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Abstract—Challenges related to automated driving are no
longer focused on just the construction of such automated vehicles
(AVs), but in assuring the safety of their operation. Recent ad-
vances in Level 3 and Level 4 autonomous driving have motivated
more extensive study in safety guarantees of complicated AV
maneuvers, which aligns with the goal of ISO 21448 (Safety of the
Intended Functions, or SOTIF), i.e. minimizing unsafe scenarios
both known and unknown, as well as Vision Zero – eliminating
highway fatalities by 2050. A majority of approaches used in
providing safety guarantees for AV motion control originate
from formal methods, especially reachability analysis (RA), which
relies on mathematical models for the dynamic evolution of
the system to provide guarantees. However, to the best of the
authors’ knowledge, there have been no review papers dedicated
to describing and interpreting state-of-the-art of formal methods
in the context of AVs. In this work, we provide both an overview
of the safety verification, validation and certification process, as
well as review formal safety techniques that are best suited to
AV applications. We also propose a unified scenario coverage
framework that can provide either a formal or sample-based
estimate of safety verification for full AVs. Finally, remaining
challenges and future opportunities beyond the scope of current
published research for assured AV safety are presented.

Index Terms—Automated vehicle, Verification and validation,
Reachability analysis, Safety guarantees, Motion planning, Safety
of the intended function, Scenario coverage

I. INTRODUCTION

Automated vehicle (AV) technology is expected to be
massively deployed in the next decade or two, with multiple
SAE J3016 level 2 automated driving systems developed and
deployed over the last two decades[1], [2], and some level
3 system regionally approved and announced[3], [4]. As a
daily means of transportation for humans and goods, more
rigorous safety guarantee has to be investigated and eventually
implemented in the automated fleet that will dominate the road
traffic around 2050[5]. Recent poll suggests that safety is the
primary concern for AV acceptance, compared to economic
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impact or privacy concern[6]. And it is believed that by mass
adoption of automated vehicles, road safety will be significantly
improved compared to the road traffic status quo[7]. The gap
between this incoming autonomous future and current state-
of-art safety measures is to be filled by continued effort of
scientists and engineers, as well as legislators.

Previous surveys on AV technologies have been focusing
on the various aspects of the technical challenges and im-
plementation, such as ways to perform perception, decision
making, vehicle control, human machine interaction[8], with a
few reviews covering the issue of AV safety verification and
validation[9], [10], [11], [12], [13], [14], [15], [16], [17].

With the rise of real word deployment of ADS systems,
significant amount of verification and validation (V&V) is
required against the scale of scenarios in real world that ADS
will encounter. A common strategy of V&V to maximize
scenario coverage is to verify ADS in virtual simulations and
simulated large amount of generated scenario samples (see
[14], [12], [17], [18] for detailed reference).

The challenge in scenario sampling-based V&V is quanti-
fying the amount of sample required to guarantee reasonable
coverage, so that the risk created by ADS improper actuation
can be curbed. A reasonable scenario coverage guarantee is
also the prerequisite for type approval in recent legislation
for highly automated vehicle (HAV) deployment[19], [20]. An
alternative set of methods based on formal verification however,
address the scenario coverage from a different approach through
specification satisfaction[15]. Because of the potential of formal
methods in scenario coverage, emerging research have started
to combing formal properties with control synthesis[21], [22]
and safety verification[16].

In light of the need for ADS quantifiable verification, we
propose a unified scenario coverage framework to address the
unresolved pain point in AV scenario coverage. We provide a
quantitative definition of unified safe scenario coverage given
an accepted coverage-representation volume of a single scenario
(for sample-based methods), or given so called “specification
penetration rate” of formal safety specifications (for formal
methods). This quantitative definition unites sample-based
methods and formal methods in the same quest to provide
scenario coverage for safety verification. A candidate AV
control policy can go through either formal or sample-based
safety verification to be tested of its safe scenario coverage in a
specified ODD. We compare the pros and cons of sample-based
methods and formal methods based on how they reach this
safety coverage and the associated costs and issues with each
method.
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The contributions of this paper is three-fold: (1) we provide a
holistic overview of different aspects in ADS safety guarantee,
verification, validation and certification; (2) we provide a unified
safe scenario coverage framework for both sample-based and
formal methods for safety verification; (3) we conduct a state-
of-the-art literature review on formal methods for automated
vehicle safety, and we categorize how in different ways formal
methods (especially reachability analysis) can be used to
provide safety verification or guarantee for motion control.
Lastly, we point out trends and opportunities in the field of
formal safety verification for ADS.

II. CERTIFICATION

A. Certification Status Worldwide

Since the piloting AV programs such as the PROMETHEUS
project[43] (1987-1995) and DARPA Grand Challenge[44]
(2004-2007), the development of automated vehicles have
entered the era of on-road deployment. An incomplete summary
of current certification of automated driving on public roads is
provided in Table I.

B. Safety Certification Challenges

Among all the concerning issues, four particular challenges
stand out for AV safety certification: the determination of
unavoidable collision; the determination of liability; the verifi-
cation cost for reasonable scenario coverage; and the additional
cost of re-verification for ADS update.

Determining whether a collision situation is avoidable or not,
this is not just an academic problem but also a liability-related
legal problem. Despite the high expectations for autonomy, as
humans we can only expect robotic systems to optimize actions
for the best possible outcome. For example, one can only
expect automated vehicles to apply evasive maneuver to avoid
an avoidable collision, but not an unavoidable collision. The
requirement for such avoidability determination has been passed
as an amendment to law in Germany in August 2021 regarding
level 3 to level 4 function in HAV[27]. Specifically, in §1e
paragraph (2), number 2 of the law (Straßenverkehrsgesetzes,
or Road Traffic Act) states that (English translation):

Motor vehicles equipped with an automated driving function
must have technical equipment that is capable to: independently
comply with the traffic regulations directed at driving the
vehicle and have an accident prevention system that:
(a) is designed to avoid and reduce damage,
(b) in the event of unavoidable alternative damage to different

legal interests, the protection of human life being the
highest priority, and

(c) in the event of an unavoidable alternative risk to human
life, none provides further weighting based on personal
characteristics.

In the legal text above, judging whether “unavoidable
alternative damage” is the actual case requires a formal
determination of damage avoidability, i.e. collision avoidability.
Despite the different implementations of accident prevention
systems in industry, from a safety verification standpoint,
the avoidability judgement mechanism is better conservative

than risky. At the same time, it is also undesirable to be
“too conservative” to not use emergency maneuver when an
incoming collision is still avoidable. To illustrate this delicate
difference, two situations are given:

1) First, when the vehicle is very close to an unavoidable
collision situation yet there is still room to avoid the
collision, we don’t want the ADS to make a false
unavoidable judgement and start preparing for the impact;

2) Second, when the vehicle is actually in an unavoidable
collision situation and not colliding yet, from a safety
verification standpoint, the ADS should be sensitive
enough to immediately start preparing for the impact.

These two situations indicate that the accident prevention
system in ADS should be able to make a clear-cut distinction
between avoidable and unavoidable situations early enough,
and it should not hesitate to engage conservative maneuver,
evasive maneuver or preparation for impact. Otherwise, at least
according to the German law amendment[27], AV control is
liable for collision damage.

Liability determination is also an emerging issue to be
addressed for ADS deployment. At level 3 the ADS is not
liable as long as unexpected or difficult situations are handed
over early enough to the human driver, as the ADS is only
expected to guarantee safety in its limited ODD environment.
Even if the human driver does not take over in time, a fail-
safe maneuver such as braking, stopping and turning on hazard
lights can free the ADS from liability, to a certain extent. When
a level 4 or above AV is equipped with formal safety verified
ADS, the liability determination can be streamlined according
to a formal logic, illustrated in Figure 1 for example. For ADS
developed with sample-based safety verification, it is yet to
see how a similar programmatic formal liability determination
can be performed.

