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Abstract—Within the field of automated driving, a clear trend
in environment perception tends towards more sensors, higher
redundancy, and overall increase in computational power. This is
mainly driven by the paradigm to perceive the entire environment
as best as possible at all times. However, due to the ongoing rise
in functional complexity, compromises have to be considered to
ensure real-time capabilities of the perception system.

In this work, we introduce a concept for situation-aware
environment perception to control the resource allocation towards
processing relevant areas within the data as well as towards
employing only a subset of functional modules for environment
perception, if sufficient for the current driving task. Specifically,
we propose to evaluate the context of an automated vehicle to
derive a multi-layer attention map (MLAM) that defines relevant
areas. Using this MLAM, the optimum of active functional
modules is dynamically configured and intra-module processing
of only relevant data is enforced.

We outline the feasibility of application of our concept using
real-world data in a straight-forward implementation for our
system at hand. While retaining overall functionality, we achieve
a reduction of accumulated processing time of 59 %.

Index Terms—Situation-Awareness, Active Perception, Re-
source Management, Environment Modeling

I. INTRODUCTION

S INCE the start of the century, the field of Advanced Driv-
ing Assistance Systems (ADAS) in the automotive area

has grown both in popularity as well as in availability on the
consumer market. Vehicles equipped with these systems rely
on cost-efficient automotive sensors and provide functionality
with respect to SAE level 1 or 2 [2], while SAE level 3
functionality has been announced.

In parallel, the research towards SAE level 4 and 5 has
received significant attention. For these automated driving
features, the trend with respect to environment perception gen-
erally tends towards the usage of highly sophisticated, multi-
modal, and multi-redundant sensor systems [3]. This is driven
by the paradigm to achieve the best possible environment
perception at all times and for 360° around the vehicle.

Accordingly, cost-intensive state of the art processing sys-
tems are employed, that require a considerable amount of
energy to operate at full capacity [3], which contradicts the
general goal of energy conservation and efficient vehicles.
Still, the available computational resources are often insuffi-
cient [3] and compromises have to be made to ensure real-time
capabilities.
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(a) Concept example of an MLAM
constructed by the aggregation of three
layers L

(b) Real-world example of an
MLAM with ego vehicle in blue
and oncoming object in red.

Fig. 1. Example for a Cartesian Multi-Layer Attention Map (MLAM)
representation. Darker cells correspond to higher required attention.

One straight-forward possibility is to reduce the compu-
tational requirements by focusing only on relevant data, i.e.
reducing the overall amount of processed data. This is often
referred to as applying attention to relevant data. Within
the last decade, several variants of this approach have been
published. Approaches using saliency, e.g. [4]–[7], are based
on the assumption that objects that are closer to the perceiving
vehicle are more relevant than objects that are further away.
Other approaches, like [8]–[11], relate relevance of data to
a-priori knowledge of the context, e.g., derived from the
situation. They employ simple masks to filter out non-relevant
data in an heuristic manner. Figure 1 provides an example for
such masks, if interpret binary between light and dark cells.

All these examples share the key idea to first perceive the
entire environment on sensor level and then apply some sort
of filtering before further processing. This approach emerged
recently due to the increasing availability of cost-efficient
sensor and processing hardware. Before this increase, research
in the field of active perception employed actuated sensors
or sensor platforms to actively control gazing direction, e.g.
[4], [12]–[14]. Defining the gazing direction over time is
commonly represented by an optimization function that needs
to be maximized. Often, information maximization, entropy,
or similar notations are used. While actuated sensor platforms
have been replaced in current automated vehicles, the concepts
and solutions from active perception become more relevant for
state-of-the-art systems. Bajcsy et al. [4], who have reviewed
the progress of the past decades in the field of active perception
a few years ago, draw this conclusion as well.

The term active perception is closely related to the term
situation-awareness. Occasionally they are used interchange-
ably. For the purpose of our work, we use situation-awareness
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as a broader term, that includes active perception mechanisms
as well as attention mechanisms. Our definition of the situation
is based on Ulbrich et al. [15].

Contribution

In this work, we present a scalable and modular concept
for situation-aware environment perception, that, to the best
of our knowledge, is unprecedented in the current research.

In Section III, we first introduce a general formulation
to identify relevant data and how to focus the perception
processing chain accordingly. Then, we describe our concept
in three steps:

1) High-level situation analysis is linked to a set of relevance
defining layers. The layers are combined into a multi-
layered attention map (MLAM, cf. Fig. 1), that defines
requirements for the perception processing chain.

2) The MLAM is cross-checked against a module configu-
ration tree to find the best configuration. The processing
chain is reconfigured during runtime.

3) The MLAM is applied within the active modules.
Compared to the the all-time 360° perception, the key benefit
of our concept is the reduction of resource consumption. This
is achieved by reducing the average number of computations
to be executed as well as by efficient allocation of available
resources instead of uniform resource distribution.

We show the viability of our concept by applying it to our
automated driving system at hand in a straight-forward manner
in Section IV. Providing a detailed concept, we aspire to
start an engaging discussion about implementation variants and
future possibilities for situation-aware environment perception.

