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Abstract—This paper presents the Relaxed Continuous-Time
Actor-critic (RCTAC) algorithm, a method for finding the nearly
optimal policy for nonlinear continuous-time (CT) systems with
known dynamics and infinite horizon, such as the path-tracking
control of vehicles. RCTAC has several advantages over existing
adaptive dynamic programming algorithms for CT systems. It
does not require the “admissibility” of the initialized policy or the
input-affine nature of controlled systems for convergence. Instead,
given any initial policy, RCTAC can converge to an admissible,
and subsequently nearly optimal policy for a general nonlinear
system with a saturated controller. RCTAC consists of two phases:
a warm-up phase and a generalized policy iteration phase. The
warm-up phase minimizes the square of the Hamiltonian to
achieve admissibility, while the generalized policy iteration phase
relaxes the update termination conditions for faster convergence.
The convergence and optimality of the algorithm are proven
through Lyapunov analysis, and its effectiveness is demonstrated
through simulations and real-world path-tracking tasks.

Index Terms—reinforcement learning, continuous-time optimal
control, nonlinear systems

I. INTRODUCTION

Dynamic Programming (DP) offers a systematic way to
solve Continuous Time (CT) infinite horizon optimal control
problems with known dynamics for unconstrained linear sys-
tems. It does this by using the principle of Bellman optimality
and the solution of the underlying Hamilton-Jacobi-Bellman
(HJB) equation [1], yielding the well-known Linear Quadratic
Regulator (LQR) [2]. In this case, the optimal control policy is
an affine state feedback. However, solving an infinite horizon
optimal control problem analytically becomes more difficult
when the system is subject to operating constraints or has
nonlinear dynamics. This is because it becomes difficult to
obtain an analytical solution of the HJB equation, which is
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typically a nonlinear partial differential equation [3]. This is
known as the curse of dimensionality, as the computation bur-
den grows exponentially with the dimensionality of the system
[4]. Traditional DP methods are therefore not applicable in
these cases.

To find a nearly optimal approximation of the optimal
control policy for nonlinear dynamics, Werbos proposed the
Adaptive DP (ADP) method [5], also known as Reinforcement
Learning (RL) in the field of machine learning [6]–[10].
A distinct characteristic of ADP is that it utilizes a critic
parameterized function, such as a Neural Network (NN), to
approximate the value function, and an actor parameterized
function to approximate the policy. The classical Value Itera-
tion (VI) framework, which approximates the value function
through one-step back-up operation, is commonly used for
building ADP methods for discrete-time systems [11]. How-
ever, for CT systems, the value update law of VI requires
integrating the running cost over a finite time horizon, which
can lead to learning inaccuracies due to discretization error
[12]. Most ADP methods adopt an iterative technique called
Policy Iteration (PI) to find suitable approximations of both the
value function and policy, which directly updates the value
function by solving the corresponding Lyapunov equation
without the need for discretization [7]. PI consists of two-
step process: 1) policy evaluation, in which the value function
moves towards its true value associated with an admissible
control policy, and 2) policy improvement, in which the policy
is updated to reduce the corresponding value function.

In recent years, there has been a significant amount of
research on the use of ADP (or RL) techniques for the control
of autonomous systems [13]–[17]. One example of CT optimal
control is the ADP algorithm proposed by Abu-Khalaf and
Lewis, which seeks to find a nearly optimal constrained state-
feedback controller for nonlinear systems by using a non-
quadratic cost function [18]. The value function, parameterized
by a linear function of hand-crafted features, is trained by
the least square method at the policy evaluation step, and the
policy is expressed as an analytic function of the value func-
tion. Utilizing the same single approximator scheme, Dierks
and Jagannathan developed a novel online parameter tuning
law that ensures the optimality of both the value function and
control policy, as well as maintaining bounded system states
during the learning process [19]. [20] proposed a synchronous
PI algorithm with an actor-critic framework for nonlinear CT
systems without input constraints. Both the value function
and policy are approximated by linear methods and tuned

ar
X

iv
:1

90
9.

05
40

2v
2 

 [
ee

ss
.S

Y
] 

 3
0 

M
ar

 2
02

3



2

simultaneously online. Furthermore, Vamvoudakis introduced
an event-triggered ADP algorithm that reduces computation
cost by only updating the policy when a specific condition
is violated [21], and Dong et al. expanded upon this concept
for use in nonlinear systems with saturated actuators [22]. In
addition, ADP methods have also been widely applied in the
optimal control of incompletely known dynamic systems [23]–
[27] and multi-agent systems [28]–[30].

It is worth noting that most existing ADP techniques for CT
systems are valid on the basis of one or both of the following
two requirements:

• A1: Admissibility of Initial Policy: One is the requirement
for an admissible initial policy, meaning that the policy
must be able to stabilize the system. This is because
the infinite horizon value function can only be evaluated
for stabilizing control policies. However, it can be chal-
lenging to obtain an admissible policy, particularly for
complex systems.

• A2: Input-Affine Property of System: Most ADP methods
are limited to input-affine systems because these methods
require that the optimal policy can be represented by the
value function. This means that the minimum point of
the Hamilton function can be solved analytically when
the value function is given. However, this is not possible
for input non-affine systems, making it difficult to directly
solve the optimal policy.

Note that while there are certain methods, such as integral
VI [12] and parallel-control-based ADP methods [31], which
do not require initial admissible control policies, they are only
suitable for linear or input-affine systems. For example, the
differentiation term of the time derivative of the Lyapunov
function with respect to the control policy can be added to
its updating rule to make the initial admissible policies no
longer necessary [19], [23], [32], which requires the input-
affine property. [33] goes one step further and eliminates
the restriction of the affine property by transforming the
general nonlinear system into an affine system. However, this
approach generally leads to some loss in policy performance.
Additionally, the studies mentioned above approximate the
value function or the policy using a single NN (i.e., the linear
combination of predetermined hand-crafted basis functions).
This means that the performance of these methods is heavily
dependent on the quality of hand-crafted features, limiting
their generality since it is challenging to design such features
for high-dimensional nonlinear systems. Therefore, this paper
aims to address these two requirements without sacrificing
optimality guarantees and generality.

