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Abstract—Vehicle platooning technology is essential in achiev-
ing group consensus, on-road safety, and fuel-saving. Meanwhile,
Vehicle-to-Infrastructure (V2I) communication significantly fa-
cilitates the development of connected vehicles. However, the
coupled effects of the longitudinal vehicle’s mobility, platoon
control and V2I communication may result in a low reliable
communication network between the platoon vehicle and the
roadside unit, there is a tradeoff between the platoon control
and communication reliability. In this paper, we investigate a bi-
objective joint optimization problem where the first objective
is to maximize the success probability of data transmission
(communication reliability) and the second objective function is
to minimize the traffic oscillation flow. The vehicle’s mobility
state of the platoon vehicle affects the channel capacity and
transmission performance. In this context, we deeply explore
the relationship between control signals and resource schedul-
ing and theoretically deduce a closed-form expression of the
optimal communication reliability objective. Through this closed
expression, we transform the bi-objective model into a single
objective MPC model by using ϵ-constraint method. We design
an efficient algorithm for solving the joint optimization model and
prove the convergence. To verify the effectiveness of the proposed
method, we finally evaluate the spacing error, speed error, and
resource scheduling of platooning vehicles through simulation
experiments in two experimental scenarios. The results show that
the proposed control-communication co-design can improve the
platoon control performance while satisfying the high reliability
of V2I communications.

Index Terms—Cooperative vehicle-infrastructure systems
(CVIS), vehicle platooning, Vehicle-to-Infrastructure (V2I) com-
munication, multi-objective optimization
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I. INTRODUCTION

Advanced 5G, vehicular communication, platoon control
techniques, etc., have promoted the development of Cooper-
ative Vehicle Infrastructure Systems (CVIS) [1]. By adopting
effective management methodologies, CVIS can provide a
safe, coordinated traffic network that improves traffic capacity
and smoothness and enhances road safety [2]. A connected
vehicle platoon is an advanced technology in which a group
of vehicles operates together while constantly coordinating the
inter-vehicle speed. Self-organization of networked vehicles
into a platoon improves the road capacity and prevents traffic
congestion [3]–[5]. Moreover , the vehicles in a platoon can
provide passengers with a comfortable experience, especially
on long trips [6].

Autonomous vehicle formation requires two advanced
communication technologies: Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I). V2V communication allows
sharing of the speed and position information between the
vehicles connected in the platoon and other surrounding
vehicles [7], and V2I communication ensures the interac-
tion of information between the vehicles/platoons and the
infrastructure, providing valuable predictive information to the
platooning vehicles [8], [9]. For example, the infrastructure
processes the data collected from the platoon and other data
sources and makes it accessible to other devices, facilitating
coordination between regional vehicles. In addition, the upper-
layer applications associated with cooperative control of the
platooning vehicles need high-performance communication
for data transmission. This communication helps the cloud
to enable environmental perception and drive decisions [10].
In general, a platoon-based cooperative vehicle infrastructure
system requires a joint optimization strategy for both platoon
control and data transfer.

Nevertheless, data transmission by V2I communication in
vehicular platoon mobility environments faces several chal-
lenges. On the one hand, the design of control systems and
vehicle communication systems is based on different and
often competing principles. For example, frequent information
sampling can improve the platooning control performance
in a high vehicle mobility environment but requires an ex-
tensive communication bandwidth [11]. Meanwhile, sending
large amounts of real-time data over the channel may lead
to network congestion and consequent channel contention,
increased latency, and packet loss, which negatively affect the
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control performance [12]. Therefore, stable and reliable data
transfer between vehicles and the infrastructure is not easily
achieved during vehicle platooning. On the other hand, vehi-
cle platoon systems require relatively complex engineering.
The control objective of the platoon is to satisfy transient
and asymptotic dynamics, including vehicle mobility, safe
distance, and stability. However, the problem of optimizing
data transmission reliability has received little attention in
the vehicle platoon control literature [13]. In addition, the
conventional V2I communication networks focus only on the
mobility and security of individual vehicles, which conflicts
with the optimal performance of the platoon. Thus, the V2I
communication typologies may be inapplicable to platooning
vehicles in a high-mobility environment. Moreover, many of
the existing optimization problems of control and commu-
nication solve a single objective [14], [15]. To satisfy the
vehicular application demands of service quality, two coupled
objectives, i.e., the control objectives and communication
reliability objectives, must be solved simultaneously to achieve
vehicular mobility, platooning control, and communication.

In this paper, we present a bi-objective joint optimization
model that couples vehicle platoon control with vehicular com-
munication. Specifically, we consider vehicular mobility, pla-
tooning control, and V2I-communication reliability in different
models. Based on the vehicle mobility, V2I channel charac-
teristics and platoon control, we characterize the V2I com-
munication reliability of the platooning vehicles and present
a new bi-objective joint optimization model. Specifically, the
first objective is maximizing communication reliability and
the second objective is to minimize traffic oscillation (platoon
safety). In particular, we theoretically characterize the V2I
communication reliability, including stochastic V2I channel
fading, time-varying formation vehicle location and resource
scheduling schemes. We also derive a closed-form expression
for the reliability-optimal transmission scheduling solution
and the optimal reliability thus establishing a theoretical link
between channel conditions, platooning vehicles’ mobility and
data transmission. These theoretical derivations promote the
novel design of our joint optimization solution. Finally, using
this expression and leveraging the ϵ-constraint method, we
transform the original non-convex bi-objective model into a
computationally tractable model. The main contributions of
our work are summarized below.

• We propose a novel bi-objective joint optimization model
for predictive platooning control and reliability-oriented
communication in vehicle-infrastructure systems. The ob-
jective of the model is to stabilize the platooning vehicles
while guaranteeing the reliability of V2I communications.
The model jointly optimizes the control inputs of the pla-
tooning vehicles and schedules their data transmissions to
the infrastructure at the same time.

• We theoretically characterize the V2I communication
reliability from a probabilistic perspective. Considering
the characteristics of the V2I channel and the mobility
of the platooning vehicles. We also analytically derive an
expression for optimal communication reliability. Using
this expression and leveraging the ϵ-constraint method,

we transform the original non-convex bi-objective model
into a computationally tractable model.

• We theoretically prove that our joint optimization method
always converges. We conduct extensive simulations in
different platooning scenarios and verify the superior V2I
communication reliability and control stability of our
joint optimization model.

The remainder of this paper is organized as follows. Section
II overviews related work and Section III develops the system
model for a controlled platoon-based vehicular communication
network, including the bi-objective joint optimization model
for a platoon and a goal programming based on the ϵ-constraint
method. An algorithm for the joint optimization problem is
designed in Section IV and utilized in a simulation study
in Section V. Conclusions and future research directions are
presented in Section VI.

II. RELATED WORK

Cooperative control of connected and autonomous platoon-
ing vehicles has recently attracted substantial attention in con-
trol engineering. Platooning has been realized by different con-
trol methods [16]. For example, [17] employed a data-driven
method to describe the high-dimensional state of platoon
vehicles, then proposed a distributed predictive control method
that keeps the spacing between vehicles in mixed vehicle
platoons. The control objective is to coordinate the movement
of vehicles on the road at a constant speed. [18] presented a
distributed MPC model for vehicle platoon control problems
with communication delay. [19] proposed a Pareto optimal
information flow topology to improve the control performance
and fuel consumption indexes. In addition, [20] designed
a CACC controller by combining linear quadratic regulator
(LQR) and parameter space approach for the distributed co-
operative vehicular platoon. To achieve platoon control in
dense traffic scenarios, [21] proposed a predictive control
scheme that satisfies the smaller communication requirements
of the platoon vehicles while being robust to communication
disturbances. However, it is not only concerning the platoon
controller design in the cooperative vehicle-infrastructure sys-
tem but also the reliable communication between the platoon
and infrastructure that is worthy of attention.

Joint optimization problems of control and communica-
tion are gaining traction and some researchers are develop-
ing innovative design solutions for resource scheduling to
the infrastructure in a vehicle platoon mobility environment.
Different systems models and optimization goals for joint
design can be found in the literature [22]–[24]. Based on the
coupled characteristics of air-to-ground communications, [22]
developed a two-dimensional control scheme for platooning
vehicles and optimized the weighted global energy efficiency
of an air-to-ground communication system. [23] proposed
a control-communication co-design for reliable platooning.
Specifically, they developed a two-timescale reinforcement
learning framework to minimize the inter-vehicle distance
while satisfying the V2I quality-of-service. [24] analysed
the impact between communications and motion control of
CAV and proposed a communication-control joint optimization
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algorithm for CAV control. Although several optimization
methods have been developed to address the joint design
of vehicle trajectories, communication and computation, few
studies have provided insights into reliability-oriented pla-
tooning control, particularly a theoretical description of the
reliability of data transmission between platooning vehicles
and the infrastructure from a probabilistic perspective.

