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Abstract—Consensus formation tracking of multiple au-
tonomous underwater vehicles (AUVs) subject to nonlinear and
uncertain dynamics is a challenging problem in robotics. To
tackle this challenge, a distributed bioinspired sliding mode
controller is proposed in this paper. First, the conventional sliding
mode controller (SMC) is presented, and the consensus problem
is addressed on the basis of graph theory. Next, to tackle the
high frequency chattering issue in SMC scheme and meanwhile
improve the robustness to the noises, a bioinspired approach is
introduced, in which a neural dynamic model is employed to
replace the nonlinear sign or saturation function in the synthesis
of conventional sliding mode controllers. Furthermore, the input-
to-state stability of the resulting closed-loop system is proved in
the presence of bounded lumped disturbance by the Lyapunov
stability theory. Finally, simulation experiments are conducted
to demonstrate the effectiveness of the proposed distributed
formation control protocol.

Index Terms—Bioinspired approach, consensus formation
tracking, distributed sliding mode control, graph theory, multiple
AUVs.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) are a class
of marine mechatronic systems capable of operating

underwater automatically for a long period of time. This type
of machine enables human beings to have the abilities to
explore and exploit the marine resources. A great number
of applications both of commercial and military purposes are
surged by employing such vehicles, including oceanographic
seabed mapping, gas and oil exploration, payload delivery,
etc. Thus, developing high performance AUV systems has
been a pressing topic in both control and ocean engineering
communities [1]–[6].

In recent decades, the number of AUVs is becoming larger
in order to adapt to more complex marine missions, such as
large-scale mine sweeping, undersea sampling and mapping,
oil and gas exploration, etc. In addition to that, multiple
autonomous vehicle systems are proven to be able to collect
more robust data and exhibit more fault-tolerant capabili-
ties than the single vehicles [7]. Therefore, the coordination
problem among multiple AUVs has attracted much attention.
Particularly, the formation control as the fundamental problem
in multiple vehicle coordination has been widely studied
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[8]. However, due to the nonlinear and uncertain nature of
AUV’s characteristics as well as the complexity of underwater
situations, steering a fleet of unmanned marine vehicles to keep
a desired formation configuration precisely may be in front of
many challenges [9], [10].

A large amount of work has been done to develop an
effective formation control protocol for a team of AUVs. The
coordination strategies can typically be classified as behavior-
based approach, virtual structure, leader-follower structure,
and artificial potential approaches. In behavioral approaches
[8], [11], decentralized control implementations are used to
design local controllers for each individual, where the control
law is of the weighted form to meet various control objectives,
such as formation keeping, goal seeking, path following,
etc. Because of the separative feature of such approaches,
it provides a more flexible and natural way to synthesize
controllers to satisfy the collective behaviors. Nonetheless, the
main drawback relies on the fact that quite often it is hard to
formulate the problem and provide the theoretical guarantees.
In virtual structure [12], [13], the desired formation shape is
viewed as a single rigid body, and the reference points are
derived for individuals according to the overall formation, by
which the coordination problem could be cast into a series of
trajectory tracking problems for each vehicle. Although this
facilitates the design of formation controllers, the cooperative
performance is greatly sacrificed as a whole. To improve
cooperation among vehicles, the leader-follower structure is
proposed, where one or several vehicle is selected as the leader
which is able to access the desired formation and reference tra-
jectory, and the rest of the vehicles are treated as the followers
with the sole objective to maintain the desired posture (position
and orientation) to the leader [14], [15]. Due to its simplicity
as well as the scalability to a larger group, such a structure has
been extensively employed in multi-robot system’s formation
control. Another class of widely used approach in multiple
vehicle cooperation is referred to as the artificial potential field,
first developed to address the problems of goal seeking as well
as collision avoiding, and then adapted to the formation control
by designing proper potential functions for individuals which
may produce the corresponding potential fields enforcing the
vehicles to maintain a relative pose with their neighbors [16],
[17]. Nevertheless, the biggest issue of such approach is that it
has chance to enter into the local minimum, which may render
the entire system malfunction.

In addition to the coordination strategies, there also are
many of efforts being put to improve the performance of
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motion control of AUVs in view of strong nonlinear character-
istics as well as complicated marine environments. The robust
optimal formation control for a fleet of marine vehicles subject
to communication delays was addressed based on the leader-
follower structure [18]. Adaptive robust formation control of
AUVs was studied to handle the time-varying environmen-
tal disturbances [19]. An adaptive sliding mode formation
control scheme was proposed based on the communication
consensus to allow for the variable added mass as well as
the communication constraints [20]. To tackle the chattering
in sliding mode control, a novel reaching law was designed,
in which an adaptive gain was incorporated based on the
variation of the sliding surface [21]. Furthermore, taking into
account the unavailable velocity measure as well as reduction
of the conservativeness, a equivalent output injection adaptive
sliding mode observer based terminal sliding mode control
approach was proposed for trajectory tracking of underwater
vehicles [22]. Formation control for underactuated AUVs was
addressed based on the leader-follower backstepping scheme;
moreover, both parametric uncertainty and unknown distur-
bance arising in dynamic model were handled [23]. To further
improve the formation accuracy, neural adaptive formation
control for multi-underactuated marine vehicles was studied
via employing a sliding mode controller with neural networks
[24]. By mean of the graph theory, a distributed consensus
formation control protocol was proposed [25]. Researchers de-
veloped a formation control policy based on a self-organizing
map neural network to obtain the coordinated behavior [26].
Nevertheless, the foregoing methods either addressed the 2-
dimensional simplified scenarios, or employed the kinematic
or reduced dynamic model for formation control synthesis.
Considering higher dimensional and more complicated dynam-
ics, the simulation study on formation control for multiple
marine vehicles with full dynamics was addressed, and the
gravity uncertainty was also taken into account [7]. To alleviate
the effects caused by data transmission delays and packet
dropouts and reduce the mutual information exchange among
the vehicles, line-of-sight measurement-based leader-follower
formation control was studied, and the backstepping controller
was then developed using Lyapunov’s method [27]. The re-
ceding horizontal formation tracking control constrained with
underactuated dynamics was investigated, and the correspond-
ing receding horizon controller was presented [28]. Formation
control for multiple underactuated underwater vehicles was
addressed based on the small gain method which allows to
design decentralized controllers with stability guarantees [29].
In order to achieve finite-time convergence and meanwile
adapt to the changeable dynamic parameters, a robust adaptive
fast terminal sliding mode formation controller was proposed
for multi-underactuated AUV systems [30].