In this paper, we propose a relaxed continuous-time actor-
critic (RCTAC) algorithm with the guarantee of convergence
and optimality for solving optimal control problems of general
nonlinear CT systems with known dynamics, which overcomes
the limitation of the above two central requirements. Our main
contributions are summarized as follows:

1) The warm-up phase of RCTAC is developed to relax the
requirement of A1. It is proved that given any initial
policy, when the activation function of the value network
meets certain requirements, the warm-up phase can con-

verge to an admissible policy by continuously minimizing
the square of the Hamiltonian. Unlike the policy tuning
rule used in [19], [23], [32], which also relaxes A1 but
is restricted to input-affine systems and single-NN-based
policies, the developed warm-up phase is applicable to
general non-affine systems. Moreover, RCTAC obviates
the need for designing hand-crafted basis functions by
utilizing multi-layer neural networks to approximate both
the actor and critic, which create mappings from the
system states to control inputs and the value function,
respectively.

2) Different from [12], [19], [23] which require input-affine
systems because the policy must be represented analyt-
ically by the value function, the policy network in the
RCTAC algorithm is updated by directly minimizing the
associated Hamiltonian using gradient descent methods
in the generalized PI phase. This allows the RCTAC
algorithm to be applied to arbitrary nonlinear dynamics
with bounded and non-affine inputs, thereby relaxing the
requirement of A2. Compared to the method of trans-
forming general nonlinear systems into affine systems by
creating augmented systems [33], our method does not
sacrifice the guarantee of theoretical optimality.

3) We introduce novel update termination conditions for the
policy evaluation and improvement processes, resulting
in a faster convergence speed than the corresponding PI
methods. We also provide a Lyapunov analysis to prove
the convergence and optimality of RCTAC.

Throughout the paper, we provide two detailed numerical ex-
periments to show the generality and efficacy of the proposed
RCTAC algorithm, including a linear optimal control problem
and a path-tracking control task for vehicles with nonlinear
and non-input-affine dynamics. Besides, we demonstrate the
practical application performance of our algorithm through an
actual longitudinal and lateral vehicle control task.

Organization: Section II provides the formulation of the
optimal control problem and the description of PI. In Section
III, we describe the RCTAC algorithm and analyze its con-
vergence and optimality. In Section IV, we present simulation
examples that show the generality and effectiveness of the
RCTAC algorithm for CT system. In Section V, we conduct
experiments to verify the effectiveness of the method in
practical applications. Section VI concludes this paper.

II. MATHEMATICAL PRELIMINARIES

A. HJB Equation

This study considers the time-invariant system

ẋ(t) = f(x(t), u(t)), (1)

where x ∈ Rn denotes the state, u ∈ Rm denotes the control
input, and f : Rn × Rm → Rn denotes the system dynamics.
The dynamics f(x, u) is assumed to be Lipschitz continuous
on a compact set Ω that contains the origin. We suppose
a continuous policy u = π(x) on Ω that asymptotically
stabilizes the system exists. We assume the full information of
f(x(t), u(t)) is available. It can be represented by a nonlinear
and input non-affine function or a Neural Network (NN)
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only if ∂f(x,u)
∂u is accessible. The control signal u(t) can be

saturated or unsaturated. The value function (cost-to-go) of
policy π(x) is calculated as

V π(x) =

∫ ∞
t

l(x(τ), π(x(τ)))dτ
∣∣∣
x(t)=x

, (2)

where l : Rn × Rm → R is positive definite, i.e., if and only
if (x, u) = (0, 0), l(x, u) = 0; otherwise, l(x, u) > 0. For
dynamics in (1) and the corresponding value function in (2),
we give the associated Hamilton function

H(x, u,
∂V π(x)

∂x
) := l(x, u) +

∂V π(x)

∂x>
f(x, u). (3)

Definition 1. (Admissible Policy [34]). A controller π(x) is
called the admissible policy, denoted by π(x) ∈ Ψ(Ω), if it is
continuous on Ω with π(0) = 0, and stabilizes (1) on Ω.

Given an admissible policy π(x) ∈ Ψ(Ω), the differential
equivalent to (2) on Ω is called the Lyapunov equation

H(x, π(x),
∂V π(x)

∂x
) = 0, (4)

where V π(0) = 0. Therefore, given a policy π(x) ∈ Ψ(Ω),
we can obtain the value function (2) of system (1) by solving
the Lyapunov equation. Then the optimal control problem for
Continuous Time (CT) system can be formulated as solving
a policy π(x) ∈ Ψ(Ω) such that the corresponding value
function is minimum. The minimized or optimal value function
V ?(x(t)) defined by

V ?(x(t)) = min
π(x)∈Ψ(Ω)

∫ ∞
t

l(x(τ), π(x(τ))dτ, (5)

satisfies the classical Hamilton-Jacobi-Bellman (HJB) equa-
tion

min
u
H(x, u,

∂V ?(x)

∂x
) = 0, V ?(0) = 0. (6)

Meanwhile, the optimal control policy π?(x) can be calcu-
lated as

π?(x) = arg min
u
H(x, u,

∂V ?(x)

∂x
),∀x ∈ Ω. (7)

which is the globally optimal solution to (5). Inserting V ?(x)
and π?(x) in (4), one can reformulate (6) as

l(x, π?(x)) +
∂V ?(x)

∂x>
f(x, π?(x)) = 0

with V ?(0) = 0. The optimal value function is shown to exist
and be unique in [35]. To obtain the optimal policy, we first
need to solve the HJB equation (6) to find the value function,
and then use it to calculate the optimal policy using (7).
However, due to the nonlinear property of the HJB equation,
it is often challenging or even impossible to find a solution.

B. Policy Iteration

Rather than attempting to solve the HJB equation directly,
most Adaptive Dynamic Programming (ADP) methods adopt
an iterative technique, called Policy Iteration (PI), to approx-
imate both the value function and the policy [11]. PI consists
of alternating between policy evaluation using (4) and policy
improvement using (7). The algorithm proposed in this paper

Algorithm 1 PI for CT optimal control

Initial with policy π0 ∈ Ψ(Ω)
Given any small positive number ε and let i = 0
while maxx∈Ω |V i(x)− V i+1(x)| ≥ ε do

1. Find value function V i(x) for all x ∈ Ω by

l(x, πi(x)) +
∂V i(x)

∂x>
f(x, πi(x)) = 0, V i(0) = 0 (8)

2. Find new policy πi+1(x) by

πi+1(x) = arg min
u

[l(x, u) +
∂V i(x)

∂x>
f(x, u)] (9)

i = i+ 1
end while

is also based on PI, as shown in the pseudocode in Algorithm
1.