II. RELATED WORK

For situation-awareness, individual solutions for specific
setups and/or problems exist, where resources are allocated
dynamically towards relevant data (cf. examples from Sec-
tion I). High-level concepts for architectures that enable the
application of these solutions in a more generic way ex-
ist as well, although they do not provide details on their
implementation. Albus [16], [17] introduced a layered ar-
chitecture for task planning of autonomous agents in 1999,
including modules for the inclusion of a-priori knowledge.
Gehrke [18] introduced requirements a situation-aware system
must meet that are derived from the levels of situation-
awareness from Endsley [19]. To the best of our knowledge,
only one approach provides actual implementation details and
performance results: Matzka et al. [20], relating to Matzkas
thesis from 2009 [21], introduced a situation-aware system
for a forward-looking sensor setup that focuses on highway
scenarios. Regions of interest, corresponding to patches of
an image, are defined using a-priori knowledge and online
information. These regions are further investigated based on
their utility, and a subset of available modules for traffic
participant detection and classification is deployed for the most
useful regions. However, the interpretation of relevant data as a
set of image patches restricts the applicability of their system
for a generic processing chain for automated driving as per
Ulbrich et al. [22]. Similarly, their system does not generalize

as a concept for any type of automated vehicle, but is instead
tailored to the vehicle they have used. These design decisions
were reasonable at that time, but do no longer apply to the
state of the art in automated driving. Employed sensors, sensor
coverage of the environment, and the required flexibility in
driving tasks to be executed require a flexible and scalable
concept that ideally applies to all automated vehicles.

To implement such a flexible concept, the software archi-
tecture shall support dynamic connections between modules
and/or dynamically changing interfaces. The same holds for
the other way around, The same holds for the other way
around, as architectures that support dynamic reconfiguring
need to decide what to configure. Available architectures are,
among others, SAFER developed by Kim et al. [23] using
standby modules to reconfigure in case of a module failure
or ASOA, introduced by Kampmann et al. [24] using an
orchestrator to reconfigure the active software modules in
real time during operation. Schlatow et al. [25] formulate a
more general, constraint based approach. Also, ROS2 [26],
[27] supports reconfiguring using managed life-cycle nodes.
With our work on a scalable and modular frame for situation-
aware environment perception, we aim to support configura-
tion decisions. However, details on software architecture are
out of the scope of this work.

III. SITUATION-AWARE ENVIRONMENT PERCEPTION

In this section, we first introduce a general formulation of
the problem to be solved and the corresponding assumptions
to solve it. Then, our solution is introduced in three steps:

1) situation detection and attention map generation,
2) processing chain configuration, and
3) attention map application.

We name the application of these steps awareness processing.

A. Problem Formulation

Our formulation of a systematic benefit of awareness pro-
cessing is based on the assumption that, for any situation
s ∈ S, the surrounding environment E of an automated
vehicle is separable into relevant and non-relevant regions.
A region corresponds to an area around the vehicle and can
be represented by any geometric description, e.g., a cell in
a Cartesian grid or closed polygons. Additionally, for every
region, a quantifiable value of relevance in comparison to other
regions can be set.

To derive a separation of the environment E = {ri}i=0...N,
which contains the regions ri, into two subsets of relevant en-
vironment Er and non-relevant environment En, we introduce
the relevance operator

rel {·} : E× S 7→ R+
0 . (1)

We can assign appropriate relevance to regions of the environ-
ment depending on the current situation s:

E = Er ∪ En , (2a)
Er (s) = {ri ∈ E : rel {ri, s} > θrel} . (2b)

A region in the environment becomes relevant above a thresh-
old θrel, which might be θrel = 0 for most applications.
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TABLE I
EXAMPLE FOR THE ACTIVATION OF ATTENTION LAYERS.

Layer A Layer B Layer C Layer D ...
si

si
tu

at
io

n x x
sj x x
sk x x x
...

With relevant regions identified, we interpret the perception
processing chain as a set of functional modules M. The
optimal subset of active functional modules M∗, selected from
the available functional modules M, is configured based on the
relevant regions. To obtain M∗, we introduce the configuration
operator

conf{·} : S×P(E) 7→P(M) , (3a)
M∗ = conf {s,Er} , M∗ ⊆M. (3b)

The powerset operator P{·} is used to generate the set of
subsets of E and of M, including the set itself as well as the
empty set ∅. The conf{·} operator hence maps the current
situation s and any combination of relevant regions Er to
the optimal combination of functional modules M∗ out of all
combination candidates M′ ∈P{M}.

B. Assumptions

The problem formulation and our following proposed solu-
tion is based on the following assumptions:

1) A description for the environment E = {ri}i=0...N exists,
which enables for every region ri to set a quantifiable
performance requirement preq

i using rel{·}.
2) The performance and cost of the modules m ∈M can be

quantified and their metrics are additive.
3) Any module m relates to a subset of regions Em ⊆ E,

representing their coverage of the environment. Further-
more, it is known which modules are data sources and
which modules are non-sources.