Moreover, models that optimize platoon control multi-
objectives have also been published. For example, [25] de-
signed a centralized MPC controller for a platoon at signal-
ized segregated intersections. This controller has three goals:
platoon safety, fuel consumption, and intersection throughput.
The multi-objective model was solved using the weighted-sum
method. [26] proposed an eco-driving optimization model for
mixed platooning vehicles under vehicle safety, fuel economy,
and operating time objectives. They designed the algorithms
and optimized the vehicle trajectory based on a two-stage
optimization ideology. [27] developed a non-dominated sorting
genetic algorithm that obtains a set of Pareto solutions for
optimizing the driving comfort performance under multiple
objectives. [28] proposed a multi-objective H∞ control strat-
egy for distributed vehicle platoon system to reduce the inter-
vehicle distances, while the stability of the system can be
ensured

However, in the vehicle infrastructure system, it is not
enough to only consider the control performance of the pla-
tooning vehicles, it is also necessary to consider the reliability
of data transmission between the platoon vehicles and the
infrastructure through the V2I channel. This is because vehicle
mobility, queuing control objectives and reliability of V2I
communication are mutually coupled. Currently, vehicle com-
munication security issues have been tackled in models that
jointly consider individual vehicle communication and mobil-
ity control. Considering vehicle mobility, channel contention,
and channel fading, [29] evaluated the reliability of data
transmission over V2I links and developed a stochastic model
of the probability of successful data transmission. Taking a
different approach, [30] developed a cluster-based communi-
cation framework that optimizes the quality of service of a
given controller among vehicular nodes. The communication
network aims to minimize the cost of exclusive-use channels.
Related problems were addressed by [31]–[33]. Although these
works contribute essential research value, they are insuffi-
cient because they separately consider vehicle platoon control
and communication optimization. Works that fully consider
communication resource scheduling for platoon control are
very scarce. Moreover, most of the studies on communication
protocols provide no insights into beacon-performance com-
pliance with the platoon control requirements [30]. The inter-
action between platoon control and vehicular communication
in vehicle infrastructure cooperative systems requires further
investigation. First, the coupled effects of vehicle mobility,
channel contention, and communication resource scheduling
should be incorporated into the overall design. Second, two
performance indicators (platoon control and communication)
should be included in the optimization formulation.

x
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Fig. 1: The implementation framework of the proposed joint
optimization method.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 shows the platoon-based vehicular communication
network scenario of the present study. The vehicles in a
platoon can offload application-layer data to the infrastruc-
ture via V2I communication. A longitudinal control design
improves traffic efficiency and guarantees the safety of the
platooning vehicles. However, the mobility of vehicles in
the platooning process will dynamically affect the relative
geographical distance between the vehicles and infrastructure,
and hence the data transmission performance of the communi-
cation link. Therefore, the mobility in the platooning process
and communication of the vehicles are inherently coupled. For
this purpose, we develop a framework that jointly optimizes
platooning and V2I communications.

A. Coupling Analysis of Vehicle Mobility, Platoon Control and
V2I Communication

1) Vehicular Mobility Formulation: In this scenario, N +
1 vehicles drive along a straight road. Vehicle 0 is the leader
and vehicles 1 to N are followers. All moving vehicles are
equipped with sensors enabling information sharing of real-
time traffic status, such as position, speed and control signals.
The finite control horizon is discredited into K time slots,
each of duration τ seconds. Let K = {1, · · ·K} represent the
set of time slot indexes and N = {1, · · ·N} represent the set
of platooning vehicle indexes. The longitudinal dynamics of
vehicle i in each time interval [kτ, (k + 1)τ) for k ∈ K is
then described by the following discrete-time linear model{

si(k + 1) = s(k) + τvi(k) +
τ2

2 ai(k), i ∈ N ;
vi(k + 1) = vi(k) + τai(k), i ∈ N ,

(1)

where si(k) and vi(k) represent the longitudinal position and
speed of vehicle i, respectively, at time step k, and ai(k)
represents the acceleration/deceleration (i.e., control variable)
of vehicle i at control sample point k.

During the platooning process, the mobility of vehicles will
dynamically affect the relative geographical distance between
the vehicles and their infrastructure and ultimately affects the
V2I communication performance of data transmission. There
also exists a ground infrastructure (e.g., a central cloud) that
receives and processes the data volume from the moving
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vehicles. As shown in Fig. 2, LV2I,i denotes the initial distance
between platooning vehicle i and the infrastructure and L0

is the relative vertical distance between the infrastructure and
the roadway. Thus the time-varying relative distance Li(ai(k))
between the infrastructure and vehicle i is calculated as

Li(ai(k)) =

√
[LV2I,i − si(k)]

2
+ L2

0, i ∈ N , (2)

where the initial distance Li(ai(k)) is related to the control
vector ai(k), and si(k) is denoted by model (1).

2) Coupling Analysis: The joint optimization problem si-
multaneously considers platoon control and V2I communi-
cation. The MPC controller allows speed tracking of the
leading vehicle by all followers. The relative distance between
two vehicles should converge to the desired distance di.
During the platoon formation, the control signal ai(k) will
dynamically affect the mobile trajectory and further affect
the relative distance Li(ai(k)) between the vehicle and the
infrastructure, ultimately affecting the probability of successful
data transmission. The mobility of the platooning vehicles also
affects the performance of data transmission.

B. Modeling of V2I Communication Reliability

1) V2I Channel Model: Applying the Shannon theorem
[34], the channel capacity Ci between the infrastructure and
vehicle i in the platoon is formulated as

Ci(ai(k)) =
B

M
log2

[
1 + wi · g2(Li(ai(k)))

]
, k ∈ K, (3)

where B is the available bandwidth, and M is the number of
vehicles accessing the infrastructure at the same time under
the constraint M ≥ N . The normalized power wi is related to
the noise-to-signal ratio S

ϖ , where S is the V2I transmission
power and ϖ is the average noise strength. g(Li(ai(k))) is
the distance-dependent cellular V2I channel gain.

2) V2I Transmission Performance: Supposing that the V2I
communication of each pair link through Rayleigh fading
channel [35], which makes g(Li(ai(k))) obey an exponential
distribution with the parameter Li(ai(k)). The variable ui(k)
defines the amount of data transmitted from vehicle i to the
infrastructure within time slot k. The success probability of
data transmission from platooning vehicle i to the cooperative
infrastructure is then given by

pi (ui(k), ai(k)) = Prob

{
Ci(ai(k)) ≥

ui(k)

τ

}
= exp

(
−2

ui(k)M

Bτ − 1

wi
L2
i (ai(k))

)
.

(4)

For each platooning vehicle i, let θout,i be the total
application-layer data to be sent. Partitioning the data content
into a sequence of smaller pieces, i.e., θout,i =

∑K
k=1 ui(k),

we can optimize a series of smaller files {ui(k) ≥ 0, i ∈
N , k ∈ K} and thus estimate the data transmission of vehicle
i during the whole time slot K. By the multiplication principle,
the overall success probability of data transmissions over all
time slots is

Pi (ui, ai(k)) =
K∏

k=1

pi (ui(k), ai(k))

= exp

(
−
∑K

k=1 L
2
i (ai(k))2

ui(k)M

Bτ

wi
+

∑K
k=1 L

2
i (ai(k))

wi

)
,

(5)

where the vector ui = [ui(1), . . . , ui(K)].
Using (5), we now characterize the overall V2I communi-

cation reliability of the whole platooning vehicles as follows

H(u, ai(k)) =
N∑
i=1

Pi (ui(k), ai(k))

=
N∑
i=1

exp

(∑K
k=1 L

2
i (ai(k))

wi
−
∑K

k=1 L
2
i (ai(k))2

ui(k)M

Bτ

wi

)
,

(6)

where the decision vector of data transmission u =
{u1, . . . ,uN}. As shown in the above equation, the commu-
nication reliability H(u;a) is closely related to the vehicle
mobility in the platoon.

