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Driver Profiling and Bayesian Workload Estimation
Using Naturalistic Peripheral Detection Study Data
Nermin Caber†, Bashar I. Ahmad†, Jiaming Liang†, Simon Godsill, Alexandra Bremers, Philip Thomas, David

Oxtoby and Lee Skrypchuk

Abstract—Monitoring drivers’ mental workload facilitates ini-
tiating and maintaining safe interactions with in-vehicle in-
formation systems, and thus crucial for delivering adaptive
human machine interaction solutions with reduced impact on
the primary task of driving. In this paper, we tackle the
problem of workload estimation from driving performance data.
First, we present a novel on-road study for collecting subjective
workload data via a modified peripheral detection task in
naturalistic settings. Key environmental factors that induce a
high mental workload are identified via video analysis, e.g.
junctions and behaviour of vehicle in front. Second, a supervised
learning framework using state-of-the-art time series classifiers
(e.g. convolutional neural network and transform techniques) is
introduced to profile drivers based on the average workload they
experience during a journey. A Bayesian filtering approach is
then proposed for sequentially estimating, in (near) real-time, the
driver’s instantaneous workload. This computationally efficient
and flexible method can be easily personalised to a driver (e.g.
incorporate their inferred average workload profile), adapted to
driving/environmental contexts (e.g. road type) and extended with
data streams from new sources. The efficacy of the presented
profiling and instantaneous workload estimation approaches are
demonstrated using the on-road study data, showing F1 scores
of up to 92% and 81%, respectively.

Index Terms—mental workload, neural networks, Bayesian
inference, transforms, tracking, profiling, personalisation.

I. INTRODUCTION

EVERY year 1.35 million people die in road traffic ac-
cidents according to the World Health Organization [1];

this makes it the main cause of death for people aged 15-
29 years. The majority of these accidents can be attributed
to human factors, such as distraction [2]. This is exacerbated
by modern In-Vehicle Information Systems (IVIS) of growing
complexities, such as navigation and driver assistance systems
[3]. Their use can increase drivers’ workload and thus affect
their ability to carry out the primary task of driving. Hence,
adaptive Human-Machine Interaction (HMI) has emerged as
a solution to improve the usability of IVIS by delivering
information and/or initiating-maintaining an interaction with
drivers only at “appropriate” times based on their current
mental workload [4]–[7]. The measurement and estimation of
drivers’ workload also notably benefited from recent advances
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in sensing technology and Machine Learning (ML) algorithms,
e.g. [7]–[11].

For user safety, acceptance and satisfaction reasons, drivers
subjectively reporting the appropriate times an adaptive HMI
system could interact with them is a practical means to capture
representative data of the cognitive workload in naturalistic
driving scenarios (see related work in Section II below). This
approach is adopted in this paper since it circumvents the need
for devising objective criteria for such suitable time intervals,
which can be prohibitively complex given their dependence on
various nuances such as contextual factors not always easily
observable in on-road studies [8]. In particular, the following
two forms of subjective mental workload are defined here:

1) Instantaneous Workload Level (IWL): is the current
workload experienced by the driver at any time instant
as in other related studies, e.g. [8], [9], [12]–[14].

2) Average Workload Profile (AWP): represents the driver’s
long-term workload during a journey. This can reflect
the user’s individual workload management capabilities
where some drivers on average and over prolonged pe-
riods sustain lower workload than others under identical
conditions. This can be due to their prior driving expe-
rience, which can reduce the effort of safely performing
the vehicle control task [12], [15]. This is supported
by [10], [16] who highlight the various workload cat-
egories explored by different drivers. AWP is assumed
to be stable and distinct from drivers’ responding to
environmental-contextual factors that trigger high IWLs.

A. Problem Statement

The overall objective in this paper is to enable adaptive HMI
via the robust estimation of the driver’s subjective workload
from easily accessible and widely available data sources in
vehicles (e.g. driving performance signals). For this purpose,
we address here the following research questions:

• RQ1: What environmental and driving contexts induce a
high IWL in naturalistic settings?

• RQ2: Can we cluster drivers into different groups as per
their observed AWP during a journey? Specifically,

– RQ2.1: How many AWP groups can be identified
and how do they relate to subjective driving styles?

– RQ2.2: How can a driver be matched to any of the
AWP categories identified from driving performance
data using supervised learning?