Another challenge for certification is the cost associated to
verify and validate the ADS. For an ADS industry stakeholder,
already huge investments have been made to verify and
validate the in-house ADS. When it comes to type-approval
or certification, it is not fully clear how much of the V&V
effort from the industry stakeholder can be “credit transferred”
towards the safety certification.

Moreover, as more learning-based functions are incorporated
into AV control design, the resulting control stack is constantly
evolving based on collected learning data. The continuous
learning, together with the continuous development of ADS
software by the engineering team is adding another layer of
uncertainty to safety V&V and certification. A question remains
unanswered on whether regression testing is required for each
major or minor ADS software update.

III. AUTOMATED VEHICLE SAFETY VERIFICATION AND
VALIDATION

A. Qualitative Safety Goal

Safety is system state free from harm. And safety assurance is
the capability to be free from risks developing into harm when
they emerge[45]. Although huge safety enhancement potential
exists for AVs as 94% of road accidents are driver-related[46],
but limitations of current safety V&V measures for AVs are
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TABLE I
LEGISLATION STATUS OF AUTOMATED VEHICLE OPERATION

Region Testing Deployment Legislation Safety Driver Removal Approved Deployment Case(s)
Level 3 Level 4 Testing Deployment

US X* State-specific** (SAE J3016
classification[23] in 2014)

Conditional*** Conditional**** Nuro (California, Dec
2020)[24]; Waymo, Cruise
(California, Sep 2021)[25]

EU X UNECE No.79, Apr
2021[26]; Germany, Jun
2017[19]

Germany, Jul 2021[27] Germany, 2022[28] - Mercedes-Benz (Level 3 ALKS,
Dec 2021)[29]

UK X Spring 2022[30], [31] - - - -
China X General legislation, Apr 2021[32], AV

level classification, Mar 2022[33]
Conditional - Robotaxi w/ safety driver: Baidu,

Pony.ai (Beijing, Nov 2021)[34]
Japan X May 2020[35] Early 2022[36] With remote

monitor[37]
- Honda (Level 3 for congestion

situation, Nov 2020)[4]
Korea X Jan 2020 [38], [39] - - - -

* As of Jan 16, 2022, 32 of the 50 states in the US allow AV testing[40]
** As of Jan 16, 2022, 17 of the 50 states in the US allow deployment of AV, but to the authors’ knowledge, details for the level of autonomy classification

and due responsibility are not explicitly specified[40]
*** As of Jan 16, 20 of the 32 states that allow AV testing do not have requirements of safety driver if certain conditions are met[40]

**** Cruise applied for driverless deployment in California in May 2021[41], and received test permit in June 2021, then partial deployment approval in Sep
2021, waiting for final approval from California Public Utilities Commission[42].

widely recognized. As pointed out by RAND Corporation
report Driving To Safety[47], tens of billions of miles of on-
road testing is required to ensure acceptable level of AV safety
for all possible scenarios and inputs. Whereas programmatically
generated simulation tests, although performed much faster,
more flexible in scenario generation[12] and more economical,
are susceptible to fidelity and realism concerns[9]. Even worse,
both on-road testing and simulated testing cannot exhaustively
cover all driving scenarios even for a small operational design
domain (ODD)[23].

The widely used safety guideline standard ISO 26262 Road
Vehicles—Functional Safety[48] is suited only for mitigating
known unreasonable risks related to known component failure
(i.e. known unsafe scenario), but it is not addressing AV driving
risks due to complicated environment variants and how the
ADS reacts to them, while nothing in the vehicle is technically
failing.

Given the safety challenge above, a qualitative goal was
proposed in ISO 21448 Safety of the Intended Functions
(SOTIF)[49], which describes high-level goals of minimizing
known and unknown unsafe scenario outcomes for ADS
function design (Figure 2). The challenge for meeting this
goal, however, is the intractability of traditional methodologies
such as field operational test (FOT)[13] to cover all possible
scenarios for automated driving during testing.

Despite the challenge, there are promising methodologies
and directions in safety analysis to move towards the ISO
21448 goal, such as maximizing scenario coverage in simulated
testing[12], or creating safety guarantees through formal
methods[21], [22].

B. Quantitative Safety Threshold

For AV testing, large number of tested miles can be deceptive
and does not always equal to adequate scenario coverage.
Specifically, if most of the test miles are done on repeatedly
tested, low traffic highway roads, the “per mile value” of

the test data quickly deteriorates. In fact, event rates per
exposure notions such as injuries/fatalities per 100 million mile
mentioned in the RAND report[47], or disengagements per
1000 miles used for California DMV disengagement report[50]
are only rough criteria to provide an intuitive summary of how
statistically safe is a certain operation, with a risk of selective
bias.

In technical terms, safe enough usually indicates full or
sufficient scenario coverage for the designated ODD[13], [14].
In reality, relatively weak requirements have been seen in
existing regulations[20] that only require to check “a number
of scenarios that are critical”. A promising attempt to assign
“volume” to scenario samples is seen in [16] by introducing
a “δ-neighborhood” around a discrete scenario. Mathematical
algorithms such as T-wise[51], [52] and Poisson process[53]
have also been adopted to achieve “almost full” statistical
coverage by cleverly select candidates with limited samples.

Let us optimistically assume that this quantitative coverage-
representation problem is solved and accepted across the
community, and each single sampled scenario has a “coverage
volume” (illustrated in shaded areas in Figure 4, and in gridded
units in Figure 6(f)-(j)). Then the full scenario coverage task
for sample-based methods is performing sufficient amount of
sampled verification tests to ensure that each “coverage volume”
unit is associated with at least one safe test result. Realistically,
some scenarios in a scenario space may be impossible to
produce a safe test result (e.g. too little reaction distance with
an obstacle), in this case, extra effort is required to confirm
that those cases are indeed safety infeasible. When it comes
to type approval and certification, the authorities need to set
an acceptable successful threshold for in order to match up
with public expectations. The simplest threshold r could be
the ratio between the number of different tests verified safe
Nsv and the number of minimum tests required for the ODD
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Fig. 1. Proposed liability determination framework using formal method, for
level 4 and level 5 ADS
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Fig. 2. The goal of ISO 21448 (SOTIF)[49]: minimize unsafe scenario
outcomes, both known and unknown to the control design. Colors in the
diagram represent: known safe scenarios (green), known unsafe scenarios
(light red), unknown safe scenarios (grey), unknown unsafe scenarios (dark
red).

NODD:

r =
Nsv

NODD
(1)

In section V we expand this scenario coverage concept to
construct a unified framework of scenario coverage.

C. State-of-the-art Verification and Validation Techniques

Diversifying scenario sampling for testing is one of the
major approaches for enhancing safe AV control in the
development stage. For reference, entire surveys[14], [12] have
been dedicated to cover the various sub-categories of generating
scenario samples for AV control testing. One of the main
sub-categories, testing-based sampling, aims at maximizing
scenario coverage at minimum effort; another sub-category,
falsification-based sampling, aims at finding safety corner cases
that are worth more attention for developers, such as high safety
criticality scenarios[54]. In terms of achieving the SOTIF goal
of minimizing known and unknown unsafe scenarios, sample-
based methods have less biased, more exploratory capability
in discovering unknown unsafe scenarios, and the push from
unknown to known is of “horizontal” nature in the sense that
all sampled scenarios are usually within a consistent simulation
environment and the same fidelity level. While sample-based
methods are not the focus of this review, it is worth mentioning
that often a combination of methodologies[14], [15], [55],
both sample-based and formal methods, as well as field
operational tests, is necessary during the development stage
to boost the prototyping and design error discovery. In fact,
novel approaches trying to combine sample-based methods
with formal set-based methods have been proposed using a
combination of resolution or probabilistic sample completeness
and robust controlled invariance set[16].