C. Modeling of Platooning Control

From a control perspective, we aim to stabilize the vehicle
platoon by minimizing the inter-vehicle tracking errors. A
centralized MPC controller of the following vehicles enables
speed tracking of the lead vehicle and ensures a constant travel
distance di. To simplify the illustration, the distance and speed
between vehicle i− 1 and i are defined as{

gvi (k) = vi−1(k)− vi(k);

gsi (k) = si−1(k)− si(k).
(7)

Based on the discrete-time linear model (1), the following
constraints and objectives are imposed on the control frame-
work.
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1) Constraints of Platoon Control:
• All the following vehicles satisfy the acceleration con-

straints, i.e.,

amin ≤ ai(k) ≤ amax, i ∈ N , k ∈ K, (8)

where amax and amin are the maximal and minimal
accelerations, respectively.

• The speed error gvi (k) between vehicles i− 1 and i must
satisfy the given platoon performance requirement, i.e.,

evmin ≤ gvi (k) ≤ evmax, i ∈ N , k ∈ K, (9)

where evmin ≤ 0 and evmax ≥ 0 are the minimal and
maximal allowable speed errors between vehicles i − 1
and i, respectively. Constraints (9) improve the speed
performance of the platoon by reducing the traffic flow
oscillations of speed changes.

• The distance error between vehicles i− 1 and i satisfies
the following safety distance requirement:

esmin ≤ gsi (k)− di ≤ esmax, i ∈ N , k ∈ K. (10)

Constraints (10) improve the spacing error of the platoon
by ensuring that the distance between two vehicles is
asymptotically stable and finally becomes constant di.
In these constraints, esmin and esmax are the minimal and
maximal distance errors between vehicles i − 1 and i,
respectively. The distance error gvi (k) can take any value
within the bounds [di + esmin, di + esmax].

Hence, the state spaces between vehicles i − 1 and i are
defined as △si(k+1) = gsi (k)− di and △vi(k+1) = gvi (k).
Based on model (1), the platooning system of vehicle i is[

△si(k + 1)
△vi(k + 1)

]
=

[
1 τ
0 1

] [
△si(k)
△vi(k)

]
+

[
τ2

2
τ

]
ai−1(k)

+

[
−( τ

2

2 )
−τ

]
ai(k).

(11)

Assume that xi(k + 1) = [△si(k + 1),△vi(k + 1)]⊤, (11)
can be converted to

xi(k + 1) = Axi(k) +Bai−1(k) +Dai(k), (12)

where A =

[
1 τ
0 1

]
, B =

[
τ2

2
τ

]
, D =

[
−( τ

2

2 )
−τ

]
.

x(k) = col{x1(k), x2(k), . . . , xN (k)},
a(k) = col{a1(k), a2(k), . . . , aN (k)}.

(13)

Furthermore, the state of the total platoon system can be
compactly represented as

x(k + 1) = GAx(k) + GBa(k) + GDa0(k) (14)

where the system matrices GA and GB are defined by

GA = diag {A,A, . . . ,A} ∈ R2N×2N

GD = col{D,0,0, · · · ,0} ∈ R2N×1

GB =


D 0 0 · · · 0 0
B D 0 · · · 0 0
0 B D · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · B D



In our platoon system, the state x0(k) and control a0(k) of
leading vehicle can be designed in advance. At an equilibrium
state, the speed of leading vehicle is v0, therefore, we can set
a0(k) = 0 within this equilibrium. Based on the constraints
(9), (10) and (11), we define

amin = col{amin, i ∈ N};
amax = col{amax, i ∈ N};
xmin = col{esmin, e

v
min, i ∈ N};

xmax = col{esmax, e
v
max, i ∈ N},

(15)

then the set of state constraints and control constraints for all
platooning vehicles are{

xmin ≤ x(k) ≤ xmax, k ∈ K; (16)
amin ≤ a(k) ≤ amax, k ∈ K. (17)

In order to deduce a more compact form over the prediction
horizon K, we further drive

X = MAx(k|k) + MBa (18)

where {
X = col{x(1), x(2), . . . , x(K)},
a = col{a(1),a(2), . . . ,a(K)}.

(19)

Moreover, MA, MB and C are defined by

MA = col
{

G1
A,G2

A, . . . ,GK
A

}
∈ R2NK×2N

MB =


GB 0 0 · · · 0

GAGB GB 0 · · · 0
G2

AGB GAGB GB · · · 0
...

...
... · · ·

...
GK−1

A GB GK−2
A GB GK−3

A GB · · · GB


In addition, the set of state constraints (16) and control
constraints (17) of all vehicles are{

Xmin ≤ X ≤ Xmax; (20)
ãmin ≤ a ≤ ãmax. (21)

where

ãmin = col{amin, k ∈ K}; ãmax = col{amax, k ∈ K};
Xmin = col{xmin, k ∈ K};Xmax = col{xmax, k ∈ K},

(22)

2) Objective of Platoon Control: The objective of the
vehicular platoon is to reduce the change rates of spacing and
speed of all followers. The followers can track the speed of
the leader while maintaining the desired distance di. Hence,
the cost function of the MPC design of the platoon over the
prediction horizon k, k ∈ K takes the following quadratic
form,

J(X,a) =
[
X⊤QX + aRa

]
(23)

where Q and R are symmetric and positive definite matrices.
The objective of the platoon control is to minimize the
oscillations of the platoon under the prediction horizon K.
The first item reduces the state error between two adjacent
vehicles and the second item controls the magnitude of the
control input a.
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D. Bi-objective Joint Optimization Model

To achieve vehicle platoon control and data transmission in
the operative vehicle infrastructure system, we simultaneously
optimize two objectives: maximizing the success probability
of data transmissions (6) and minimizing the oscillation (23)
of the platoon. Based on the above analysis, we develop a
bi-objective joint optimization model for the platoon-based
vehicular communication network. The joint optimization
model combines the vehicle mobility, platoon control, and
communication reliability-related model and is formulated as
follows

M1 : max
u, a

: H(u,a)

min
a

: J(X,a)

s.t.



X = MAx(k|k) + MBa;
Xmin ≤ X ≤ Xmax;

ãmin ≤ a ≤ ãmax;

x(k +K|k) = 0;
ui(k) ≥ 0, i ∈ N , k ∈ K;
K∑

k=1

ui(k) = θout,i, i ∈ N .

(24)

Model (24) includes two coupled objectives of the vehicle
platoon: communication reliability and platoon safety. Based
on the function H(u,a), we develop a reliability-oriented
optimal V2I data scheduling scheme u∗

i (k) ≥ 0, i ∈ N , k ∈ K
for the platoon, which maximizes the probability of successful
data transmission. Through the cost function J(x,a), we
develop a series of optimal control inputs a∗i (k), i ∈ N , k ∈ K
of the platoon to minimize the tracking error. In addition,
to ensure the stability of the platoon, the terminal equality
constraint x(k + K|k) = 0 is added to the platoon control
problem. According to [36], these terminal equality constraints
can guarantee the closed-loop stability and the system stability
analysis is shown by Theorem 2 in the next section.

Clearly, M1 is a complex dynamic optimization model
that combines the two objectives of platoon control and V2I
communication under a set of constraints. In general, this
model is non-convex and is very difficult to solve directly.
Thus, in the following sections, we will describe our novel
optimization method for solving the bi-objective model.

IV. MODEL ANALYSIS

In this Section, we leverage the ϵ-constraint method [37]
to convert the bi-objective joint optimization model M1 to
a single objective model. Next, we provide the closed-loop
stability analysis of the proposed joint optimization model.

A. Objective analysis

Obviously, the platooning control objective conflicts with
the communication reliability objective, preventing the simul-
taneous optimization of both objectives. Therefore, we solve
the two objectives model using the ϵ-constraint method. The
optimization design of the ϵ-constraint method involves two
main steps.

Step 1: Based on the mobility of platooning vehicles and the
V2I communication resource scheduling design scheme and
applying first-order optimality theory, we theoretically derive
the maximum objective Hmax(u

∗,a) as the following sub-
model:

max
u

: H(u,a)

s.t.


K∑

k=1

ui(k) = θout,i i ∈ N ;

ui(k) ≥ 0, i ∈ N , k ∈ K.

