
Sequential Convex Programming Methods for Real-time
Optimal Trajectory Planning in Autonomous Vehicle Racing
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

17-09-2021 / 23-08-2022

CITATION

Scheffe, Patrick; Kloock, Maximilian; Henneken, Theodor Mario; Alrifaee, Bassam (2021): Sequential Convex
Programming Methods for Real-time Optimal Trajectory Planning in Autonomous Vehicle Racing. TechRxiv.
Preprint. https://doi.org/10.36227/techrxiv.16635205.v2

DOI

10.36227/techrxiv.16635205.v2

https://www.techrxiv.org
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.36227/techrxiv.16635205.v2


1

Sequential Convex Programming Methods
for Real-time Optimal Trajectory Planning

in Autonomous Vehicle Racing
Patrick Scheffe, Theodor Mario Henneken, Maximilian Kloock and Bassam Alrifaee

Abstract—Optimization problems for trajectory planning in
autonomous vehicle racing are characterized by their nonlin-
earity and nonconvexity. Instead of solving these optimization
problems, usually a convex approximation is solved instead to
achieve a high update rate. We present a real-time-capable
model predictive control (MPC) trajectory planner based on a
nonlinear single-track vehicle model and Pacejka’s magic tire
formula for autonomous vehicle racing. After formulating the
general nonconvex trajectory optimization problem, we form
a convex approximation using sequential convex programming
(SCP). The state of the art convexifies track constraints using
sequential linearization (SL), which is a method of relaxing the
constraints. Solutions to the relaxed optimization problem are not
guaranteed to be feasible in the nonconvex optimization problem.
We propose sequential convex restriction (SCR) as a method
to convexify track constraints. SCR guarantees that resulting
solutions are feasible in the nonconvex optimization problem.
We show recursive feasibility of solutions to the restricted
optimization problem. The MPC is evaluated on a scaled version
of the Hockenheimring racing track in simulation. The results
show that an MPC using SCR yields faster lap times than an
MPC using SL, while still being real-time capable.

Index Terms—Vehicle Racing; Autonomous Vehicles; Control
and Optimization; Vehicle Control; Motion Planning

SUPPLEMENTARY MATERIAL

A video showing the results is available online
(https://youtu.be/7Iwh980JMCs). The software is published
on Github (https://github.com/embedded-software-laboratory/
sequential-convex-programming) and ready-to-use on Code
Ocean (https://codeocean.com/capsule/6818033/tree).

I. INTRODUCTION

A. Motivation

AUTONOMOUS vehicle racing is challenging, as the
vehicle is moving at its handling limits. The goal in

autonomous vehicle racing is to finish a race in minimum
time. One of the building blocks to reach that goal is planning
a time-optimal trajectory that adheres to the vehicle’s nonlinear
dynamics and to generally nonconvex track constraints. In
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optimization-based trajectory planning, this represents solving
a nonconvex optimization problem. Computing the global so-
lution of a nonconvex optimization problem is computationally
inefficient, i.e., the computation time grows exponentially with
the size of the optimization problem. A method for nonconvex
optimization is, e.g., mixed integer programming [1]. Driving
at the vehicle’s handling limits requires a trajectory planner
with a high update rate and therefore short computation
time. Finding close to globally optimal solutions requires a
large enough horizon to cover subsequent curves. Only a
computationally efficient method can fulfill both requirements.

The high computational cost of finding the global solution
of a nonconvex optimization problem can be accelerated by
algorithms that instead find a good local solution. Sequential
convex programming (SCP) [2]–[5] is a local optimization
method that can find such good local solutions to nonconvex
optimization problems. SCP is an iterative algorithm which
solves a sequence of convex optimization problems. This
allows the use of convex optimization methods, which always
compute the global solution up to a numerical accuracy and are
computationally efficient. Their computation time grows only
polynomially with the size of the optimization problem and the
numerical accuracy [1]. In each iteration of SCP, the algorithm
forms a convex approximation of the original optimization
problem. The approximation of nonconvex constraints can
either be a restriction, which tightens the constraints, or a
relaxation, which loosens the constraints. A restriction leads
to a feasible set of the optimization problem that is a subset
of the original one, meaning that the solution to a restricted
optimization problem is always feasible in the original one.
We call an SCP-algorithm which tightens the constraints
sequential convex restriction (SCR) in the following.

The following section presents various approaches besides
SCP that efficiently find good local solutions for nonconvex
optimization problems. All of these approaches simplify the
original problem at some point in the optimization algorithm,
compromising between global optimality and computational
efficiency [1].

B. Related Work

There are many works on trajectory planning for au-
tonomous vehicle racing, and the research interest increased
over the last years, as the recent article [6] shows. The authors
of [6] present recent developments in trajectory planning for
vehicle racing. Trajectory planning algorithms can mainly be
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https://codeocean.com/capsule/6818033/tree
https://doi.org/10.1109/TIV.2022.3168130


2

categorized as graph-based and optimization-based [7]. These
methods deal with the nonconvexity introduced by the track
constraints differently.

Graph-based trajectory planning aims at finding the global
solution of the nonconvex optimization problem. The dis-
cretization of the configuration space accelerates the optimiza-
tion. However, their ability to find the global solution strongly
depends on this discretization. Graph-based trajectory planning
methods need to check if a trajectory is collision-free, which
includes the adherence to track constraints, e.g., [8]–[10].

Optimization-based trajectory planning follows different
strategies to deal with the generally nonconvex track con-
straints. We present four of them in the following.

One strategy is to add the track constraint to the objective
function, which is known as a barrier function in optimization.
This resolves the nonconvexity due to track constraints. A
model predictive control (MPC) with GPU computing is
proposed in [11] for a rally car on loose ground operating
within friction limits of the tires. The barrier function for
the track constraints results in an undesirable high cost at
the track boundaries. Consequently, the trajectories tend to be
close to the track centerline, which is suboptimal regarding
lap time. A different barrier function with varying weight is
used in [12] with a two-track vehicle model. The optimization
problem is solved iteratively, which leads to better constraint
approximations at the cost of higher computation time.

A second strategy is to formulate the optimization problem
with a spatial discretization [13], [14]. In combination with a
coordinate transformation, this resolves both the nonlinearity
and nonconvexity of the track constraints. The approaches
approximate the minimization of lap time with the minimiza-
tion of the path curvature. zThe speed profile is optimized
afterwards such that the trajectories adhere to given vehicle
dynamic constraints.