Compared to testing-based methods for safety verification
and assurance, formal methods have the advantage of high
statement reliability[14] due to the rigorous logic foundation
of formal methods.

Commonly used formal methods in AV safety includes model
checking, reachability analysis and theorem proving[15]. Model
checking originates from software development to ensure that
the software behavior is according to the design specifications.
When safety specification is expressed in axioms and lemmas
as in[56], then theorem proving can be used to verify safety
using worst case assumptions. Reachability analysis[57] has a
special place among the three due to its inherent capability of
producing safety statements for dynamical systems[58], which
capture the main characteristic of dynamic driving task (DDT).

Real world road testing, or field operational testing (FOT),
is the ultimate yet expensive approach for AV verification and
validation. In a certain sense it is the only way of validation. Yet
the shortcomings for FOT is also obvious: it lacks the ability to
reach enough scenario coverage (especially near collision and
collision scenarios) with a candidate AV controller on board.
A comparison of sample-based, formal and field operational
testing methods is illustrated in Figure 3. The different aspects
are scored on a scale of 0 to 10, with 10 representing highest
satisfaction.
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Fig. 3. Comparison of different verification and validation methods. Industry
adoption: sample-based methods have been widely used to generate virtual
scenarios to complement limited road tests, while formal methods are less
common. Scenario coverage: in a properly abstracted model formal methods
can cover the entire scenario space by giving explicit specifications, while
sample-based methods require large numbers of samples to establish coverage,
and road tests can hardly cover corner cases. Verification savings: Relying
on proofs and dynamics, formal methods can save the most in verification
cost, while road tests are more expensive than sample-based virtual test due to
hardware and personnel costs. Re-verification savings: formal methods save
the most for re-verification since often minor update in the proof is needed;
the need for regression testing after control update makes sample-based and
especially road tests expensive. Corner case: corner case generation is well
studied for sample-based methods, formal methods do not explicitly focus
on corner cases but covers them; for road tests corner cases are difficult
to encounter. Procedural certification: formal methods have the potential
to fit with certification with its rigor in theoretical proof, while road tests
are practically implementable but coverage-wise insufficient, while sample-
based testing lacks certifiable validity. Accident reconstruction: can be easily
performed using sample-based scenario generation, but not economical to
be reproduced with real vehicle tests; formal methods can utilize accident
information to recheck the execution of formal safety specifications for design
flaws. Liability tracing: can be performed naturally with formal methods as
shown in Fig. 1. Model realism: is well matched in road tests, less matched in
sampling-based simulation tests, and least matched in models used for formal
methods due to the known issue of scalability. Control refactory: can be
relatively easy with formal methods based verification, as long as new designs
go through the same formal verification pipeline, whereas in sample-based
testing or road tests new extra efforts are unavoidable to re-verify the changes.

IV. FORMAL SAFETY VERIFICATION

Formal methods are a class of methods that applies math-
ematically rigorous techniques (usually in the form of logic
calculi) to achieve specification and verification of software and
engineering design[59]. By definition it has inherent advantage
for safety verification tasks, but highly system complexity
with continuous dynamics has been a major limiting factor
for its wide application in automated driving, i.e. suffering
from scalability[9], [60]. Technically, formal methods can
be generalized as the process of implementing or translating
abstract specifications into system control algorithm or program,
such that the controlled system behavior will satisfy the said
specifications.

A. Preliminary: Reachability Analysis

We first define a dynamical system with continuous states
and controls:

ẋ = f(x, u) (2)

where state x ∈ X ⊆ Rn and control u ∈ U ⊆ Rm are
measurable and continuous within their domains, X ,U are
compact, m,n ∈ R. The function (i.e. flow field) f : Rn ×
Rm −→ Rn is assumed to be uniformly continuous, bounded
and Lipschitz continuous.

Definition (Maximal Forward Reachable Set): given a
dynamical system as in (2), the forward reachable set at time
t > t0 of a set of initial states Xinit(t0) ⊆ X is defined as:

maxFRS : {x(t) ∈ X | ∃u ∈ U ,∃x(t0) ∈ Xinit(t0),

x(t) = x(t0) +

∫ t

t0

f(u, t)dt}
(3)

Forward reachable set propagates dynamics to find all
possible reachable states in a future time t since current time
t0 from within Xinit. On the contrary, backward reachable set
back-propagates to find all possible states from a previous time
t that can lead to some target state set Xgoal at current time
t0:

Definition (Maximal Backward Reachable Set): given a
dynamical system as in (2), the backward reachable set at
time t < t0 of a set of target states Xgoal(t0) ⊆ X is defined
as:

maxBRS : {x(t) ∈ X | ∃u ∈ U ,∃x(t0) ∈ Xgoal(t0),

x(t0) = x(t) +

∫ t0

t

f(u, t)dt}
(4)

The operator ∃ before u in the above expressions can be
replaced with ∀ to create the “minimal” reachable sets, for
example, minimal backward reachable set:

minBRS : {x(t) ∈ X | ∀u ∈ U ,∃x(t0) ∈ Xgoal(t0),

x(t0) = x(t) +

∫ t0

t

f(u, t)dt}
(5)

In some cases, reachability within defined time horizon is of
more interest. Thus the definitions in the previous section can
be extended to include time from current time to end of time
horizon. For brevity, only the definition of maximal forward
reachable tube is provided, the other variants can be easily
derived accordingly:

Definition (Maximal Forward Reachable Tube): given a
dynamical system as in (2), the forward reachable tube during
time [t0, t] of a set of initial states Xinit(t0) ⊆ X is defined
as:

maxFRT :

{x(s) ∈ X | ∃u ∈ U ,∃s ∈ [t0, t],∃x(t0) ∈ Xinit(t0),

x(s) = x(t0) +

∫ s

t0

f(u, t)dt}
(6)

In situations where the interaction among different traffic
participants play a critical role, it becomes imperative to include
the influence of participating, sometimes even adversarial
agents into the reachability analysis. In this case, an additional
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Fig. 4. Scenario coverage comparison between formal methods and sample
based methods: formal methods start from safety specification at a more
abstract layer, may have larger single coverage volume in scenario space,
but the procedure to integrate formal specification into control synthesis
or monitoring can be controller math dependent and tedious; sample-based
methods have more sporadic spread of scenario coverage due to the randomized
generation process, but starts covering cases directly at the simulation layer,
making the sampling process straightforward and easy to implement. Both
approaches are trying to project maximum verified scenarios into real world
driving, but the difference between simulation layer and real world driving
always exists.

input d is introduced to the system (2) to represent such
adversarial control input:

ẋ = fa(x, u, d) (7)

where d ∈ D ⊆ Rp, p ∈ R is the adversarial input to the
system. As an example, it can be control decisions of other
vehicles where fa : Rn × Rm × Rp −→ Rn represents the
joint or relative dynamics of all participating vehicles. In such
systems, the influence of adversarial inputs is not up to the ego
vehicle control, and therefore must be modelled conservatively
to provide guarantees in worst cases. The definition of maxFRS
and minBRT in such systems are provided below as examples.