4) The linkability between modules is known. Thus, the
processing chain candidates M′ ⊆M can be constructed
and evaluated for performance.

Our approach is based on the hypothesis that the resources
saved by awareness processing are, on average, larger than
its computational overhead. We provide a verification of this
hypothesis for our application in Section IV.

C. Situation Detection and Attention Map Generation

As a first step to find the optimal configuration for a
perception system of an automated vehicle based on its sit-
uation, the influences of the situation that are relevant for the
perception need to be described. The key idea of our proposed
approach is that any situation s ∈ S, with S denoting all
possible situations, is linked to a set of attention layers L, as
visualized in Table I. The layers define the relevance of regions
using the relevance operator rel{·}. Any situation s acts as
activation function, so that a subset La ⊆ L represents the
active attention layers for the respective situation. This subset
equals the empty set (La = ∅), if no attention is required,

e.g., in a parking or standby scenario. Therefore, the set of
possible situations S corresponds to a combination of high-
level situational influences, e.g., the driving task or maneuver,
the geographic location, or the weather conditions.

The relevance of a region ri represents its performance
requirement preq

i for the perception. Every attention layer rep-
resents an independent measure for relevance for the driving
task. As a result, the indicated relevance values of multiple
layers for the same region aggregate to the overall required
performance

preq
i ≥ max

k=0...L

(
preq
k,i

)
, (4)

with L representing the number of elements in La and preq
k,i

being the assigned requirement for region ri by layer k. Rep-
resenting each layer as a function l(ri) that assigns relevance
to a region ri, the aggregated performance requirement can be
implemented as the sum of assigned relevance values from all
active layers. The relevance operator rel {·} is then defined as

rel{ri} : preq
i =

∑
lk∈La

lk(ri). (5)

An example for our argumentation is to define two layers
x, y so that the corresponding function lx assigns relevance to
any region of driveable area for expected traffic participants
and ly assigns relevance to any region that intersects with
the planned trajectory of the vehicle. Any traffic participant
that is on a known expected area or on the planned trajectory
should be perceived, so that the automation might react on its
behavior. In the case that a traffic participant is both in a region
where it is expected and the region intersects with the planned
trajectory, the quality of perception for this traffic participant
should be higher. Consequently, the risk of a collision due to
an incorrect perception should be lower.

Centering our description for relevant regions around the
combination of layers, we label it multi-layer attention map
(MLAM). Figure 1 provides a visual example describing the
regions ri as cells in a Cartesian grid. In Fig. 1a, three active
layers are combined into the MLAM. Overlapping relevant
regions result in a higher performance requirement that is
visualized by the increasing darkness of the cell color. Fig. 1b
shows a similar example derived from real-world data. The
oncoming object marked as red rectangle results in the region
with highest performance requirement, again corresponding to
the darkest cell color.

D. Processing Chain Configuration

Using the MLAM, the corresponding optimal subset of
active modules M∗ needs to be identified and configured. In
this subsection, we introduce a module configuration tree and
the optimization criterion to search for M∗ within the tree.

1) Optimization Criterion: Based on the outlined benefits
of situation-awareness, we understand optimality as using
the minimum of resources of the system R∗ to achieve the
required performance P req =

{
preq
i

}
∀ ri ∈ Er for relevant

regions. We therefore require that every module m ∈ M
specifies its quantifiable performance pm w.r.t. the task of
automated driving and its quantifiable cost cm in terms of
resource consumption (see assumption 2).
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Consequently, the optimization criterion for awareness pro-
cessing is given by:

M∗ = arg min
M′⊆M

( ∑
m∈M′

cm

)
s.t.

∑
m∈M′

pm ≥ P req. (6)

Optimality might also be understood as using all available
resources of the system Rmax to achieve the highest perfor-
mance for relevant regions P∗, which is outside of the scope
of this work.

As an example for the cost of a module, in this work, we
use the average module processing time, as this is an often
encountered bottleneck. However, using further approaches to
estimate the resource consumption, e.g., based on mathemati-
cal complexity, or using software profiling measures, e.g., tail
latency, is also possible. Lin et al. [28] provide an example
using tail latency for the evaluation of hardware acceleration
benefits for automotive applications.

To quantify the performance of a module, metrics for several
aspects of the environment perception in automated driving
applications exist, e.g. OSPA [29] or (generalized) IoU [30]
and F1-Score for object detection. As another example, Poręb-
ski and Kogut [31] introduced a metric for occupancy grid
evaluation. These metrics compare the performance of a mod-
ule under test with the ground truth. As awareness processing
alters where objects might be perceived, the identified relevant
regions need to be considered in a similar manner for the
ground truth for these metrics to be viable.

Beside above mentioned metrics, a relative characterization
of the modules performance can be derived from expert
knowledge. As this work focuses on the concept and its
applicability, we choose this approach in Section IV.