As shown in Algorithm 1, the first step of PI is to find
an initial policy π0(x) ∈ Ψ(Ω), because the associated value
function V 0(x) is finite only when the system is asymptot-
ically stable. Algorithm 1 then iteratively refines both the
optimal control policy and the optimal value function. The
convergence and optimality of the algorithm are proven in
[18].

C. Value Function and Policy Approximation

In previous ADP research for CT systems, the value func-
tion V i(x) and policy πi(x) are usually approximated by
linear methods, which requires a large number of artificially
designed basis functions [24]. In recent years, NNs are favored
in many fields, such as deep learning and Reinforcement
Learning (RL), due to their better generality and higher fitting
ability [36]. In our work, we represent the value function and
policy using multi-layer neural networks (NNs), referred to
as the value NN V (x;ω) (Vω(x) for short) and the policy
NN π(x; θ) (πθ(x) for short), where w and θ denote network
weights. The two NNs in this case are used to map the original
system states to the estimated value function and control
inputs, respectively.

By inserting the value and policy network in (3), we can
obtain an approximated Hamiltonian expressed in terms of the
parameters w and θ

H(x, ω, θ) = l(x, πθ(x)) +
∂Vω(x)

∂x>
f(x, πθ(x)).

We refer to the algorithm combining PI and multi-layer NN as
approximate PI (API), which involves processes alternatively
tuning each of the two networks to find nearly optimal param-
eters ω? and θ? satisfying Vω?(x) ≈ V ?(x), πθ?(x) ≈ π?(x).

Given any policy πθ ∈ Ψ(Ω), the value network is tuned by
solving the Lyapunov equation (8) during the policy evaluation
phase of API, which is equivalent to finding parameters w to
minimize the following critic loss function

Lc(ω, θ) = Ex∼dx
[
H(x, ω, θ)2

]
, (10)
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where dx represents the state distribution over Ω. It is impor-
tant to note that dx can be any distribution that satisfies the re-
quirement of a positive probability density for all x ∈ Ω, such
as the uniform distribution. The condition V (x;ω) ≡ 0 can be
easily guaranteed by selecting proper activation function σV (·)
for the value network. Based on (9), the policy improvement
process is carried out by tuning the policy network to minimize
the expected Hamiltonian in each state, which is also called
actor loss function here

La(ω, θ) = Ex∼dx
[
H(x, ω, θ)

]
. (11)

The benefit of updating the policy network by minimizing
La(ω, θ) is that the tuning rule is applicable to any nonlinear
dynamics with non-affine and constrained inputs. This relaxes
the requirement of A2 (from Introduction).

Since the state x is continuous, it is difficult to directly
compute the expectation in (10) and (11). In practice, these
two loss functions can be estimated by the sample average.
We can directly utilize existing NN optimization methods
to adjust the parameters of value and policy NNs, such as
Stochastic Gradient Descent (SGD). The value network and
policy network usually require multiple updating iterations to
make (8) and (9) hold respectively. Therefore, compared with
PI algorithm, two inner updating loops would be introduced
to update the value and policy NNs until convergence. Taking
SGD as an example, we give the pseudocode of API in
Algorithm 2.

Algorithm 2 API for CT optimal control

Initial with θ0 such that πθ0(x) ∈ Ψ(Ω) and arbitrary ω0

Choose the appropriate learning rates αω and αθ
Given any small positive number ε and set i = 0
while maxx∈Ω |Vωi(x)− Vωi−1(x)| ≥ ε do

1. Estimate Vωi+1(x) using πθi(x)
ωi+1 = ωi

repeat

ωi+1 = ωi+1 − αω
dLc(ω

i+1, θi)

dωi+1
(12)

until Lc(ωi+1, θi) ≤ ε
2. Find improved policy πθi+1(x) using Vωi+1(x)

θi+1 = θi

repeat

La,old = La(ωi+1, θi+1)

θi+1 = θi+1 − αθ
dLa(ωi+1, θi+1)

dθi+1
(13)

until |La(ωi+1, θi+1)− La,old| ≤ ε
i = i+ 1

end while

III. RELAXED CONTINUOUS-TIME ACTOR-CRITIC

Algorithm 2 alternately update the value and policy network
by minimizing (10) and (11), respectively. Note that while one
NN is being adjusted, the other remains constant. Besides,

each NN generally needs multiple iterations to satisfy the
terminal condition, which is referred to as the protracted
iterative computation problem [11]. This problem usually leads
to the admissibility requirement because the initial policy
network needs to satisfy that π(x; θ0) ∈ Ψ(Ω) to have a
finite and converged value function V (x;ω1). Many previous
studies used trials and errors process to obtain feasible initial
weights for the policy network to guarantee the stability of the
system [1], [21]. However, this method usually takes a lot of
time, especially for complex systems. On the other hand, the
protracted problem often results in slower learning [11].

A. Description of the RCTAC Algorithm

Inspired by the idea of generalized PI framework, which is
widely utilized in discrete-time dynamic RL problems [11],
we present the relaxed continuous-time actor-critic (RCTAC)
algorithm for CT systems to relax the requirement A1 (from
Introduction) and improve the learning speed by truncating
the inner loops of Algorithm 2 without losing the convergence
guarantees. The pseudocode of RCTAC algorithm is shown in
Algorithm 3.