Definition (Maximal Forward Reachable Set under Adver-
sarial Influence): given a dynamical system as in (7), the
forward reachable set at time t > t0 of a set of initial states
Xinit(t0) ⊆ X is defined as:

{x(t) ∈ X | ∃u ∈ U ,∀d ∈ D,∃x(t0) ∈ Xinit(t0),

x(t) = x(t0) +

∫ t

t0

f(x, u, d)dt}
(8)

While the above definitions have been made in a determinis-
tic sense, reachability can be stochastically interpreted, e.g. by
determining the probability of system states reaching a certain
target set[61], [62].

B. Signal Temporal Logic

In the field of computer science and robotics, Signal temporal
logic (STL) is a common language versatile for expressing
and specifying requirements that is time critical and containing
continuous variables. The basic semantic of signal temporal
logic is listed in table II, adapted from [21], [63]. In brief, STL

uses first order logic1 to make statements about variables in
their temporal development.

An exemplary casual safety specification for AVs can be
“never cause a collision in traffic”, but once translated into
an STL specification, some of the ambiguities in the casual
specification needs to be removed. First, the word “cause”
is not well defined in STL as it involves the complexity of
collision liability determination, and may have to be replaced
with the phrase “be in”, which is liability-neutral. Then the
casual specification becomes “never be in a collision in traffic”.
Second, STL requires a precisely defined scope of time for
the specification, and for automated driving it is a common
practice to use the concept of time horizon to narrow down
the time span to a practical and tractable level. Therefore the
casual specification can be further modified into “never (in the
time horizon) be in a collision”. At this point, the modified
casual safety specification can be translated into a simple STL
formula:

(s, t) |= �Iφcollision-free (9)

This express means that during the time horizon interval I the
trajectory of the automated vehicle system always satisfies the
requirement φcollision-free (the automated vehicle state is in the
collision free set Scollision-free).

The above STL-translated safety specification still stays at an
abstract level in set language, and it is the responsibility of AV
control algorithm designers to honor this safety specification
by either synthesizing it into the controller architecture, or
performing safety verification over the designed controller to
ensure that the specification is met with enough confidence or
solid proof. Some examples of STL-based safety specifications
are: (1) always keep the ability to return to the right-most lane
within 5 seconds; (2) maintain collision-free and within road
boundaries. When a finite time horizon (such as I = [0, 25](s))
is provided, the specifications (1) and (2) can be expressed
as[21]:

(s, t) |= �[0,25]♦[0,5]ψ
lane ∧�[0,25]φ (10)

where ψlane represents the specification of being always within
5-seconds of returning to the right lane, and φ represents
collision-free and within road boundaries. The expression
�[0,25]♦[0,5]ψlane encodes “always” (�[0,25]) “have the exist-
ing capability to satisfy in 5 seconds” (♦[0,5]) the “going back
to right lane” requirement (ψlane). The expression �[0,25]φ
encodes “always” (�[0,25]) “satisfy collision-free and road
boundary constraints” (φ). More sophisticated control goal can
be encoded based on this STL expression, for example, to
indicate the task of overtaking a slow car in front (expression
modified from [21]):

(s, t) |= �[0,25]♦[0,5]ψ
lane ∧ (φU[0,25]ψpass ∨ φU[0,25]ψstay)

(11)

1First order logic: a collection of formal systems that uses quantifiables over
non-logic objects such as variables. For example, while propositional logic
can only make statements like “the vehicle violates lane boundaries”, first
order logic can incorporate variables and state “there exists a coordinate C
such that C is inside the vehicle occupancy area and C is outside the intended
lane boundaries B”. In the later statement, “exists”, “inside” are quantifiables,
and C is a variable.
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STL semantic* Equivalent STL semantic Explanation

(s, t) |= f(·) ≥ 0 ⇐⇒ f(s(t)) ≥ 0 f(s(t)) ≥ 0 holds true for the trajectory (s, t) at time t
(s, t) |= ¬(φ) ⇐⇒ ¬((s, t) |= φ) The negation of predicate2 φ holds for the trajectory (s, t) at time t
(s, t) |= φ ∧ ψ ⇐⇒ (s, t) |= φ ∧ (s, t) |= ψ Both predicates φ and ψ hold simultaneously for trajectory (s, t) at

time t
(s, t) |= φ ∨ ψ ⇐⇒ (s, t) |= φ ∨ (s, t) |= ψ Either predicate φ or ψ holds for trajectory (s, t) at time t
(s, t) |= �Iφ ⇐⇒ ∀t′ ∈ I

⊕
t s.t. (s, t′) |= φ Predicate φ holds for the entire interval I

(s, t) |= ♦Iφ ⇐⇒ ∃t′ ∈ I
⊕
t s.t. (s, t′) |= φ Predicate φ holds at least once in the interval I

(s, t) |= φUIψ ⇐⇒ ∃t′ ∈ I
⊕
t s.t. ((s, t′) |=

�[0,t′]φ) ∧ ((s, t′) |= ψ)
Predicate φ always holds until predicate ψ is true at some moment t′
in interval I . After moment t′ predicate φ or ψ no longer has to hold

*Note: when I is dropped in the subscript (as is most cases), it indicates that I = [0,∞) by default.
TABLE II

BASIC STL SEMANTICS

where ψpass represents successful overtaking the slow front
car, and ψstay represents staying behind the slow front car.
The expression (φU[0,25]ψpass ∨ φU[0,25]ψstay) specifies two
alternative goals (ψpass or ψstay) on top of the safety constraint
φ. STL expressions like equation (11) were implemented into
control synthesis via connection between STL and reacha-
bility analysis in some recent work[21]. Apart from control
synthesis, safety specifications expressed in STL can be used
as assertions3 during controller prototyping to indicate safety
violations, so that developers are constantly aware of safety
specifications during control design. The logic calculation for
determining the truth of a safety specification is often done by
solving a satisfiability modulo theory (SMT) problem4.

C. The Formal Safety Philosophy

Unlike the sampling-based methods where the verifica-
tion against scenario variations is done through populating
large number of scenario samples, in formal verification, the
verification is mostly done when the safety specification is
implemented in the controller to the fidelity level of the
simulated environment. This is due to the different mechanism
of how safety is verified. In the formal safety philosophy,
a safety specification is either fulfilled or violated, and the
fulfillment property can be designed by synthesizing the
specification fulfillment into model-based control design. After
such design is complete, the burden of ensuring such fulfillment
during operation is transferred to online validation of model
correctness: as long as the control-oriented model is validated to
be correct, and the controller executes by the synthesized safety
specification, then the system is provably safe. Without loss of
generality, a safety specification φ may not be feasible in certain
situations (such as an unavoidable collision), ∀u, (s, t) 6|= φ.
In this case, the φ-synthesized controller cannot find a feasible
control sequence to fulfill φ, and the best practice would be to
promote the situation to premeditated emergency or fall-back
strategy (such as collision impact preparation). In any event,

3Assertion: in computer science, an assertion is a predicate connected to
a point in the program that should always evaluate to true if the program is
implemented correctly.

4Satisfiability modulo theory (SMT) problem: decision problem that returns
true or false for formulae expressed using first order logic, for reference see
[64], [65], [66], [67].

since the φ-synthesized controller by design has exhausted its
available actions and still cannot find a φ-fulfilling action, the
controller is not at-fault for the unavoidable damage.