A third strategy is to combine the coordinate transformation
with the usual temporal discretization of MPC [15]–[19]. In
contrast to the spatial discretization, the vehicle dynamics
can be incorporated in the trajectory planning problem by
expressing the vehicle model based on the track coordinate
system. The nonlinear model and nonlinear track constraints
result in a nonlinear optimization problem, which can be
solved with nonlinear programming. Common software, such
as FORCES [20] or IPOPT [21], solve such nonlinear op-
timization problems using sequential quadratic programming
(SQP). SQP is an iterative algorithm which approximates the
objective with a quadratic function and linearizes constraints.

A fourth strategy is to explicitly form convex approxima-
tions of the nonconvex optimization problem with SCP. There
are several works in the state of the art using this strategy,
which form the convex approximation by linearization of
nonlinear and nonconvex constraints. We call this method
sequential linearization (SL) in the following. Similar to the
approaches above, [22], [23] transform coordinates to the track
coordinate system to form a nonlinear optimization problem,
which is subsequently solved by SL. Experiments with a full-
scale vehicle validate the approach in [23]. A linearization
of the track constraints around the solution of the previous
timestep to obtain a convex quadratic programming (QP) is

presented in [24]. This corresponds to SL with only one
iteration. In [25], model predictive contouring control for
autonomous racing with obstacles and opponents is proposed.
The work presents the first implementation of an autonomous
racing trajectory planner and tracker for a model-scale vehicle
testbed. The optimization problem is solved with SL in one
iteration. In [26], a trajectory planner which linearizes race
track constraints performs approximately as well as a profes-
sional driver in a full-scale experiment. We convexified track
boundaries with SL for vehicle racing in [27]. Additionally,
we extended the approach for priority-based MPC for multiple
vehicles in [28].

The error from approximating the race track using lin-
earization may lead to performance degradation. Since the
linearization of track constraints represent a relaxation, the
resulting solutions are not guaranteed to be feasible in the
original optimization problem.

C. Contribution of this Article
We formulate a general nonconvex optimization problem

for trajectory planning for autonomous vehicle racing. An
MPC based on a single-track model and Pacejka’s Magic Tire
Formula for the vehicle dynamics simultaneously computes
both the trajectory and control inputs. We convexify this
original, nonconvex optimization problem using SCP. The
key contribution of this paper lies in the application-specific
approximation of the original problem to a convex quadratic
program by SCR. We approximate the track constraints as a set
of polygons. A polygon is a set of linear inequality constraints
in the optimization problem, sustaining its convexity. Since
each polygon represents a restriction of the original nonconvex
track constraint, our algorithm guarantees the feasibility of
a solution to the restricted problem in the original problem.
Additionally, we show that trajectories resulting from the
optimization of the restricted optimization problem keep the
property of recursive feasibility.

We compare the proposed SCR with the widely-known SL
[22]–[28] in simulation. We show that besides guaranteeing
feasible trajectories in the nonconvex optimization problem,
the trajectories resulting from SCR are superior to those from
SL in terms of time-optimality.

D. Structure of this Article
The remainder of this article consists of three main parts.

First, we formulate the general nonconvex optimization prob-
lem for trajectory planning for autonomous vehicle racing
in Section II. Second, we present the concept of SCP in
Section III, and summarize its variant SL to convexify the
original problem in Section IV. Section V details a convex
restriction of the original problem for trajectory planning with
SCR. Third, we compare the presented SCR with the state-of-
the-art SL in Section VI.

II. GENERAL FORMULATION OF TRAJECTORY
OPTIMIZATION PROBLEM

We denote the temporal dependency by a parenthesized
index in a superscript, e.g., x(j). Operating points are denoted
by a tilde, e.g., x̃.
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A. Vehicle Models

We implement a single-track model of an RC car suited for
vehicle racing applications and compare it to the linear vehicle
model introduced in our previous paper [27]. We summarize
both models below for completeness, the detailed modeling
process is presented in the referenced literature. Both models
share the same assumptions of having no aerodynamic lift or
downforce, no pitch, no wear, and no weight changes.

The generalized discretized model is formulated as

x(j) = M
(
x(j−1),u(j−1)

)
, x ∈ Rn,u ∈ Rm, (1)

where the model M computes the state xj at timestep j
based on the state x(j−1) and the input u(j−1) of the previous
timestep.

1) Single-Track Model: A kinetic single-track model is
combined with Pacejka’s Magic Tire Formula [29]. The re-
sulting model considers rolling and air resistance, as well as
the fixed-gear electric motor’s characteristic curve of maximal
torque and limited power. The model can further reflect
vehicle racing conditions such as oversteering, understeering
and drifting. Individual front and rear lateral tire slips are used
for the computation of tire forces. Braking and acceleration
torques are applied at the rear wheels only, representing the
setup of the RC car from [30]. Thus, only the rear wheel
needs consideration of combined tire forces, which is done
implicitly via the lateral tire parameters [25], [31]. The detailed
construction including parameters of the entire model was
given in [25]. On a side note, the experimentally estimated tire
parameters combined with the input constraints result in the
tire forces remaining at the convex parts of Pacejka’s Magic
Tire Formula.

The states of the model are the position p from the center
of gravity to the reference frame, the velocity v in directions
x and y, the heading angle ϕ and the accompanying yaw rate
ω. The input consists of the steering angle δ and the electric
motor’s duty cycle τ . The differential equations which we use
in discretized form are

ṗx = vx cos (ϕ)− vy sin (ϕ) , (2a)
ṗy = vx sin (ϕ) + vy cos (ϕ) , (2b)

v̇x =
1

m
(Fr,x − Ff,y sin (δ) +mvyω) , (2c)

v̇y =
1

m
(Fr,y + Ff,y cos (δ)−mvxω) , (2d)

ϕ̇ = ω, (2e)

ω̇ =
1

Iz
(Ff,ylf cos (δ)− Ff,ylr) , (2f)

with the mass m, the moment of inertia Iz and the distances
from the center of gravity to front and rear axles lf and lr,
respectively. The rear longitudinal tire force Fr,x, rear lateral
tire force Fr,y and front lateral tire force Ff,y are computed
as

Fr,x = (Cm1 − Cm2vx) τ − Cr0 − Cr2v
2
x, (3a)

Ff,y = Df sin(Cf arctan(Bfαf )) , (3b)

αf = − arctan
(

ωlf+vy
vx

)
+ δ, (3c)

Fr,y = Dr sin(Cr arctan(Brαr)) , (3d)

αr = arctan
(

ωlr−vy
vx

)
, (3e)

where Bf , Br, Cf , Cr, Df and Dr are empiric tire formula
coefficients and αf and αr the slip angles for front and rear
tires, respectively. The electric motor is modeled with the
parameters Cm1 and Cm2, while the resistance parameters Cr0

and Cr2 are empirically determined. Singularities induced by
the slip angle definitions are mitigated by replacing vx with a
small number in case of vx = 0. Considering signed function
arguments, we implement arctan with arctan2.