Almost all of aforementioned research utilized the leader-
following coordinating structure to design the formation con-
troller for each vehicle. As we mentioned earlier, this type
of approach was highly dependent on the performance of the
leading vehicle and was not able to obtain a good coordination
among the neighboring vehicles. As such, in order to further
improve the coordination performance, it is quite necessary
to incorporate the information of neighboring vehicles when

synthesizing the control law. Different from the existing work,
this paper is concerned with consensus formation tracking
control in 3-dimensional space, where the vehicles’ formation
is controlled not only relying on the information from leader,
but also their neighbors, and meanwhile it is also assumed that
each vehicle may suffer from the unknown disturbances either
because of hydrodynamic-related phenomena or time-varying
marine environments. On the other hand, it is well known that
the sliding mode control (SMC) owing to its robustness and
simplicity has been attracted much attention in the area of
robotics and networked systems, as shown in above literature.
The readers are recommended to refer to the survey paper [31]
for more detailed review on potential applications of SMC
schemes in networked systems. As a result, the goal of this
paper is to develop a distributed sliding mode control protocol
for multi-AUV systems to achieve a good formation tracking
performance, and particularly taking into consideration that
the conventional SMC scheme is always suffering from the
chattering issue as well as the vulnerability to the noises, a
novel bioinspired handling method is employed. The main
contributions of this paper are listed as follows:

1) Distributed formation tracking control of multi-AUVs
subject to the hydrodynamic parameter uncertainties
and unknown exogenous disturbances in 3-dimensional
space is addressed, and particularly full dynamics of the
AUVs is adopted.

2) Consensus problem is accounted for in the design of dis-
tributed formation controller to improve the coordination
performance of the overall formation system.

3) A novel distributed bioinspired sliding mode control
protocol is developed to achieve the considered control
objectives, where the control law is realized in a fully
distributed manner. Meanwhile, the chattering phenom-
ena and non-smoothness arising in the conventional
SMC scheme are completely eliminated, rendering a
more practical control activity, and the robustness to the
noises is also enhanced.

4) Rigorous stability analysis is provided based on the Lya-
punov theory to theoretically guarantee the anticipated
performance of proposed distributed formation control
protocol.

The rest of the paper is arranged as follows. The problem
formulation and preliminary are presented in the next section.
In Section III, bioinspired sliding mode controller is derived,
and the stability analysis of resulting system is discussed. The
simulation results are shown in Section IV. Section V draws
the conclusion.

II. PRELIMINARY AND PROBLEM FORMULATION
In this section, the mathematical model of AUVs in three-

dimensional space is presented, and the objective of formation
control for multi-AUV system is described. Moreover, the
preliminary knowledge on graph theory is also presented.

A. Preliminary on graph theory

For the considered group of underwater vehicles, it is
assumed that each vehicle can be viewed as a node, and
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Fig. 1. Schematic diagram of i-th AUV .

the communication topology associated with the networked
system among multiple AUVs can then be represented by
a weighted directed graph G = {V,E,A}. As for a simple
time-invariant graph G, it is composed of the vertex set
V = {ν1, ν2, . . . , νN} , the edge set E ⊆ V × V , and the
weighted adjacency matrix A = [aij ] ∈ RN×N. The element νi
in vertex set V denotes vehicle i, and the index i belongs to a
finite index set Γ = {1, . . . , N}. If there exists the information
exchange between AUV i and AUV j, then, say, there is a edge
between AUVs i and j, i.e., (νi, νj) ∈ E, and aij = aji > 0.
Particularly, call vehicle j a neighbor of vehicle i, and the
set of neighbors is represented by Ni = {j|(νi, νj) ∈ E}.
Otherwise, there is no edge among them, and aij = aji = 0.
Moreover, we define aii = 0 for all i ∈ Γ, and the out-degree
di =

∑
j∈Ni

aij associated with the node i. Afterwards, the
degree matrix together with the Laplacian matrix of the graph
G can then be defined as D = diag {d1, . . . , dN} ∈ RN×N and
L = D−A, respectively. A path in graph is a sequence that is
consisted of a set of successive adjacent nodes, starting from
node i and ending at node j. If any two nodes in a graph G
have at least one path, then, say, graph G is connected.

In order to make the group of AUVs move along with the
desired path as a whole, a reference trajectory must be defined
ahead of time. The availability to the information of reference
trajectory for i-th AUV is indicated by a parameter bi; that
is, if AUV i is able to access this information,then bi > 0;
bi = 0, otherwise. Let B = diag {b1, . . . , bN}.

Assumption 1. For the considered multi-AUV formation con-
trol network, graph G is connected, and moreover there is at
least one AUV able to receive the information of reference
trajectory, i.e., the elements of B are not all equal to zero.

Lemma 1. if Assumption 1 holds, then matrix L+B is positive
definite.