(25)

where ui(k), i ∈ N , k ∈ K is a data transmission solution of
V2I communication, and ai(k), i ∈ N , k ∈ K denotes a con-
trol solution of the platoon. To facilitate the solution process,
we equivalently convert sub-model (25) to the following form

min
u

:
N∑
i=1

K∑
k=1

L2
i (ai(k))[2

ui(k)M

Bτ − 1]

s.t.


K∑

k=1

ui(k) = θout,i i ∈ N ;

ui(k) ≥ 0, i ∈ N , k ∈ K.

(26)

To derive the maximum objective Hmax(u
∗,a) and obtain

the closed-form optimal data transmission volume u∗
i (k), i ∈

N , k ∈ K, we provide the following Lemma and Theorem
based on sub-model (26). To facilitate the presentation, we
derive

F (u,a) =
N∑
i=1

K∑
k=1

L2
i (ai(k))[2

ui(k)M

Bτ − 1]. (27)

Lemma 1: Suppose that u∗
i ={u∗

i (1), u
∗
i (2), . . . , u

∗
i (K)}⊤ is

the optimal data transmission volume from vehicle i to the in-
frastructure in model (26). For two non-zero optimal solutions
u∗
i (ℓ1) > 0, u∗

i (ℓ1) ∈ u∗
i and u∗

i (ℓ2) > 0, u∗
i (ℓ1) ∈ u∗

i with
ℓ1 ̸= ℓ2, the following equations hold

∂F (ui(k), ai(k))

∂u∗
i (ℓ1)

=
∂F (ui(k), ai(k))

∂u∗
i (ℓ2)

.

In contrast, the zero optimal solution u∗
i (ℓ3) = 0, u∗

i (ℓ3) ∈
u∗
i with ℓ1 ̸= ℓ2 ̸= ℓ3 satisfies the following inequality

∂F (ui(k), ai(k))

∂u∗
i (ℓ3)

≥ ∂F (ui(k), ai(k))

∂u∗
i (ℓ1)

,

∂F (ui(k), ai(k))

∂u∗
i (ℓ3)

≥ ∂F (ui(k), ai(k))

∂u∗
i (ℓ2)

.

Proof: Please refer to Appendix A. ■
Combining Lemma 1, we further derive the maximum value

of the objective Hmax(u
∗,a) and obtain the relationship

between optimal solution u∗
i (k), i ∈ N , k ∈ K and control

signs ai(k), i ∈ N , k ∈ K of model (26) in Theorem 1.
Theorem 1: When the data transmission volume {u∗

i (k) ≥
0, i ∈ N , k ∈ K} of platooning vehicle i is optimized in model
(25), the following expression always holds:

u∗
i (k) =

Bτ
[∑K

k=1 log2 L
2
i (ai(k))− log2 L

2
i (ai(k))

]
MK

+
θout,i

K
,

(28)
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for i ∈ N , k ∈ K and u∗
i (k) ≥ 0. Accordingly, the optimal

objective Hmax(u
∗;a) takes the form

Hmax(u
∗,a) =

N∑
i=1

exp

(∑K
k=1 L

2
i (ai(k))

wi

)
×

exp

−
K · 2

θout,iM
KBτ

(∏K
k=1 L

2
i (ai(k))

) 1
K

wi

 .

(29)

Proof: The optimal solutions u∗
i (k) > 0, i ∈ N , k ∈ K

satisfy

∂F (u∗
i (k), ai(k))

∂u∗
i (k)

= λi

⇒
∂
(∑N

i=1

∑K
k=1 L

2
i (ai(k))[2

ui(k)M

Bτ − 1]
)

∂u∗
i (k)

= λi.

(30)

Assuming r = M
Bτ , we further obtain

L2
i (ai(k)) · 2u

∗
i (k)r · r ln 2 = λi. (31)

From (31), we deduce

u∗
i (k) =

log2(λi)− log2
(
L2
i (ai(k))

)
− log2(r ln 2)

r
. (32)

For platooning vehicle i in all time slots K, we have

K∑
k=1

L2
i (ai(k)) · 2u

∗
i (k)r =

Kλi

r ln 2
. (33)

Inserting Eq. (33) into (6) and rearranging, the success
probability of data transmission of this platoon is

Hmax(u
∗,a) =

N∑
i=1

exp

(
Kλi

ryi ln 2
+

∑K
k=1 L

2
i (ai(k))

yi

)
.

(34)

Multiplying the optimal solutions within each time slot in
(33), we then obtain

(λi)
K =

(
K∏

k=1

L2
i (ai(k)

)
2r

∑K
k=1 u∗

i (k)(r ln 2)K . (35)

As
∑K

k=1 u
∗
i (k) = θout,i, i ∈ N , we get

λi =

(
K∏

k=1

L2
i (ai(k)

) 1
K

2
rθout,i

K (r ln 2). (36)

Substituting (36) into (32) and (34), the proof is realized
immediately. ■

Step 2, to obtain the maximum upper bound Hmax(u
∗,a)

of model (25), we transform the communication reliability
objective (6) into a constraint bounded by (1−ϵ)Hmax(u

∗,a)
where ϵ is the objective reduction rate. Finally, the bi-objective

joint optimization model is converted into a single objective
model M2

M2 : min
u,a

: J(u,a)

s.t.



H(u,a) ≥ (1− ϵ)Hmax(u
∗,a);

X = MAx(k|k) + MBa;
Xmin ≤ X ≤ Xmax;

ãmin ≤ a ≤ ãmax;

x(k +K|k) = 0;
ui(k) ≥ 0, i ∈ N , k ∈ K;
K∑

k=1

ui(k) = θout,i, i ∈ N .

(37)

where ϵ ∈ [0, 1] is the decrease rate of the maximum of
the communication reliability objective Hmax(u

∗,a), which is
solved by the model (25). This method removes the difficulties
of solving the bi-objective model. Fig. 3 shows the implemen-
tation framework of the proposed objective optimization. In
the next section, we propose an iterative algorithm for solving
model M2 and prove its convergence to a local optimum.

Fig. 3: The implementation framework of the proposed method
.

B. System Stability Analysis

In this section, we provide the stability analysis of the
platooning vehicles in our joint optimization model M2. The
main strategy is to create a reasonable Lyapunov function for
the platoon system and prove that it is decreasing. we adopt
the local cost function as a Lyapunov function and provide the
following Theorem to discuss the closed-loop stability of the
MPC low (14).

Theorem 2: Suppose that Q and R are symmetric and
positive definite matrices, Then, for all initial states, x(k|k)
satisfy xmin ≤ x(k|k) ≤ xmax, the receding horizon control
strategy a obtained by the optimization problem (24) mini-
mizing the cost function J(u,a) to make the platoon system
asymptotically stable.

Proof: Please refer to Appendix B. ■
Based on the assumptions of Theorem 2, the optimal

objective is monotonically decreasing and consequently, the
control system of the platoon is asymptotically stable.
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V. PROPOSED OPTIMIZATION ALGORITHM

This section presents the algorithm for solving the joint
optimization model M2. First, we integrate the constraints into
the original model and simplify it to model M3. Applying
the theory of successive convex approximation, we transform
the extended model into a series of convex optimization sub-
models and solve them using a sequential quadratic program-
ming iterative algorithm. The optimal solution of the original
model is then obtained.

A. Iterative Optimization Algorithm

For simplicity, we reorganize the equation and inequality
constraints in model (37) into Cm(U) = 0 and Cz(U) ≥ 0,
respectively, where m ∈ M and z ∈ Z . The total numbers
of indices M and Z are 2NK + N and 5NK + 1, respec-
tively. The expressions of Cm(U) and Cz(U) are detailed in
Appendix C. Now, letting U = [ai(k), ui(k), i ∈ N , k ∈ K]⊤,
(37) is transformed into the equivalent form M3

M3 : min
U

: J(U)

s.t.

{
Cm(U) = 0,m ∈ M;

Cz(U) ≥ 0, z ∈ Z.

(38)

The optimization model (38) at iteration point t + 1 is
updated as follows

Ut+1 = Ut +αtdt, (39)

where dt is the direction of descent in neighborhood Ut

and αt is the step size in this direction. The update formula
requires a suitable range of feasible descent directions and step
sizes.

To solve this nonlinear optimization problem, we employ
the sequential quadratic programming (SQP) method (38),
which approximates the Hessian matrix of the Lagrangian
function at each iteration using a Newtonian approach. Using
this matrix, it then generates a quadratic programming sub-
problem whose solution is the search direction dt of the search
process [38], [39].