• RQ3: How can the IWL be estimated in (near) real-time
from asynchronous data sources, incorporating specific
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driver attributes (e.g. AWP) and/or contextual information
(e.g. road type, traffic, etc.)?

B. Proposed Approach and Contributions

We present in this paper an on-road study with N = 24
participants that was specifically designed to answer the above
research questions. The main contributions are:

• A novel study design with a modified Peripheral Detec-
tion Task (PDT).

• Identifying via video analysis external factors that con-
tribute to high instantaneous workload levels in naturalis-
tic driving scenarios (e.g. junctions and vehicles in front).

• Ascertaining from the collect on-road data that drivers
can have notably different average workload profiles and
thereby confirming the need for personalised instanta-
neous workload estimators; no clear correlation between
AWP and self-reported driving styles is also established.

• Proposing a supervised learning framework to determine
a driver’s AWP from limited training data.

• Introducing a simple, yet effective, Bayesian filtering
approach to sequentially track the driver’s IWL from
asynchronous data streams (e.g. CAN-bus signals); it can
be easily personalised (e.g. leveraging the driver’s AWP)
and adapted to new data sources (e.g. additional data
sources or contextual information such as the road type).

The study data is used to demonstrate the efficacy of the
proposed AWP and IWL estimation techniques.

C. Paper Layout

In Section II key related work and its distinction from
the approach presented in this paper is outlined. Whilst the
experimental study and collected measures are described in
Section III, results of the video analysis and AWP along with
its correlation with driving style data are presented in Sec-
tion IV. A classification framework for inferring the driver’s
AWP is discussed in Section V. The Bayesian approach for
instantaneous workload estimation is detailed and evaluated in
Section VI. Conclusions are drawn in Section VII.

II. RELATED WORK

Adaptive HMIs which adjust the user interface (e.g. sup-
press a phone call) as a response to some stimuli such as
a challenging driving environment have a long history in the
automotive sector [6]. For instance, the GIDS project explored
tailoring information to avoid mental overload and deliver a
highly personalised driver experience in the 1990s [17]. It
applied a rule-based method to estimate the driver’s mental
workload. Many subsequent projects, e.g. CEMVOCAS [18],
COMUNICAR [4], and AIDE [5], as well as independent stud-
ies, e.g. [6], [8], [14], pursued similar goals with data-driven
inference approaches. Notably, the AIDE project demonstrated
through multiple on-road studies that drivers prefer adaptive
HMIs over static ones [5]. In this paper and similar to recent
work on driver workload estimation, such as [6]–[9], [14],
data-driven inference is adopted, capitalising on advances in

ML and Bayesian filtering, contrary to applying rule-based
methods, such as [13], [17].

Estimating the driver workload from physiological infor-
mation (e.g. ocular measures and electrocardiac activity) is
particularly popular, e.g. see [?], [7], [8], [10], [14], [19],
[20], due to known linkages of such data to mental workload
and the ability of associated sensors to provide continuous,
online observations [12]. On the other hand, there is a growing
interest, e.g. see [9], [10], [13], [14], [16], in relying solely
on non-intrusive driving performance signals (e.g. steering,
braking, and speed) since they are often widely available and
easily accessible in modern vehicles, via the CAN bus. They
can also deliver accurate IWL estimates [10], [14] and for
these reasons this approach is adopted here. It circumvents the
common limitations of using physiological data in naturalistic
driving scenarios, such as the necessity to establish a driver’s
baseline [12] and employing specialised sensor instrumen-
tation as well as signal processing [7], [14], [19], [21],
with potentially high adoption costs in mainstream vehicles.
However, physiological observations, if/when available, can be
utilised, e.g. within the presented IWL inference technique.

The sought driver IWL in many studies is specifically that
induced by a secondary task [8], [19], [22] to assess its
impact on safety, e.g. [19] introduces a delayed digit recall
task (i.e. n-back) whose difficulty level is considered as the
workload ground truth. Conversely, in [23], [24] data on the
primary task is collected and analysed to establish how the
driving environment influences drivers’ IWLs. For instance,
it is reported that motorways induce lower workload than
urban roads [23] and rushed driving increases experienced
workload [24]. In such settings, post-hoc video rating of the
route where drivers subjectively evaluate their workload on
a pre-defined scale is a reasonable means to establish the
ground-truth IWL [23], with the main disadvantage of not
being dynamic and requiring drivers to recall the specific
driving situations. Nevertheless, many researchers consider
subjective evaluation to be the best measurement technique as
the affected individual should be able to evaluate their mental
workload most accurately [12], [25]. In this paper and similar
to [23], [24], we consider workload induced (predominantly)
by the primary vehicle control task and design an experiment
to capture data for developing IWL estimation algorithms.
However, in this work we adopt a novel means, i.e. a modified
version of the Peripheral Detection Task (PDT), to collect
subjective workload information during driving to overcome
limitations of post-hoc video rating.