Algorithm 3 RCTAC algorithm

Initialize arbitrary θ0 and ω0

Choose the appropriate learning rates α, αω and αθ
Given any small positive number ε and set i = 0
Phase 1: Warm-up

while maxx∈ΩH(x, ωi, θi) ≥ 0 do
Update ω and θ using:

{ωi+1, θi+1} = {ωi, θi} − αdLc(ω
i, θi)

d{ωi, θi}
(14)

i = i+ 1
end while

Phase 2: PI with relaxed termination conditions
while maxx∈Ω |Vωi(x)− Vωi−1(x)| ≥ ε do

1. Estimate Vωi+1(x) using πθi(x)
ωi+1 = ωi

repeat
Update ωi+1 using (12)

until H(x, ωi, θi) ≤ H(x, ωi+1, θi) ≤ 0,∀x ∈ Ω
2. Find improved policy πθi+1(x) using Vωi+1(x)

θi+1 = θi

repeat
Update θi+1 using (13)

until maxx∈ΩH(x, ωi+1, θi+1) ≤ 0
i = i+ 1

end while

B. Convergence and Optimality Analysis

The solution to (8) may be non-smooth for general nonlinear
and input non-affine systems. In keeping with other research
in the literature [20], we make the following assumptions.

Assumption 1. If π(x) ∈ Ψ(Ω), its corresponding value
function is smooth, i.e. V π(x) ∈ C1(Ω) (cf. [18], [20]).
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Multiple theoretical analyses and experimental studies have
demonstrated that optimization algorithms like SGD are capa-
ble of locating the global minimum of the training objective for
multi-layer NNs in polynomial time, provided that the NN is
over-parameterized (with a sufficiently large number of hidden
neurons) [37], [38]. Based on this fact, our second assumption
is:

Assumption 2. Optimization algorithms like SGD can locate
the global minimum of the critic loss function (10) and
the actor loss function (11) for over-parameterized NNs in
polynomial time.

In the following section, we will demonstrate that the nearly
optimal value function and policy can be obtained using
Algorithm 3. To do so, we will first introduce some necessary
lemmas.

Lemma 1. (Universal Approximation [39]). For any con-
tinuous function F (x) defined on a compact set Ω, it is
possible to construct a feedforward NN with one hidden layer
that uniformly approximates F (x) with arbitrarily small error
ε ∈ R+.

Lemma 1 allows us to ignore the NN approximation errors
when proving the convergence of Algorithm 3.

Lemma 2. Consider the CT dynamic optimal control problem
for (1) and (2). Suppose the solution (V π(x) ∈ C1 : Rn →
R ) of the HJB equation (6) is smooth and positive definite.
The control policy π(x) is given by (7). Then we have that
V π(x) = V ?(x) and π(x) = π?(x) (cf. [3]).

The next lemma shows how Algorithm 3 can be leveraged to
obtain an admissible policy π(x; θ) ∈ Ψ(Ω) given any initial
policy π(x; θ0).

Lemma 3. Consider the CT dynamic optimal control problem
for (1) and (2). The value function (cost-to-go) Vω and policy
πθ are represented by over-parameterized NNs. The parame-
ters w and θ are initialized randomly, i.e., the initial policy
π(x; θ0) can be inadmissible. These two NNs are updated with
Algorithm 3. Let Assumption 1 and 2 hold, and suppose all the
hyper-parameters (such as α, αw and αθ) and NN optimization
method are properly selected. The NN approximation errors
are ignored according to Lemma 1. Suppose all the activation
functions σV (·) and biases bV of the value network V (x;ω)
are set to σV (0) = 0 and bV (·) ≡ 0. At the same time,
the output layer activation function σVout also needs to satisfy
σVout(·) ≥ 0. We have that: ∃Na ∈ Z+, if the iteration index
i ≥ Na, then π(x; θi) ∈ Ψ(x) for the system (1) on Ω.

Proof. According to (4) and Lemma 1, there ∃(ω†, θ†), such
that π(x; θ†) ∈ Ψ(Ω) and H(x, ω†, θ†) = 0 for all x ∈ Ω,
which implies that

min
ω,θ

Lc(ω, θ) = min
ω,θ

Ex∼dx
[
H(x, ω, θ)2

]
= 0.

Since Algorithm 3 updates ω and θ using (14) to continu-
ously minimize Lc(ω, θ) in Phase 1, according to Assumption
2, the global minima of Lc(ω, θ) can be obtained in poly-

nomial time. Before the global minima is found, there exists
Na ∈ Z+, such that

H(x, ωNa , θNa) ≤ 0, ∀x ∈ Ω. (15)

Taking the time derivative of V (x;ω), we can derive that

dV (x;ω)

dt
=
∂V (x;ω)

∂x>
f(x, π(x; θ)),

= H(x, ω, θ)− l(x, π(x; θ)).
(16)

Using (15) and (16), one has

dV (x;ωNa)

dt
≤ −l(x, π(x; θNa)), ∀x ∈ Ω.

As the running cost l(x, π(x; θ)) is positive definite, it follows

dVωNa (x)

dt
< 0, ∀x ∈ Ω\{0}. (17)

Since σV (0) = 0, bV (·) ≡ 0 and σVout(·) ≥ 0, we have{
V (x;ω) = 0 if x = 0 & ∀ω,
V (x;ω) ≥ 0 if ∀x ∈ Ω\{0} & ∀ω.

(18)

From (17) and (18), we have

V (x;ωNa) > min
z∈Ω

V (z;ωNa) = 0, ∀x ∈ Ω\{0}. (19)

From (18) and (19), we infer that the value function V (x;ωNa)
is positive definite. Then, according to (17), V (x;ωNa) is
a Lyapunov function for the closed-loop dynamics obtained
from (1) when policy π(x; θNa) is used. Therefore, the policy
π(x; θNa) ∈ Ψ(Ω) for the system (1) on Ω [40], that is, it is
a stabilizing admissible policy.

At this point, Algorithm 3 enters Phase 2. According to (4),
one has

min
ω
Lc(ω, θ

Na) = min
ω

Ex∼dx
[
H(x, ω, θNa)2

]
= 0.

So, from Assumption 2 and Lemma 1, we can always find
ωNa+1 by continuously applying (12), such that

H(x, ωNa , θNa) ≤ H(x, ωNa+1, θNa) ≤ 0, ∀x ∈ Ω.

Again, from Lemma 1, there always ∃θ#, such that

H(x, ωNa+1, θ#) = min
θ
H(x, ωNa+1, θ), ∀x ∈ Ω.

Since

min
θ
La(ωNa+1, θ) ≥ Ex∼dx

[
min
θ
H(x, ωNa+1, θ)

]
,

we have

La(ωNa+1, θ#) = min
θ
La(ωNa+1, θ)

= Ex∼dx
[

min
θ
H(x, ωNa+1, θ)

]
.