The Lagrangian function of the optimization problem (38)
is defined as

L(U,λ) = J(U)−
∑

m∈M
λmCm(U)−

∑
z∈Z

λzCz(U), (40)

λ = {λr, r ∈ M ∪ Z}⊤. After linearizing the nonlinear
constraint, the quadratic optimization sub-model is expressed
as follows:

S-M3 : min
d

: ∇UJ (Ut)
⊤ d + 0.5d⊤Otd

s.t.

{
Cm(Ut) +∇UCm(Ut)

⊤dt = 0,m ∈ M;

Cz(Ut) +∇UCn(Ut)
⊤dt ≥ 0, n ∈ Z,

(41)

where Ot is the Hessian matrix defined in the quasi-Newton
approximation of the Lagrangian function. From this expres-
sion, we derive the search direction d. Applying the Broyden–

Fletcher–Goldfarb–Shanno method, the update formula of Ot

is obtained as

Ot+1 = Ot −
OtRtR⊤

t Ot

R⊤
t BtRt

+
sts⊤t
s⊤t Rt

, (42)

where Rt = Ut+1 − Ut denotes the displacement and st
denotes the gradient difference between steps t and t+ 1.

st = ∇UL (Ut+1,λt)−∇UL (Ut,λt) . (43)

The Hessian matrix Ot+1 generated from the update equa-
tion (42) is guaranteed positive definite when the matrix Ot+1

is symmetric positive definite.
The convex quadratic programming sub-model is solved to

obtain a feasible search direction dt for the new Ut+1. Next,
we construct a suitable step size αt such that the objective
of model (38) decreases along the search direction dt at each
iteration t. The iterations must converge to a feasible region
in model (38). Following the literature [31], we determine
the value of αt using the exact penalty function method. The
penalty function is defined as

G(U,π) = J(U) +
∑

m∈M
πm |Cm(U)|

+
∑
z∈Z

πz [max(0, Cz(U))],
(44)

where π = {πr, r ∈ M ∪ Z}⊤ are the penalty coefficients.
Combining the Lagrange multipliers λ, we update the penalty
coefficients π using Powell’s update formula [40]. The updat-
ing process is

πr,t =

{
|λr,t| , t = 1
max

{
|λr,t| , 1

2 (|λr,t|+ πr,t−1)
}
, t ≥ 2

(45)

for r ∈ M ∪ Z . In (45), πr,t and λr,t represent the penalty
parameters and Lagrangian coefficients at iteration t, respec-
tively. In the updating process of π, the penalty function
G(U,π) always decreases. Based on (44) and (45), we present
the following search model with step size αt at iteration t

αt ∈ min
α∈R+

{G (Ut +αdt,πt)} .

B. Convergence Analysis

We now describe the SQP-based method that implements
the non-convex model (37). The overall optimization frame-
work is shown in algorithm 1. Later, we will discuss the
convergence of the proposed algorithm.

Lemma 2: Let (Ut, λt) be a point sequence satisfying
the KKT condition and let πt be a penalty factor satisfying
(45). For dt obtained by model (41), the penalty function
G(Ut,πt,dt) is monotonically decreasing.

Proof: Please refer to Appendix D ■
Based on the above results and the following Theorem 2,

we here analyze the convergence of algorithm 1.
Theorem 3: Suppose that πr,t ≥ |λr,t|, r ∈ M∪Z for each

t ≥ 1, and (Ut,dt) is the point sequence of tth sub-model
generated by Algorithm 1. Assuming that limt→∞ dt = 0,
then the point sequence{Ut, t ≥ 1} is converge to the KKT
points of the original model (6).
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Algorithm 1: The algorithm design for the joint opti-
mization model M2

Input: Permissible velocity 0 ≤ σ ≪ 1, maximum
number of iterations T ;

1 Initialization: Iterative number t = 1;
2 Rearrange original model M2 to M3;
3 for t ≤ T do
4 Initialize U1[t], O1[t] and set j = 1;
5 Transform model M3 to a quadratic programming

model S-M3;
6 repeat
7 Get dj [t] by solving sub-model S-M3;
8 Determine a proper step size αj in the

direction dj [t];
9 Update Uj+1[t] = Uj [t] +αjdj [t];

10 if ∥∇UL (Uj+1[t], λ)∥ > σ then
11 Revise Oj+1[t] by using BFGS method;
12 Update j = j + 1;

13 until ∥∇UL (Uj+1[t], λ)∥ ≤ σ;
14 Update U∗[t] = Uj+1[t] ;
15 Update t = t+ 1

Output: The optimal solution U∗ and the optimal
objective J(U∗)

Proof: According to the positive characteristic of Ot and
the boundedness of the Lagrangian multipliers λt, we can
deduce the following equations hold

lim
t→∞

Ot = O∗, lim
t→∞

λt = λ∗, lim
t→∞

Ut = U∗.

Obviously, (d∗,λ∗) is a KKT pair of sub-model (41) where
limt→∞ dt = d∗. The KKT conditions of the model (41) are
given as

λ∗
z,t ≥ 0;

Cz (U
∗) +∇UCz (U

∗)
T
d∗ ≥ 0;

λ∗
z,t

(
Cz (U

∗) +∇UCz (U
∗)

T
d∗
)
= 0;

Cm (U∗) +∇UCm (U∗)
T
d∗ = 0;

∇UJ (U∗) +O∗d∗ −
∑

r∈M∪Z λ∗
r,d∇UCr (U

∗) = 0.

(46)

Based on the above discussion, we only need to prove
d∗ = 0 that the theorem can be finished. Next, we perform
the following contradictory proof.

Assuming that d∗ ̸= 0, we have

lim
t→∞

Ut + α̂dt = U∗ + α̂d∗, (47)

where α̂ = minα∈R+
{G (U∗ +αd∗,π)}. According to

lemma 2, the penalty function is monotonically decreasing and
we can obtain

φ = G (U∗,π)−G (U∗ + α̂d∗,π) > 0. (48)

Combining (47) and (48), we deduce

lim
t→∞

{G (Ut + α̂dt,π) + φ/2}

= lim
t→∞

{G (Ut + α̂dt,π)−G (U∗ + α̂d∗π)}/2

+ lim
t→∞

{G (Ut + α̂dt,π) +G (U∗,π)}/2

=[G (U∗,π) +G (U∗ + α̂d∗,π)]/2 < G (U∗,π) .

(49)

At each iteration t ≥ 1, we have

G (Ut+1,π) ≤ G (Ut,π) + εk, (50)

and
φ

2
>

∞∑
p=k

εk. (51)

At a sufficiently large iteration t ∈ N+, we have

lim
t→∞

G (Ut+2,π) ≤ lim
t→∞

{G (Ut+1,π)}+
∞∑

p=t+1

εp

⇒G (U∗,π) ≤ lim
t→∞

{G (Ut + α̂dt,π)}+
∞∑

p=t+1

εp

⇒G (U∗,π) < {G (U∗ + α̂d∗,π)}+ φ/2 < G (U∗,π) .
(52)

As the above formula is contradictory, we have
limt→∞ dt = d∗ = 0. Inserting this result into the
KKT condition (46), the optimal solution U∗ becomes the
KKT points of the original model (37). The theorem is thus
proven. ■

VI. SIMULATION EXPERIMENT

This Section evaluates the proposed bi-objective joint op-
timization model in simulations. We first describe our sim-
ulation settings and then show the results of the proposed
joint optimization model. Then, we conduct comparison ex-
periments to observe the V2I communication reliability and
platoon control. All simulation experiments were implemented
in Matbal/Simulink-based solver version R2020 running on a
2.8-GHz 64-bit Core i7-8400U CPU machine under Windows
10 Professional.

A. Simulation Settings

In the application scenarios (see Fig. 1), a platoon is formed
from one leading vehicle and four followers. The vehicles aim
to coordinate their space headway and stabilize their velocities
while transmitting their application-layer data to a roadside
infrastructure.

TABLE I: Parameters settings in model

Parameter Value Parameter Value
N 4 M 150
K 35 s τ 0.5 s
ϵ 3× 10−5 di 10m

amin −2.5m/s2 amax +2.5m/s2

evmin −6m/s evmax +6m/s
esmin −3m esmax +3m
Dout,i 5× 106 bits B 10Mbit
ϖ −96 dBm S 1W
L0 50 m LV2I,0 200 m
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(d) Np = 5 s

Fig. 4: Computation performance under different Np in Scenario 1.

