehicle, we had to develop
a customized localization adapter. As the differential GNSS is
supposed to provide highly accurate and consistent measure-
ments, we decided to feed an already filtered GNSS position
and velocity plus the IMU data from the same device into
the stack without changing Apollo’s standard messages. Doing
so, we did not introduce changes in the build-in Real-Time
Kinematic (RTK) localization module that combines GNSS
and IMU messages to a consistent localization message and
provides the dynamic transformation from the world frame to
the vehicle reference frame.

2) Lidar Pipeline: Apollo provides a pipeline starting from
the lidar drivers for the identification of objects in the point-
cloud [36, 37]. The vehicle’s motion during the point cloud
scan is compensated. Distinct objects segmented are from the
point cloud data by projecting all scan points into the two-
dimensional Cartesian plane, quantizing them into grid cells,
and applying a fully convolutional neural network to predict
geometry and class per cell. From these cells, polygonal
objects that have a valid orientation are created. Whereas the
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networks’ implementation is provided, the training data for the
neural nets are not available open-source. Our setup relied on
the trained network for a 64-layer Velodyne lidar to process the
data of the 32-layer Velodyne lidar, which implies an adaption
in the segmentation process that is hard to verify. A recognition
component tracks the segmented obstacles and associates each
obstacle with a track in a subsequent step. The result is a list
of objects with kinematic states, shapes, and types per lidar
sensor. We only introduced parameter changes.

3) Prediction: We also did not introduce implementation
changes to the prediction component [38]. It takes the objects
from the sensor data fusion and generates an estimated future
motion based on the object state, type, and the ego-motion.
Different machine learning-based algorithms are executed ac-
cording to the type of object and its proximity/probability to
interact with the ego vehicle. An evaluator predicts path and
velocity individually for each object, followed by a predictor
that generates trajectories.

C. Map Processing
Apollo heavily relies on an HD-Map, which provides ge-

ometric information and a topology graph of how the lanes
are interconnected. The routing component selects the shortest
path on the network using the A* algorithm [39]. This map
is stored in a customized format extending the OpenDrive
format [40]. While standard OpenDrive maps describe the geo-
metric shape of a road and lane using mathematical functions,
Apollo-style maps use linestrings instead, a discretized variant
of the functions. We did not modify Apollo’s map format
but had to provide maps from our test area in Munich. We
thus developed a converter that translates standard-conform
OpenDrive maps into custom-Apollo OpenDrive maps.

Gran [41] provides a thorough analysis of the differences
between standard OpenDrive and Apollo’s custom format.
Standard OpenDrive maps define the centerline of each lane as
a sequence of functions along the longitudinal road coordinate.
On top, lanes are then defined as functions defining the lateral
offset from the centerline or the previous lane in a street-local
coordinate system. Each road has a unique ID, and within each
road, each lane has a unique ID inside this road. The linkage
of roads is achieved by specifying successor and predecessor
lanes on other roads and junctions.

In contrast, Apollo’s adaption of OpenDrive requires each
geometric function to be provided as a set of discretized
points in an appropriate geo-coordinate system. Our converter
performs this discretization into WGS84 points and the re-
spective associations. It also resolves discretization errors at
lane boundaries. Also, lane linkages are implemented slightly
differently, which the converter resolves. Furthermore, Apollo-
specific map content such as the area of an intersection
is generated. Having this custom OpenDrive map in XML
format, we use Apollo’s toolchain to translate the map to a
Protocol Buffers-based internal map format. In this format,
each lane is specified by its centerline and boundaries and a
unique ID. A road only contains topology information, i.e.,
how lanes are connected. Alongside, a downsampled version
of the map is generated for visualization purposes and a graph-
based representation of the map for routing purposes.

D. Planning

We integrated our planner as a native component inside
Apollo’s Docker container. We aimed to reuse as many of
the service functionalities already implemented. Therefore,
we decided to derive from Apollo’s LatticePlanner class and
integrate into the existing planner.

As the implementation of our planner relies on C++ lan-
guage and Standard Template Library features that are not
available with GCC 4.8.5, which is the compiler used in
Apollo’s Docker container, we did not compile our planner
alongside Apollo. Instead, we compile it into a library that
is then linked to the Apollo planning module. This procedure
also enables us to use third-party dependencies incompatible
with Apollo’s third-party dependencies, such as more recent
versions of the Boost and Eigen libraries. With Apollo, we
only compile a wrapper class that calls this library. Further-
more, this wrapper class gathers data, helps to assemble the
optimization problem, and post-processes the output. Sec. V
will elaborate the interfaces and software structure in detail.

E. Control

The trajectory tracking controller stabilizes a given trajec-
tory and generates acceleration and steering commands passed
to the vehicle interfaces. Although Apollo would serve this
need, we chose to replace the controller used by Apollo and
run it on a separated real-time platform instead. This separa-
tion facilitates higher safety and reliability in our prototype
setup by separating control tasks in real-time execution for
other software applications on different hardware platforms.
Therefore, we developed a bridge communicating between the
Apollo stack and the trajectory tracking controller on the real-
time system. Our bridge implementation is based on Apollo’s
bridge component but is rewritten in ANSI C to decode and
encode Apollo’s Protocol Buffers-based messages directly on
the real-time device. The software architecture of the controller
has been published in [3]. We observed that this separation
yields more stable system performance and optimally uses the
different benefits of the modular computing hardware setup.

V. INTEGRATION OF THE MINIVAN PLANNER IN APOLLO

This section describes how we integrated MINIVAN, de-
scribed in Sec. III, into Apollo. The architectural overview of
the software components of the proposed planner is shown
in Fig. 3. Besides the planner’s core, solving the MIQP prob-
lem, that is described in [4, 5], various other functionalities
are involved, e.g., in processing the input data, generating
the problem in the appropriate coordinate system, and post-
processing the solution. In the following, we describe the main
software components involved.