B. Problem formulation
The formation control of N numbers of autonomous un-

derwater vehicles is investigated in this article. As presented
in the work of Yang et al. [32], the dynamics of i-th AUV
(i ∈ Γ) can be modeled as

η̇i = Ji(η2,i)vi,

Miv̇i + Ci(vi)vi +Di(vi)vi = τi + di,
(1)

where ηi = [η1,iη2,i]
T ∈ R6×1, η1,i = [xi, yi, zi]

T ∈
R3×1, η2,i = [φi, θi, ψi]

T ∈ R3×1 denote the position and
orientation of i-th AUV, respectively, which are expressed
in the Earth-fixed frame ÊI =

{
êI
o, ê

I
x, ê

I
y, ê

I
z

}
, and vi =

[v1,i, v2,i]
T ∈ R6×1, v1,i = [vx,i, vy,i, vz,i]

T ∈ R3×1, v2,i =

[ωx,i, ωy,i, ωz,i]
T ∈ R3×1 are the i-th AUV’s translational

and rotational velocities, respectively, which are described in
vehicle’s body-fixed frame ÊB =

{
êB
o,i, ê

B
x,i, ê

B
y,i, ê

B
z,i

}
. The

schematic of i-th AUV is illustrated in Fig. 1. Ji(η2,i) ∈
R6×6 denotes the coordinate-transform Jacobian matrix whose
entries are time-varying. Mi ∈ R6×6 is the inertia matrix;
Ci(vi) ∈ R6×6 is the Coriolis and centripetal matrix, and
Di(vi) ∈ R6×6 is the hydrodynamic damping matrix. τi ∈
R6×1 denotes the generalized control input vector of i-th
AUV, and di ∈ R6×1 is the lumped disturbance, describing
both the hydrodynamic parameter uncertainties as well as
the maritime disturbances induced by the wind, waves and
ocean currents. Jacobian matrix is defined as Ji(η2,i) =
diag {J1,i(η2,i), J2,i(η2,i)}, and it satisfies

J1,i(η2,i) =

 cos θi cosψi sinφi sin θi cosψi − cosφi sinψi
cos θi sinψi cosφi cosψi + sinφi sin θi sinψi
− sin θi sinφi cos θi

sinφi sinψi + cosφi sin θi cosψi
cosφi sin θi sinψi + cosφi sinψi

cosφi cos θi

 ,

J2,i(η2,i) =

1 sinφi tan θi cosφi tan θi
0 cosφi − sinφi
0 sinφi/ cos θi cosφi/ cos θi

 .
In order to circumvent the singularity of the Jacobian matrix,

it is required to guarantee |θi| 6= π/2. The vessels’ inertia
matrix Mi with added mass and the hydrodynamic damping
matrix Di are both diagonal and satisfy

Mi = diag {mi − βv̇x,i,mi − βv̇y,i,mi − βv̇z,i, Ix,i, Iy,i, Iz,i} ,
Di = −diag {βvx,i, βvy,i, βvz,i, βωx,i, βωy,i, βωz,i} ,

where mi and Ix,i, Iy,i, Iz,i are the mass and rotational
inertia of the i-th AUV, respectively; βv̇x,i, βv̇y,i, βv̇z,i, βvx,i,
βvy,i, βvz,i, βωx,i, βωy,i and βωz,i are the hydrodynamic
parameters. The matrix Ci(vi) is made up of the Coriolis and
centripetal matrix CR,i(vi) as well as the hydrodynamic extra
term CA,i(vi), defined as

Ci(vi) = CR,i(vi) + CA,i(vi),

=

[
03×3 CR1,i(vi)

CR1,i(vi) CR2,i(vi)

]
+

[
03×3 CA1,i(vi)

CA1,i(vi) CA2,i(vi)

]
,
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where

CR1,i(vi) =

 0 mivz,i −mivy,i
−mivz,i 0 mivx,i
mivy,i −mivx,i 0

 ,
CR2,i(vi) =

 0 Iz,iωz.i −Iy,iωy, i
−Iz,iωz.i 0 Ix,iωx, i
Iy,iωy, i −Ix,iωx, i 0

 ,
CA1,i(vi) =

 0 βv̇z,ivz,i −βv̇y,ivy,i
−βv̇z,ivz,i 0 βv̇x,ivx,i
βv̇y,ivy,i −βv̇x,ivx,i 0

 ,
CA2,i(vi) =

 0 −βω̇z,iωz,i βω̇y,ivy,i
βω̇z,iωz,i 0 −βω̇x,iωx,i
−βω̇y,iωy,i βω̇x,iωx,i 0

 ,
and βω̇x,i, βω̇y,i, βω̇z,i are the hydrodynamic parameters.

Remark 1. It is worthwhile noting that the dynamics of AUV
is a typical nonlinear system as described in (1), having 6
degree of freedom (DOF), i.e., 3 translational DOF and 3
rotational DOF, and subject to the external disturbances as
well as numerous uncertain hydrodynamic related parameters.

In formation control problem, a desired formation pattern
of group of AUVs is formed uniquely through the specific
relative postures, i.e., positions and orientations, between
the vehicles i and j, (i, j ∈ Γ); let the desired postures
∆ij = [δx,ij , δy,ij , δz,ij , δφ,ij , δθ,ij , δψ,ij ]

T ∈ R6×1. In most
practical applications, the orientation of each AUV is required
to be aligned; that is, the relative attitudes [δφ,ij , δθ,ij , δψ,ij ]

T

of AUVs are set to 03×1. In addition to the formation
maintenance, a team of vehicles are also employed to track
a desired trajectory in many maneuver missions. Let ηd1 =[
xd, yd, zd

]T ∈ R3×1 be the prescribed differentiable tra-
jectory of the formation center, which can be viewed as a
virtual leader in the group. Based on the defined formation
pattern, i.e., ∆ij , each vehicle’s desired trajectory ηd1,i associ-
ated with the virtual leader can then be derived accordingly.
ηd2 =

[
φd, θd, ψd

]T ∈ R3×1 denotes the desired differentiable
attitude of the virtual leader, and combining position and
orientation, let ηd =

[
ηd1 , η

d
2

]T
be the desired posture of

virtual leader. The objective of this paper is aimed to design
a distributed formation control law for each individual in
the group with full nonlinear dynamics and affected by the
disturbances which are described in (1) so that the coordinated
motion among AUVs can be achieved; in particular, the
following control requirements are satisfied: 1) The AUVs can
maintain a desired formation shape. 2) The group of AUVs can
follow up a predefined trajectory as a whole.