Based on literature [18], we properly adopt vehicle mobility
parameters. Besides, we also set the parameters for the V2I
communication by referring to literature [29]. Specifically,
the initial state of the lead vehicle is: s0(0) = 0m and
v0(0) = 10m/s. Besides, the initial space distance between
the vehicles in the platoon is 10 m and the initial speed of
the four following vehicles is 10 m/s. Table I summarizes
the other parameter settings in the platooning mobility of
vehicles and physical-layer communication. In addition, two
different experimental scenarios are considered to validate the
performance of the proposed method.

• Scenario 1: The leading vehicle momentarily acceler-
ates/decelerates for a fixed period before maintaining
a constant speed. This design scenario tests whether
data transmission can be guaranteed while maintaining
a stable speed and distance when the vehicle in front
suddenly accelerates or decelerates. In both scenarios, the
acceleration/deceleration of the platooning was collected
every 0.5 s and the sample time is designed as τ = 0.5 s.
The acceleration and deceleration of the leading vehicle
are listed below

a0(k) =



0.5m/s2 k ∈ [3.5, 5.5] s
1m/s2 k ∈ [6, 7.5] s
0.5m/s2 k ∈ [8, 10] s
−0.5m/s2 k ∈ [14.5, 16.5] s
−1m/s2 k ∈ [17, 18.5] s
−1m/s2 k ∈ [19, 21] s
0m/s2 others

• Scenario 2:The leading vehicle will accelerate or de-
celerate periodically. This scenario aims to test whether
the proposed joint optimization scheme can reduce the
periodic speed and interval fluctuation and ensure the
success of data transmission. In this scenario, the ac-
celeration/deceleration of the leading vehicle changes
periodically with ±1m/s2 from k = 8 s to k = 20 s. In
addition, since the sampling time τ is 0.5 s, the change
period is 2 s, then the vehicle maintains its original speed
after k = 25 s.

In both experimental scenarios, the motion states of the lead-
ing vehicle were varied to observe whether the four following
vehicles could simultaneously achieve trajectory tracking and
resource scheduling with the cooperative infrastructure.

B. Selection of Prediction and Control Horizon Parameters
The performance of the joint optimization model is affected

by the control horizon Nc and the prediction horizon Np.
On the one hand, the predictive horizon should be large
enough so that the model can accurately predict the control
step of more time slots. When the predictive time horizon
increases, the MPC controller of the platoon can predict longer
distances, and its performance will improve accordingly. On
the other hand, if the prediction horizon is excessively long,
model mismatch and disturbance of the MPC controller may
occur, increasing the calculation time of the optimization and
the difficulty of implementing the control input online. The
same tradeoff applies when selecting the control horizon. To
minimize the above problems, we conducted a tuning analysis
of the MPC parameters for different predictive horizons (Np =
2 s, Np = 3 s, Np = 4 s, Np = 5 s). The control horizon was
Nc = 0.5 s. Fig. 4 compares the computational performances
of algorithm 1 in the different Np cases of Scenario 1. The
means and variances of the computational times in each step
are presented in Table II. The computational time increased
with increasing prediction horizon Np and surpassed the
control horizon Nc = 0.5 s at Np > 5. Therefore, Np > 5
yielded a low control performance, and the joint optimization
algorithm could not operate in real time. In all following case
studies, the parameters of the control and prediction horizons
were set to Nc = 0.5 s and Np = 4 s, respectively.

TABLE II: The mean and variance of computation time

Prediction horizon Computation times (s)
Mean Variance

Np = 2 s 0.0358 1.72E-06
Np = 3 s 0.1381 0.0051
Np = 4 s 0.2981 0.0326
Np = 5 s 0.4738 0.0942

C. Convergence Validation
Fig.7 compares the evolutions of the descent-function value

for different partial time slots k. The objective function of
the joint optimization model decreased within an appropriate
number of iterations and converged to a locally optimal point,
confirming that the proposed joint optimization method can
reach a steady state. The average number of iterations among
all time slots is 24, indicating that a local solution can be found
within a finite number of iterations. Therefore, the numerical
performance of the proposed joint optimization algorithm is
deemed satisfactory for real-time computation.
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Fig. 7: The convergence of the Algorithm in Scenario 1.

D. Experimental Results
The results of the joint optimization model in Scenario

1 are depicted in Fig. 5. Fig. 5(a) shows the vehicle ac-

TABLE III: Success probability of data transmission of pla-
tooning vehicle

Scenario 1 Scenario 2
Vehicles Probability Vehicles Probability

Follower1 0.907462 Follower1 0.910130
Follower2 0.904404 Follower2 0.906358
Follower3 0.900107 Follower3 0.901351
Follower4 0.894586 Follower4 0.895129

celerations(i.e., control inputs) {ai(k), i ∈ N , k ∈ K},
speeds {vi(k), i ∈ N , k ∈ K} and longitudinal positions
{si(k), i ∈ N , k ∈ K} of the platoon vehicles. It can be
shown that the accelerations of the vehicle are in the range of
[-2.5m/s2, 2.5m/s2], each follower is able to track the speed
of the previous vehicle and finally all followers can track the
speed of the leading vehicle, and all vehicles drive at fixed
intervals of about 10 m.

Fig. 5(b) shows the optimal data transmission values
{u∗

i (k), i ∈ N , k ∈ K} of the platooning vehicles at each
time slot k. Table III tabulates the success probabilities of
data transmission of each vehicle. In the whole platoon,
the mean probability of successful transmission is 0.90164.
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Fig. 5: The experimental results in Scenario 1.
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Moreover, the control strategy under the joint optimization
method achieved the platooning objective while the resource
scheduling scheme achieved the communication objective
(Fig. 5(a) and 5(b)), consistent with the theoretical analysis.

In Scenario 2, the leading vehicle periodically accelerates
and decelerates. Fig. 6(a) shows the corresponding vehicle
accelerations (i.e., control inputs) {ai(k), i ∈ N , k ∈ K},
speeds {vi(k), i ∈ N , k ∈ K} and longitudinal positions
{si(k), i ∈ N , k ∈ K} of each following vehicle. Fig. 6(b)
shows the optimal data transmission values {u∗

i (k), i ∈ N , k ∈
K} of the four following vehicles and Table III lists the success
probabilities of data transmission of each vehicle. In this sce-
nario, the mean probability of successful data transmission is
0.903242. The results of both simulation experiments showed
that regardless of whether the acceleration/deceleration of the
leading vehicle suddenly changed (Scenario 1) or occurred
periodically (Scenario 2), the MPC controller under the joint
optimization model effectively reduce the relative spacing
and speed errors from the leading vehicle to its successor;
meanwhile, every platoon vehicle can successfully transfer
its data to the cooperative infrastructure. Interestingly, the
total probability of successful data transmission is lower in
Scenario 1 than in Scenario 2 (Table III), suggesting that rapid
changes in the vehicle states increase the outage probability
of data transmission. As confirmed in these experiments, the
joint optimization model provided effective platoon control
and reliable V2I communication.

E. Parameter Analysis

In this subsection, we add numerical experiments to verify
further the effectiveness of the proposed joint control and com-
munication method under different parameters, i.e., platooning
vehicle number N and objective reduction rate ϵ.

1) Impact of Platooning Vehicle Number N :
First, we conduct experiments in which the number of

vehicles gradually increases, i,e., from N = 4 to N = 8.
We take into account the inter-vehicle average spacing error
esN (k), average speed errors evN (k) to validate the control
performance, and consider the average success probability
of data transmission HN to validate the V2I communication
reliability. These metrics take the following forms.

esN (k) =

∑N
i=1(si−1(k)− si(k)− di)

N
,

evN (k) =

∑N
i=1(vi−1(k)− vi(k))

N
,

HN =
Hopt

N
.