V. UNIFIED SCENARIO COVERAGE FRAMEWORK

A. Scenario Space and Scenario Volume

According to ISO 21448[49], scenario is a description of the
temporal development between several scenes in a sequence of
scenes, and scene is a snapshot of the environment including
the scenery, dynamic elements, and all actor and observer
self-representations, as well as the relationship among those
entities. Complying to this definition, the task of ensuring full
safety in a defined ODD can be described as performing safety
verification and validation for all possible scenario variations
within the ODD. The variations of scenario within an ODD
is two-fold: variations of the initial scene, and variations of
the temporal development since the initial scene. The different
dimensions of scenario variation is illustrated in Figure 5.

Given the specific ODD designated as O, one can define an
entity to span all possible scenarios within the ODD description.
We call this the scenario space. Using parameterization, the
scenario space is defined as:

Definition 1. (Scenario space) The N-dimensional sub-
space S ⊂ RN where S = {(p1, · · · , pN, q1, · · · , qM) ∈
RN+M|pi ∈ [pi, pi], qj ∈ Qj} is the scenario space for an
ODD specified by the continuous scenario parameters pi(i =
1, · · · ,N) and discrete scenario parameters qj(j = 1, · · · ,M).
pi, pi ∈ R are the lower and upper bounds of each continuous
parameter pi, Qj ⊂ R is the set of possible values for each
discrete parameter qj ∈ Qj .

Remark 1. Note that in such a parameterized definition, no
description of stochastic behavior is explicitly given, since the
parameters are used to capture the scenario event as if it has
already happened and fully describable without stochasticity.

Assume that the number of continuous dimensions of
scenario space S is N, the number of discrete parameter
combinations is

∏
j=1,··· ,M |Qj |, where |Qj | is the cardinal of

parameter set Qj . Assume the feasible range of each continuous
parameter pi is [pi, pi], then the total scenario space volume
can be defined as:

Definition 2. (Scenario space volume) The scalar value
VS(O) =

∏
i=1,··· ,N(pi − pi) ·

∏
j=1,··· ,M |Qj | is the scenario
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Fig. 5. Dimensions of scenario variation: according to ISO 21448[49], the
initial scene associated with a scenario can have multiple variations including
dynamics elements, scenery setting and self-representations of actors and
observers; given an initial scene, the temporal development can have additional
variations of dynamic element actions, actor (ego) actions and goals and values
of different participants in the scenario.

space volume of the scenario space S(O) specified by the
ODD O. The meaning of symbols are aligned with Definition
1.

Full scenario coverage for safety verification requires that
the verified scenario space volume Vv encompasses the volume
VS(O):

Vv ⊇ VS(O) =

N∏
i=1

(pi − pi) ·
M∏
j=1

|Qj | (12)

where Vv is safety verified scenario volume.
Similarly, partial scenario coverage indicates that safety

verification is carried out only on a portion Vv ′ of the scenario
space volume VS(O):(

Vv
′ ∩ VS(O)

)
⊂ VS(O) (13)

The scenario coverage ratio is therefore:

Vv
′ ∩ VS(O)

VS(O)
(14)

B. Unified Scenario Coverage

Sample-based methods do not explicitly possess the vol-
ume property associated with each sample scenario, as each
scenario sample is rather atomic and volume-less. In order
to make unified comparison and utilization of both methods
for safety verification, notions of scenario volume must be
assigned to sample-based methods. For simplicity, assume all N
continuous dimensions are orthogonal to each other, and a axis-
aligning polygonal volume in N -dimensional scenario space is

assigned for a scenario sample specified by the parameter tuple(
p01, p

0
2, · · · , p0N

)
. The assigned volume will take the width of

2wi in the ith continuous scenario space dimension around
the parameter value p0i , where wi is the tolerable resolution
provided by the verification requirement:

Definition 3. (Unit scenario volume) Given a scenario
space with N continuous dimensions and tolerable resolution
of wi, (i = 1, · · · , N) in each dimension, the unit scenario
volume is:

V0 =
∏

i=1,··· ,N
(2wpi) (15)

Thus verifying full scenario coverage with sample-based
methods requires to generate enough distinct, evenly spaced
samples such that the overlapped volume of all verified samples
supersets VS(O). The number of samples required is:

n = d
VS(O)

V0
e (16)

where d·e is the ceiling function.
Remark 2. The number of samples required n can possibly

be reduced if evidence can be provided to show that verify-
ing certain scenario sample can simultaneously lead to the
verification of a certain group of scenario samples.

We also define safety for this unified framework. Without
loss of generality, safety can be defined as a specification in
natural language:

Definition 4. (Safety Specification) Safety is the verifiable
truthfulness of statement specified by one or more safety
requirement clause(s) N in human natural language.

As an example, N could be “the automated vehicle should
be collision-free at all times”, or “the automated vehicle should
be fault-free at all times”. If translated to STL, these two safety
specifications can be expressed as:

(s, t) |= �φcollision−free, (s, t) |= �φfault−free (17)

In sample-based methods, the safety of a simulated scenario
is checked at the end of each scenario sample. On the other
hand, formal methods usually start with the safety specification
before any simulation is performed, then the specification is
translated into machine-interpretable language statement, for
example, in linear temporal logic (LTL) or signal temporal
logic (STL). Then the translated specification can be utilized by
checking the validity of the specification in simulated/real world
tests or by turning the specification into system constraints or
other control design functions during control synthesis.

Ideally, for formal methods, if all safety related specifica-
tions are truthfully translated into such machine-interpretable
statement in the first place, and if the synthesized controller
fully respect these statements with a model-based controller
that perfectly models the (simulated) environment, then the
scenario coverage is 100% with respect to the simulation layer.

Definition 5. (Specification translation) is the process of
turning a specification N in definition 3 to an interpreted
equivalent verifiable expression EN expressed in verification
model states (s, t).

As an example, the expression “the automated vehicle should
be collision-free at all times” can be translated into a verifiable
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Fig. 6. Control policy evolution for safety verification. In (a)-(e), formal methods start from safety specification for the ODD (a), then an initial safety
specification penetration test is performed to see how good the safety specification is kept (b). Then the feasibility check is performed to see how much of the
failed scenarios are actually safety feasible (c). Then the AV controller is redesigned to remedy the failed scenario volume region(d), and eventually all safety
feasible scenario volume is verified safe with the candidate AV controller. In (f)-(j), the sample-based methods start by segmenting the ODD into verifiable
scenario units (f), then an incomplete sampling safety test is performed to check for major issues with the candidate AV controller (g). Subsequently fully
saturated sampling is performed to ensure scenario coverage (h). After full scenario coverage test, controller weakness is exposed and the redesign process
iterates (i). Eventually the controller weakness stops to shrink, and the control redesign process is likely finished(j). Notice that with formal methods safety
infeasible scenario regions can be identified, and no further redesign is needed once all volume in the ODD except for the safety infeasible scenario volume is
verified.

expression in the form of a mathematical function that evaluates
occupancy overlap between the automated vehicle and any
other objects in the simulation model and return true if overlap
happens in the simulation. When a control policy is specified,
we have the following variant:

Definition 6. (Policy controlled specification translation)
is a specification translation under the influence of a control
policy π to the system.