The input constraint set is

UST =
{
u ∈ R2 | δ ∈ (−0.35 rad, 0.35 rad) ∧

τ ∈ (10%, 100%)}
(4)

2) Linear Model: The linear model was introduced in our
previous paper [27]. The states of the model are the vehicle’s
position p = (px py)

T and velocity v = (vx vy)
T , and the

inputs u = (ax ay)
T are the accelerations in both x- and y-

direction. No yaw is considered, the vehicle is always facing
in the same direction as the longitudinal velocity. The model
with the discretization time ∆t is

p
(j)
x

p
(j)
y

v
(j)
x

v
(j)
y

=

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1



p
(j−1)
x

p
(j−1)
y

v
(j−1)
x

v
(j−1)
y

+


∆t2

2 0

0 ∆t2

2

∆t 0

0 ∆t


[
a
(j−1)
x

a
(j−1)
y

]
.

(5)

The tires’ acceleration limits for lateral and longitudinal slip
are described by two velocity-dependent half ellipses [32]. The
tire limits are symmetric in lateral direction but asymmetric in
longitudinal direction due to driving resistances. The constraint
set for the input can be efficiently represented in the vehicle
coordinate system as

UL =

{
u ∈ R2 |

(
along

along,max(v)

)2

+

(
alat

alat,max(v)

)2

− 1 ≤ 0

}
(6a)

along,max(v) =

{
aforward,max(v) if along > 0

abackward,max(v) if along ≤ 0
(6b)

The transformation to global acceleration inputs is presented
in our previous paper [5]. The constraint set is derived with the
single-track model’s input constraints to assure comparability
between models.

B. Track Model

The race track is the allowed driving area of a vehicle. We
assume the entire track has a constant width and its curve
radii to be larger than the track width. A confinement to
planar models is sufficient for most tracks, in the other cases it
yields only limited error compared to non-planar models used
with MPC [33]. In MPC, a numerical description of the track
constraints is necessary. In the following, the track’s discrete
model and a function to measure a vehicle’s progress on the
track is introduced.
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Fig. 1. Example of discrete race track model, a nonconvex constraint [27]

1) Discretized Track Model: Fig. 1 depicts the following
discrete track definition. We define a center line C : [0, S]→
T in the track area T ⊆ R2 with the track length S ∈ R and
the track progress s ∈ [0, S]. The discretized track points si are
constructed with the discretization size ∆si across the indices
i ∈ N. The track’s normal ni is defined to be orthogonal to
the gradient of the center-line C, called the forward vector fi,
as

si = i ·∆si, (7a)

ni =
[
0 −1
1 0

]
, (7b)

fi =
[
0 −1
1 0

]
∇C(si). (7c)

The left and right track boundary points TL,i and TR,i are
constructed by translating the center point TC,i along ni with
the track width w ∈ R>0 as

TC,i = C(si), TC,i ∈ T, (7d)
TL,i = TC,i +

w
2 ni, TL,i ∈ T, (7e)

TR,i = TC,i − w
2 ni, TR,i ∈ T. (7f)

2) Progress Function: For an objective function, we require
to link the position of the vehicle on the track to a progress
measurement. We choose the center-line as the reference. This
results in the usage of equivalent-valued lines orthogonal to
the center-line C, modeled by the progress function

s(p) = argmin
c∈[0,S]

∥C(c)− p∥2 . (8)

For usage in the objective function, we linearize and dis-
cretize the progress function, starting with the linear interpo-
lation of the center-line

C(s) ≈ C(si) +∇C(si)(s− si) (9a)
= TC,i + fi(s− si). (9b)

Inserting (9) into (8), we explicitly solve for s and neglect
any constant parts, yielding the objective progress function

s(p) ≈ si + fT
j (p− TC,i) ≈ fT

i p. (10)

C. Model Predictive Control

We use the concept of MPC as the control structure [34].
In MPC, a model of the system is used to predict the states

X = (x(1) x(2) . . . x(Hp)), X ∈ Rn×Hp (11)

under the optimization of the inputs

U = (u(0) u(1) . . . u(Hu−1)), U ∈ Rm×Hu (12)

in the discrete timesteps 1, . . . , Hu. Hu ∈ N is the finite
control horizon, equaling the finite prediction horizon Hp in
this article. With that, a state vector x(j) can be assigned to
a particular, discrete timestep j ∈ N. An input vector u(j) is
applied starting at timestep j just until timestep j + 1.

To achieve recursive feasibility despite using a finite pre-
diction horizon, we add the terminal constraint

v(Hp) = 0. (13)

This requires the standstill of the vehicle at the end of the
prediction horizon, thus ensuring to fulfill the track constraints
in the next timesteps.

D. Complete General Trajectory Optimization Problem

This section combines the parts from Sections II-A to II-C
to form a nonlinear nonconvex optimization problem for
trajectory planning on a race track without obstacles.

The objective is to maximize a vehicle’s track progress
(10) at the prediction horizon Hp, or minimize its negation
respectively. It has been proven to be an adequate substitution
for minimizing time on the race track [25], [27]. To reduce ag-
gressive input changes, we add the damping penalty Ru ∈ R≥0

on the input changes. The complete program – termed General
Trajectory Program – is then

min
X,U
−s
(
p(Hp)

)
+Ru

Hp−1∑
j=1

∥∥∥u(j) − u(j−1)
∥∥∥2
2

(14a)

subject to

x(j) = M
(
x(j−1),u(j−1)

)
, ∀j=1, ...,Hp, (14b)

p(j) ∈ T, ∀j=1, ...,Hp, (14c)

u(j) ∈ UM , ∀j=0, ...,Hp − 1, (14d)

v(Hp) = 0. (14e)

with both the state prediction X and the input prediction U
matrices as the decision variables, and the input constraint set
UM for the vehicle model M . A sparse formulation is chosen
as it fits the problem size and parameter selection of Hu = Hp

better than a dense one, yielding lower computational cost
[35]. If started with an initially feasible trajectory along the
track, the General Trajectory Program stays feasible.