III. FORMATION CONTROL PROTOCOL DESIGN

In this section, systematic design procedures for achieving
solution for consensus formation control are presented. First,
the distributed sliding model controller is designed. Next, to
eliminate the impacts of high-frequency oscillation that is
caused by the employment of sign function, a bioinspired
neurodynamics is introduced to avoid the use of nonlinear
operation in control design. The main advantage of proposed
controller is that it can provide smoother control inputs, which

is much more significant for the actuators to generate realistic
forces or moments. At the same time, a good performance
in terms of disturbance rejection is still preserved. Finally, the
input-to-state stability of overall closed-loop system is proved.

A. Sliding mode control design

The consensus cooperative tracking errors for i-th AUV (i ∈
Γ) are defined as

e1,i =
∑
j∈Ni

aij(ηi − ηj −∆ij) + bi(ηi − ηdi ),

ė1,i =
∑
j∈Ni

aij(η̇i − η̇j) + bi(η̇i − η̇di ).
(2)

Here, the non-negative constant aij indicates the information
exchange between i-th vehicle and its neighbors j ∈ Ni, and
another non-negative constant bi denotes whether or not i-
th vehicle is able to access the information of the desired
reference trajectory. ∆ij denotes the relative posture (position
and orientation) between i-th AUV and its neighbors, which
determines the desired formation pattern needed to maintain.
Note that since the whole group is intended to track the
common reference trajectory, the desired velocities and accel-
erations of AUVs are the same; that is, η̇di = η̇d, and η̈di = η̈d,
(i ∈ Γ), where η̇d and η̈d represent the desired velocities and
accelerations of the whole group, respectively.

Taking the time derivative of ė1,i, the following error
dynamics for i-th AUV can be obtained

ë1,i =
∑
j∈Ni

aij (η̈i − η̈j) + bi
(
η̈i − η̈d

)
, (3)

where η̈i and η̈j represent the dynamics of i-th AUV and its
neighbors j ∈ Ni, respectively. According to the i AUV’s
kinematic and dynamic model as described in (1), the expres-
sion of η̈i can be derived as follows

η̈i = Ai (vi, ηi) vi + Ji (ηi)Biτi + Ji (ηi)Bidi, (4)

where

Ai (vi, ηi) = J̇i (ηi)− Ji (ηi)BiCi (vi)− Ji (ηi)BiDi (vi) ,

and Bi = Mi
−1.

Assumption 2. The disturbance term Ji (ηi)Bidi can be
bounded as

‖Ji (ηi)Bidi‖ ≤ λ̃i, i ∈ Γ, (5)

where λ̃i is a known positive constant. This parameter typi-
cally depends on the marine situations.

Letting

ē1 = [e1,1, e1,2, . . . , e1,N ]
T
,

ē2 = [ė1,1, ė1,2, . . . , ė1,N ]
T
,

(6)

and
η̈ = [η̈1, η̈2, . . . , η̈N ]

T
, (7)

the global error dynamics of overall system can be written as

˙̄e1 = ē2,

˙̄e2 = (L+B)
(
η̈ − 1N η̈

d
)
,

(8)
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where matrices L and B are defined in II-A, which describes
the communication topology of entire system. 1N represents
a N -dimensional vector whose entries are all equal to 1.

The consensus formation control objective, now, is cast into
designing a distributed control law so that the global error
dynamics (8) can be stabilized at the origin. Next, sliding
mode control design is employed and can be divided into the
following two steps.

Step1: Define the sliding mode surface
Let

s = [s1, s2, . . . sN ]
T
, (9)

and the sliding mode variable s is defined as

s = k1 (L+B) ē1 + ē2, (10)

where k1 is a positive constant needed to be designed. As
we can see, so long as the sliding mode variable s is able to
reach to 0 in finite time, i.e., s (t) ≡ 0, t ≥ T , say, system
reached the sliding mode surface, the behavior of ē1 then will
be solely governed by the sliding mode surface s = ˙̄e1 +
k1 (L+B) ē1 = 0 in all future time, which leads to ē (t)→ 0,
as t → ∞. In other words, the system’s behaviour will be
firmly restricted into the surface and sliding on it until ē (t)→
0. Most importantly, as we observed there is no disturbance
terms enforced on the sliding mode surface while the original
system dynamics may be subject to all kinds of disturbances,
and thus robustness properties can be achieved once system
enters into the sliding mode surface. At next step, our goal is
to design sliding mode control law to render system reach to
the sliding mode surface and stay on it in all finite time.

Step2: Design sliding mode control law
In this step, it is shown that the sliding mode surface can be

reached in finite time, and the system will stay at the surface
for all future time.

Choose the following Lyapunov function candidate

Vs =
1

2
sT(L+B)

−1
s, (11)

whose time derivative is calculated as

V̇s = sT(L+B)
−1
ṡ. (12)

Based on the definition of sliding mode variable s, as shown
in (10), ṡ can be obtained

ṡ = k1(L+B)ē2 + ˙̄e2. (13)

Due to the global error dynamics (8), yield

ṡ = k1(L+B)ē2 + (L+B)
(
η̈ − 1N η̈

d
)
. (14)

By substituting (14) into (12), we have

V̇s = sT(L+B)
−1 [

k1 (L+B) ē2 + (L+B)
(
η̈ − 1N η̈

d
)]
.