We do not use MINIVAN in driving situations at very low
speeds. As elaborated in [4], the main reason for this is the sin-
gularity of the arctan function at very low speeds. The arctan
function is needed to translate the absolute vehicle speed to
the decomposed speed vectors in x and y direction. These
low-speed tasks are performed by our nonlinear trajectory
smoothing module, as described in Sec. V-C. We introduced a
minimum speed threshold vmiqp,min below which we do not
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Fig. 3. Overview of the software components of our planner. Our contributed components are shown in gray. The other components are reused from Apollo.
Functional building blocks are represented as boxes, the execution control is represented as an ellipse.

use MINIVAN. Trajectory points from MINIVAN below this
speed and all subsequent ones are considered invalid. Through
empirical experiments, we identified vmiqp,min as 0.7 m/s and
used 1.0 m/s as a conservative upper bound.

A. Usage and Modification of Apollo Functionalities

From the routing request, Apollo creates a reference line for
planning. This line generally consists of the stacked centerlines
of the lanes on the routing corridor. Also, relevant obstacles
are extracted from the environment model and a local except
of the map. We have not changed these functionalities.

Apollo implements a trajectory stitching module to compute
a reasonable initial point for the next planning cycle. Three
cases are handled: static, moving without or moving along a
valid trajectory. If the vehicle is static, the initial point is the
current position. If the vehicle is moving, but no old trajectory
is available (or the old trajectory is invalid), the trajectory
stitcher extrapolates the current vehicle position into the future
with the current speed vector for an estimated planning cycle
duration. The default behavior of Apollo when moving along a
trajectory is to select the next initial planning point as the point
on the existing trajectory that the vehicle should reach in one
planning cycle. While Apollo’s planner has a rather determin-
istic low runtime, MINIVAN is terminated at an upper runtime
bound. This bound is usually only reached in complicated
planning situations, where mostly a feasible but sub-optimal
solution is already available. In typical situations, this worst-
case threshold is far from the mean runtime. We modified the
trajectory stitcher to shift this extrapolation time to the worst-
case computation time-bound. This way, we always have a
valid trajectory as the stitching point can always be reached
but have introduced additional inertia into the system. For
the duration of the worst-case evaluation time, the planner
cannot react to newly introduced obstacles, as the trajectory
leading to the point at this time is fixed. This modification
is, as such, no improvement of Apollo but a necessity to
apply a planning concept with a non-deterministic runtime.
Once a new valid trajectory is computed, it is appended to
the old trajectory at the previously computed initial point. To

interpolate the trajectory in the tracking controller, a sufficient
backward horizon consisting of the old trajectories is kept.

We also changed the behavior if the planning module fails
and cannot create a valid trajectory. In this case, Apollo would
trigger an error state and compute an error trajectory, e.g.,
bring the vehicle to a stop. However, we often observed in
experiments that if one planning cycle failed, e.g., due to
an unfavorable prediction of one obstacle, the next planning
cycle produces a valuable result, resulting in unnecessary error
trajectories. Therefore, we decided not to trigger the error state
with the first failing planning cycle but at the time instance
when the vehicle has reached the end of the current planning
horizon. This planner typically recovers to a normal state in
a couple of planning cycles. We ensure the old trajectory is
still safe by checking this old trajectory for collision with
all obstacles. This modification yields more robust and stable
overall system behavior without modifying components the
stability issue comes from, which we wanted to avoid.

B. Pre- and Post-Processing the Optimization Problem

We first switch from the coordinate system in the driving
direction of the vehicle to the global Cartesian coordinates(

px py θ v a κ
)
−→

(
px py vx vy ax ay

)
(1)

with velocity v and acceleration a in the direction of the
vehicle orientation θ and curvature κ. With velocities and
acceleration in x and y direction vx, ax and vy , ay the
transformation is then defined as:

vx = v cos(θ), (2a)
vy = v sin(θ), (2b)

ax = a cos(θ)− v2κ sin(θ), (2c)

ay = a sin(θ) + v2κ cos(θ). (2d)

The transformation is based on a kinematic single track model
[42]. To map the accelerations (2c) and (2d), we derive the
respective velocities and use the relation of yaw rate and
curvature θ̇ = v tan(δ)/l = vκ (with steering angle δ and
wheel base l).
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Algorithm 1 Obstacle Consideration
Input: obstacles OApollo, region of interest Proi, convex de-

flated road cells Cd, collision radius rc, safety margin rs
Output: OMINIVAN

1: for each o ∈ OApollo do
2: if type(o) is static then
3: if BBox(o, 0) ∩ Cd ∩ Proi 6= ∅ then
4: OMINIVAN ← Inflate(o, rc + rs)

5: else . dynamic obstacle
6: for each t ∈ 0...T do
7: if BBox(o, t) ∩ Cd ∩ Proi 6= ∅ then
8: OMINIVAN ← Inflate(o, rc + rs)

1) Obstacle Processing: The processing of obstacles is
shown in Algorithm 1. We first inflate the shape of each
obstacle o by the collision circle radius rc plus an appropriate
safety margin rs. This margin can be selected differently for
different object types.

We then compute the minimum bounding rectangle
BBox(o, t) for each object o at time t as the shape to check
against collision in the MINIVAN optimization. Theoretically,
every convex shape would be possible, but rectangles have
proven to be a reasonable compromise between accuracy,
flexibility, and runtime. We compute a translated and rotated
shape for each state on the predicted trajectory for dynamic
obstacles.

Obstacles are only considered if they intersect with the
convex deflated road cells Cd and the Region of Interest
(ROI) Proi. For dynamic obstacles, the shape of at least one
prediction step has to intersect with the environment. The ROI
Proi is computed as a very simplistic reachable set of the
vehicle forming a square. It filters out obstacles that do not
interfere with the vehicle, such as objects behind the vehicle.