2) Graceful Degradation and Self-Awareness: The concept
of awareness processing relates to the perception block of the
functional system architecture in [22]. Planning and control
modules are considered to be black-boxes that pose require-
ments for the perception block. These requirements are incor-
porated into the relevance operator rel {·}, e.g., by defining
corresponding attention layers, and consequently influence the
required performance P req. If the required performance can be
met by M∗ derived from (6), the performance of the latter
modules are assumed to be sufficient to solve the current
automation task, while resource consumption is minimized.
However, if the performance requirement from (6) can not
be met, the question arises if the continued execution of
the current automation task is safe. Strongly connected to
this question is the research field of self-awareness, e.g., as
described by Schlatow et al. [32]. The idea of self-awareness
is to evaluate both module and system level capabilities during
runtime and derive decisions on how to act based on the
current capabilities.

In the context of awareness processing, self-awareness can
be used on system level to gracefully limit the functional
range of the planning modules, e.g., by reducing the speed
of the vehicle. Consequently, the corresponding performance
requirement to the perception modules declines. If the perfor-
mance requirement in (6) can then be met, the automation,
even with the limited functional range, is safe. Otherwise,

emergency maneuvers or take-over functionalities might be
initialized via self-awareness. Tas et al. [33] employ a system-
wide performance monitoring that is centered around self-
awareness. In the case of perception degradation, a perfor-
mance assessment fusion module degrades the capabilities of
the planning. Another example is realized by the UNICARagil
project [1], where self-awareness is used to enhance functional
and operational safety of automated driving by monitoring
provided and required capabilities [34].

Besides the degradation of system capabilities, from a mod-
ule perspective, self-awareness provides means to measure the
performance of and relations between modules during runtime.
Our concept of situation-awareness for the perception system
is designed to incorporate these dynamic changes in module
performance using the module configuration tree, as described
in the following. While we focus on situation-awareness in this
work and do not address self-awareness in more detail, there
is a strong potential for synergy between the two.

3) Module Configuration Tree: Based on Ulbrich et al. [22],
we classify the modules m ∈ M w.r.t. their algorithm class,
e.g., object detection, semantic segmentation, or free space de-
tection. A perception system for which awareness processing
shall be applied might provide a handful of variants for these
classes, so that the search space for the optimal configuration
M∗ remains manageable. Considering a camera object detector
as an example, numerous implementations exist [35], where
variants might correspond to high-performing and high-cost,
cost-effective or minimal-cost implementations. In addition to
class and variant, every module m consists of the following
properties:

type t ∈ {source, non-source}
coverage rj ∈ Em ⊆ E

performance pprov
j ∀ rj ∈ Em

cost c = f(Er)

relations R

The provided performance of a module pprov
j applies to every

region that it covers (see assumption 3). The cost of a module
c is represented as a function f(Er) depending on the relevant
regions. The cost function might be constant, e.g., for a neural
network based algorithm processing constant amount of data
per cycle, or might depend on the relevant area, e.g., for a
tracking that grows in complexity with the number of object
detections.

Linkabilities, dependencies on, or interactions between
modules w.r.t. cost or performance are modeled by the rela-
tions R (see assumption 4). Here, strengths and/or weaknesses
of specific module combinations can be considered. Besides,
situation dependent relations can be modeled that dynamically
change on a high level, e.g., a lane detection module must be
included if the map is identified to be faulty. Another example
is an object detection module that has only low performance
under heavy weather conditions. For the implementation of the
relations, various possibilities exist. In Section IV, we present
one option that uses white- and blacklists in the initialization
phase as well as in the search for the optimal configuration
during runtime.
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Fig. 2. Impression on the configuration tree, depicting source modules DX
and non-source modules PY. Each node represents a full module configuration
candidate M′ including all modules on the path from the root to this node.
Crossed out elements correspond to invalid or permuted candidates that are
pruned or already avoided during tree construction.

Using the pre-defined module linkabilities as static con-
strains, a set of configuration trees can be constructed. The
configuration trees only contain valid combination candidates
M′ and, thus, reduce the search space for the optimal config-
uration. Their nodes consists of:

configured modules m ∈M′ ⊆M
aggregated coverage rj ∈ EM′ = ∪

m∈M′
Em

aggregated performance pprov
j =

∑
m∈M′

pprov
j,m ∀ rj ∈ EM′

aggregated cost c =
∑

m∈M′

cm

The performance pprov
j one module provides to the covered

regions rj can be modeled uniform. The provided aggregated
performance pprov

j is expected to differ between regions, as
contributing modules might provide different coverage.

We propose to construct the set of combination trees with
all valid combinations between source modules as root nodes
and use non-source modules in any efficient manner for further
tree construction. The functional architecture of the perception
system is fixed w.r.t. the linkability of modules. Hence, the
order within M′ is irrelevant and it should be ensured that
no module permutations exist within the set. This can be
done either already during tree construction or by pruning
afterwards. Constructing the set of configuration trees with
only source modules at roots, the coverage requirement

Er(s) ⊆ EM′ (7)

is tested at the top-level of each tree. By invalidating trees
within the set that do not provide sufficient coverage, the
search space for the optimal configuration is reduced. Fur-
ther, dynamic constrains from the module relations R as
well as from situation dependent requirements invalidate non-
compliant nodes, i.e., combination candidates. Figure 2 shows
an exemplary set of configuration trees. Each node represents a
full module configuration candidate M′ including all modules
on the path from the root to this node. Invalid and redundant
combinations are pruned. The empty set (M′ = ∅) is omitted.