(15)
Let

Ā (v, η) = diag {A1 (v1, η1) , . . . , A1 (vN , ηN )} ,
B̄ = diag {B1, . . . , BN} ,
J̄ (η) = diag {J1 (η1) , . . . , JN (ηN )} ,
τ = [τ1, τ2, . . . τN ]

T
,

and propose the following distributed control law

τ =
[
J̄ (η) B̄

]−1 [−Ā (v, η) v + τ ′
]
, (16)

where τ ′ is an auxiliary control variable and is designed as

τ ′ = −k1ē2 + 1N η̈
d − β0sign (s) , (17)

where β0 is a positive designable constant whose value is
dependent on the upper bound of disturbances and is needed
to satisfy with β0 ≥ supi∈Γ

{
λ̃i

}
+ ε, where ε is an arbitrary

positive constant.
Combing with AUV’s dynamics (4) as well as (7) and

plugging (16) into the (15) result in

V̇s = sT
[
k1ē2 − 1N η̈

d + τ ′ + J̄ (η) B̄d
]
, (18)

where d = [d1, . . . dN ]
T. Substituting the auxiliary control

variable (17) into (18), we may end up with

V̇s = sT
[
−β0sign (s) + J̄ (η) B̄d

]
≤ −

N∑
i=1

(β0 − ‖Ji (ηi)Bidi‖) |si|

≤ −
N∑
i=1

ε |si| ≤ −
√

2

λmax(L+B)
−1V

1/2.

(19)

By taking integral on both sides, we can conclude√
Vs (t) ≤ −

√
1

2λmax(L+B)
−1 t+ Vs (0) . (20)

Above inequality shows that under proposed sliding mode
control law (16) and (17) the sliding variable s will reach
to zero in finite time and stay there for all future time, i.e.,
s ≡ 0, t ≥ T , where

T =

√
2λmax(L+B)

−1
Vs (0) . (21)

Once system is sliding on the surface s ≡ 0, the overall
behavior of the system is then determined by the linear
differential equation

˙̄e1 + k1 (L+B) ē1 = 0.

Moreover, as the Lemma 1 shows L+B is a positive definite
matrix, it follows that ē1 → 0 as t → ∞. When ē1 → 0, ˙̄e1

will also tend to 0; then, according to (8), ē2 → 0 as well.
That is, the error dynamics (8) is asymptotically stable and its
converging rate is dependent on the k1.

B. Bioinspired control design

Last section we presented the design process of sliding
mode control for consensus formation control of multiple AUV
systems, and the asymptotical stability is achieved even in the
presence of unknown bounded disturbances, which actually
relies on the fact that the nonlinear sign function is employed
in SMC control law. Theoretically, this type of control is
able to handle any matched bounded disturbances enforced
on the system. However, the resulting high frequency non-
smooth control activities can hardly be realized in reality due
to the physical limitations on actuators. Thus, the theoretical
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robust performance cannot always be obtained in applications;
furthermore, the stability of overall system might be affected
due to the excitation of high-frequency unmodeled dynamics.
As a result, a neural dynamics-based control approach is
proposed and studied to address this critical issue encountered
in conventional sliding mode control.

In this section a neurodynamic model, termed shunting
model, is employed to take place of the classic nonlinear sign
function from which the chattering originates in conventional
SMC scheme so that the use of discontinuous control is
avoided and chattering phenomenon is completely vanishing.
In fact, we will show that due to the integration with the
shunting model many favorable properties can be obtained in
the resulting formation system.

Shunting model is one of the most popular bioinspired
dynamic models that was first proposed in the work of [33],
which was built to try to characterize the adaptive behavior
of membrane to the ever changing environment. Due to its
desirable characteristics, in the past few decades it has been
incorporated in various robotic systems to develop efficient
algorithms for real-time path planning as well as feedback
control [34]–[38]. The shunting equation can be described as
follows

ẋi = −aixi + (bi − xi) s+
i − (di + xi) s

−
i , (22)

where xi represents the neural activity of i-th neuron, associ-
ated with some nonnegative constant parameters ai, bi and di
indicating the rate of response, the maximum and minimum
values of the neuron activities, respectively. Signals s+

i and
s−i represent the effects of environmental changes, i.e., the
corresponding excitatory and inhibitory inputs to the neuron,
respectively.

Remark 2. It is interesting to note that the presented shunting
equation describes a dynamic characteristic of a neuron, and
thus a more consistent behavior of the neural activities can
be obtained, while the environmental changes may exhibit a
highly evident discontinuity or non-smoothness. In particular,
the transient stage can be adjustable by the parameter ai, and
furthermore, due to the nonlinearity nature of the shunting
model larger environmental changes may result in a faster
transient process. Besides of that, the outputs of the shunting
model, i.e., the neural activities, are able to be bounded upper
by the parameter bi and lower by the parameter di. It will be
shown, in what follows, that such properties of the shunting
model can be applied to significantly improve the performance
of the conventional SMC scheme.

In order to apply the shutting model to formation control
design, let

s+
i =

{
si, if si ≥ 0,

0, otherwise.

s−i =

{
−si, if si < 0,

0, otherwise.

(23)

Define s+ =
[
s+

1 , . . . s
+
N

]T
and xs = [x1, . . . xN ]

T, and the
shunting model-based SMC control law can be proposed as

follows

τ =
[
J̄ (η) B̄

]−1 [−Ā (v, η) v + τ ′
]
,

τ ′ = −k1ē2 + 1N η̈
d − β0xs,

ẋs = −Asxs + (Bs − xs) s+ − (Ds + xs) s
−,

s = k1 (L+B) ē1 + ē2.

(24)

Here, As = diag {a1, . . . , aN}, Bs = diag {b1, . . . , bN} and
Ds = diag {d1, . . . , dN}.

Remark 3. It is observed that the output of the shunting
model, i.e., xs, is used in the auxiliary control law τ ′, instead
of the original switching function as shown in (17). As a
result, due to the benefits of the dynamic characteristic of
the shunting equation, as mentioned previously in Remark
2, a more consistent and smoother control activities can be
rendered, and thus the chattering issue is avoided completely.
Additionally, the output of the shunting model is also allowed
to be bounded. Such observations demonstrate the significant
improvements for the conventional SMC approach for real-
world applications, that is, the proposed bioinspired SMC
scheme can lead to a chattering-free behavior and yield more
practical control actions for actual actuators to implement.