2) Reference Computation and Ego Agent Update: We get
the reference line for planning alongside the destination point
on this line. We use this line to create a linear reference speed
profile with a constant acceleration phase up to the target speed
add a constant velocity phase at reference speed. The reference
decelerates with a linear speed profile to zero velocity when
approaching the goal point. We scale the target speed with
the curvature and a maximum accepted lateral acceleration
threshold in the curves.

As a start point for the reference, we select the initial point
for planning. The second point of the reference is selected
as the point on the reference line with minimal Euclidean
distance in front of the vehicle. The initial velocity is chosen
as the velocity of the initial point for planning. Note that this
straightforward reference generation strategy can yield subop-
timal results for starting positions far off the reference line,
as possibly the optimization tracks an unreachable reference.
We do not adapt the reference line when intersecting with
obstacles or the environment but expect MINIVAN to resolve
these conflicts. From this reference line and speed profile, we
sample an interpolated reference trajectory as an input to the
planning step.

3) Map Processing: MINIVAN relies on a convex approx-
imation of the available free-space for navigation. Nearly all

Algorithm 2 Map Processing
Input: road polygon Proad, simplification distance δs,

circle radius r, number of merging iterations n
Output: convex deflated road cells Cd

1: Ps = Simplify(Proad, δs)
2: Ps,d = Deflate(Ps, r)
3: Cvoronoi = VoronoiDiagram(Ps,d)
4: Cvoronoi∩road = {}
5: for each C ∈ Cvoronoi do
6: if C ∩ Ps,d 6= ∅ then
7: Cvoronoi∩road ← C ∩ Ps,d

8: T = Triangulate(Cvoronoi∩road)
9: Pd = Deflate(Proad, r)

10: Cd = T

11: for each i ∈ 1...n do
12: Cd = MergePolygons(Cd, τm, Pd)

road shapes are non-convex and therefore have to be decom-
posed into several convex sub-polygons. A naive triangulation
is possible but undesirable, as the number of constraints scales
linearly with the number of environment polygons. Therefore,
we aim for an efficient convexification algorithm that outputs
as few polygons as possible while still covering the whole area.
Algorithm 2 shows the pseudocode of this convexification,
where P denotes an arbitrary-shaped polygon, C a convex
polygon, T a triangle, and P,C,T the respective sets.

We construct the (non-convex) road polygon Proad from the
left and right road boundaries and simplify it using the Ramer-
Douglas-Peucker algorithm. We deflate the environment poly-
gon with the radius of the circles that approximate the vehicle
and construct the Voronoi diagram on this polygon using a
sweep line algorithm [43]. The Voronoi cells Cvoronoi represent
a segmentation of the available space into polygons. In our
case, all cells are polygons with straight edges. We intersect
the deflated original polygon with the set of Voronoi cells and
drop all cells outside the original polygon. We decompose
non-convex Voronoi cells into triangles.

Finally, we iteratively merge the resulting set of polygons
into bigger convex polygons in a greedy manner. We check
if the convex hull of this union lies within the original (non-
convex) road polygon or the union is itself convex and merge
further triangles if yes, and start a new sub-polygon if not. This
procedure does not guarantee an optimal result. To cope with
this, it has proven to be beneficial for the road shapes used
in this work to iterate twice over the resulting list of convex
sub-polygons to reduce the number of polygons further and
find larger convex shapes.

The convexity checks in the merge step are performed with
a particular error margin that two shapes are merged, even if
the union is marginally non-convex. Then the convex hull is
used. This robust convexity check avoids numerical errors and
helps to create significantly fewer sub-polygons. However, it
introduces errors in the road approximation, which we add
as a safety margin to the collision shape of the agents. As
the last merging step, we simplify each polygon in the set
of convex-sub polygons to avoid very small edges. We inflate
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(a) δs =0.1m, τm =0.1m (yields 12 polygons)
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(b) δs =0.1m, τm =0.5m (yields 7 polygons)
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(c) δs =0.5m, τm =0.5m (yields 6 polygons)

Fig. 4. Results of the convexification of a lane corridor forming a curve as an example environment. We vary the simplification distance δs and the convex
merging tolerance τm. The original lane boundary is depicted in black, and the deflated lane corridor, which shall be decomposed, is depicted in red. The
resulting convex polygons are shown in various colors.

each polygon by the maximum simplification error again to
avoid holes between polygons.

The number and size of the sub-polygons are highly de-
pendent on the two introduced parameters: the simplification
distance δs and the convexity threshold τm for merging two
polygons. We can find a balanced approximation accuracy
and sub-polygons size with an appropriate setting. In Fig. 4,
we compare three different settings and show the effect of
the parameters. We observe that the number of polygons is
reduced with increased merging tolerance. With low values,
the approximation of the (red) deflated environment shape is
accurate, whereas a notable approximation error at the inner
part of the curve occurs with higher values. The strategy
described here has proven to generate a sufficiently accurate
environment decomposition with a fast runtime. Still, we
rely on a greedy heuristic, and theoretically, shapes can be
constructed where the algorithm yields poor results. We did
not observe such problems in the tested road geometries.

4) Optimization Problem Generation: This stage collects
all previously generated data and assembles the optimization
problem. We compute values specific to the MINIVAN op-
timization, followed by various consistency checks to avoid
infeasible optimization problems, e.g., ensuring to start inside
the lane polygon. Here we also load the warmstart solution
from the previous planning cycle.

5) Warmstart Computation: An existing solution can be
provided to aid the MIP solver in finding a solution faster.
Warmstarting works best if the solution is already primal fea-
sible (fulfilling the non-integer constraints), but non-feasible
or incomplete solutions can also serve as a warmstart. With
a solution available at the start of the branch-and-cut process,
non-optimal parts of the branch-and-cut tree can be eliminated,
and a lower solution bound exists. However, the effectiveness
of the warmstart is influenced mainly by the solution quality
of the warmstart solution, which is unknown.