III. SEQUENTIAL CONVEX PROGRAMMING METHODS

The previous section introduced a nonconvex and thus NP-
hard optimization problem [2], [36]. In this section, we con-
vexify the problem using SCP, allowing us to find a solution
iteratively in real-time applications [2], [4]. Two variants of
SCP are presented: SL, being a relaxation, and SCR, being a
restriction. Both methods handle the nonconvex parts of the
optimization problem by approximating the track and input
constraints.

Algorithm 1 shows the pseudo-code of the real-time itera-
tion (RTI) SCP method. In line 1 the state prediction matrix
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Algorithm 1 Pseudo-Code for SCP
1: X ←Xinit
2: repeat forever ▷ control loop
3: x(0) ← receiveCurrentState()
4: for i = 1 to NRTI do
5: QP ← createConvexQP(X,x(0))
6: X,U ← solveQP(QP)
7: end for
8: applyInput(u(1))

is initialized with a feasible solution. The control loop starts
from line 2. After receiving the current state vector in line
3, NRTI ∈ N SCP iterations run. NRTI is set constant for
predictable computation times, turning the SCP into an RTI
algorithm, and chosen such that the execution time of the
control loop is smaller than the sampling time. In each SCP
iteration, first a QP is formulated in line 5 with the current state
vector and a warm-start of the previous state prediction matrix.
Either the SL or SCR method can convexify the nonconvex
parts to create this QP. Then, the QP is solved, yielding a new
state prediction matrix and input prediction matrix. After NRTI
iterations, the first control input is applied in line 8.

IV. SEQUENTIAL LINEARIZATION

The idea of SL is to linearize nonconvex constraints of
the optimization problem at operating points, based on initial
guesses or previous solutions, to obtain a QP. This lineariza-
tion acts as a relaxation of the track and input constraints. The
following paragraphs summarize SL, our previous paper [27]
presents more details.

A. Input Constraint Linearization

The input constraints for the single-track model are already
in linear form, so UST,SL = UST. For the linear model,
we approximate the velocity-dependent tire acceleration limit
ellipses of (6) with nacc ∈ N evenly distributed tangents .
This results in a relaxation, vanishing with n→∞ at higher
computational effort when solving the optimization problem.
The resulting set of linear inequalities is

U (j)
L,SL = {u ∈ R2 | Aacc

(
ṽ(j), 2πk

nacc

)
u ≤ bacc

(
ṽ(j)

)
∀k = 1, . . . , nacc, },

(15)

with the operating point ṽ. The matrix Aacc : R2×R→ R2 and
vector bacc : R2 → R are computed such that u is constrained
to the ellipses.

B. Track Model Linearization

Based on the track discretization from Section II-B1, the
track linearization is acquired by tangents to both the left track
boundary TL and the right track boundary TR at each timestep.
To formulate the linear track constraints, the closest center-line
point’s index i to a position p is acquired similar to (8) by the
index function

i(p) = argmin
k∈{0,...,Npoints}

∥TC,k − p∥2 . (16)

The progress function is used as defined in Section II-B2.
To mitigate approximation issues and subsequent infeasi-

bility of the problem, the track constraints are softened by
a slack variable ξ ∈ R≥0 [34]. It is added to the problem
objective with a high weighting factor S ∈ R>0. Due to
the minimization of the problem objective, ξ will be close
to 0 except when the track constraints cannot be satisfied.
Geometrically interpreted, ξ widens the track boundary to both
sides by the track’s unit. The track area constraint for SL is

T
(j)
SL =

p ∈ R2

∣∣∣∣∣∣∣
(
p− TL,̃i

)T
nĩ ≤ ξ,(

p− TR,̃i

)T
(−nĩ) ≤ ξ

 , (17)

with the index ĩ = i
(
p̃(j)

)
from (16). The deviation of the

position to the track boundary is computed via a dot product
with the boundary’s normal vector. It remains negative while
being inside the track boundaries.

The track is approximated at the operating point p̃(j). This
approximation is good for small distances between the actual
position and the operating point ∥p(j) − p̃(j)∥. This distance
is limited to maintain the quality of the track approximation
by a trust region with size L ∈ R>0.

C. Complete Trajectory Optimization Problem

With the generalized formulation from Section II, this
section’s SL approximations yield the optimization problem

min
X,U ,ξ

−fT
i(p̃(Hp))p

(Hp) + Sξ +Ru

Hp−1∑
j=1

∥∥∥u(j)−u(j−1)
∥∥∥2
2

(18a)

subject to

x(j) = M
(
x(j−1),u(j−1)

)
, ∀j=1, ...,Hp, (18b)

p(j) ∈ T
(j)
SL ∀j=1, ...,Hp, (18c)

u(j) ∈ U (j)
M,SL ∀j=0, ...,Hp − 1, (18d)

p̃(j)x − L ≤ p(j)x ≤ p̃(j)x + L, ∀j=1, ...,Hp, (18e)

p̃(j)y − L ≤ p(j)y ≤ p̃(j)y + L, ∀j=1, ...,Hp, (18f)

v(Hp) = 0, (18g)
ξ ≥ 0. (18h)

V. SEQUENTIAL CONVEX RESTRICTION

The method of SCR follows the idea of restricting a
nonconvex feasible solution set to a strict convex subset.
This section introduces the concept of SCR, followed by the
construction and proof of feasible warm-start trajectories. It
then applies SCR to our specific application, focusing on the
track restriction function.
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Fig. 2. Illustration of the restriction function and the linear constraints

A. Concept of SCR

We present the core idea of SCR of allowing a new
feasible trajectory to be computed based on an existing feasible
trajectory. To simplify the argument, we use a generalized form
of the General Trajectory Program (14), termed Generalized
Unrestricted Program:

min
z

q(z) (19a)

subject to Ez = b, (19b)
z ∈ D, (19c)

where z ∈ Rn, E ∈ Rm×n, b ∈ Rm, q : Rn → R,
D ⊆ Rn. The Generalized Unrestricted Program is in general
nonconvex. Let z̃ be a known feasible vector in this program.
Based on z̃ we define a convex, restricted program – termed
Generalized Restricted Program – as

min
z

q̂(z, z̃) (20a)

subject to Ez = b, (20b)
z ∈ R(z̃), (20c)

where q̂ : Rn×n → R is a convex approximation of the
objective function q and R : D → P(D) is the restriction
function converting a nonconvex area to a convex polygon
representation, denoted by P . R must satisfy the conditions

R(z̃) ⊆ D ∀z̃ ∈ D, (21a)
R(z̃) is convex ∀z̃ ∈ D, (21b)
z̃ ∈ R(z̃) ∀z̃ ∈ D. (21c)

Fig. 2 illustrates an example for the restriction function
and the feasible sets of the Generalized Unrestricted Program
and Generalized Restricted Program for a two-dimensional
case. The Generalized Restricted Program has by definition
at least one feasible point, z̃. The program is convex because
it minimizes a convex function on a convex set. Thus, it has
a unique optimum, denoted by F(z̃).
F(z̃) is also a feasible point in the Generalized Unrestricted

Program because z̃ ∈ R(z̃) =⇒ z̃ ∈ D. Thus, F(z̃) can be
used as a new starting point for the Generalized Restricted
Program resulting in F(F(z̃)). By iteration, we can generate
a sequence of points z̃i+1 = F(z̃i) while maintaining the fea-
sibility of each point in the Generalized Unrestricted Program.
Whether this sequence approaches an optimal solution of the
Generalized Unrestricted Program depends on the formulation
of q̂ and R.