Utilizing the fact that the global minima of La(ωNa+1, θ)
can be obtained, Hamiltonian H(x, ωNa+1, θ) can be taken
to global minimum for all x ∈ Ω by minimizing over θ. Then,
we can also find θNa+1 through (13), such that

H(x, ωNa+1, θNa+1) ≤ H(x, ωNa+1, θNa) ≤ 0, ∀x ∈ Ω.

This implies that like the case with V (x;ωNa), V (x;ωNa+1) is
also a Lyapunov function. So, π(x; θNa+1) ∈ Ψ(Ω). Applying
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this for all subsequent time steps, V (x;ωi) is a Lyapunov
function for ∀i ≥ Na, and it is obvious that

H(x, ωi, θi) ≤ H(x, ωi+1, θi) ≤ 0, ∀i ≥ Na & ∀x ∈ Ω,
(20)

and
π(x; θi) ∈ Ψ(Ω), ∀i ≥ Na. (21)

Thus, we have proved that starting from any initial policy, the
RCTAC algorithm in Algorithm 3 converges to an admissible
policy. As claimed previously, this relaxes the requirement A1,
which is typical for most other ADP algorithms.

We now present our main result, which shows that the value
NN V (x;ω) and policy NN π(x; θ) converge to optimum
uniformly by applying Algorithm 3.

Definition 2. (Uniform Convergence). A function sequence
{fn} converges uniformly to f on a set K if ∀ε > 0,
∃N(ε) ∈ Z+, s.t. ∀n > N , supx∈K |fn(x)− f(x)| < ε.

Theorem 1. For arbitrary initial value network V (x;ω0) and
policy network π(x; θ0), where all the activation functions
σV (·) and biases bV of the value network are set to σV (0) = 0
and bV (·) ≡ 0, and the output layer activation function σVout

also satisfies σVout(·) ≥ 0, if these two NNs are tunned with
Algorithm 3, Vωi(x)→ V ?(x), πθi(x)→ π?(x) uniformly on
Ω as i→∞.

Proof. From Lemma 3, it can be shown by induction that the
policy π(x; θi) ∈ Ψ(Ω) for system (1) on Ω when i ≥ Na.
Furthermore, according to (16) and (20), given policy π(x; θi),
we get

dV (x;ωi)

dt
≤ dV (x;ωi+1)

dt
≤ 0, ∀x ∈ Ω & i ≥ Na. (22)

From Newton-Leibniz formula,

Vω(x(t)) = Vω(x(∞))−
∫ ∞
t

dVω(x(τ))

dτ
dτ. (23)

According to (18) and (21),

Vω(x(∞)) = Vω(0) = 0, i ≥ Na & ∀ω. (24)

So, from (18), (22), (23) and (24), we have

0 ≤ V (x;ωi+1) ≤ V (x;ωi), ∀x ∈ Ω & i ≥ Na. (25)

As such, V (x;ωi) is pointwise convergent as i goes to ∞.
One can write limi→∞ V (x;ωi) = V (x;ω∞). Then, the
compactness of Ω directly leads to uniform convergence by
Dini’s theorem [41].

Next, from Definition 2, it is not hard to show that

lim
i→∞

sup
x∈Ω
|V (x;ωi)− V (x;ωi+1)| = 0.

Furthermore, since

V (x;ωi)− V (x;ωi+1)

=

∫ ∞
t

d(V (x(τ);ωi+1)− V (x(τ);ωi))

dτ
dτ,

=

∫ ∞
t

[
H(x(τ), ωi+1, θi)−H(x(τ), ωi, θi)

]
dτ,

we have

lim
i→∞

sup
x∈Ω
|H(x, ωi+1, θi)−H(x, ωi, θi)| = 0. (26)

From Lemma 1, (4) and (21),

min
ω
Lc(ω, θ

i) = min
ω

Ex∼dx
[
H(x, ω, θi)2

]
= 0, ∀i ≥ Na.

Since ωi+1 is obtained by minimizing Lc(ω
i, θi) using (12),

according to (26), it is true that

lim
i→∞

H(x, ωi, θi) = lim
i→∞

H(x, ωi+1, θi) = 0, ∀x ∈ Ω.

(27)
Therefore, V (x;ω∞) is the solution of the Lyapunov equation
(4) when a policy π(x; θ∞) is given, and it leads to that

Vω∞(x) = V πθ∞ (x).

The policy π(x; θi) ∈ Ψ(Ω) for i ≥ Na, so the generated
state trajectory is unique due to the locally Lipschitz continuity
of the dynamics [18]. Since V (x;ωi) converges uniformly to
V (x;ω∞), its obvious that the system trajectory converges
for all x ∈ Ω. Therefore, π(x; θi) also converges uniformly
to π(x; θ∞) on Ω. Since θi+1 is obtained by minimizing
La(ωi+1, θi) using (13), it is obvious from (27) that

lim
i→∞

La(ωi+1, θi+1) = lim
i→∞

La(ωi+1, θi) = 0, (28)

which implies that

lim
i→∞

min
θ
H(x, ωi, θ) = 0, ∀x ∈ Ω. (29)

From (27), (29), and Lemma 2, one has limi→∞ V (x;ωi) =
V ?(x) and limi→∞ π(x; θi) = π?(x). Therefore, one can
conclude that Vωi(x) goes to V ?(x) and πθi(x) goes to π?(x)
uniformly on Ω as i → ∞, which means the global optimal
solution is obtained.

This demonstrates that the RCTAC algorithm uniformly
converges to the optimal value function V ?(x) and the optimal
policy π?(x).

Remark 1. The warm-up phase of RCTAC is developed to find
the initial admissible policy, whose purpose is akin to that of
the relaxing initial condition of discrete-time systems [42]. The
difference is that the latter needs to repeatedly select an initial
positive value function until the initial admissible policy can
be constructed. It is proved that under mild restrictions of the
activation functions of the value function, given any initial pol-
icy, the warm-up phase can converge to an admissible policy
by continuously minimizing the square of the Hamiltonian.

Remark 2. According to the implementation process (12) and
(13) of the proposed RCTAC algorithm, the dynamic f(x, u)

can be any analytic function such that ∂f(x,u)
∂u is available.