Therefore, we reuse all integer-feasible solutions from the
last receding horizon instance as warmstarts. We input these
solutions without modifications, such as shifting from the
last to the current timestep. Using this strategy, we have the
previous optimal solution available for warmstarting and non-
optimal but integer-feasible solutions that lead to the current
optimal solution faster as the integer decision variables are

Standstillstart

Starting

Stopping

Driving

(v > vstandstill) ∧
(srem > 0)

srem < sstop

v > vmiqp,min

v < vstandstill (v < vmiqp,min) ∧
(srem < sstop)

Fig. 5. Finite state automaton controlling the planning sequence.

initialized better. This approach, in practice, has a significant
effect on the runtime.

The less the topology of the problem has changed, the more
significant is the effect of the warmstart. Suppose environment
sub-polygons, agents, or obstacles are added to the problem.
In that case, the decision variables for those cannot be taken
from the previous solution, which lowers the efficiency of the
warmstart. Also, if the problem drastically changes, an old
solution can guide the solver in the wrong direction. In Sec. VI
and Sec. VII-D, we show the speedup from warmstarting.

6) Planner State Management: Our planner implementa-
tion is controlled by a finite state automaton with four states
representing different driving situations:
• Standstill: We do not compute a driving trajectory but

maintain the current position.
• Starting: We omit the MINIVAN planning step but com-

pute a trajectory along the reference path and speed
profile using the trajectory smoothing module.

• Driving: We set up and solve the MINIVAN planning
problem and smooth the resulting trajectory.

• Stopping: We omit the MINIVAN planning step but
compute a trajectory along the reference path and a
speed profile ramped down to zero using the trajectory
smoothing module.

Fig. 5 shows the resulting automaton and its respective tran-
sitions, where sstop := min(sgoal, sblocking). The automaton
transitions from Standstill to Starting if the velocity is greater
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than a standstill threshold and the distance to the routing
destination sgoal is greater than zero, and the path is not
blocked by an obstacle right in front of the vehicle (sblocking).
The automaton transitions from Starting to Driving if the
current velocity is greater than vmiqp,min, and from Starting
to Stopping if the vehicle approaches the destination point. A
transitions is triggered from Driving to Stopping if the vehicle
approaches the destination point and the current speed falls
below vmiqp,min. Once the velocity drops below vstandstill,
the automaton transitions from Stopping to Standstill. In the
Starting and Stopping state, we only consider obstacles that
are immanently in front of the vehicle.

7) Post-Processing of the MINIVAN Solution: After a suc-
cessful MINIVAN optimization, we post-process the result.
First, we compute and store the warmstart for the next plan-
ning cycle according to the warmstart strategy described in
Sec. V-B5. We then transform the solution trajectory back from
global Cartesian coordinates into the vehicle-relative frame
having absolute values in vehicle orientation(

px py vx vy ax ay
)
−→

(
px py θ v a κ

)
(3)

using trigonometric formulas and appropriate derivations

θ = arctan(
vy
vx

), (4a)

v =
vx

cos(θ)
, (4b)

a = cos(θ)ax + sin(θ)ay, (4c)

κ =
vxay − axvy
(v2x + v2y)3/2

. (4d)

To ensure that no approximation errors have been introduced,
we check the resulting trajectory for collisions with the
unmodified obstacles and environment. In the final step, we
perform a trajectory smoothing as described in Sec. V-C.

C. Trajectory Smoother

MINIVAN does not allow putting direct costs on absolute
acceleration change and curvature change. However, both are
desirable to generate a comfortable driving experience. Also,
due to the approximation of the orientation into a set of
discrete regions, the vehicle orientation at the boundaries of
regions can be inaccurate, and the orientation change can be
non-smooth. Furthermore, in MINIVAN, we want to use a
more extensive time discretization to achieve a longer planning
horizon that we subsample in the smoother to hand over
a smooth and more fine-grained trajectory representation to
the controller. Note that due to the overapproximation of
the vehicle shape, this is not a safety issue when avoiding
obstacles. Nevertheless, it can lead to uncomfortable driving
behavior.

Therefore, we introduce a trajectory smoothing step to
find Tout as a nonlinear Model-Predictive Control (MPC)
optimization in the vehicle frame to stay as close as possible
to the original trajectory Tin. Obstacles are not directly used
in the smoothing optimization but only indirectly through
the input trajectory. We implicitly perform interpolation by
increasing the number of support points from Tin to Tout.

We define that state space as

xk := (pkx, p
k
y , θ

k, vk, ak, κk) (5)

and the input as
uk := (jk, κ̇k), (6)

where superscript k denotes the discrete timestep. We use
Heun’s method to integrate the single-track model equations.
The discretized system dynamics can then be formulated as

pk+1
x = pkx+

1

2
∆tvk cos(θk) (7a)

+
1

2
∆t(vk+∆tak) cos(θk+∆tvkκk),

pk+1
y = pky+

1

2
∆tvk sin(θk) (7b)

+
1

2
∆t(vk+∆tak) sin(θk+∆tvkκk),

θk+1 = θk+
1

2
∆tvkκk+

1

2
∆t(vk+∆tak)(κk+∆tκ̇k), (7c)

vk+1 = vk+
1

2
∆tak+

1

2
∆t(ak+∆tjk), (7d)

ak+1 = ak+∆tjk, (7e)

κk+1 =κk+∆tκ̇k. (7f)

We place bounds on the states

vmax < v(k) < vmax, (8a)
κmax < κ(k) < κmax (8b)

and inputs

jmax < j(k) < jmax, (9a)
κ̇max < κ̇(k) < κ̇max. (9b)

We compute a quadratic cost function

J
(
u1, ...,uN ,x1, ...,xN

)
=

N∑
k=1

((
xk−xkin

)ᵀ
Qk

1

(
xk−xkin

)
+xkᵀQk

2x
k+ukᵀQk

3u
k
)
,

where xin denotes the state of the input trajectory to the
smoother module, which may not be available at some time
instances due to the wider sampling of the input trajectory
Tin. Therefore, we select the weight matrices Qk

1 ,Q
k
2 ,Q

k
3

in a way to not penalize deviations of subsampled states.
Q1 ensures minimal deviations from the input trajectory and
Q2, Q3 ensure a smooth motion.