B. Construction of Trajectories for Recursive Feasibility

Since SCR uses a known feasible trajectory to determine an
improved feasible trajectory, we need to specify the former.
If trajectories are recursively feasible, the trajectory of the
previous timestep represents a starting point. A feasible initial
trajectory is, e.g., X = [0 0 . . . 0] and U = [0 0 . . . 0].

Theorem 1. Trajectories with the terminal constraint (13)
resulting from solving the restricted convex program are
recursively feasible in the General Trajectory Program (14).

Proof. In each timestep, the solution of the previous timestep
– denoted with a tilde, e.g., x̃ – is shifted by one timestep to
enable a warm-start as follows

x(j−1) = x̃(j), ∀j = 2, ...,Hp, (22a)

u(j−1) = ũ(j), ∀j = 1, ...,Hp − 1. (22b)

As x̃(Hp+1) and ũ(Hp) do not exist, the trajectory must be
explicitly extended by one timestep as

x(Hp) = x̃(Hp), (22c)

u(Hp−1) = 0. (22d)

Such a trajectory fulfills all constraints of the restricted convex
program as we show in Appendix A.

C. Application to Problem

To apply SCR to the General Trajectory Program (14) we
start by rewriting it in the form of the Generalized Unrestricted
Program (19), before applying the restriction and conform-
ing to the Generalized Restricted Program (20) formulation.
Again, we use the linear vehicle model for simplicity. The
approach stays the same for the single-track model.

We combine the decision variables of the General Trajectory
Program to z ∈ R(n+m)×Hp

z =


p(1) . . . p(Hp)

v(1) . . . v(Hp)

u(0) . . . u(Hp−1)

 =

(
X

U

)
, (23)

which is the decision variable in the Generalized Unrestricted
Program.

(14b) and (14e) are affine and therefore represented with
Ez = b (19b). The track constraints (14c) and acceleration
constraints (14d) are nonconvex and nonlinear, respectively,
and represent the constraint set D in (19c). Combining the
track and acceleration constraint sets yields

D =
{
z ∈ Rn×Hp | p(j) ∈ T ∧

u(j−1) ∈ UM ,∀j = 1, ...,Hp

}
. (24)

The objective function remains unchanged as

q̂(z, z̃) = q(z) = −s
([

z
(Hp)
1 , z

(Hp)
2

])
= −s

(
p(Hp)

)
, (25)

which concludes rewriting the General Trajectory Program as
a Generalized Unrestricted Program.

For the transformation of the formulation to a Generalized
Restricted Program, we need to construct a convex objective
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q̂ and a restriction function R. The following Sections V-D
to V-E will formulate the restriction functions RA and RT for
the acceleration and track constraints, respectively. They will
fulfill the conditions for a restriction function (21) on their
respective sets T and Aacc. The overall restriction function
R(z) is then composed using the Cartesian product as follows:

R(z) = RT

(
p(1)

)
× ...×RT

(
p(Hp)

)
× R2×Hp

×RA

(
u(0)

)
× ...×RA

(
u(Hp−1)

)
. (26)

Note that this definition corresponds directly to the definition
of the unrestricted constraint set D in (24) and the decision
variable in (23), i.e., the order of the variables is matched.

We need to justify that the Cartesian product of two restric-
tion functions also is a restriction function. Checking that the
conditions (21) are preserved by the Cartesian product shows
that this is the case.

D. Restriction Function for Acceleration Input

For the acceleration constraints, we restrict the tire acceler-
ation limit ellipses set (14d) by shrinking the existing polygon
representation with the restriction function RA : UL → P(UL)

RA(u) =
{
u ∈ UL | Aacc

(
v(j)

)
u ≤ bmaxbacc

(
v(j)

)}
,

(27)

with bmax ∈ (0, 1). The input constraint for the linear model are
U (j)

L,SCR = RA(u), and as the input constraints for the single-
track model are linear, U (j)

ST,SCR = UST.

E. Restriction Function for Track Model

In this section, we present the track’s restriction function
RT : T → P(T ) in detail. After defining the function
and proofing its validity in Section V-E1, the algorithm to
create the restricted track is designed in Section V-E2. Lastly,
adaptions to the progress functions are made in Section V-E3.

1) Definition & Proof of the Track Restriction Function:
This section defines the structure of the track area T ⊆ R2 and
the restriction function for the track area RT : T → P(T ).
Because we want to use RT in the constraints of a QP, it must
not just be convex but also consist of affine constraints. Thus,

RT (p̃) = Pl(p̃), (28a)

Pl = {p ∈ R2 | Flp ≤ gl}, (28b)

where Pl ⊆ R2 is a convex polygon, Fl ∈ Rnedges×2 and
gl ∈ Rnedges being the constraints defining the polygon Pl

with nedges ∈ R≥4 edges, and l : R2 → N being an index
function which selects the correct set of affine constraints, i.e.,
the polygon which includes p and is most forward on the track.
Geometrically interpreted, the bounded set of linear constraints
in two dimensions in (28b) forms a convex polygon. We
model the nonconvex track area T with the union of Npolygons
overlapping convex polygons Pl within the track area as

T =

Npolygons⋃
l=1

Pl. (29)

Algorithm 2 Computation of the Track Polygons

1: T ← tessellateTrack(TL,TR)
2: T ← mergePolygons(T )
3: T ← addOverlaps(T )
4: return T
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Fig. 3. Track section after each step of Algorithm 2

Theorem 2. The track area function (28a) is a restriction
function.

Proof. The track area function fulfills the conditions for a
restriction function (21) as shown in Appendix B.