(53)

The experimental results are shown in Fig. 8. Fig. 8(a)
and 8(b) plot the average inter-vehicle spacing errors esN (k)
and average speed errors evN (k), respectively, as the platoon
expanded from small (N = 4) to large (N = 8). Fig. 8(c)
demonstrates the average data transmission success probability
HN under different platooning number N . From Fig. 8(a),
we can see that the inter-vehicle average spacing error esN (k)
of two adjacent vehicles are all within the interval [7, 13] m
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Fig. 8: The experimental results under different vehicle number N .
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Fig. 9: The experimental results under different objective reduction rate ϵ
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and finally the inter-vehicle spaces are maintained with 10 m,
which implies that the platooning vehicles do not collide even
with a large-scale number. In addition, 8(b) demonstrates the
mean speed errors evN (k) under different platooning numbers.
It is seen that the value of evN (k) can asymptotically converge
to zero despite emergency acceleration and deceleration by the
leading vehicle. Notably, the magnitude of the inter-vehicle av-
erage spacing error esN (k) and evN (k) decay when the vehicle
number N increases, and the average success probability of
data transmission HN is decreasing. For example, the inter-
vehicle spacing error is 0.0147 m, and the average data trans-
mission success probability is 0.90164 when the platooning
number N = 4, but the inter-vehicle spacing is 0.0084 m,
and the mean data transmission success probability is 0.89631
when the platooning number N = 8. The main reason is
that more access vehicles result in less available bandwidth
being allocated to a single vehicle, and the average success
probability of data transmission decreases under increasing the
platooning vehicles N . It can be summarized that the proposed
joint optimization method can stably realize vehicle platooning
control and guarantee the reliability of data transmission with
either a small-scale vehicle number (e.g., with N = 4) or a
large-scale vehicle number (e.g., with N = 8).

2) Impact of Objective Reduction Rate ϵ:
Secondly, we design experiments to investigate the effect

of different objective reduction rate ϵ values on the control
and communication performance with the joint optimization
method. The experimental results are detailed in Fig 9. In
Fig. 9(a) and Fig. 9(b), we illustrate the impacts of different
objective reduction rate ϵ on the average spacing esN (k) and
average speed errors evN (k) of two adjacent vehicles under
platooning vehicle number N = 4. From Fig. 9(a) and Fig.
9(b), it is seen that the total state errors achieved by the
joint optimization method decline with increasing the objective
reduction rate ϵ. This is because the conditions for satisfying
the constraints in the model become more stringent as ϵ
increases.

The total state errors in the joint optimization method
declined with increasing objective reduction rate ϵ. This trend
can be explained by the increasing stringency of the conditions
for satisfying the model constraints as ϵ increases. The impact
of ϵ on the communication reliability of the joint optimization
method is displayed in Fig 9(c). Increasing ϵ will increase the
average probability of successful data transmission HN by the
whole platoon. We infer that increasing the objective reduction
rate ϵ decreases the lower bound (1 − ϵ)Hmax(u

∗,a) of the
communication reliability, thereby relaxing the communication
constraint. Thus, the value of ϵ can be adjusted to improve the
control and communication performance of our proposed joint
optimization model.

F. Performance Comparison with Different Methods
We now compare the performances of the proposed joint

optimization method (marked by JOM) with those of three
existing optimization methods in Scenario 1. Specifically, all
four cases are:
JOM(ours): This method uses a predecessor-leader follow-
ing platoon vehicle tracking control protocol to design a
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0

0.5

1

1.5

2

2.5
DLQR
DAC
MTRC
JOM

Fig. 10: The average spacing error of platoon vehicles under
different method.
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Fig. 11: The communication reliability of platoon vehicle
under different methods.

centralised MPC controller to optimise vehicle mobility and
maximise the communication reliability between the vehicles
and infrastructure.
DLQR: This method uses the predecessor-following vehicle
tracking control protocol to design the distributed Linear
Quadratic Regulator (LQR) controllers to optimise vehicle
mobility and uniformly allocates the transmission data.
DAC: This method adopts the bidirectional vehicle tracking
control protocol to design the distributed acceleration con-
trollers to optimise vehicle mobility and uniformly allocate
the transmission data.
MTCR: This method maximises the communication reliability
between the vehicles and infrastructure and observes the speed
error and position error of the platoon vehicles.

To better represent the differences in the optimization
schemes, we show the average spacing error in Fig. 10 to
assess the control performance of the platoon. In addition,
we provide the V2I communication reliability objectives of
a different optimization method in Fig. 11 to assess the
communication performance between this platoon and the
infrastructure.

Overall, our proposed bi-objective joint optimization model
achieves a high probability of successful data transmission
while maintaining vehicle safety with a low spacing error
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in terms of platoon control. Specifically, from Fig.9, the
average spacing error of this platoon is 0.040847 m, this is
an improvement of 9.87% relative to method DLQR and an
improvement of 65% relative to method MTRC. The average
spacing error under DAC is 1.5988 m, much higher than the
other three methods, which indicates that this method has
the worst overall platoon control performance. By observ-
ing Fig. 11, we obtain the V2I communication performance
under the four optimization methods. Obviously, under the
proposed joint method, the communication reliability (success
probability of data transmission) of all vehicles is 3.70457,
which is higher than the other three methods. Overall, our
proposed bi-objective joint optimization model achieves a high
probability of successful data transmission while maintaining
vehicle safety with a low spacing error in terms of platoon
control.

G. Trade-off between Platoon Control and Communication
Reliability

3.48 3.5 3.52 3.54 3.56 3.58 3.6
4

4.2

4.4

4.6

4.8

5
JOM
WOM
FOM

3.488
4.29

4.295

4.3

Fig. 12: The objective values under different methods.

In this paper we address the joint bi-objective optimization
model M1 based on ϵ-constraint method. To illustrate the
effectiveness of this method, we compare the JOM with two
other objective optimization methods. The first method is the
weighted optimization method (marked by “WOM”), which
optimises the weighted sum of the two objectives by introduc-
ing the weighted parameters d+ and d−. The objective form
for WOM method is: d+ × J(X,a) + d− ×H(u,a), where
d+ is in the range [1, 100] and d− is in the range [1, 104]. The
second method is the fractional optimization method (marked
by “FOM”), which combines the two objectives into a single
fractional form, with the optimization objective being J(X,a)

H(u,a) .
For our JOM method, ϵ takes values from 10−6 to 10−4

and obtain a pareto frontier. Fig. 12 shows the two objective
values under the different methods. It can be seen that the
JOM method can achieve higher transmission reliability while
ensuring the safety of the vehicle platoon. In addition, we
are able to identify more non-dominant points. Compared to
the WOM and FOM methods, our method can achieve stable
travel of platoon vehicles at a distance of di while guaranteeing

highly reliable data transmission. Specifically, our method can
improve the communication reliability of the platoon system
by approximately 3.6%.

VII. CONCLUSION

This paper investigated a communication-control joint opti-
mization problem for a platoon-based cooperative vehicle in-
frastructure system. Our bi-objective optimization model aims
to minimize the oscillations of the platoon while maximizing
the V2I communication reliability. To this end, it combines
model predictive platooning control with data transmission
scheduling. We theoretically evaluated the V2I communication
reliability as the overall success probability of the platoon-
based data transmissions and derived a closed-form expression
of optimal reliability. Using the analytical expression, we
transformed the original bi-objective model into a tractable
MPC problem that could be solved by an efficient iterative
optimization algorithm. We also proved that the proposed
algorithm always converges and verified the effectiveness of
the algorithm in simulation studies. The experimental results
confirmed that our proposed method can significantly improve
the control stability and communication reliability of vehicle
platooning.

This work is our first attempt at platoon-based
communication-control joint optimization. As potential
research directions, we suggest distributed control based on
V2V communication technology, which is more appropriate
for large-scale vehicle platoons, and control distribution
based on local information of the platoon. We will explore
the performance of distributed platoon control and the
reliability of V2V communication. We will study the
control, communication and computation ability of the joint
optimization problem in the platoon-based cooperative vehicle
infrastructure system.

APPENDIX A
Let Λ = [ηi(k) ≥ 0, i ∈ N , k ∈ K]⊤, and let Υ =

[λi, i ∈ N ]⊤ and λi ∈ R be a column vector collecting
Lagrange multipliers. The Lagrange function of the sub-model
is constructed as follows

L (u,a,Λ,Υ) = F (u,a)

−
N∑
i=1

K∑
k=1

ηi(k)ui(k)−
N∑
i=1

λi(
K∑

k=1

ui(k)− θout,i)
(54)

Under the Karush–Kuhn–Tucker (KKT) conditions, the re-
sults are obtained as

∇uL (u,a,Λ,Υ) = 0;

ηi(k)ui(k) = 0;
K∑

k=1

ui(k) = θout,i;

ui(k) ≥ 0;

ηi(k) ≥ 0;

i ∈ N , k ∈ K.