VI. EVALUATING THE PROBLEM COMPLEXITY

This section analyzes the evaluation time with the growing
complexity of the optimization problem, namely, more ob-
stacles and agents. The scenarios were randomly generated.
We simulated 100 variants of the same scenario and aver-
aged the results to counteract randomness and runtime non-
determinism. We set the maximum solution time to 30 s to
find solutions even in complicated scenarios. We filter out
all failed optimizations since these correspond to unsolvable
scenarios, e.g., a randomly placed obstacle inside the vehicle.
Fig. 6 shows the results of this analysis, which we now discuss
in detail.
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Fig. 6. Simulative complexity analysis for a varying number of static
obstacles, moving obstacles, and moving agents around the ego vehicle. We
also show the effect of an available warmstart solution and whether objects
are modeled as agents or obstacles. The vertical dotted lines show the 5% and
95% quantile from 100 scenario variants. The warmstarted model on average
and in nearly all scenarios has a lower, or at least equal runtime.

A. Static Obstacles Scaling

As a scenario, we randomly placed static obstacles close
to the vehicle around a straight reference line the planner
intended to track with a constant speed. With more obstacles
placed on the reference, the trajectories became more evasive.
The random placement of obstacles yielded scenarios with
varying complexity that range from simple scenarios with
obstacles only relatively far from the vehicle to complex ones
with only obstacles close to the vehicle. The obstacle place-
ment, however, led to more optimization problems becoming
infeasible. The variance in the runtime reflects the scenario
complexity.

Without a warmstart, we observe a linear scaling with the
number of obstacles. The solution was found faster with an
available warmstart computed from the last solution.

If all obstacles were placed very far from the reference, the
planner’s evaluation time did not scale with the number of
obstacles.

B. Moving Obstacles and Agents Scaling

As a scenario, we randomly placed objects around the ego
vehicle and let them drive in the same direction as the ego
vehicle with a randomly assigned speed difference (±20% of
the ego vehicle speed). These objects can either be modeled
as dynamic obstacles that need to be avoided or as agents for
which the model plans an interactive trajectory.

If other objects were modeled as moving obstacles, we
observed a good performance until around ten obstacles.
The effect of warmstarting was not significant. Generally,
warmstarting helped to lower the variance in the solution time.
Again, the random placement of other objects yielded easy and
hard-to-solve scenarios, which explains the high variance.

Our analysis shows that the problem becomes intractable
in real-time for more than two other objects if modeled as
interacting agents. This effect is also visible in the exponential
growth in the problem size. Beginning with six other dynamic
agents, the solver cannot find a solution in the given time
in most scenarios. We show the evaluation until five other
dynamic agents. With more agents, the runtime bound is
reached in a majority of cases non-trivial cases, which distorts
the evaluation.

If we placed all objects modeled as obstacles very far from
the reference, we observed that the planner’s evaluation time
did not scale with the number of obstacles. Warmstarting and
the number of regions barely affected the runtime. In contrast,
we observed a comparable scaling effect in the multi-agent
case regardless of the object distances.

C. Discussion and Findings

For a low runtime, a warmstarted solver is essential in
complex situations. In some situations, warmstarting can also
reduce the variance in the solution time. However, warm-
starting can also negatively affect solution time in certain
constellations, and the question remains if these scenarios
can be distinguished in advance. Thus warmstarting does not
fully mitigate the high solution time variance. This effect was
expected in the setup of this analysis. The effect that the
evaluation time is unstable remains a severe challenge in real-
time application. All in all, the solver can handle a realistically
high number of static or dynamic obstacles. However, more
than two other interacting agents are not tractable in a real-
time setting.

VII. EVALUATION IN REAL-ROAD SCENARIOS

To evaluate the capabilities of the proposed planner, we
performed several experiments on a real road; specifically,
• Static Vehicle Avoidance: avoiding a static vehicle on the

right side.
• Vehicle Following: approaching a slower preceding vehi-

cle, eventually slowing down.
• Pedestrian Avoidance: avoiding a static pedestrian block-

ing parts of the road.
We chose to analyze the planner’s performance and overall
system setup in these three benchmarks scenarios and not
in arbitrary road situations to have reproducible results and
examine specific strengths and weaknesses in detail.

Fig. 7 shows the evolution of the static vehicle avoidance
scenario at three representative timesteps. In Fig. 8, we plot the
evolution of the scenario over time, with the inflated obstacle
shapes for each timestep and the environment representation
deflated. The resulting trajectory is collision-free due to in-
accurate obstacle measurements, which we will discuss in
Sec. VII-A, it appears colliding.

A. Perception

To study Apollo’s off-the-shelf object detection quality, we
consider only the two scenarios with static obstacles. We
analyze the deviation (·) − (·), where (·) denotes the mean
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(a) Scenario time = 3 s (b) Scenario time = 7 s (c) Scenario time = 11 s

Fig. 7. Visualization of the static vehicle avoidance scenario.