2) Design of the Track Restriction Function: As Sec-
tion V-E1 demonstrated, a set of convex polygons can be used
to define the track restriction function RT (p). The algorithm
that determines the polygons should target to maximize

• polygon size, as larger polygons imply less restriction and
• polygon overlap, as the possibility to switch selected

polygons for predicted trajectory points p(j) across it-
erations is required.

Algorithm 2 shows the pseudo-code for the steps of tessella-
tion, merging, and overlapping to compute the track polygons.
These three steps are depicted in Fig. 3, starting from SL’s
discretized track as in Fig. 3a.

a) Tessellation: With the general track model from Sec-
tion II-B, let hull : P(Rn) → P(Rn) be the convex hull
function, yielding the smallest convex super-set of the input
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set. Then we can define a list of track polygons T that
tessellate the track as

Pi = hull ({TL,i,TR,i,TL,i+1,TR,i+1}) ,∀i = 1, ..., (N−1),
(30a)

PN = hull({TL,N ,TR,N ,TL,1,TR,1}), (30b)
T = (P1, P2, ..., PN ), (30c)

where N is the number of track boundary points. Fig. 3b shows
T for an example track section.

b) Merging: We iterate over the list of polygons T and
merge polygons Pi and Pi+1 if their union is convex. The
two polygons are replaced with their union in the list and the
polygons are renumbered from 1 to Nmerged − 1. This process
is repeated until no polygons can be merged anymore.

To reduce the number of polygons and thus the number
of constraints in the program further, we merge polygons if
the union Pi ∪ Pi+1 is close to being convex. We define the
function ∆A : P(Rn) × P(Rn) → R≥0 which returns the
required additional area to make the union of two polygons
PA ∪ PB convex as

∆A(PA, PB) = |hull(PA ∪ PB)| − |PA ∪ PB | . (31)

From the definition of hull it follows that ∆A(PA, PB) ≥ 0.
For ∆A(Pi, Pi+1) ≤ εA, where εA > 0, εA ∈ R is some small
constant, we replace the polygons by their union as before.
Note that this represents a minor relaxation.

Fig. 3c shows the example track’s merged polygons, re-
ducing the number of polygons from 1090 to 178 with
εA = 1.35e−05m2, equaling εA = 0.025m2 on a 1:1-scale.

c) Overlapping: Pursuing our goal of maximizing poly-
gon size and overlap, we want to find the largest convex
polygon P̃i to replace Pi with

P̃i ⊂ T, (32a)

P̃i ⊇ Pi and (32b)

P̃i is convex. (32c)

Every polygon Pi is enlarged in both forward and backward
direction. Fig. 4 illustrates the result of the enlargement algo-
rithm in the forward direction. First, we enlarge Pi by moving
the points of the edge shared with neighbor Pi+1 infinitely
far along the direction of the polygon edges at the track
boundary. This enlarged polygon P̃forward,i is then restricted by
the following neighbors Pi+1, . . . , Plast where Plast is the last
polygon overlapping with P̃forward,i. By enlarging Pi into the
other direction, too, we can union both P̃forward,i and P̃backward,i

to create P̃i. This algorithm is detailed in the published code
and video. With the slack variable ξ and the index function l
we express the track area constraint for SCR as

T
(j)
SCR =

{
p ∈ R2 | Fl(p̃(j))p ≤ gl(p̃(j)) + ξ.

}
. (33)

3) Progress Function Adaptions: As the SCR track model
doesn’t allow the usage of the progress function defined in
Section II-B2, we need to define hz̃(z) according to (20a) as

hz̃(z) = −F T
l(p̃(Hp))p

(Hp), (34)

Fig. 4. Convex polygon expansion adhering to track limits

with the discrete center-line forward direction vector Fi of
a polygon and l yielding the most forward polygon index
containing the point p̃(Hp). We define Fi as the mean of the
forward direction vectors of the polygon’s center-line points
analogous to (10) as

Fi =
1

|Ii|
∑
k∈Ii

fk, ∀i = 1, ..., Npolygons,

(35a)
Ii = {k = 1, ..., Npoints | TC,k ∈ Pi} , ∀i = 1, ..., Npolygons,

(35b)

where Ii ⊆ N is the index set of center-line points in the
polygon Pi.

F. Complete Trajectory Optimization Problem

Combining the General Trajectory Program (14) with this
section’s formulations, namely (i) the objective function (34),
(ii) a slack variable ξ ∈ R≥0 to soften the track constraints
(as in the formulation of SL in Section IV), (iii) the track
constraints (28) and (iv) the acceleration constraints (27),
yields the quadratic optimization problem

min
X,U ,ξ

− F T
i(p̃(Hp))p

(Hp) + Sξ +Ru

Hp∑
j=2

∥∥∥u(j) − u(j−1)
∥∥∥2
2

(36a)
subject to

x(j) = M
(
x(j−1),u(j−1)

)
, ∀j=1, ...,Hp, (36b)

p(j) ∈ T
(j)
SCR, ∀j=1, ...,Hp, (36c)

u(j) ∈ U (j)
M,SCR ∀j=0, ...,Hp − 1, (36d)

v(Hp) = 0, (36e)
ξ ≥ 0. (36f)

VI. NUMERICAL RESULTS

This section compares the proposed convex approximation
using SCR for autonomous vehicle racing with SL, a widely-
spread approach in literature [22]–[28]. A video of the results
and the code are linked in the beginning of the paper. The goal
in vehicle racing is minimizing the lap time tlap. Therefore, the
following evaluation concentrates on this metric.
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Fig. 5. Predicted MPC trajectories of linear and single-track vehicle model

Our algorithms run in MATLAB R2021a with the solver
cplexqp from IBM ILog CPLEX 12.10 [37] on a PC with
an AMD Ryzen 5 3600 4.2GHz hexacore CPU and 16GB
RAM on Windows 10 21H1 64-bit.

The simulation parameters vary between scenarios, but
can be found in the code repository which reproduces the
simulation results. We tuned the MPC weights Q and R and
the trust region size L to achieve a robust planner with minimal
lap time on a 1:43-scaled version of the Hockenheimring. In
order to achieve real-time performance with the sampling time
∆t = 0.1 s, we set the number of iterations NRTI to 1.

A. Linear and Single-Track Model

We equip a single vehicle with two trajectory planners, one
using the linear model [27] and one using the single-track
model. The constraints on the single-track model determine
the acceleration bounds for the linear model.