However, practical challenges prevent ideal 100% translation
of formal safety specifications due to the following reasons:
first, formal methods rely on arguments based on abstraction
of the real world, therefore discrepancies – whether large or
small – between abstraction and reality, will occur and impair
the effective safety guarantee. Second, the actual developed
controller usually have performance limitations that prevents
compliance with the safety specification in every case. Third,
practical scalability difficulties exist in translating formal safety
specifications into safety verification or control synthesis. In
other words, formal methods usually have a penetration rate
less than 100% in reality. Formally we define the penetration
rate as: the percentage of verifiable scenarios in the scenario
subspace specified by a formal safety specification:

Definition 7. (Specification penetration rate) The ratio
between specification holding volume Vh and specification
claimed scenario space volume VS(N ,π) during a policy π-
controlled specification translation is the specification penetra-

tion rate PR(VS(N ,π), π):

PR(VS(N ,pi), π) =
Vh

VS(N ,π)
(18)

Remark 3. Definition 7 allows us to quantify the perfor-
mance of a certain control policy π in faithfully carrying out
safety specification N . Imperfections of any control policy are
expected, but it is the responsibility of safety verification to
quantify and curb such imperfections.

Practically, finding out about the specification penetration
rate of a candidate controller for AVs in a specified ODD
can be a challenge. First, deductive formal methods such
as theorem proving have been limited to relatively simple
discrete dynamic systems, and extending theorem proving to
systems with continuous dynamics requires further established
framework (a promising example [68]) and considerably higher
computation resource. Second, traditional algorithmic formal
methods such as model checking[69] also do not apply to
systems with continuous dynamics, and running exhaustive tests
of all possible actions would also create computation resource
problem when fine discretization of continuous action space is
needed. Recent progress in combining STL with reachability
analysis[21] however, can be a possible solution to evaluate
such penetration rate by calculating verification arithmetic on
the candidate controller over the scenario space of the ODD,
and predict the volume portion where the candidate controller
will fail the STL specification. The specification penetration rate
calculation problem is still an open one, and future work may
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combine different ways of evidence gathering, both deductive
and algorithmic, to offer different alternatives.

Definition 8. (Scenario safe coverage) The scenario safe
coverage Cπ(O) of a policy π to a scenario space in specified
ODD O is defined as the ratio between safety verified volume
and the full scenario space volume with the candidate policy π,
either using sample-based verification or formal verification.

For simplicity, in the case of only one safety specification N ,
the corresponding scenario coverage expressed in sample-based
and formal methods are, respectively:

Cπ(O) =
Vv
′ ∩ VS(O)

VS(O)
, Cπ(O) =

Vh
VS(N ,π)

(19)

Remark 4. In terms of scenario safe coverage, both sample-
based methods or formal methods can provide confidence based
on mathematical rigor at the simulation layer. Definition 6 is
providing a unified framework for both school of methods to
have level playing ground for comparison.

The route to complete scenario coverage is illustrated in
Figure 6. Both formal and sample-based methods are valid
tools to assist discovering AV safety control weakness, and
AV control developers can select either or both route to their
convenience and preference.

In summary, quantifying scenario coverage Cπ(O) of a
candidate AV control policy π in a specified ODD O (similar
to solving the safety quantification problem in [16]) can be
performed by either sample-based method or formal methods,
or even a mixture of both.

C. Formal and Sample-based Approach Towards Full Scenario
Coverage

An illustrative example of the process for verifying scenario
coverage in both formal and sample-based methods is provided
in Figure 6. A difference between the two methods, is that
formal methods haven the inherent capability of determining a
part of the scenario space where safety is infeasible, through
for example reachability analysis.

VI. STATE-OF-THE-ART FORMAL CONTROL SAFETY
VERIFICATION

Safety verification can be performed either during simulation
(online) with a prediction module, or after simulation (offline)
to simply check results (Figure 7). When the control policy
of ego and participating traffic agents are known (white-box
control) or partially known (grey-bix control), formal methods
can leverage this information and narrow down the reachable
sets to provide ‘tighter’ prediction of vehicle motion, leading
to valuable applications such as online safety monitoring and
verification. Conversely, if the control policy is proprietary and
completely unknown (black-box control), the safety verification
process will have to involve statistical learning of the black-box
controller’s behavior after each simulation, which in turn will
guide the selection of next scenarios to be tested to better target
counter-examples.

Fig. 7. Procedure of different verification schemes: A priori verification can be
performed for white-box and gray-box controls, shown in the top yellow box.
Black-box control policy can only be verified through a posteriori verification,
shown in the bottom yellow box. The difference is that a posteriori verification
can only be performed between simulations using final safety outcome of each
episode, while a priori verification can be performed as long as perception of
environment is initiated in simulation.
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A. Formal Safety Verification of Known Control Policy

If the control policy is fully known (usually only limited to
ego vehicle), then safety verification can be performed with
much certainty, effectively removing the variable u in the RA.
This is usually done by computing reachable sets of controlled
ego vehicle and comparing them with the occupancy set of
obstacles in the interested time interval[70].

B. Formal Safety Verification of Black-box Control Policy

When the control policy is completely unknown, the ver-
ification needs to fall back to more general plans that do
not require control policy information. Such plans treat the
controller and the plant as an overall system, and investigate
how the input (such as disturbance) to the overall system
could lead to undesired output (such as safety violations).
A survey on black-box verification[71] listed several such
approaches as simulated annealing, evolutionary algorithms,
Bayesian optimization, or extended ant colony optimization.

C. Formal Safety Verification of Grey-box Control Policy

If the control policy is partially known, modified forms of
reachability analysis can be performed.

In the setting of a semi-autonomous vehicle where the human
driver’s behavior is estimated at best, the safety verification
has to be performed with partially known control policy
(in this case the human driver policy). A particular lane
keeping assist controller designed in this setting treats the
human driver’s steering policy as known and immutable, while
treating the human driver’s acceleration policy as unknown and
mutable[72]. Such treatment allows RA to predict the range of
reachable states of vehicle within a proper time horizon, and
the system can determine if the human driver needs assistance
by comparing the current vehicle state with backward reachable
safe sets.

When at least the qualitative objective of a control policy or
function is known (e.g. activate intervention to save the vehicle
from an avoidable collision due to driver mis-handling), then
RA can be used to verify if such control policy or function
has stayed faithful to its qualitative description. For example,
RA can be used to tell if a collision avoidance system have
missed or abused the opportunity to intervene[73].

D. Combine Formal Verification with Prediction

To one extreme, if the worst-case assumption is made for
other vehicles’ behaviors in a dense traffic setting, which is that
the participating vehicles are all wanting to run into the ego
vehicle, then the ego vehicle will likely have a collision every
a few seconds. This is easily a too conservative and useless
assumption. To another extreme, if other traffic participants are
assumed to be all perfectly rule obeying and acting like deter-
ministic robots (e.g. driving at constant speed along their lane
centers), then it is likely that the risk due to participant behavior
uncertainty is underestimated. Prediction error can be removed
if all participating vehicles communicate under vehicle-to-
vehicle network[74], but this is often an ideal assumption.
The problem of behavior prediction can be a topic of its own

TABLE III
BEHAVIOR PREDICTION METHODS

Method References

Constant velocity vehicle [80]
Parameterized aggressiveness in lane-change
behavior with Nash non-cooperative game model

[75]

Perfect traffic-obeying agents (others) [76]
Longitudinal max acceleration constrained
agents (others)

[81]

Preview feedback controlled vehicle (ego) [72]
Probabilistic motion pattern (defined as trajec-
tory derivatives)

[82]

Classification between aggressive and non-
aggressive driver using Martigale-based model

[83]

Bayesian occupancy filter [84], [85]
Responsibility-sensitive safety (Mobileye) [77]
Multi-hypothesis filter [86]

right, and often involves delicate distinctions of the information
model and relates to game theory, where reachable sets become
stochastic[75]. A list of behavior prediction algorithms used in
the primary studies is provided in Table III. Presumptions of
behaviors can lead to interesting guarantees regarding accident
liability. As a particularly interesting case[76], by modeling
only traffic-obeying agents, it is claimed that legal safety can
be guaranteed if ego vehicle trajectories are verified against
such agents modelled as fully traffic-obeying, therefore no
liability is attributed to ego vehicle. A similar assumption of
“responsibility-sensitive safety” (RSS) is proposed in Mobileye’s
whitebook for safety[77], assuming that other traffic participants
should act according to some agreed “common sense”, and the
AV should plan accordingly. Efforts of bridging the gap between
reachability-based safety and RSS is seen in [78]. Different
subjective beliefs of “aggressiveness” of other vehicles will
affect the behavior prediction range, and subsequently affect the
calculated safe reachable sets[75]. In [79] backward reachability
is made less conservative by predicting human driving behavior
and thus limiting action bounds of human driven vehicle.