Fig. 8. Observed data from the static vehicle avoidance scenario accumulated
for all timesteps with the deflated road polygon, the inflated obstacles, and
the driven path. The inflated obstacles are shown throughout the scenario.
The resulting trajectory is collision-free, but due to inaccurate obstacle
measurements, it appears to be colliding.

value. We perform the analysis for the object’s center position
(x, y), orientation, and the bounding box width and length.
Fig. 9 shows the resulting box plot. Extreme outliers (outside
of the whiskers) are rare but may happen with deviations
of more than 1.5 m. Comparing the detection of vehicle and
pedestrian, the errors regarding position and bounding box of
the pedestrian are significantly smaller. On the other hand, the
orientation of the pedestrian is much noisier than the orien-
tation estimation of the vehicle. We expect that to improve
when fusing with other sensors, e.g., cameras. However, poor
orientation estimation of pedestrians may harm the prediction
quality. As a takeaway, we can conclude that our planner needs
to cope with noise within the standard outliers. We have thus
added safety margins to the obstacles processed within the
planning problem.

B. Planning

We first analyze the smoothness and consistency of the
generated trajectories and the resulting tracking quality. Fig. 10
shows the trajectories generated from the planner for the
vehicle avoidance scenario. Each line represents one trajectory
with start and end times. In the ideal case without perception
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Fig. 9. Distribution of the deviation from the mean value of pose and bounding
box dimension of the respective static obstacle.

and tracking errors, these trajectories should form one con-
tinuous line. During the evasive maneuver from 8 s to 13 s,
we observe the effect of the perception and perception error
in the orientation plot. When further away from the obstacle,
the planned trajectories start the evasive maneuver earlier than
necessary as the obstacle’s position is estimated closer to
the vehicle than it actually is. When steering back to the
reference line, the planner first generates trajectories taking
a wider curve than necessary as the length estimation gets
more accurate when driving parallel to the obstacle. These
effects can also be observed in Fig. 9. When accelerating
from standstill, the vehicle after activation of the low-level
interfaces, accelerates slightly slower than the trajectory indi-
cates. As we find the initial point for the next planning step
on the old trajectory (if the tracking errors are small), the
trajectories are not affected by localization or measurement
errors. We observe that the velocity and orientation profiles
are smooth and tracked smoothly. As the command to stop
the vehicle is triggered based on the distance to the goal, one
trajectory is visible that keeps the constant velocity longer.
In the acceleration profile, we observe a typical noise along
the reference. The curvature is computed from the steering
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Fig. 10. Trajectories generated for the vehicle avoidance scenario. ◦ denotes the measurement of the respective data. For clarity purposes, only every 5th
trajectory is displayed.
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Fig. 11. Distribution of the frequency of the perception, prediction, and
planning modules in the three studies scenarios.

wheel angle measurement without smoothing, rate limitations,
or stabilization terms. Therefore, minimal control interactions
on the steering wheel result in visible oscillations here. Still,
we clearly see the evasive maneuver and an initial steering
command towards the reference line.

To answer the question of MINIVAN’s real-time capability,
we have analyzed the frequency of the perception, prediction,
and planning modules. The goal for our planner is to come
up with a new trajectory within at least 1 s. Lidar sensor
data triggers the perception, which triggers prediction, which
triggers planning. Fig. 11 shows the results. We configured the
lidar to publish sensor data at 5 Hz. Both the perception and
prediction components are capable of running at 5 Hz with
some standard outliers down to 4 Hz and up to 6 Hz (to catch
up). Increasing the lidar’s publishing frequency would, at our
planning frequency, only raise the system load. Our planner
still runs at a mean frequency of 5 Hz. However, the extreme
outliers go down to 1 Hz, which mostly happens when being
close to an obstacle, where the solution space becomes narrow.

Second, we have analyzed the time consumption of the
stages of the planning component, as sketched in Fig. 12: pre-
processing, solving the MIQP problem, and post-processing.
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Fig. 12. Distribution of the planning times of the respective parts of the
planning module in the three studied scenarios.

Pre-processing the input (e.g., decomposition of the map) is
fast, as we are caching relevant data (e.g., decomposed parts
of the map). Likewise, post-processing (including smoothing)
is very efficient. The duration of pre- and post-processing is
reliably below 0.06 s and does not have significant outliers.
Most of the planning time is used by the MIQP solver. It has
significant outliers of up to 1 s (when the solver is terminated),
which consequently makes the total planning time range up to
more than 1 s.

The analysis shows that our intended general-purpose plan-
ning for arbitrary roads that avoids static and dynamic obsta-
cles works smoothly at a replanning rate of 4 Hz to 6 Hz with
outliers down to 1 Hz.

C. Control

In this section, we describe the tracking performance of the
controller in combination with trajectory planning. We show
the results exemplary for the static vehicle avoidance scenario.
In contrast to the other modules, the controller is executed on
a dedicated hard real-time platform with a fixed cycle rate of
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trajectory available to the controller measured on the real-time device and the
controller’s interpolated (matched) time for the vehicle avoidance scenario.
We observe that at sufficient forward and backward horizon is available at
every point in time, but the planning frequency varies.

100 Hz. A trajectory with a sufficient time horizon must always
be available to the controller. These trajectories are sent to the
controller after each successful planning step, but our system
has no guarantee that the controller receives a new trajectory
in a given frequency. Therefore, we analyze in the following
if a sufficient horizon is always available to the controller.

As the controller might need to interpolate between two
trajectory points, a sufficient forward and backward horizon
has to be available. Fig. 13 shows the relative start time
and end time of the trajectory available to the controller
and the interpolated time of the controller for the vehicle
avoidance scenario. By interpolated, we denote the (relative)
timestep that the controller currently tracks. We generally plan
a trajectory for 6 s and the planner starts planning from a
start point each time step, that is 1.25 s in the future (see
Sec. V-A). With a maximum solution time of 1 s for the solver
and some further delay in the system, a trajectory endpoint
between 6 s and 7 s is therefore expected. At around 20 s, the
trajectory is cut off at an intermediate point, as all subsequent
points could therefore violate the non-holonomy assumption
of the MINIVAN planner. Still, a sufficiently large horizon
is available. Interpolation values greater than zero indicate
that a point is interpolated in the future trajectory and not
only the first point in time is tracked. We observe that the
interpolated timestep is never greater than 1 s. Therefore the
planning system operates without delays in real-time.