Finally, the performance requirement

preq
j ≤ pprov

j ∀ rj ∈ Er (8)

is tested for remaining valid nodes within valid trees. M∗ is
found by searching through the trees using the optimization
criterion (6). The configuration operator conf {·} is hence re-
alized by first invalidating insufficient combination candidates
within the set of trees using coverage requirement and dynamic

Fig. 3. Block diagram of the functional interaction between awareness
processing (blue) and an existing perception processing chain (gray). Inactive
modules are indicated by fading.

constrains, and then by searching for the optimum within the
remaining nodes. The identified M∗ is used for the module
reconfiguration during runtime according to the underlying
software architecture.

E. Attention Map Application
After deployment of the optimal module configuration M∗

using conf{·}, each of the modules applies the MLAM inter-
nally. Any implementation employing attention based adapta-
tions, like the ones exemplary discussed in Section I, might
be considered. These intra-module implementations might
employ additional, individual thresholds for the performance
requirement of the provided MLAM. In this way, a cost-
intensive module might process only data of regions above
such thresholds, increasing the potential in reduced resource
consumption. As the performance requirement (8) needs to
remain satisfied, the thresholds need to be set in coordination
between the configured modules. A detailed analysis depends
on the specific modules and their properties and, therefore, is
outside of the scope of this conceptual work.

For the sake of simplicity and without loss of generality,
we assume the MLAM to be compatible with the module
implementations in this paper. In practice, this can be ensured
by an additional transformation module. Section IV provides
a straight-forward example for the attention map application.

F. Concept Summary and Integration
Our concept can be split into an initialisation phase and the

processing during runtime. Figure 3 outlines the structure of
the integration into an existing processing chain. First, the set
of configuration trees is initialized using the attributes of the
functional modules. These attributes are set beforehand with
respect to the actual system at hand. During runtime, the cur-
rent situation is detected from latest sensor data. The MLAM
is generated and used to update the set of configuration trees.
The best-fitting configuration M∗ is derived from this updated
set and the corresponding processing modules are configured.
Finally, intra-module attention processes are applied for active
modules using the MLAM.
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TABLE II
MODULE OVERVIEW, PRESENTING THE ATTRIBUTES OF TWO

MODEL-BASED OBJECT DETECTOR (OD) MODULES AND TWO PROCESSING
MODULES. NOMINAL VALUES FOR PERFORMANCE ARE CHOSEN USING

EXPERT KNOWLEDGE. NOMINAL VALUES FOR COST ARE BASED ON
AVERAGE PROCESSING TIME.

Algorithm Cost Performance Relations
highway rural urban

so
ur

ce LIDAR OD 1.0 1.0 1.0 1.0
RADAR OD 0.33 1.0 1.0 0.5 low VRU performance

no
n-

so
ur

ce TRACKING A 0.1 1.0 1.0 1.0 requires one OD module
B 0.05 1.0 0.1 0.1 requires one OD module,

longitudinal distance only
follow drive only

PLAUSIB 0.05 1.0 1.0 1.0 requires TRACKING

IV. PROOF OF CONCEPT

In the previous section, we have introduced our generic,
modular, and scalable concept for situation-aware environment
perception. In this section, we outline the benefits that can
already be achieved by a straight-forward implementation of
the approach. We want to emphasize that we do not strive to
provide an all-encompassing solution of the presented concept,
but instead to verify the feasibility of its application. As no
comparably flexible architecture for situation-awareness exists,
the presented results are to be seen more as a standalone
verification rather than a comparable benchmark. As exem-
plary system, we use our automated test vehicle, see [36]
for a detailed description. It is equipped with a range of
sensors, comprising lidar, radar, differential GPS, camera, and
an inertial measurement sensor.

The remainder of this section outlines the implementation
of the concept according to the three steps introduced in
Section III and provides results in two ways: In Section IV-E,
two artificially constructed scenarios will be evaluated w.r.t.
the configuration behavior to gain qualitative insight on the
features the concept provides. In Section IV-F, quantitative
results based on real-world data validate the promising capa-
bilities for a reduction in resource consumption. The provided
results correspond to a relative comparison with the 360°
approach, referred to as naive baseline.

A. Functional System Architecture

For the sake of simplicity, we focus our experiments on
modules related to model-based object detection. The relevant
modules m ∈ M are summarized in Table II. For brevity,
within this proof of concept, we simplify the aspect of cover-
age and assume that all modules cover the entire environment,
i.e. Em = E. The performance values are derived from expert
knowledge, while the cost values are defined as constant
and based on average module processing time. They are
derived from the quantitative results in Section IV-F. Besides,
the module relations are defining module dependencies and
situation dependent limitations.