As a result, RCTAC can be applied to any nonlinear system
with non-affine and bounded control inputs, unlike [12], [19],
[23] which are only applicable to systems with affine control
inputs due to the requirement for an analytical expression of
the control policy using the value function. Control constraints
can be easily incorporated by using a saturated activation
function (such as tanh(·)) at the output of the policy network.
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Remark 3. Since the state x is continuous, it is intractable
to check the value of H(x, ω, θ) for every x ∈ Ω. Therefore,
in practical applications, we usually use the expected value
of H(x, ω, θ) to judge whether each termination condition in
Algorithm 3 is satisfied. So, the RCTAC algorithm can also
be formulated as Algorithm 4. Fig. 1 shows the frameworks
of API Algorithm 2 and RCTAC Algorithm 4.

Algorithm 4 RCTAC algorithm: Tractable Relaxation

Initialize arbitrary θ0 and ω0

Choose the appropriate learning rates α, αω and αθ
Given any small positive number ε and set i = 0
Phase 1: Warm-up

while La(ωi, θi) ≥ ε do
Update ω and θ using (14)
i = i+ 1

end while
Phase 2: PI with relaxed termination conditions

while Ex∼dx |Vωi(x)− Vωi−1(x)| ≥ ε do
Update wi+1 using (12)
Update θi+1 using (13)
i = i+ 1

end while

Policy Improvement Policy Improvement 

API

PI

 

𝑉(𝑥; 𝜔𝑖) 

𝜋(𝑥; 𝜃𝑖) 

𝑖 = 𝑖 + 1 

Admissible 

Arbitrary 

𝐿𝑐 ≤ ε 

 ∆𝐿𝑎 ≤ ε 

𝜔𝑖+1 = 𝜔𝑖

 ∆𝑉 ≤ ε 

𝜃𝑖+1 = 𝜃𝑖

Policy Evaluation 

𝜋(𝑥; 𝜃0) 

𝑉(𝑥; 𝜔0) 

Value Network

state

𝑉 

state

𝑢 

Policy Network

𝑖 = 𝑖 + 1 

𝜔𝑖+1 = 𝜔𝑖

𝜃𝑖+1 = 𝜃𝑖 

𝑖 = 𝑖 + 1 

RCTAC

 

Warm-up

 

Arbitrary 
 

Arbitrary 
 

 

Policy Evaluation 

 

 

 

 

PI with relaxed 

termination condition

𝐻(𝑥, 𝜔𝑖, 𝜃𝑖)2

𝑉(𝑥; 𝜔𝑖) 

𝜋(𝑥; 𝜃𝑖) 

∆𝑉 ≤ ε 

𝜋(𝑥; 𝜃0) 

𝑉(𝑥; 𝜔0) 

𝐿𝑎 ≤ ε 

Fig. 1: API and RCTAC algorithm framework diagram.

It is worth noting that for Algorithm 4, sometimes skipping
Phase 1 and directly using Phase 2 can also obtain a nearly
optimal policy. This is because even if La(ωi, θi) ≥ ε, Phase 2
would continuously make La(ωi, θi) approach a non-positive
number by alternately using (12) to optimize V (x;ω) and
using (13) to optimize π(x; θ). Note that the Phase 2 of
Algorithm 4 is not a CT version of the Value Iteration (VI)

method. As Lee et al. pointed out in [12], all VI methods for
CT optimal control can be deemed as a variant of integral VI.
The integral ADP methods, such as integral VI, integral PI and
integral generalized PI, iteratively perform policy evaluation
and policy improvement updates relying on the running cost
during a finite time interval [12], which is clearly different
from Algorithm 3 and Algorithm 4. Besides, these integral
ADP methods are usually subject to input-affine systems
since these methods require that the optimal policy can be
directly represented by the value function, which means that
the minimum point of the Hamilton function could be solved
analytically when the value function is given. This manner is
difficult to extend to input non-affine systems.

Remark 4. In the previous analysis, the utility function l(x, u)
is limited to positive definite functions, i.e., the equilibrium
state (denoted by xe) of the system must be xe = 0. If we take
x − xe as the input of value network V (x;ω), the RCTAC
Algorithm 4 can be extended to problems with non-zero xe,
where l(x, u) = 0 only if x = xe & u = 0. The corresponding
convergence and optimality analysis is similar to the problem
of xe = 0.

Remark 5. According to Lemma 3, all activation functions σV
and biases bV of V (x;ω) are set to σV (0) = 0 and bV (·) ≡ 0
to ensure V (xe;ω) ≡ 0. To remove these restrictions for value
networks, we propose another effective method that drives
V (xe;ω) to gradually approach 0 by adding an equilibrium
term to the critic loss function (10)

Lc
′(ω, θ) = Ex∼dx

[
H(x, ω, θ)2

]
+ ηV (xe;ω)2,

where η balances the importance of the Hamiltonian term and
the equilibrium term.

IV. RESULTS

To verify the proposed RCTAC Algorithm 4, we offer two
numerical examples, one with linear dynamics, and the other
one with a nonlinear input non-affine system (the vehicle path-
tracking control). We apply Algorithm 4 and Algorithm 2
to find the optimal solutions for these two systems. Results
indicate that our algorithm outperforms Algorithm 2 in both
cases.

A. Example I: Linear Time Invariant System

1) Description: Consider the CT aircraft plant control
problem used in [20], [21], [43], which can be formulated
as

min
u

∫ ∞
0

(x>Qx+ u>Ru)dt

s.t. ẋ =

−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

 x +

0
0
1

u,

where Q and R are identity matrices of proper dimensions.
For this linear case, the optimal analytic policy π?(x) =
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0.1352x1 + 0.1501x2− 0.4329x3 and the optimal value func-
tion V ?(x) = x>Px can be easily found by solving the
algebraic Riccati equation, where

P =

 1.4245 1.1682 −0.1352
1.1682 1.4349 −0.1501
−0.1352 −0.1501 0.4329

 .
2) Algorithm Details: This system is very special, in partic-

ular, if the weights of the policy NN are randomly initialized
around 0, which is a very common initialization method, then
the initialized policy π(x; θ0) ∈ Ψ(Ω). Therefore, to compare
the learning speed of Algorithm 2 and Algorithm 4, both
algorithms are implemented to find the nearly optimal policy
and value function. We approximate the value function and
policy using 3-layer fully-connected NNs. Each NN contains 2
hidden layers with 256 units per layer, activated by exponential
linear units (ELUs). The outputs of the value and policy
network are V (x;ω) and π(x; θ), using softplus unit and
linear unit as activation functions, respectively. The training
set consists of 256 states which are randomly chosen from the
compact set Ω at each iteration. We set the stepsizes αω and
αθ to 0.01 and employ Adam for NN optimization.