Fig. 14 shows the measured orientation, velocity, and cur-
vature in comparison to reference signals for the vehicle
avoidance scenario and Fig. 15 shows the corresponding track-
ing errors in the Frenet frame of normal component en,
tangential component et, orientation eθ and velocity ev . We
observe that the reference values from the trajectory planner
are smooth but have to be stabilized by the controller in the
lateral direction to achieve a only slight deviation from the
trajectory in the normal (lateral) direction of at most 0.02 m.
Also, the orientation of the vehicle is stabilized up to an
error of 0.02 rad. This stabilization results in a solid tracking
of the desired position, which we omit in the figures. In
tangential (longitudinal) direction, we observe that the vehicle
first accelerates too slowly, which results in velocity and
tangential errors that are compensated in the first seconds. Due
to the technical limitations of the prototype setup, tracking
very low velocities are hardly possible. Therefore we initially
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Fig. 14. Measured orientation, velocity, and curvature in comparison to
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Fig. 15. Tracking errors of normal component en, tangential component et,
orientation eθ and velocity ev for the vehicle avoidance scenario.

accelerate from a standstill with a feedforward control law
without tracking the reference. The effect can be seen in the
very first second of the figures. Also, the evasive maneuver at
around 10 s is observed.

From this analysis, we conclude that the whole chain of
modules to compute the motion, starting from the generation
of the reference line, the MIQP-based trajectory planning, the
MPC trajectory smoothing, and real-time trajectory tracking
yields a good and stable driving performance, not only in
simulation but also on the road. The trajectories generated
by MINIVAN can be executed by a standard control approach
regarding timing and actual values. The parameterization was
chosen for tracking performance rather than smoothness.

D. Parameterization Effects

The performance of MINIVAN can be improved by choos-
ing an optimized set of parameters. We compare a general-
purpose parameter set yielding good results in a variety of
scenarios (denoted by In car), and tuned parameter sets
created a-posteriori from a recorded test drive fitted to the
specific needs (denoted by Tuned). Table I summarizes the
mean runtime percentage improvements over all instances of
one scenario compared to the default parameter setting of the
solver without modification. Without a warmstart, the runtime
increases, and therefore the number is negative. It can be
observed that the parameters used for the test drives can be
further improved when fitting the parameters for one specific
scenario.

We also observe a significant effect for real-time execution
in all scenarios when providing a warmstart solution. We
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TABLE I
RUNTIME IMPROVEMENT IN PERCENT COMPARED TO THE DEFAULT

PARAMETER SETTING OF THE SOLVER.

Scenario Tuned Without warmstart In car

Vehicle avoidance 0.17098 -0.38412 0.17567
Vehicle following 0.29339 -0.33518 0.21956
Pedestrian avoidance 0.25172 -0.44545 0.12529

scarcely see disadvantages of the warmstart, and warmstarting
is often essential to keep the runtime below 1 s. Still, few in-
stances exist in the vehicle avoidance and following scenarios
where warmstarting harms the runtime.

As expected, the default solver settings yield a higher
runtime than a tuned parameter set. No clear conclusion can
be drawn which parameter setting produces the fewest peaks
in the runtime. These peaks are problematic for real-time
evaluation and have to be avoided. While the tuned parameter
set impedes such peaks in simulation studies, this effect cannot
be clearly shown in on-road driving scenarios. Generally, with
a sound warmstart solution, the evaluation time for the default
and the tuned parameter set are often close. This effect can
easily be seen in the fully static vehicle avoidance scenario.
In a situation where more adaptions to the initial solution are
necessary, such as in the second half of the vehicle-following
scenario, the tuned parameter set is significantly faster.

VIII. LESSONS LEARNED

After having described the Apollo-based software stack, the
integration of MINIVAN and results with the system, we will
summarize our experiences with this setup.

A. The Apollo Platform

Apollo’s setup and build environment are easy to use for
experienced developers after an initial hurdle, and the usage of
one pre-configured Docker container eases this. Still, the pure
size and number of dependencies, combined with the non-
comprehensive documentation and hidden inter-dependencies,
increases the risk of breaking an existing component when
introducing changes in the build environment. Also, the usage
of various outdated versions of packages and software tools
(such as the Bazel build tool or the Boost C++ libraries) makes
porting existing software into Apollo’s Docker environment
cumbersome.

The performance of the whole Apollo system heavily relies
on the accuracy and level of detail of the HD-Map. For
example, the planning component uses lane centerlines as a
reference line the vehicle should drive on. The prediction
component relies on the assumption that road users intend to
stay close to the centerline of their respective lanes. Therefore,
an inaccurate, unrealistic, or asymmetric true lane center yields
unrealistic predictions or undesired ego planning maneuvers.
Also, various ROI filters operate on lane geometries and
benefit from maps with high accuracy. We decided not to
activate the ROI filtering in the perception to not depend
on the map. The benefit is that we do not lose any relevant
obstacles, while the drawback is to have more objects in the

system. The generation and maintenance of these maps in
Apollo’s customized format was an underestimated effort, as
no standardized and open toolchain is available. Furthermore,
the routing and maneuvering are purely map-based, which
again poses high demands on the quality of the map topology.
An inaccurate map is thus a very crucial issue.

The simulation engine shipped with Apollo is suitable
for preliminary integration tests of a new planner but not
comprehensive. For example, no obstacle simulation is avail-
able. Also, the vehicle motion is extracted from the planned
trajectory position and not determined by a tracking controller
component. Baidu offers a more comprehensive, cloud-based
simulator that was not examined in this work, as the planner
evaluations were executed in the BARK simulator [44]. BARK
is designed as a benchmarking tool for planning algorithms,
and it could be used for a simulative comparison of MINIVAN
and Apollo’s planner. We leave this to future work.