(55)

First, the complementary relaxation condition guarantees
that all optimal solutions satisfy ηi(k)u

∗
i (k) = 0 for
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u∗
i (k) ∈ u∗

i . Thus, for all non-zero optimal solutions u∗
i (k) ∈

u∗
i , u

∗
i (k) > 0, we have ηi(k) = 0 and for all zero optimal

solutions u∗
i (k

′
) ∈ u∗

i , u
∗
i (k

′
) = 0, we have ηi(k

′
) ≥ 0.

Second, the KKT system (55) ensures that every optimal
solution u∗

i (k) also satisfies the gradient condition

∇u∗
i (k)

L (u∗
i (k), ai(k),Λ,Υ) = 0

⇒∇u∗
i (k)

F (u∗
i (k), ai(k))− ηi(k)− λi = 0, i ∈ N , k ∈ K.

(56)

Based on the above discussion of complementary relaxation
conditions, the following equations hold for any optimal
solution u∗

i (ℓ1) ∈ u∗
i , u∗

i (ℓ2) ∈ u∗
i and u∗

i (ℓ3) ∈ u∗
i

{
∇ui(ℓ1)F (u∗

i (ℓ1), ai(ℓ1))− ηi(ℓ1) = 0, u∗
i (ℓ1) > 0;

∇ui(ℓ3)F (u∗
i (ℓ3), ai(ℓ3)) = ηi(ℓ3) + λi, u∗

i (ℓ3) = 0,

(57)

where ℓ1 ̸= ℓ3 and ηi(ℓ3) + λi ≥ λi.

Therefore, the partial derivatives of the non-zero optimal
solutions are all identical and cannot exceed the optimal
solutions for u∗

i (k) = 0.

APPENDIX B

Suppose that the function X⊤QX + aRa ≥ 0, and if
and only if X = 0, a = 0, then X⊤QX + aRa = 0
holds. By solving the optimization problem M2, the optimal
solution of at time j is a∗

j , the optimal state trajectory of
the corresponding system is X∗

j and the objective value
J(X∗

j ,a
∗
j ) is

J(X∗
j ,a

∗
j ) =[X∗

j ]
⊤Q[X∗

j ] + [a∗
j ]

⊤Q[a∗
j ], (58)

According to [41], the Lyapunov function V ∗(X∗
j ,a

∗
j ) is

defined as the following form

V ∗
j (X

∗
j ,a

∗
j ) = J(X∗

j ,a
∗
j ), (59)

At time j + 1, we can obtain optimal solution a∗
j+1 and

optimal state trajectory X∗
j+1 by solving the optimization

model M2. The following equation holds

V ∗
j+1(Xj+1,aj+1) = min J(Xj+1,aj+1)

= min X⊤
j+1QXj+1 + a⊤

j+1Raj+1

For the predicted time domain k (k = 1, · · · ,K),

V ∗
j+1(Xj+1,aj+1)

=min

{
K∑

k=1

x(j + k + 2)⊤Qj+1x(j + k + 2)

+ a(j + k + 1)⊤Rj+1a(j + k + 1)

}

=min

{
K∑

k=1

x(j + k + 2)⊤Qj+1x(j + k + 2)

+ a(j + k + 1)⊤Rj+1a(j + k + 1)

}

=min

{
K∑

k=1

x(j + k + 1)⊤Qjx(j + k + 1)

+ a(j + k)⊤Rja(j + k)

+ a(j +K + 1)⊤Rj+1a(j +K + 1)

+ x(j +K + 2)⊤Qj+1x(j +K + 2)

− x(j + 2)⊤Qjx(j + 2) + a(j + 1)⊤Rja(j + 1)

}
≤V ∗

j+1(Xj+1,aj+1)

−

{
x(j + 2)⊤Qjx(j + 2) + a(j + 1)⊤Rja(j + 1)

}

+min

{
a(j +K + 1)⊤Rj+1a(j +K + 1)

+ x(j +K + 2)⊤Qj+1x(j +K + 2)

}
For this platoon, a series of terminal equality constraints is

contained in the optimization problem (M2)

x(j +K + 2)⊤Qj+1x(j +K + 2) = 0. (60)

Thus, the following equation holds with respect to the
optimization objective of the terminal

+min

{
a(j +K + 1)⊤Rj+1a(j +K + 1)

+ x(j +K + 2)⊤Qj+1x(j +K + 2)

}
= 0.

(61)

Furthermore, the quadratic objective function
∑K

k=1 x(j +
k+2)⊤Qj+1x(j+k+2)+a(j+k+1)⊤Rj+1a(j+k+1) ≥ 0
for all k ∈ K. When k = 1, the following inequality holds

x(j + 2)⊤Qj+1x(j + 2) + a(j + 1)⊤Rj+1a(j + 1) ≥ 0.
(62)

Finally, we can obtain the relationship

V ∗
j+1(X

∗
j+1,a

∗
j+1)− V ∗

j (X
∗
j ,a

∗
j ) ≤

− x(j + 2)⊤Qj+1x(j + 2) + a(j + 1)⊤Rj+1a(j + 1)

⇒V ∗
j+1(X

∗
j+1,a

∗
j+1) ≤ V ∗

j (X
∗
j ,a

∗
j )

(63)
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APPENDIX C

We formulate the equality constraints on the system state
as

Cm(U) = xi(k + 1)−Axi(k)−Bai−1(k)−Dai(k) (64)

for m = 1, . . . , 2×N × (K − 1). The equality constraints of
the terminal conditions by

Cm(U) = xi(K) (65)

for m = 2×N×(K−1)+1, . . . , 2×N×K, and the equality
constraints of the total data transmission

Cm(U) =
K∑

k=1

ui(k)− θout,i (66)

for m = 2 × N × K + 1, . . . , 2 × N × K + N . The set of
indexes related to the equality constraints can be represented
by M = {1, . . . , 2×N×K+N}. Similarly, the set of indexes
related to inequality constraints is defined as Z and cardinal
total number of Z is 5×N×K+1. With the index z from 1 to
5×N ×K+1, the inequality constraints in joint optimization
model can be rearranged as

Cz(U)

=



ai(k)− amin, z = 1, . . . , N ×K;
amax − ai(k), z = N ×K + 1, . . . , 2×N ×K;
xi(k)− xmin, z = 2×N ×K + 1, . . . , 3×N ×K;
xmax − xi(k), z = 3×N ×K + 1, . . . , 4×N ×K;
ui(k), z = 4×N ×K + 1, . . . , 5×N ×K
H(ui(k), ai(k))
−(1− ϵ)Hmax(u

∗
i (k); ai(k)), z = 5×N ×K + 1.

(67)

APPENDIX D

Note that (Ut, λt) satisfy the KKT conditions, and the
following gradient condition holds

∇UJ (Ut) +Otdt −
∑

r∈M∪Z
λr,d∇UCr (Ut) = 0. (68)

Based on the penalty (44) and the gradient condition, we

further yield

G′ (Ut,πt,dt) =∇UJ (Ut)
T
dt

+
∑

m∈M
πm,t

∣∣∣∇UCm (Ut)
T
dt

∣∣∣
+
∑
z∈Z

πz,t

[
max(0,−∇UCz(Ut)

Tdt)
]

=

( ∑
r∈M∪Z

λr,d∇UCr (Ut)−Otdt

)T

dt

+
∑

m∈M
πm,t

∣∣∣∇UCm (Ut)
T
dt

∣∣∣
+
∑
z∈Z

πz,t

[
max(0,−∇UCz(Ut)

Tdt)
]

=− dT
t Otdt +

∑
r∈M∪Z

λr,d∇UCr(Ut)
Tdt

+
∑

m∈M
πm,t

∣∣∣∇UCm (Ut)
T
dt

∣∣∣
+
∑
z∈Z

πz,t

[
max(0,−∇UCz(Ut)

Tdt)
]
.

(69)
Under the constraints in (37), we have Cm(Ut) +

∇UCm(Ut)
⊤dt = 0. Under the inequality constraints, the

following complementary relaxation conditions hold
λz,t ≥ 0;

Cz (Ut) +∇UCz (Ut)
T
dt ≥ 0;

λz,t

(
Cz (Ut) +∇UCz (Ut)

T
dt

)
= 0,

(70)

for all m ∈ M, z ∈ Z . In the update formula (45), πr,t and
|λr,t| satisfy πr,t − |λr,t| ≥ 0. Thus, (69) can be expressed as

G′ (Ut,πt,dt) ≤ −dT
t Otdt ≤ 0, (71)

which proves the lemma.
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