Fig. 5 shows the difference in the predicted trajectories.
When compared to the linear model, the single-track model
achieves trajectories closer to racing lines, as it uses the entire
track area to maintain speed. The prediction of the single-track
model progresses further on the track in the same time interval,
which indicates a faster progress. In the following evaluation,
we will use the single-track model only.

B. Track Convexification with SCR

Table I shows the lap times for both track convexification
methods. The relative decrease for tlap,start is higher than
for tlap,flying. At the start of the race, the trajector planner
is initialized with a trajectory prediction corresponding to
a standstill situation. The trust region that restricts SL is
particularly prohibitive at the first iterations after the start. If
we increase the number of iterations NRTI in SL to 50, the
resulting lap times are still worse than with a single iteration
of SCR, while the computation time is up to ten times higher.

SL approximates the track less accurately than SCR. Since
SL relaxes the track constraints, the solutions obtained do not
always satisfy the original nonconvex constraints. In contrast,

TABLE I
LAP TIMES OF TRACK DISCRETIZATION METHODS

Measurement tlap,start[s] tlap,flying[s]

SL 11.0 10.0

SCR 10.1 9.3

Difference 0.9 0.7

Difference in [%] 8.91 7.53

4 4.5 5 5.5
x [m]

-3

-2.5

-2

y
[m

]

SCR
SL

Fig. 6. Track convexification with SL and SCR and resulting planned
trajectories. The trajectory resulting from the SL convexification violates the
original nonconvex constraints. The dotted line shows the trajectory of the
previous timestep around which the constraints are convexified.

SCR guarantees satisfying the track constraints, since the
convexification is a restriction of the nonconvex constraints.
Fig. 6 shows an example of such a situation. The dotted line
depicts the solution of the previous timestep, which serves as
the operating point. The convex constraints for SCR and SL
are shown in dark and light shades, respectively.

Fig. 7 shows the trajectories a vehicle takes around the
track with both the SL and the SCR convexification method.
A marker signals every second on the trajectory to allow a
comparison of the vehicle’s progression. The vehicle starts
with both the initial state and the prediction from a flying
lap. The markers show how the trajectory resulting from SCR
progresses faster on the track than the one from SL.
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y
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t = 0 st = 9 s

Fig. 7. Trajectories with SL and SCR; a marker is set every second. The race
starts in the upper left and continues clockwise.
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Fig. 8. Computation time of SL and SCR

Fig. 8 shows the median, 99th percentile, and maximum
computation time for SL and SCR. In all three categories, SCR
has approximately double the computation time than SL. The
computation time is mainly determined by the optimization
time, which grows with the number of constraints. The QP
in SCR is subject to a higher number of constraints given
by the polygonal representation of the track. The number of
constraints can be reduced by a coarser representation of the
track, i.e., using polygons with fewer sides. The times stay
consistent, i.e., the maximum and 99th percentile execution
times are close to the median, which is a desired property for
real-time applications.

VII. CONCLUSION

This paper introduced a general problem formulation for
trajectory planning of autonomous race cars. We showed an
adaption of the general problem formulation for the convexifi-
cation method SL, which is state of the art, and introduced
an adaption for SCR. We showed that we achieve a valid
restriction of the track with overlapping, convex polygons. The
paper also proves recursive feasibility of trajectories resulting
from the restricted optimization problem. Solutions found with
SCR always satisfy the nonconvex constraints of the original
problem in contrast to SL. We showed that SCR improves
lap times compared to the state-of-the-art method SL, while
still being real-time capable. Opponents and obstacles can
be incorporated as additional nonconvex constraints in the
optimization problem. SCR can be extended by linearizing
these constraints as in [28] to form a convex restriction of the
original problem.

Future work will investigate real experiments within the
Cyber-Physical Mobility Lab, an open-source platform for
networked and autonomous vehicles [38].

APPENDIX A
PROOF OF THEOREM 1

Proof. Constraints (14b) for j = 1:

x(1) = Ax(0) +Bu(0) (37a)

x̃(2) = Ax̃(1) +Bũ(1) (37b)

Subtracting (37a) and (37b) yields

x(1) − x̃(2)︸ ︷︷ ︸
=0 (22a)

= A
(
x(0) − x̃(1)

)
+B

(
u(0) − ũ(1)

)
︸ ︷︷ ︸

=0 (22b)

(37c)

⇐⇒ x(0) = x̃(1), (37d)

where (37d) states that SCR assumes the vehicle following the
predicted trajectory without disturbances.
Constraints (14b) for j = 2, . . . , Hp − 1:

x(j) = Ax(j−1) +Bu(j−1) (37e)

x̃(j+1) = Ax̃(j) +Bũ(j) (37f)

Subtracting (37e) and (37f) yields

x(j) − x̃(j+1)︸ ︷︷ ︸
=0 (22a)

= A
(
x(j−1) − x̃(j)

)
︸ ︷︷ ︸

=0 (22a)

+B
(
u(j−1) − ũ(j)

)
︸ ︷︷ ︸

=0 (22b)

.

(37g)

Constraints (14b) for j = Hp:

x(Hp)= Ax(Hp−1) +Bu(Hp−1) (37h)
(22a) and (22d)⇐⇒ x̃(Hp)= Ax̃(Hp) (37i)
⇐⇒ 0 = (A− I)x̃(Hp) (37j)

(5) and (14e)⇐⇒ 0 =


0 0 ∆t 0

0 0 0 ∆t

0 0 0 0

0 0 0 0



p̃
(Hp)
x

p̃
(Hp)
y

0

0

 (37k)

Constraints (14c) for j = 1, . . . , Hp − 1:

p(j) ∈ T
(22a)⇐⇒ p̃(j+1) ∈ T (37l)

Constraints (14c) for j = Hp:

p(Hp) ∈ T
(22c)⇐⇒ p̃(Hp) ∈ T (37m)

Constraints (14d) for j = 0, . . . , (Hp − 2):

Aacc

(
v(j)

)
u(j) ≤ bacc

(
v(j)

)
(37n)

(22b)⇐⇒ Aacc

(
ṽ(j+1)

)
ũ(j+1) ≤ bacc

(
v(j)

)
Constraints (14d) for j = Hp − 1:

Aacc

(
v(Hp−1)

)
u(Hp−1) ≤ bacc

(
v(Hp−1)

)
(37o)

(22d)⇐⇒ 0 ≤ bacc

(
v(Hp−1)

)
Constraints (14e):

v(Hp) = 0
(22c)⇐⇒ ṽ(Hp) = 0 (37p)