The functional architecture dynamically connects the mod-
ules, so that the planning block can operate with any valid
module combination. Generally, the lidar object detection

TABLE III
ACTIVATION OF THE ATTENTION LAYERS FOR THE EXAMPLE BASED ON

THE SITUATION.

situation lane(s) ego path object(s)own other
highway x x

rural x x x
urban x x x x

module, based on [37], and the radar object detection mod-
ule [38] are connected to the object tracking module, where
detections are stabilized. Both object detection modules are
based on point-cloud-based deep learning networks. For track-
ing, two variants exist: Variant A represents a labeled multi-
Bernoulli Filter [39]. Variant B represents a simplified single
object longitudinal distance tracking. If required, the output
of the tracking module, independent of its variant, is fed into
the object plausibilization module [40]. Depending on the
active configuration, either object detections, tracked objects,
or plausibilized objects are fed forward to the planning block.

B. Situation Detection and Attention Map Generation

For our proof of concept, the set of possible situations

S = {highway, rural, urban} (9)

is limited to the geographic location. A high precision map of
the driveable area in a lanelet2 [41] format is available. Using
GPS information, the situation is extracted from the map. For
the constructed scenarios, one additional influence per scenario
will be considered in Section IV-E.

To derive the separation of the environment into relevant
and non-relevant regions, we represent the environment E as
a Cartesian grid of size m × m with m = 151, which is
centered at the ego vehicle and has a resolution of 1.0 m per
cell. The Cartesian description is especially well suited for
visual interpretation. However, since our modules relate to
physical sensors with a field of view in polar coordinates,
i.e., angular field of view and detection range, the Cartesian
attention map is transformed into a polar representation with
a 1° resolution. Each segment contains a performance require-
ment p̂req and a range requirement d̂req, corresponding to the
highest performance requirement and the furthest relevant cell
within the segment. All configuration requirements according
to Section III-D are tested against the polar description.

The set of attention layers L corresponds to three indepen-
dent measures for relevance and, therefore, contains three layer
functions. Table III defines their situational activation.

Lane queries surrounding lanes from the available map and
projects them onto the attention map. Using the lanelet2 API,
routing graphs ensure that valid lane transitions are considered.
For situation dependent granularity, the lanes are split into
the own lane of the ego vehicle including valid transitions
and all remaining lanes. Both lane types can be activated
independently. Their projection results are merged into one
layer before layer combination as they correspond to the same
measure of relevance.
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Fig. 4. Set of configuration trees based on the modules from Table II.
Each node represents a full module configuration candidate M′ including all
modules on the path from the root to this node. The following abbreviations
are used: LIDAR (LID), RADAR (RAD), TRACKING (TRK), PLAUSIB
(PLS).

Ego Path defines relevance based on an ego velocity de-
pendent constant turn rate and constant velocity model pre-
diction [42] of the vehicle’s position. The prediction horizon
is set to 3 s and an overly safe uncertainty of the turn rate
of 10 °/s is used. In this way, changes in turn rate within the
prediction horizon can be represented without employing a
more complex model. We do not use the planned trajectory
within this proof, as it corresponds to lane segments already
considered in the lane layer.

Object establishes an awareness for traffic participants that
might collide with the ego vehicle. It is a counterpart to the
naive assumption that relevant traffic participants will only
exist on the known, driveable area. For simplicity of our
example, any detected object that lies within a range threshold
of d = 15m is projected onto the attention map. In case the
lidar OD module is active, its detections are used preferably,
and detections of the radar OD module otherwise.

For all layers, each intersected cell j is assigned a perfor-
mance requirement of preq

j = 1, as indicated in Fig. 1a. Hence,
preq
j is limited within [0, 1, 2, 3], and a cell is deemed relevant

above θrel = 0. However, the layer design in combination with
the chosen grid size is prone to quantization issues, as the
established awareness originates from point-like descriptions,
e.g., from nodes of lane center lines or object center positions.
To counteract these issues, the individually created attention
maps are dilated using a 5×5 image processing square dilation
kernel. With this dilation, relevance of one cell is inflated to
its two neighboring rings and we also establish an increased
detection safety, as attention is assigned to more regions.
Figure 1b shows an extract of the resulting attention map.

C. Processing Chain Configuration

Considering the modules and their relations from Table II,
the set of configuration trees results in 15 nodes including the
3 tree roots. The set is visualized in Fig. 4. Again, each node
represents a full module configuration including all modules
on the path from the root to this node. The avoidance of
invalid configurations and permutations is realized via pruning
after construction. Module requirements during runtime, e.g.,
requiring a gesture detection at a police-officer controlled
intersection, are implemented using whitelists and blacklists
during the search for M∗. To allow for changing attributes
of a module during runtime, the current situation is fed into
each active node. Module attributes are thus updated before
searching for the optimum.

D. Attention Map Application

For the sake of simplicity within our proof of concept, the
MLAM is applied as a binary data filter, i.e. data are only
processed within the active modules for regions with preq

i > 0.
Additional intra-module thresholds for preq

i are not considered.

E. Constructed Scenarios

With the constructed scenarios we outline a selection of key
features that awareness processing provides and show that the
connections between attention layers, situations, and modules
lead to appropriate and understandable system configurations.