VII. STATE-OF-THE-ART CONTROL SYNTHESIS WITH
FORMAL SAFETY GUARANTEE

In the literature, formal safety guarantees have been devel-
oped for automated driving simulations and tests mainly by
performing reachability analysis. The types of guarantees and
associated reference in summarized in Table IV.

A. Formal Control Mode Arbitration

Formal methods can provide useful information of the
criticality of current driving situation. This information can be
used to develop criteria for whether a different control scheme
is needed to bring ego vehicle to safety from a safety-critical
scenario.

One such arbitration criteria is whether the vehicle is in an
inevitable collision state (ICS)[103], which some argue is a
more robust measure of collision proximity than traditional
threat metrics such as time-to-collision (TTC) in estimating
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TABLE IV
FORMS OF REACHABILITY ANALYSIS DEPLOYMENT AND TYPES OF GUARANTEES PROVIDED

Reference Form of Reachability Analysis Type of Guarantee

[87], [88] maxFRS + minBRS guarantees collision if no solution for “anticipated reachable set” is found
[89] FRS of controlled dynamics predicts unavoidable collision within control policy
[90] overapproximated maxFRS, maxFRT all possible forward motions are included
[81] inaccuracy around trajectory-planned vehicle checks probability of collision within the inaccuracy model bounds
[91] minBRT guarantees collision free in horizon
[72] maxBRS for partially-controlled & uncontrolled

vehicle
conservative collision-free guarantee for non-extreme driving

[92] overapproximated maxFRI guarantee “not-at-fault” safety by checking potential collision in time intervals
leading to end of time horizon

[93] maxBRT guarantees safe interoperability: possibly safe human takeover from autonomous
driving system

[94] maxFRS of uncontrolled dynamics guarantees collision free in horizon
[95] funnel (a variant of FRT for controlled vehicle) guarantees collision-free if a funnel can be found to stay clear of obstacles at

all times
[96], [97], [98] maxFRS implemented by Flow*[99] guarantees safety of deep neural network (DNN) controlled close-loop system
[100] maxFRS of (possibly) occluded vehicle guarantees collision-free with possibly occluded vehicle(s)
[101] maxFRS of each agent communicated through

a decentralized network
real-time collision-free guarantee for a group of autonomous agents

[102] maxFRS + collision state pruning + maxBRS guarantees collision-free and successful reach of target state if “controller
contract” (state constraint tubes) are honored

[86] maxFRT + pedestrian intent prediction guarantees safety within a high probability bound of pedestrian motion

collision frequency[53], a vital quantity in determining auto-
motive safety integritity level (ASIL) in ISO26262[48]. If the
vehicle is indeed in such a state, an impact preparation should
be executed (usually with extensive use of braking to slow
down[104], or by following not-at-fault trajectories[92].) since
collision is inevitable. This concept has been used to prototype
ADAS functions such as determining when to trigger automatic
emergency braking (AEB)[105], [106] or producing collision
avoidance maneuver[107]. To determine such ICS, reachability
analysis is commonly used[108], [109], [110], [111]. When
the prediction of moving obstacles is crucial in dynamic traffic
scenarios, probabilistic framework should be adopted to create
a probabilistic equivalent of ICS[112], [113]. For certain semi-
autonomous or ADAS functions, the determination of whether
system is in an inevitable collision state can help determine
whether ADAS intervention is missed or uneccesary[73].

Another arbitration criteria is whether target states are
achievable under the current motion mode of the system. As
an example, motion modes of a vehicle can be categorized
using the notion of trim trajectories characterized by the
constant input required to maintain the motion[114], [115].
A trajectory library of a certain system can be built for the
controller to choose from[116], [95]. Under such a context,
continuous feasibility and control liveliness are key concerns
ensuring the accomplishment of higher level tasks, such as
overtaking another slow vehicle, merging into a busy fast lane,
or avoiding an obstacle at high speeds[117]. When selecting
mode from a large library of complicated dynamic modes
become computationally demanding, learning based approach
such as reinforcement learning can be leveraged to efficiently
learn the proper mode arbitration decision according to the
environment[118], [119].

B. Formal Methods for Direct Control Integration

Reachability can also be directly integrated in the control syn-
thesis “at all times”, providing continuous guidance/preference
to the incumbent controller to avoid catastrophic events caused
by infeasible control.

One of such direct control integration methods is model
predictive control (MPC) where formal methods especially
reachability analysis can be used to develop robust MPC
algorithms (Figure 8). Reachability analysis is used to find the
feasible set of states for each MPC planning horizon so that
resulting MPC algorithm will not try to find optimal solution
in non-feasible region[120], [121], [122], [123], leading to
destabilization or control failure (Figure 8). This is also called
recursive feasibility[124] or persistent feasibility[125]. When
the reachable set constraints are probabilistic, a stochastic
equivalent of robust MPC can be developed[126], [127], [128].
Additional benefits of applying RA to MPC besides robustness
and feasibility guarantee include a potential way of establish-
ing system input-to-state stability[129], [130], separation of
robustness and performance as in learning-based MPC[131],
and reducing complexity in explicit MPC by removing regions
that will never be reached[132].

Another way to integrate formal safety into control design
is through safe reference trajectory generation (Figure 9).
Reachability can be used in the trajectory planning phase
to generate optimally safe and physically-feasible trajectories
for lower level controller to follow[94], [133], [125].

VIII. OPEN QUESTIONS AND RESOURCES

A. Open Questions

1) Fidelity Speed Trade-off: In performing reachability anal-
ysis, the trade-off between dynamics fidelity and computation
tractability remains a major limit. In many occasions, full
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Fig. 8. Robust MPC can take advantage of reachability to calculate a feasible
set of states at the planning horizon (i.e. terminal state constraints), thus
ensuring that the optimization process will not end up solving an infeasible
constrained problem.

reachable set (reachable states with any possible control inputs)
is neither necessary or economic. With a given control policy,
the policy-bounded reachability can usually be computed in
faster manner as a subset of the full reachable set. Moreover,
the actual software/hardware implementation could further limit
the configuration space, and by considering such limits into
the RA, it is shown[134] that up to 91% of computation load
can be reduced.

In situations where actuation is less frequently demanded
such as cruising on highway, computation can be further
reduced by intermittently performing reachability analysis and
skipping computation, while guaranteeing safety via control
invariant set properties[135].