3) Result: Fig. 2 displays the learning accuracy of the
policy and value function at each iteration, measured by

eπ = Ex∈X0

 |π?(x)− πθ(x)|
max
x∈X0

π?(x)− min
x∈X0

π?(x)

 ,
eV = Ex∈X0

 |V ?(x)− Vω(x)|
max
x∈X0

V ?(x)− min
x∈X0

V ?(x)

 ,
where there are 500 states in the test set X0, which are ran-
domly chosen from Ω. We also draw violin plots in different
iterations to show the precision distribution and 4-quartiles.
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Fig. 2: RCTAC vs API performance comparison: Example I.
Solid lines and shaded regions correspond to average values
and 95% confidence interval over 20 runs. One iteration
corresponds to one NN update.

It is clear from Fig. 2 that both two algorithms can make
the value and policy network approximation errors (eπ and
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Fig. 3: Simulation results of different methods over 20 runs:
Example I. (a) State trajectory. (b) Value function and control
input.

eV ) fall with iteration. And after 105 iterations, both errors
of Algorithm 4 are less than 0.4%. This indicates that Algo-
rithm 4 has the ability to converge value function and policy to
nearly optimal solutions. In addition, the t-test results in Fig.
2 show that both eπ and eV of Algorithm 4 are significantly
smaller than those of Algorithm 2 (p < 0.001) under the same
number of iterations. From the perspective of convergence
speed, Algorithm 4 requires only about 104 iterations to make
both approximation errors less than 0.03, while Algorithm 2
requires around 105 steps. Based on this, Algorithm 4 is about
10 times faster than Algorithm 2.

Fig. 3 shows the simulation results of the learned policy
(after 105 iterations) over 20 runs. It is obvious that policies
learned by RCTAC perform much better than API. The curves
of state, control input, and cost generated by RCTAC are
almost consistent with the optimal solution. In summary,
Algorithm 4 is able to attain nearly optimal solutions and
enjoys a significantly faster convergence speed compared to
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Algorithm 2.

B. Example II: Nonlinear and Input Non-Affine System

1) Description: Consider the vehicle path tracking task
with nonlinear and input non-affine vehicle system derived
in [44], [45]. The desired velocity is 12 m/s and the desired
tracking path is shown in Fig. 5. Table I provides a detailed
description of the states and inputs for this task, and Table
II lists the vehicular parameters. The vehicle’s movement is
controlled by a bounded actuator, where ax ∈ [−3, 3] m/s

2

and δ ∈ [−0.35, 0.35] rad. The dynamics of the vehicle is
given by

x =


vy
r
vx
φ
y

 , u =

[
δ
ax

]
, f(x, u) =


Fyr+Fyf cos δ

m − vxr
−bFyr+aFyf cos δ

Iz

vyr + ax − Fyf sin δ
m

r
vy cosφ+ vx sinφ

 ,

where Fy‡ represents the lateral tire force and the subscript ‡ ∈
{f,r} corresponds to the front or rear wheels. It is calculated
using the Fiala model:

Fy‡ =− sgn(α‡) min
{
|µ‡Fz‡| ,∣∣∣∣∣tan(α‡)C‡

(
1 +

C2
‡ (tanα‡)

2

27(µ‡Fz‡)2
− C‡ |tanα‡|

3µ‡Fz‡

)∣∣∣∣∣ },
where Fz‡ denotes the tire load, µ‡ denotes the lateral friction
coefficient, and α‡ denotes the tire slip angle with

αf = −δ + arctan(
vy + ar

vx
), αr = arctan(

vy − br
vx

).

The lateral friction coefficient is estimated by:

µ‡ =

√
(µFz‡)2 − F 2

x‡

Fz‡
,

where Fx‡ represents the longitudinal tire force, expressed as

Fxf =

{
0, ax ≥ 0
max

2
, ax < 0

, Fxr =

{
max, ax ≥ 0
max

2
, ax < 0

.

The vertical loads on the front and rear wheels are approxi-
mated by

Fzf =
b

a+ b
mg, Fzr =

a

a+ b
mg.

The control objective is to minimize output tracking errors,
which is formulated as

min
u

∫ ∞
0

{
0.4(vx−12)2 + 80y2 + u>

[
280 0
0 0.3

]
u
}

dt

subject to ẋ = f(x, u).

TABLE I: List of state and input

Lateral velocity vy [m/s]
Yaw rate at CG (center of gravity) r [rad/s]
Heading angle between trajectory & vehicle φ [rad]
Longitudinal velocity vx [m/s]
Distance between trajectory & CG y [m]
Front wheel angle δ [rad]
Longitudinal acceleration ax [m/s2]

TABLE II: Vehicle parameters

Cornering stiffness at front wheel Cf -88000 [N/rad]
Cornering stiffness at rear wheel Cr -94000 [N/rad]
Mass m 1500 [kg]
Distance from front axle to CG a 1.14 [m]
Distance from rear axle to CG b 1.40 [m]
Polar moment of inertia of CG Iz 2420 [kg·m2]
Tire-road friction coefficient µ 1.0

2) Algorithm Details: We employ 6-layer fully-connected
NNs to represent Vω and πθ, and the state input layer of
each NN is followed by 5 fully-connected hidden layers,
32 units per layer. The activation function selection for the
policy network is similar to that in Example I, with the
exception that the output layer is activated by tanh(·) with
two units, multiplied by the vector [0.35, 3] to accommodate
the constrained control inputs. The training set consists of
the current states of 256 parallel independent vehicles with
different initial states, thereby obtaining a more realistic state
distribution. We use Adam method to update two NNs, while
the learning rates of value network and policy network are
set to 8 × 10−4 and 2 × 10−4, respectively. Besides, we use
η = 0.1 to trade off the Hamiltonian term and the equilibrium
term of the critic loss function (Remark 5).
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Fig. 4: RCTAC vs API performance comparison over 20 runs:
Example II.