The Cyber RT middleware worked smoothly without intro-
ducing noticeable delay, jitter, latency, throughput bottlenecks,
or hiccups. Distributing the components over multiple com-
puters did not show any problem and only needed accurate
time synchronization and appropriate configuration. Integrat-
ing additional components based on existing implementations
is straightforward. The toolset provided with Cyber RT is
sufficient but less comprehensive than the toolset of ROS. All
basic functionalities for monitoring and debugging the system
are available. For analysis, various scripting APIs exist.

Apollo’s lidar pipeline proved to work well also with a
32-layer Velodyne lidar. Even though we do not have internal
knowledge of the involved networks, i.e., how the networks
were trained, and cannot judge the quality of the training data,
the overall performance of the perception systems generalized
to German roads. However, we only tested this for low-speed
scenarios. Evaluating the accuracy of the estimated velocity in
scenarios with higher speeds remains to be studied.

The data fusion component proved to be configurable for the
usage in our setup with different sensor types and positions due
to its configurable and modular code structure. Object recogni-
tion and segmentation provide state-of-the-art results that are
sufficient for on-road driving experiments. The drawbacks are
the high dependency of the relevant object-filtering algorithms
to the HD-Map and the demands on the graphics card. In the
setup with only lidar sensors, object type classification often
showed unreliable results for non-vehicle objects.

Apollo’s Car Area Network (CAN) bus component is ex-
tendable but based on low-level parsing of the CAN messages,
which makes integration of custom CAN buses time con-
suming and requires testing effort. No parsing and automated
analysis of CAN database files or similar are provided.

B. Our System Setup

To simplify the system setup, we chose to use the localiza-
tion information and not the IMU information for control as
our differential GNSS position is stabilized with three fiber-
optical gyroscopes, an accelerometer, and a high-resolution
wheel tick sensor. The assumption that tracking control is
possible on localization data in such a setup turned out to
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be false. The data quality in terms of stability and absence of
jumps is not high enough for robust trajectory tracking.

To maintain the experimental platform’s stable setup, we
reduced the system complexity at various points, such as only
relying on lidar as sensor technology. These simplifications
are not transferable to production-grade automated vehicles
but proved to fit the needs of a research vehicle except for the
high reliance on the GNSS.

The planning and prediction components in Apollo do
not operate together interactively. Trajectories from prediction
have to be post-processed in the planner. Otherwise, frequently
errors occur, such as vehicles driving from behind into the
ego vehicle or pedestrians walking on the side of the street
being predicted to jump in front of the vehicle. This yields un-
necessary planning errors. However, the prediction component
yields a good baseline performance and reliable trajectories for
vehicles moving on roads. Generally, the prediction system
focuses on the lane centers and tends to project obstacles to
follow these lane centerlines.

C. The MINIVAN Planning Approach

In theory and experiment, MINIVAN proved to operate
reliably, reproducibly, and fast, even with a high number
of obstacles present. This finding paves the path for its
application in more complicated environments. However, more
than two interacting agents are intractable with the current im-
plementation. A reasonable trade-off must be found for objects
to be treated as interacting agents or dynamic obstacles.

Fine-tuning the solver parameters and providing a warmstart
solution, the runtime of the MIQP is sufficiently fast for real-
time planning. Still, isolated peaks in the solution time can
occur that are critical for the overall system performance but
compensated by the postprocessing steps of MINIVAN. The
mitigation of these is subject to future work.

MINIVAN is conceptionally unable to plan valid close-to-
zero velocities (see Sec. V). The trajectory smoother handles
situations where low velocities are necessary, such as starting
and stopping. However, it does not account for interactivity.
Therefore, the approach cannot plan a scenario where one
agent has to come to a complete stop to solve the scenario.

IX. CONCLUSION AND FUTURE WORK

We showed how we integrated Mixed Integer Interactive
Planning (MINIVAN) [4, 5], a MIQP-based behavior and mo-
tion planning approach in the open-source fully autonomous
driving stack Apollo. In three on-road benchmark scenarios,
we demonstrated the real-time performance of the planner
along with its limitations. Our in-depth analysis of relevant
parts of Apollo, alongside the description of how we enhanced
Apollo to integrate the MINIVAN planning approach, is con-
cluded by a summary of the lessons learned on the way. We
made MINIVAN, its integration into Apollo, and all additional
modules available as open-source software [6, 7].

Apollo proved to be an excellent choice to base the exper-
imental platform on due to the stable baseline performance
and customizable setup. It comes at the price of a relatively
closed environment where developers have to live with certain

restrictions, such as a fixed development environment and
the usage of a customized map format. Our modifications do
not show drawbacks of the Apollo platform but motivate the
applicability of a different planning concept and the flexibility
of the stack. However, the development operations of working
with an open-source stack should be improved by making
deployment, testing, location adaption, and simulation open
source. We demonstrated that MIP-based motion planning is
real-time capable of considering a sufficiently high number
of traffic participants around the ego vehicle. The employed
MIQP-based planning approach with MPC post-smoothing
step followed by a state feedback tracking control yielded
stable and smooth performance on a distributed system.

Our extensions and experiences will allow research groups
working on a similar setup not to have to adapt Apollo
from scratch. While the employed minimal sensor set to
reduce engineering maintenance served our needs, relying
on the differential GNSS did not. We, therefore, encourage
researchers to implement a sensor fusion for localization.

As a next step, we aim to accelerate MINIVAN further in
terms of multi-agent cooperative planning to allow for real-
time usage in complicated scenarios. We plan to implement
an online verification safety layer to test scenarios with more
complexity at higher speeds and conduct a study of the overall
performance and reliability with a comprehensive sensor set.
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