Remark 4. It is worth noting that while the robust asymp-
totical stability of the SMC scheme along the sliding mode
surface is no longer held, owing to the employment of shunting
model, the resulting control strategy can still allow to achieve
a good robustness against the bounded disturbances as well
as the noises, which can be seen clearly in the next section
on stability analysis of the proposed formation system.

C. Stability analysis

To analyze the stability of overall AUV formation system,
plugging the proposed distributed controller (24) into the
global error dynamics (8) together with (4), (6) and (7), the
following closed-loop system then can be obtained

˙̄e1 = −k1 (L+B) ē1 + s, (25)
ṡ = − (L+B)β0xs + (L+B) J̄ (η) B̄d, (26)
ẋs = −Asxs + (Bs − xs) s+ − (Ds + xs) s

−. (27)

It can be found that the resulting closed-loop system is
a coupled perturbed system with state vectors (ē1, ṡ, ẋs) as
well as disturbances d. To be more specific, subsystem (25)
and (26) are cascaded while subsystem (26) and (27) are of
interconnected architecture. Hence, based on this feature the
proof may proceed with two steps. That is, first step shows
subsystem (25) is input-to-state stable, regarding s as the input;
second, the interconnected subsystems (26) and (27) are also
input-to-state stable with the impacts of disturbances. Finally,
on the basis of such two results one may conclude that the
overall system (25)-(27) is input-to-state stable.

Step1: Stability of subsystem (25)
Due to the characteristic of linearity, the solution of sub-

system (25) can be readily written as

ē1 (t) = e−k1(L+B)tē1 (0) +

∫ t

0

e−k1(L+B)(t−τ)sdτ . (28)
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It follows that

‖ē1 (t)‖ ≤ e−k̃t ‖ē1 (0)‖+

∫ t

0

e−k1(L+B)(t−τ) ‖s (τ)‖ dτ

≤ e−k̃t ‖ē1 (0)‖+
1

k̃
sup

0≤τ≤t
‖s (τ)‖ ,

(29)

where k̃ = λmin (k1 (L+B)) . It can be concluded from (29)
the ultimate bound of ‖ē1 (t)‖ is proportional to the bound
of ‖s (t)‖, from which it is shown that the subsystem (25)
is input-to-state stable; moreover, the larger k1 is , the less
ultimate bound will be.

Step2: Stability of interconnected subsystems (26) and (27)
Because of the employment of piecewise function s+ and

s− in subsystem (27), the analysis shall proceed with two
cases. First, when s ≥ 0, the subsystem (27) can be rewritten
as

ẋs = − (As + S)xs +Bss, (30)

where S = diag {s1, s2, . . . , sN}.
Let x̃ = [s, xs]

T, and choose the following Lyapunov
function candidate

V1 =
1

2
x̃TQx̃, (31)

where

Q =

[
2
β0

(L+B)
−1 − (As + S)

−1

− (As + S)
−1

B−1
s

]
, (32)

and the following condition is assumed to be satisfied

2

β0
(L+B)

−1
B−1
s −

(
As
−1
)2 � 0, (33)

which guarantees V1 to be positive definite. Then, taking the
time derivative of V1 along the subsystems (26) and (30)
together with (32) yields

V̇1 = −sT(As + S)
−1
s

− xT
s

[
B−1
s (As + S)− β0(As + S)

−1
(L+B)

]
xs

+
2

β0
sTJ̄ (η) B̄d− xT

s (As + S)
−1

(L+B) J̄ (η) B̄d

≤ −sT(As + S)
−1
s

− xT
s

[
B−1
s As − β0As

−1 (L+B)
]
xs +

2

β0
sTJ̄ (η) B̄d

− xT
s (As + S)

−1
(L+B) J̄ (η) B̄d.

(34)

Since As and S are both positive definite diagonal matrices,
the first term in (34) is already negative definite with respect
to s. As for the second term, it is assumed that the following
matrix inequality holds

B−1
s As − β0As

−1 (L+B) � 0. (35)

Define P = B−1
s As−β0As

−1 (L+B). The rest of the terms
indicating the effects from disturbances can be addressed using

the bounded approach. Applying the bounded disturbance
condition (5), the derivative of V1 can be rewritten as

V̇1 ≤ −ζ1‖s‖2 − ζ2‖xs‖2 +
2

β0

∥∥∥λ̃∥∥∥ ‖s‖+ ζ3

∥∥∥λ̃∥∥∥ ‖xs‖
= − (1− θ) ζ1‖s‖2 − (1− ϑ) ζ2‖xs‖2

− θζ1‖s‖2 − ϑζ2‖xs‖2 +
2

β0

∥∥∥λ̃∥∥∥ ‖s‖+ ζ3

∥∥∥λ̃∥∥∥ ‖xs‖
≤ − (1− θ) ζ1‖s‖2 − (1− ϑ) ζ2‖xs‖2,(

∀ ‖s‖ ≥ 2

θβ0ζ1

∥∥∥λ̃∥∥∥,∀ ‖xs‖ ≥ ζ3
ϑζ2

∥∥∥λ̃∥∥∥)
(36)

where λ̃ =
[
λ̃1, . . . , λ̃N

]T
, ζ1 = λmin

(
(As + S)

−1
)

, ζ2 =

λmin (P ) and ζ3 = λmax

(
(As + S)

−1
(L+B)

)
. θ and ϑ are

two numbers in the interval (0, 1).
Equation (36) shows that V̇1 < 0, when ‖s‖ ≥ 2λ̃

θβ0ζ1

and ‖xs‖ ≥ ζ3λ̃
ϑζ2

, from which it can be concluded that the
interconnected subsystems (26) and (30) are input-to-state
stable.