2) Data-Driven Approach to Reachability: An increasing
number of studies are using data-driven approaches to address
dynamical system verification problems such as estimation
of dynamical system region of attraction[136] or reachable
set [137], [138], [139], [140]. Dynamical systems can be
approximated by deep neural networks(DNN), and to some
extent the close-loop DNN-controlled system can be verified
for safety by transforming DNN into equivalent hybrid sys-
tem, and performing reachability analysis on the obtained
hybrid system[96], [97], [98]. As data-trained controllers are
increasingly being tested and applied in autonomous systems
such as aircraft collision avoidance system such as ACAS
X[141], [142], the safety verification of neural network based
controllers become research topic of interest. Feedforward
neural network(FNN)5 based closed-loop controllers using
ReLU activation functions can be verified at their output layers
using exact or overapproximated reachable sets to comply to
simple sets of linear state constraints[143], [144], [145], [146],
[147]. While the collision modeling in aircraft systems involve
higher dimensions and susceptible to aerodynamic uncertainties,
the scenarios are actually simpler and more straight forward. It

5Feedforward neural network: neural network whose connections between
nodes do not form a cycle, as opposed to recurrent neural networks, where
connections form closed directed graph.

Fig. 9. Reahability-based safe trajectory design process: first possible
trajectories are parameterized (arrows in figure); then the trajectory parameters
are combined with initial states to produce FRS (red shaded area) and evaluated
with obstacle occupancy (blue shaded area for obstacle geometric center, blue
striped area for occupancy at a certain time); the safe candidates are filtered
and an optimal set of trajectory parameter is selected by a cost function; finally
a lower level tracking controller tracks the optimal trajectory.
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is yet to see how such neural network based collision avoidance
mechanism perform on automated ground vehicles, while some
novel feedforward neural network training and verification
using RA has been proposed for robotic systems[148]. And if
the collision avoidance modeling needs to be upgraded from
its airborne counterpart, the methods to verify safety in [143],
[144], [145], [146], [147] also need to be upgraded accordingly.

While vehicle behavior is largely governed by well studied
vehicle dynamics, pedestrian behavior is much more unpre-
dictable, and rely more on data-based estimation[149], [150],
[151], although some constraints such as velocity, acceleration
or jerk can be assumed to curb the reachability[152].

3) Beyond Binary Safety Verification: Instead of using
reachability for binary safety verification (e.g. safe or unsafe),
it can also assist decision making in game theoretic traffic
setting to increase ego vehicle payoffs[153]. Although collision-
avoidance is a hard constraint that shall be met at all times
to ensure safety, in a more general case, when different
objectives of driving can be intermittently be compromised,
the study of formal verification of weakly-hard systems6 can
become useful[154]. In fact, considering that human perception
is flawed or even delayed up to seconds[155], weakly-hard
systems is not such a bad compromise.

4) Building New Logic For Safety Description: Although
the majority of primary studies use linear temporal logic
implicitly or explicitly for arguing safety guarantees, there
exist developments of new forms of logic, such as Differential
Dynamic Logic7[156](based on concept in [157]), allows
statements and related proofs such as “an earlier engagement
of the emergency brake yields a smaller collision speed”. It
would be therefore interesting to see developments of new
logic constructs for proving more complicated safety-related
statements, as they could potentially help resolve liability issues
generated by AVs.

5) Ethical Verification with Reachability: Ethical
verification[158] is an emerging field in automated vehicle
decision making and planning. Some edge cases exist where
zero-casualty is infeasible, and decision still have to be
made based on ethical calculations[159]. Deontic logic[160],
which argues about the logic of duty and responsibility,
is experimented to fit into traffic rule and accountability
calculations[161], [162], [158].

B. Resources

1) Numerical Methods for Reachability Analysis: Reachable
sets originate from the evolution of set of states in system
dynamics. Therefore there are two major system model
based methods to approximate reachable sets numerically,
i.e., set shape approximation[163], [164] and system dynam-
ics approximation[90], [95], [96]. Apart from model based
methods, data sampling is another alternative to approximate
reachable sets[165] or their control invariant subsets[137],

6Weakly-hard system: systems that allow certain degree of constraint or
deadline misses. The degree of allowed misses can be characterized by the
ratio of missed versus all constraints/deadlines.

7Differential dynamic logic(dL): a logic for specifying and verifying
hybrid systems, verifiable with dL verification calculus, explained at
https://symbolaris.com/logic/dL.html.

[138]. Set contour approximation[87], [88], [166], [72], [143],
[144], [145], [147], [167], [146], [164], [163], dynamics
approximation[168], [94], [169], [170], [99] and sample-based
approximation[139], [137], [138], [171], [172] are all viable
numerical options. A summary of methods used in primary
studies are listed in Table. V. Academic competitions for
reachability analysis exist, such as ARCH COMP[173], which
is a competition of scientific software in the context of
algorithmic verification of continuous and hybrid systems.

2) Software Tools for Reachability Analysis: For conve-
nience, a set of software tools have been identified to perform
reachability analysis. A list is provided in Table. VI. Apart
from various calculation approaches, efforts in constructing
benchmark for reachability tests[177] also help comparing
effectiveness of different tools.

IX. CONCLUSION

In this paper we presented a holistic overview of the status
quo in automated vehicle safety verification, validation and
certification. In particular, the status and challenges of highly
automated vehicle certification are pointed out, which should
draw both academic and industrial attention as those challenges
have a high reward as they are associated with major pain
points in automated vehicle deployment. We identified a key
missing link in quantifiable safety verification, which is a
unified scenario coverage framework, and proposed such a
definition to be expanded on by researchers of interest.

Formal safety verification is systematically over-viewed in
this paper, including a state-of-art methodology review of its
use in motion control safety verification and control synthesis
with safety guarantee. Although reachability analysis, as a form
of formal methods, have been used in multiple system control
applications to guarantee robustness or constraint satisfaction,
the lack of a unified and convenient engineering routine for
safety specification penetration prevents the wider application of
reachability analysis to more safety-critical functions in industry.
With emerging papers starting to bridge the formal temporal
logic expressions with dynamical system control synthesis, we
suggested potential research opportunities, and listed relevant
tools.
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[80] J. Park and Ü. Özgüner, “Model based controller synthesis using
reachability analysis that guarantees the safety of autonomous vehicles
in a convoy,” in 2012 IEEE International Conference on Vehicular
Electronics and Safety (ICVES 2012), pp. 134–139, IEEE, 2012.

[81] M. Althoff, O. Stursberg, and M. Buss, “Model-based probabilistic
collision detection in autonomous driving,” IEEE Transactions on
Intelligent Transportation Systems, vol. 10, no. 2, pp. 299–310, 2009.

[82] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe motion planning to avoid dynamic obstacles with
uncertain motion patterns,” Autonomous Robots, vol. 35, no. 1, pp. 51–
76, 2013.

[83] Y. Gao, F. J. Jiang, K. H. Johansson, and L. Xie, “Stochastic modeling
and optimal control for automated overtaking,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 1273–1278, IEEE,
2019.
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explicit mpc: A reachability approach,” Systems & Control Letters,
vol. 124, pp. 19–26, 2019.

[133] S. Vaskov, U. Sharma, S. Kousik, M. Johnson-Roberson, and R. Va-
sudevan, “Guaranteed safe reachability-based trajectory design for a
high-fidelity model of an autonomous passenger vehicle,” in 2019
American Control Conference (ACC), pp. 705–710, IEEE, 2019.

[134] C. Hildebrandt, S. Elbaum, and N. Bezzo, “Blending kinematic and
software models for tighter reachability analysis,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER), pp. 33–36, IEEE, 2020.

[135] C. Huang, S. Xu, Z. Wang, S. Lan, W. Li, and Q. Zhu, “Opportunistic
intermittent control with safety guarantees for autonomous systems,” in
2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6,
IEEE, 2020.

[136] A. Kozarev, J. Quindlen, J. How, and U. Topcu, “Case studies in data-
driven verification of dynamical systems,” in Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control,
pp. 81–86, 2016.
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