In Fig. 5, a transfer situation between a highway and
an urban location is shown. On the highway, the ego path
and the own lane attention layer are active, resulting in a
maximum possible performance requirement of 2. The radar
OD module is employed due to its lower cost compared to
the lidar OD module. To meet the performance requirement,
tracking variant A is employed in addition. A follow drive
sub-situation is detected for a short duration on the highway.
During this time, the cost-efficient tracking variant B is chosen.
This reflects the expert knowledge in the modeling of relations
(cf. Table II), which considers longitudinal distance tracking
sufficient for following tasks. Transferring into an urban
situation, the performance of the radar OD module degrades
to 0.5, reflecting its low performance in vulnerable road user
(VRU) detection. At the same time, the object layer is activated
in addition to the ego path and lane layer. This results in a
maximum performance requirement value of 3. However, for
this scenario, we assume that no detection becomes relevant
for the object layer within the shown duration. Consequently,
its performance requirement equals 0 for all regions. Thus,
the maximum performance requirement to be met is 2, as ego
path and lane partially overlap. The lidar OD module together
with the tracking variant A satisfies the requirement at lowest
cost.

Fig. 5. Module configuration for the highway scenario with follow drive and
a following urban scenario without relevant objects. A/B represent algorithm
variants, a blue bar represents the active state of a module, arrows represent
the module dependencies.

In Fig. 6, a complex intersection is detected in an urban
location. This might correspond to faulty traffic lights, a traffic
jam on the intersection, roadworks, or to other conditions. The
attention layers ego path, lane, and object are active. Since we
assume that relevant objects are detected in this scenario, this
results in an overall maximum performance requirement of
3. Outside of the sub-situation of a complex intersection, the
lidar OD module, tracking variant A, and the plausibilization
module are employed, satisfying the requirement at lowest
cost. Once the complex sub-situation is detected, a dynamic
requirement for a second OD module is added. Consequently,
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the radar OD module is activated. The configuration is then
identical to the vehicle setup of the naive baseline.

Fig. 6. Module configuration for the urban scenario with the complex
intersection and with relevant objects. A/B represent algorithm variants, a
blue bar represents the active state of a module, arrows represent the module
dependencies.

The presented scenarios show that inter-dependencies be-
tween modules as well as module dependencies that relate
to the situation provide great flexibility for a diverse range
of systems for concept application. Similarly, the situation
dependent activation of attention layers allows for a general as
well as a specific definition of relevant regions. Reestablishing
the naive baseline setup remains possible, if required.

F. Real-World Example

The real-world results are derived from pre-recorded data
taken in the vicinity of the Ulm University in Ulm, Germany.
Simulation in a post-processing manner is conducted on a
consumer PC equipped with an Intel i7-6850 CPU and a
Nvidia TitanX 12GB GPU on 64GB RAM. The driven route
contains various aspects of urban and rural driving with
intersections, roundabouts, merging/splitting lanes, etc., and
a short highway-like section, as outlined in Fig. 7. Overall,
the data comprise a track length of approximately 5 km.

1) Quantitative Results: The straight-forward implementa-
tion of our concept from the first parts of this section was
applied to the dataset described above. To gain insight on
the potential of awareness processing, Fig. 8 presents the
normalized accumulated processing time over all modules and
the computational overhead induced by awareness processing
in comparison to the naive baseline. On the left side, the
approximated cost values from Table II are reflected. The
two center columns show the individual application of the
two key aspects of awareness processing, i.e., processing only
relevant data within active modules and employing only a
subset of active modules. Due to the nature of the deep
learning based detection modules the reduction in processing
time for the detection modules is much lower than for the
tracking module, where processing of irrelevant or clutter
detections can be avoided. Considering only a small number
of available modules in our example, employing a subset of
these provides larger reductions than processing only relevant
data within all modules. Here, the tracking module requires
similar processing time as in the baseline. Processing time
of all other modules is reduced significantly. The most right
column shows the full concept application. Combining our
key aspects, an impressive relative reduction of 59.0 % can
be achieved. The induced overhead of awareness processing,
which is implemented using solely CPU resources within our
example, accumulates to 6.5 % of the naive baseline processing

Fig. 7. Outline of the route for the quantitative results in pink (map data
from OpenStreetMap [43]).

Fig. 8. Accumulated processing time per module, normalized w.r.t. the naive
baseline.

time. This overhead is neatly put into perspective against the
potential that awareness processing provides. For the sake of
brevity, only the full concept application is investigated further.

Figure 9 shows an overview of the active modules through-
out the test sequence in comparison to the naive baseline
(dashed line), which would apply all four modules contin-
uously. In Fig. 9a, a significant reduction in average active
modules over situation can be seen. The variation between
the different situations reflects the attention layer activation
from Table III. As expected, the urban scenario receives the
lowest reduction due to the additional aggregated attention
towards oncoming objects, which become relevant within the
object layer, and the attention towards their lanes from the lane
layer. Figure 9b shows the relative uptime for the individual
modules. Here, cost and performance from Table II as well
as module relations are reflected. Even with its low cost,
the plausibilization module is employed least often due to its
requirement for both an object detection module and a tracking
module to be active. With low cost and high performance,
one tracking variant is active at all times. Besides, the more
expensive lidar OD module is employed less often than the
radar OD module. It is notable that the uptime of the detector
modules sum to over 100 %, i.e., they are running jointly in
some cases. This corresponds to the constructed intersection
scenario from Section IV-E.