Likewise, when s < 0, the subsystem (27) can be reduced
to

ẋs = − (As − S)xs +Dss. (37)

The analysis procedure is very similar to the previous case.
First, choose Lyapunov function candidate as

V1 =
1

2
x̃TQ′x̃, (38)

where

Q′ =

[
2
β0

(L+B)
−1 − (As − S)

−1

− (As − S)
−1

D−1
s

]
, (39)

and assume the following condition is satisfied

2

β0
(L+B)

−1
D−1
s −

(
As
−1
)2 � 0, (40)

which renders V2 to be positive definite. Then, the derivative
of V2 along the subsystems (26) and (37) can be obtained

V̇2 ≤ −sT(As − S)
−1
s

− xT
s

[
D−1
s As − β0As

−1 (L+B)
]
xs

+
2

β0
sTJ̄ (η) B̄d

− xT
s (As − S)

−1
(L+B) J̄ (η) B̄d.

(41)

The term As − S is already positive definite due to the fact
that s < 0, and we also need the following matrix inequality
to be satisfied

D−1
s As − β0As

−1 (L+B) � 0. (42)

Define P ′ = D−1
s As − β0As

−1 (L+B). Similarly, as above
V̇2 can be rewritten as

V̇2 ≤ − (1− θ) ζ ′1‖s‖
2 − (1− ϑ) ζ ′2‖xs‖

2
,(

∀ ‖s‖ ≥ 2λ̃

θβ0ζ ′1
,∀ ‖xs‖ ≥

ζ ′3λ̃

ϑζ ′2

)
(43)
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where ζ ′1 = λmin

(
(As − S)

−1
)

, ζ ′2 = λmin (P ′) and ζ ′3 =

λmax

(
(As − S)

−1
(L+B)

)
. θ and ϑ are two numbers in

the interval (0, 1).
It follows from (43) that V̇2 < 0, when ‖s‖ ≥ 2λ̃

θβ0ζ′1
and

‖xs‖ ≥ ζ′3λ̃
ϑζ′2

, which shows that the interconnected subsystems
(26) and (37) are input-to-state stable.

Since the subsystem (25) and interconnected subsystems
(26) and (27) are all input-to-state stable, so long as the con-
troller parameters are properly chosen such that the conditions
(33), (35), (40) as well as (42) are satisfied, it is readily shown
that the overall closed-loop system (25)-(27) is input-to-state
stable. This completes the proof.

Remark 5. It should be noted that due to the introducing
of shunting equations that effectively handles the SMC’s
chattering issue and makes control activities more consistent
and practical, strictly speaking, the two-phase characteristic
of SMC scheme is no longer existing, i.e., reaching phase and
sliding mode phase, but the resultant system is of a desirable
cascaded interconnection with modular architecture consisted
of several subsystems, which actually results from the design
procedure of sliding mode control. Such a modularity property
is very helpful and beneficial for the control system analysis
and parameter tuning in practice.

Remark 6. It is observed from equations (25)–(27) that the
order of the system is extended under the proposed shunting
model based SMC scheme, from which we may say that our
methodology can be regarded as a variant of the higher order
sliding mode control (HOSMC) techniques. Generally speak-
ing, in conventional HOSMC scheme an integral standard form
is typically used to extend the relative degree of the system with
the aims to smoothen the control inputs. Nonetheless, such
an approach cannot totally render a chattering-free behavior,
as the switching control law is still applied to satisfy the
reaching condition. Furthermore, in order to synthesize such a
controller, the assumption of bounded time derivative of distur-
bances is required, thus leading to a more conservative design.
In a stark contrast, bioinspired HOSMC scheme completely
gets rid of the chattering problem and doesn’t rely on such an
assumption. Most importantly, due to the filtering properties of
the shunting model, a more robust behavior can be obtained
with respect to the bounded disturbances as well as the noises
without using the high-gain control.

IV. SIMULATION RESULTS
To validate the effectiveness of proposed formation control

protocol, simulation experiments are conducted, in which four
underwater vehicles steered by their own onboard controllers
are employed to track a prescribed trajectory in 3-dimensional
space, and meanwhile, a quadrilateral formation pattern is
required to be maintained for the whole group of AUVs.
Moreover, the comparison between conventional sliding model
control and proposed bioinspired control is made to show the
practical improvements in terms of the smoothness of control
activities, chattering suppression and disturbance rejections.

Each vehicle’s dynamics used in simulations is described
by (1), and the corresponding system and hydrodynamic

Fig. 2. The communication topology graph for 4 AUVs formation control.

parameters are selected as follows with international units:
mi = 20, Ix,i = 20, Iy,i = 30, Iz,i = 35, βvx,i = −8,
βvy,i = −10, βvz,i = −9, βv̇x,i = −7, βv̇y,i = −8,
βv̇z,i = −6, βωx,i = −0.2, βωy,i = −0.25, βωz,i = −0.15,
βω̇x,i = −20, βω̇y,i = −30, βω̇z,i = −35, (i ∈ {1, 2, 3, 4}).
The information exchange among the vehicles is illustrated
in Fig. 2, and the weights of the undirected edges are given
as a12 = a21 = a23 = a23 = a34 = a43 = 1, and it
is assumed that only the AUV 1 can assess the information
of desired trajectory, i.e., b1 = 1. The desired trajectory is
defined as ηd1 (t) = [30− 30e−t, 5t, 2t]

T, and each AUV’s
posture in group is required to align with ηd2 (t) = [0, 0, 0]

T.
The relative distances between AUVs that are designed to
form the desired quadrilateral formation pattern are given by
δ12 = [0, 10, 0]

T, δ21 = [0,−10, 0]
T, δ23 = [−10, 0, 0]

T,
δ32 = [10, 0, 0]

T, δ34 = [0,−10, 0]
T and δ43 = [0, 10, 0]