3) Result: Fig. 4 shows the evolution of the average abso-
lute Hamiltonian |H| of 256 random states and the training
performance. The policy performance at each iteration is
calculated by the cumulative running cost in 20s time domain

C =

∫ 20

0

l(x(τ), u(τ))dτ,
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where the initial state is randomly selected for each run. Since
the initial policy is not admissible, i.e., π(x; θ0) /∈ Ψ(Ω),
Algorithm 2 can never make |H| close to 0, hence the
terminal condition of policy evaluation can never be satisfied.
Therefore, the finite horizon cost C has no change during the
entire learning process, i.e., Algorithm 2 can never converge
to an admissible policy if π(x; θ0) /∈ Ψ(Ω).

On the other hand, |H| of Algorithm 4 can gradually
converge to 0, while the finite horizon cost C is also reduced
to a small value during the learning process. Fig. 5 shows the
control inputs and state trajectory controlled by the learned
RCTAC policy. It can quickly guide the vehicle to the desired
state, taking less than 0.5s for the case in Fig. 5. The results
of Example II show that Algorithm 4 can solve the CT
dynamic optimal control problem for general nonlinear and
input non-affine CT systems with saturated actuators and
handle inadmissible initial policies.
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Fig. 5: Simulation results: Example II. (a) Control inputs. (b)
State trajectory. (c) Vehicle trajectory.

In conclusion, these two examples demonstrate that the
proposed RCTAC method is able to learn the nearly optimal
policy and value function for general nonlinear and input non-
affine CT systems without reliance on initial admissible policy.
In addition, if the initial policy π(x; θ0) ∈ Ψ(Ω), the learning
speed of Algorithm 4 is also faster than that of Algorithm 2.

V. EXPERIMENTAL VALIDATION

In this section, we demonstrate the practical effectiveness of
RCTAC by using the real-world path-tracking task [46], [47].
The experiment pipeline is shown in Fig. 6. The test vehicle
is GEELY Geometry C, which is equipped with a driving
mode button, enabling it to switch between manual driving
mode and automatic driving mode. We deploy the learned
policy on the onboard industrial personal computer (IPC) with
a 3.60 GHz Intel Core i7-7700 CPU. The deployed policy
network is trained by the proposed RCTAC algorithm, where
the expected velocity is set to 15 km/h, while other vehicle and
algorithm parameters are consistent with Example II in Section
IV-B. Provided with an ASENSING INS570D high-precision
vehicle-mounted positioning system, the state of the vehicle
can be accurately measured. After receiving the vehicle state
information, the IPC records and calculates control instructions
every 80ms, and sends the desired front wheel angle and
longitudinal acceleration through the Controller Area Network
(CAN), so as to realize the lateral and longitudinal control of
the vehicle.

steer angle

Real Car

Policy NetworkIPC

state

acceleration

Fig. 6. Real vehicle test pipeline.

The control inputs and state trajectory controlled by the
deployed RCTAC policy are shown in Fig. 7. From Fig. 7a,
there exists a system response delay of about 0.5s between
the expected and the actual control signal. Besides, the actual
acceleration signals are noisy due to hardware limitations.
Despite these difficulties, our policy still makes the vehicle
track the desired speed and trajectory smoothly and well (Fig.
7b, 7c).

For comparison, model predictive control (MPC) with a
prediction time domain of 20 steps is also deployed on the
IPC to carry out practical experiments [48], where the well-
known nonlinear programs solver IPOPT [49] is employed to
solve the constructed MPC problem. The average results of
10 independent experiments are shown in Table III. The root
mean squared error (RMSE) of the heading angle between
vehicle & trajectory and that of the distance between CG &
trajectory

φRMSE =

√√√√ 1

m

m∑
k=1

φ2
k, yRMSE =

√√√√ 1

m

m∑
k=1

y2
k,

are calculated to quantify the tracking performance. It can
be found that RCTAC matches MPC in terms of tracking
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Fig. 7: Experiment results: (a) Control inputs. The expected
value corresponds to the policy output. (b) State trajectory. (c)
Vehicle trajectory.

performance. Moreover, RCTAC shows great advantages in
online decision-making efficiency, whose average single-step
decision time is 91.17% less than that of MPC.

TABLE III: Comparison Results

φRMSE [rad] yRMSE [m] single-step decision time [ms]

RCTAC 0.0797 0.0568 3.67
MPC 0.0809 0.0601 41.57

In conclusion, the vehicle experiment verifies the control
effect of the proposed RCTAC algorithm in practical applica-
tions. It performs as well as MPC in our path-tracking task.
Moreover, the way of offline training and online application
makes the online calculation time of RCTAC much shorter
than that of online optimization methods, such as MPC. This
property is of significant importance for systems with limited

computing resources.

VI. CONCLUSION

The paper proposed the relaxed continuous-time actor-critic
(RCTAC) Algorithm 4, along with the proof of convergence
and optimality, for solving nearly optimal control problems
of general nonlinear CT systems with known dynamics. The
proposed algorithm can circumvent the requirements of “ad-
missibility” and input-affine system dynamics (described in A1
and A2 of Introduction), quintessential to previously proposed
counterpart algorithms. As a result, given an arbitrary initial
policy, the RCTAC algorithm is shown to eventually converge
to a nearly optimal policy, even for general nonlinear input
non-affine system dynamics. The convergence and optimal-
ity are mathematically proven by using detailed Lyapunov
analysis. We further demonstrate the efficacy and theoretical
accuracy of our algorithm via two numerical examples, which
yields a faster learning speed of the nearly optimal policy
starting from an admissible initialization, as compared to the
traditional approximate policy iteration (API) algorithm (Algo-
rithm 2). In addition, a real-world path-tracking experiment is
conducted to verify the practical performance of our method.
Results show that compared with the MPC method, RCTAC
has reduced the single-step decision time by 91.17% without
losing tracking performance. This indicates that our method
has the potential to be applied in practical systems with limited
computing resources.
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