We have proven for every constraint and every timestep that
the initial trajectory (22a) and (22d) is feasible in the General
Trajectory Program (14) for the linear vehicle model (5).
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APPENDIX B
PROOF OF THEOREM 2

Proof. Condition (21a):

RT (p̃)⊆ T ∀p̃ ∈ T (38a)

(28a) and (29)⇐⇒ Pl(p̃) ⊆
Npolygons⋃
l=1

Pl ∀p̃ ∈ T (38b)

⇐⇒ Pk ⊆
Npolygons⋃
l=1

Pl ∀k = 1, ..., Npolygons. (38c)

Condition (21b):

RT (p̃) is convex ∀p̃ ∈ T (38d)
(28a)⇐⇒ Pl(p̃) is convex ∀p̃ ∈ T (38e)
⇐⇒ Pk is convex ∀k = 1, ..., N (38f)
(28b)⇐⇒ {p ∈ R2 | Fkp ≤ gk} is convex ∀k = 1, ..., N. (38g)

Condition (21c):

p̃ ∈ RT (p̃) ∀p̃ ∈ T (38h)
(28a)⇐⇒ p̃ ∈ Pl(p̃) ∀p̃ ∈ T (38i)
(28b)⇐⇒ p̃ ∈ {p ∈ R2 | Fl(p̃)p ≤ gl(p̃)} ∀p̃ ∈ T (38j)
⇐⇒ Fl(p̃)p̃ ≤ gl(p̃) ∀p̃ ∈ T (38k)
⇐⇒ dl(p̃)(p̃) ≤ 0 ∀p̃ ∈ T (38l)

⇐⇒
(

min
k=1,...,N

dk(p̃)

)
≤ 0 ∀p̃ ∈ T. (38m)

With p̃ ∈ T follows ∃n : p̃ ∈ Pn and dn(p̃) ≤ 0, thus(
min

k=1,...,N
dk(p̃)

)
≤ dn(p̃) ≤ 0 ∀p̃ ∈ T. (38n)

We have proven that the track restriction function RT (p) is a
valid restriction function by checking the conditions (21).
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[21] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006.

[22] D. Q. Tran and M. Diehl, “An application of sequential convex pro-
gramming to time optimal trajectory planning for a car motion,” in
Proceedings of the 48h IEEE Conference on Decision and Control
(CDC) Held Jointly with 2009 28th Chinese Control Conference, Dec.
2009, pp. 4366–4371.

[23] N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A Sequential Two-
Step Algorithm for Fast Generation of Vehicle Racing Trajectories,”
Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 9,
Jun. 2016.

[24] J. P. Timings and D. J. Cole, “Vehicle trajectory linearisation to enable
efficient optimisation of the constant speed racing line,” Vehicle System
Dynamics, vol. 50, no. 6, pp. 883–901, Jun. 2012.

[25] A. Liniger, A. Domahidi, and M. Morari, “Optimization-Based Au-
tonomous Racing of 1:43 Scale RC Cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, Sep. 2015.

[26] S. Srinivasan, S. Nicolas Giles, and A. Liniger, “A Holistic Motion
Planning and Control Solution to Challenge a Professional Racecar
Driver,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7854–
7860, Oct. 2021.

[27] B. Alrifaee and J. Maczijewski, “Real-time Trajectory optimization for
Autonomous Vehicle Racing using Sequential Linearization,” in 2018
IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE, Jun. 2018,
pp. 476–483.

[28] M. Kloock, P. Scheffe, L. Botz, J. Maczijewski, B. Alrifaee, and
S. Kowalewski, “Networked Model Predictive Vehicle Race Control,” in
2019 IEEE Intelligent Transportation Systems Conference (ITSC), Oct.
2019, pp. 1552–1557.



12

[29] H. B. Pacejka, Tyre and Vehicle Dynamics, 2nd ed. Oxford:
Butterworth-Heinemann, 2006.

[30] A. Liniger, “Path Planning and Control for Autonomous Racing,” Ph.D.
dissertation, ETH Zurich, 2018.

[31] C. Voser, R. Y. Hindiyeh, and J. C. Gerdes, “Analysis and control of
high sideslip manoeuvres,” Vehicle System Dynamics, vol. 48, no. sup1,
pp. 317–336, Dec. 2010.

[32] B. Heißing, M. Ersoy, and S. Gies, Eds., Fahrwerkhandbuch: Grundla-
gen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven ;
mit 84 Tabellen, 3rd ed., ser. ATZ-MTZ Fachbuch. Wiesbaden: Vieweg
+ Teubner, 2011.

[33] T. Fork, H. E. Tseng, and F. Borrelli, “Models and Predictive Control for
Nonplanar Vehicle Navigation,” in 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), Sep. 2021, pp. 749–754.

[34] J. M. Maciejowski, Predictive Control: With Constraints. Harlow,
England ; New York: Prentice Hall, 2002.

[35] T. A. Rajasingham, Nonlinear Model Predictive Control of Combustion
Engines: From Fundamentals to Applications, ser. Advances in Indus-
trial Control. Cham: Springer International Publishing, 2021.

[36] C. A. Floudas, P. M. Pardalos, P. Pardalos, and R. Horst, Eds., State
of the Art in Global Optimization, ser. Nonconvex Optimization and Its
Applications. Boston, MA: Springer US, 1996, vol. 7.

[37] “IBM ILOG CPLEX Optimization Studio,” IBM, 2019.
[38] M. Kloock, P. Scheffe, J. Maczijewski, A. Kampmann, A. Mokhtarian,

S. Kowalewski, and B. Alrifaee, “Cyber-Physical Mobility Lab: An
Open-Source Platform for Networked and Autonomous Vehicles,” in
2021 European Control Conference (ECC), Jun. 2021, pp. 1937–1944.

Patrick Scheffe is a PhD candidate in Computer
Science at the Chair of Embedded Software, RWTH
Aachen University, Germany. He received the B.Sc.
degree in Mechanical Engineering in 2016 and the
M.Sc. degree in Automation Engineering in 2019
from RWTH Aachen University. His research inter-
ests include distributed decision-making for cyber-
physical systems and its application to connected
and autonomous vehicles.

Theodor Mario Henneken received the B.Sc. de-
gree in mechanical engineering from RWTH Aachen
University, Germany, in 2019. In 2021, he finished
his M.Sc. degrees in automation engineering and
industrial engineering at RWTH Aachen Univer-
sity, Germany, and Tsinghua University, China. Cur-
rently, he is pursuing a dual Master of Business
Administration at the Collège des Ingénieurs.
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