In [9] and [11] subjective data is collected in naturalistic
automotive and domestic contexts respectively, namely by an
experimenter repeatedly asking the subject, e.g. a driver [9],
”Is now a good time?”. Here, we propose applying a modified
version of the PDT, which automates the data acquisition and
supports higher frequency of self-reporting compared to that in
[9], [11]. PDT is a continuous workload measurement, which
has proved sensitive to workload variations [26]–[28]. The
traditional PDT dictates that drivers respond to a peripheral,
visual stimuli by pressing a finger-worn button. In this paper,
the peripheral, visual stimuli replaces the auditory verbal
message (i.e., “Is now a good time?”) in [9] and conveys the
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question “Is your instantaneous workload low?”. This leads
to more (training) data being available to devise workload
estimation algorithms, thereby potentially improving accuracy
and robustness of any applied data-centric inference method.

The majority of estimators for instantaneous mental work-
load, e.g. in [5]–[11], [20], are based on established ML algo-
rithms such as Support Vector Machines (SVM), and reliable
neural network models. Whereas, in this paper we propose
a filtering approach that applies the Bayesian recursion, as
is common in the object tracking field [29], based on a pre-
defined Markov chain (MC) model and an empirically learnt
observation likelihood. This is also distinct from common uses
of Hidden Markov Models (HMMs) learnt directly from data,
e.g. as in [30]. Here, the MC transition matrix values are
physically meaningful and can be intuitively set, thus reducing
the training data requirements. The introduced probabilistic
approach sequentially estimates the posterior distribution of
the IWL, thereby capturing the inference uncertainty over
time unlike rule-/SVM-based or clustering methods, e.g. [7],
[9], [13]. It can also naturally treat asynchronous data from
multiple sources and easily incorporate additional information
such as the user profile (e.g. via adapting the MC matrix)
and even new data sources (e.g. via updating the likelihood
distribution). Such modifications do not require complete
retraining of the estimator unlike with standard purely data-
driven techniques that demand synchronised data at a fixed rate
from all sources. Their application with asynchronous CAN-
bus signals typically necessitates ad-hoc data formatting, e.g.
averaging within a finite time window as in [9], [13] which
can inadvertently conceal salient features in the raw signals
and introduce processing latencies.

Finally, in this work we address the problem of inferring
the driver’s AWP, rather than only IWL as in prior work
such as [5], [8], [9], [11], [20]. This is motivated by [10]
who show the existence of clusters/groups of drivers within
(instantaneous) workload data and the importance of such
information for personalising workload estimation models, e.g.
to circumvent the need to have sufficient data for a specific
(new) user. However, unlike [?], [10] where biometric signals
and conventional ML clustering/recognition methods are used,
a personalisable Bayesian filtering approach is introduced here
for IWL estimation from driving performance data streams.
Whilst we also apply state-of-the-art time series classifica-
tion algorithms [31], [32] for profiling, the limited available
training data necessitates utilising short input sequences and
combining AWP inference results from separate data segments
in a journey. This is presented here within a framework,
including a discussion on the performance metrics. We also
demonstrate how AWP can be easily leveraged to deliver a
personalised IWL estimator with improved accuracy.

III. EXPERIMENTAL STUDY

The experimental car, provided by Jaguar Land Rover
(JLR), was a battery electric vehicle, namely a Jaguar I-PACE
EV400 AWD. A phone was mounted onto the central air vent,
a typical space for navigation systems, and showed the route
the participant had to follow (see Figure 1). Next to the phone,

Fig. 1: Experimental setup of the study vehicle interior.

an LED ring light was installed which lit up in red every 5 to
10 seconds, resembling the PDT [26] which uses an interval
of 3 to 5 seconds. This red light was intended as a subtle and
quick way to ask participants about their workload.