T.
The initial positions of four vehicles are set as follows:
η1 = [3, 3, 3, 0.3, 0, 0.2]

T, η2 = [2.5, 3.5, 3, 0.2, 0, 0.25]
T,

η3 = [2, 3, 3, 0.3, 0, 0.2]
T and η4 = [3, 3, 2, 0.3, 0, 0.2]

T; the
initial translational and rotational velocities of AUVs are all set
to vi = 06×1, (i ∈ {1, 2, 3, 4}). The periodic external distur-
bances to simulate the impacts of wind, waves as well as ocean
currents are given by di = [2.5 sin (t) , 2.5 cos (t) , 2.5 sin (t) ,
0.5 sin (t) , 0.5 cos (t) , 0.5 sin (t)], (i ∈ {1, 2, 3, 4}). The pa-
rameters of sliding model controller are chosen as k1 =
diag {10, 10, 10, 10}, β0 = diag {100, 100, 100, 100}, and the
bioinspired controller’s parameters are selected as As =
diag {100, 100, 100, 100}, Bs = diag {30, 30, 30, 30}, Ds =
diag {30, 30, 30, 30}, k1 = diag {10, 10, 10, 10} and β0 =
diag {10, 10, 10, 10}. It is worth noting that considering the
practical saturation issue that quite often occurs in real-world
actuators, the amplitudes of controller’s outputs are artificially
confined into the interval [−300, 300]. Moreover, because
of the high-frequency switching nature of the conventional
sliding mode control that makes the control signals oscillate
extremely fast, to moderate this phenomenon saturation func-
tions are used in simulation to take place of the sign functions
that were employed in foregoing derivation of SMC controller.

The formation performance using the proposed distributed
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Fig. 3. The actual tracking trajectories and formation shape of four AUVs
under bioinspired control approach.
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approach.

bioinspired control protocol is shown in Fig.s 3-7. Fig. 3 shows
that the control objectives are perfectly achieved, i.e., under
the proposed controller overall multi-AUV system can form
the desired quadrilateral formation pattern, and at same time
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Fig. 6. Translational control inputs of AUVs under bioinspired control
approach.
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Fig. 7. Rotational control inputs of AUVs under bioinspired control approach.

the prescribed trajectory is followed by the group of AUVs
even in the presence of external disturbances. It can also be
seen from Fig.s 4 and 5 that the corresponding consensus
tracking errors of all AUVs in each degree of freedom are
convergent uniformly asymptotically to a very small region of
the origin, which also indicates that the resulting system has
good robustness property. In addition to that, it can be observed
that the consensus tracking errors of each vehicle almost tend
to zero simultaneously, suggesting that a good coordination
performance is also achieved. Fig.s 6 and 7 show the control
signals generated by the bioinspired controller, from which
one can find that the chattering issue is totally disappeared
in proposed control scheme due to employment of shunting
model, and the control actions, thus, become much smoother,
which is far more critical for the practical applications. It
should be noted that because of the transient response of the
shunting model some control saturations can be occurred at the
beginning of time, but few moments later the control behaviors
soon get into normal.

The next case as the comparison shows the formation perfor-
mance using the conventional sliding mode control protocol.
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Fig. 8. The actual tracking trajectories and formation shape of four AUVs
under sliding model control.

It can be seen from Fig.s 8-10 that the SMC approach can also
achieve the prescribed control objectives. However, the corre-
sponding control signals as shown in Fig.s 11 and 12 exhibit
apparent high-frequency oscillations and the non-smoothness,
even though the saturation function is employed in place
of the classic sign function which undoubtedly will further
exacerbate this phenomenon. As an immediate consequence,
behavior of sliding mode controller is almost unable to be
realized by the actual actuators, since any physical device has
its own response frequency and bandwidth. Besides, it may
also excite the system’s high frequency unmodeled dynamics.
Therefore, the actual formation performance by applying such
control law may not be as good as the simulation results;
instead, it may even render the closed-loop system unstable.
In an obvious contrast, it can be seen from Fig.s 6 and 7 that
the proposed bioinspired SMC scheme completely overcomes
these drawbacks; that is, there is no high-frequency switching
behavior arising in the control process, and the control signals
are much smoother than the conventional SMC approach.
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Fig. 9. The consensus position error of AUVs under sliding model control.
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Fig. 10. The consensus attitude error of AUVs under sliding model control.
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Fig. 11. Translational control inputs of AUVs under sliding model control.
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Fig. 12. Rotational control inputs of AUVs under sliding model control.

V. CONCLUSION

The formation tracking control of multiple AUV systems
in 3-dimensional space subject to the hydrodynamic parame-
ter uncertainties and unknown environmental disturbances is
addressed in this paper, where the overall system is not only
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required to maintain a specified formation pattern, but is aimed
to follow a desired trajectory as a whole. In order to obtain a
good coordination performance in shape forming, consensus
problem is also considered between neighbor vehicles. To
this end, a novel distributed bioinspired sliding mode control
protocol is proposed based on the graph theory. In particular,
due to the favorable dynamic characteristic of the shunting
model, the chattering phenomena are completely avoided in
the present SMC scheme, the amplitude of the control is
able to be bounded, and the generated control actions are
more consistent and smoother compared to the conventional
one. Most importantly, owing to the filtering nature of the
shunting equation, more robust behavior can be obtained with
respect to the bounded lumped disturbance as well as the
noises without needing the large control efforts. Moreover,
the stability analysis of the resulting closed-loop system is
proved using the Lyapunov direct method. Finally, several
simulation experiments are carried out to demonstrate the
efficiency and effectiveness of proposed distributed formation
control protocol. In future work, more practical constraints on
multiple AUV formation systems need to be further taken into
account and addressed, such as the impacts of the communi-
cation imperfections (e.g., time delays, package loss, and even
misleading data) as well as the nonholonomic kinematics.
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