Comparative results for the module processing times after
application of the identified MLAM are shown in Fig. 10a
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(a) Average number of active modules over geographic
location.

(b) Relative module uptime

Fig. 9. Active module configuration compared to the naive baseline (4
modules at 100 % uptime).

as boxplots. The boxplots present the processing time in
every active cycle, where the whiskers correspond to 3 ×
inter-quartile range (IQR), and the orange lines to the me-
dian of the processing time. Although the given values are
system dependent, they clearly indicate the effectiveness of
the concept. The computational overhead that is required for
awareness processing is shown on the far left side. The re-
maining plots show direct comparisons of the processing times
between the naive baseline and our full concept application.
For all modules, two key observations can be drawn: First,
the median of the processing time is reduced, as was our
expectation. Second, the spread of the IQR is greatly reduced
as well. This is a crucial verification of the effectiveness of our
approach, as it shows that a significant part of processing re-
sources can be freed by enforcing resource allocation towards
relevant areas. Taking the tracking module as an example,
this behavior can also be explained situation dependent: when
passing by a mostly occupied parking lot that does not have
an exit to the current road of the vehicle, a large amount
of object detections will have to be processed in the naive
baseline. These detections are not relevant to the driving task,
but require a large amount of resources that can be saved
already on object detection module level. Hence, reductions
in resource consumption are larger the earlier the processing
can be reduced. In addition, Fig. 10a verifies our hypothesis
from Section III-B: the induced processing overhead is non-
negligible, but easily compensated by the resources freed

(a) Processing time for the awareness processing and the modules.
Whiskers correspond to 3× inter-quartile range.

(b) Hardware load comparison. Whiskers correspond to 3×
inter-quartile range.

Fig. 10. Comparison between the awareness processing and the naive baseline.

within the affected modules.
We acknowledge that a reduction in the processing time of

a module does not necessarily correspond to a lower energy
intake. Therefore, Fig. 10b evaluates above observations on
hardware level, showing the loads of CPU and GPU, which are
tightly coupled with the energy intake. For both CPU load and
GPU load, the median is reduced. Besides, the module uptime
from Fig. 9b is reflected in the significant downward spread of
the GPU load. Thus, from this results, it can be concluded that
despite the additional calculations for our situation-awareness
module, the energy consumption is decreased.

Summarizing the presented results of the real-world appli-
cation, we conclude that a significant reduction in resource
consumption is achieved already with a straight-forward im-
plementation of awareness processing and that the situational
activation of attention layers and the parameterization of the
module’s attributes interact as we have intended. Using the
MLAM to identify the optimal subset of active modules as
well as to enforce data processing only to relevant regions, the
processing time and the hardware load decreased significantly.
Applying our concept for awareness processing to our auto-
mated vehicle the results on planning level remained plausible
w.r.t. to our baseline. Still, driving performance evaluation is
outside of the scope of this work. Our resulting reductions can
be summarized as follows:
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CPU load reduction (median): 25.4 %
GPU load reduction (median): 48.7 %

Relative overall processing time reduction: 59.0 %

V. CONCLUSION

In this work, we have introduced awareness processing as
a flexible concept for situation-aware environment perception
that is both scalable as well as modular. The key aspects of
our concept are 1) the definition of situations to be considered
and layers to distinguish relevant from non-relevant regions,
resulting in a multi-layer attention map (MLAM), 2) the dy-
namic optimization of the module configuration that optimally
satisfies the requirements of the MLAM, and 3) the enforce-
ment of data processing to only relevant regions defined by
the MLAM. Applications of our concept can be designed
as specific as desired for the systems that they are derived
for. Providing this flexibility between general application and
specific application for any system at hand represents the core
idea of our contribution.

The exemplary application that we have presented pro-
vides the proof for the feasibility of the concept application
and, most importantly, shows that already straight-forward
implementations can lead to significant reduction in resource
consumption. For the provided real-world example in urban,
rural, and highway-like conditions, an overall reduction in
processing time of 59.0 % was achieved. The reduction is
reflected in the reduction of the CPU and the GPU median
load by 25.4 % and 48.7 %, respectively.

The quantization of the cost and the performance of a
module is a central as well as challenging element for the
application of our concept. While we have presented some
options, the research in this field is ongoing, and extensive
solutions are yet to be found. Stellet et al. [44] have recently
published a survey on the state of the art in performance
assessment for automated driving. Considering their conclu-
sions, in future work, we aim to integrate our application into
a sophisticated simulation framework, e.g., CARLA [45].

We have shown that a reduction in resource consumption is
possible where performance requirements can be met. Simi-
larly, integration of self-awareness aspects should be pursued
in continued concept applications, so that synergies between
self-awareness and situation-awareness can manifest.
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