Participants were equipped with a small finger-worn button
(see Figure 1) which they were asked to press in perceived
low-workload situations when the LED ring light is lit in red.
This setup deviates slightly from the traditional PDT since here
the LED was a reminder (i.e. prompt) to the drivers to report
their subjective instantaneous workload. Thus, it represented
more a hint than a task to be followed as is the case in the
original PDT [26]. This was also the reason for decreasing
the frequency in comparison to [26] since here drivers had to
cognitively process the request (i.e. evaluate their workload)
instead of just reacting to the lit up LED.

A. Participants

All participants were recruited internally at JLR, had valid
driver licences and had undergone an internal safety driving
course beforehand. Although all participants were familiar
with JLR cars, not all of them had experienced an electric
Jaguar I-PACE before. In total, 24 drivers (4 females) ranging
from 27 to 58 years old (M = 39.8, SD = 8.2) participated in
the study. Their driving experience ranged between 4 and 40
years (M = 21.2, SD = 9.4). None of the participants had
impeding motor-visual impairments, including colour blind-
ness. No compensation was offered for their participation.
Participants’ informed consent was obtained prior to the study.
All data were collected between January and March 2020.

B. Study Design and Collected Measures

The study was designed as an on-road driving experiment
to increase the ecological validity of the collected driving
data. All participants started the experiment at 10am to ensure
similar traffic and undertook two successive drives:

1) Familiarisation route: The route was approximately 22
miles long, took 40 minutes, and consisted of rural,
urban and main roads. This drive acclimatised drivers
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with the car, the HMI and the task. First, drivers had to
become comfortable with the unfamiliar driving charac-
teristics of an electric car, i.e. the very responsive accel-
erator and the strong regenerative braking when coast-
ing. To facilitate this familiarisation, the car’s regenera-
tive braking mode was set to closely imitate a petrol
car’s coasting behaviour. Second, drivers familiarised
themselves with the car’s and the experiment’s HMI, e.g.
the operation of the finger-worn button. Finally, drivers
had to become comfortable with the task of affirming
with a button press the question “Is your instantaneous
workload low?” which was represented by the lit-up,
red LED ring. Due to the relatively high frequency of
requests, the experimenter ensured that the participants
learned to press the button only when they perceived
the driving situation as low workload. This was achieved
during the familiarisation run by repeatedly pointing out
that the red LED ring light should not be considered a
task and interpreted as a trigger to press the button. No
data were collected during the familiarisation drive.

2) Experimental route: The experimental route (see Fig-
ure 2) incorporated the UK road types: i) major (e.g.
A roads for large-scale transport linking regional towns
and cities), ii) B roads (connect different areas and
feed traffic between A roads and smaller roads) and
iii) classified-unnumbered/unclassified (smaller roads for
connecting A and B roads as well as for local traffic). It
covered a distance of approximately 18 miles, and lasted
around 40 minutes. The various road types ensured that
the collected driving data were as naturalistic as possible
and covered a wide range of different environments.

The drivers’ performance measures, i.e. dependent variables,
were collected from the following range of sources:

• Driving Style Questionnaire (DSQ): data from a stan-
dardized questionnaire [33] that captures a driver’s self-
evaluated driving style using six dimensions, i.e. speed,

Fig. 2: Map of the experimental route followed by participants.

TABLE I: Description of selected CAN bus data.

CAN bus data Description

GPS Latitude Latitude GPS coordinate of the car
GPS Longitude Longitude GPS coordinate of the car
VehicleSpeed Speed of the car in mph
SteeringWheelAngle Angle of the steering wheel in the range −780

to 780 deg
SteeringWheelAngleSpeedAngular velocity of the steering wheel in the

range 0 to 1016 deg
s

PedalPos Position of the accelerator in the range 0
(starting position) to 100 (end position)

BrakePressure Brake pressure in the range 0 to 204.6 Bar
(indicating brake pedal position)

LateralAcceleration Acceleration perpendicular to the direction of
travel in the range −11 to 11 m

s2

YawRate Angular velocity of the car’s rotation around
the vertical axis in the range −100 to 100 deg

s

calmness, social resistance, focus, planning, and de-
viance; it was completed prior to the familiarisation drive,
see the procedure below (Section III-C).

• Controller Area Network (CAN) bus: many signals
related to the driving performance. Their data arrives
asynchronously at an overall rate of ≈ 200Hz with
example streams listed in Table I, all of which, except for
the GPS ones, are used for estimating the driver’s AWP
and IWL below. These signals were selected because they
can be easily extract from the raw CAN-bus data and are
utilised in related studies, e.g. [9], [10], [13], [14], [16].

• Visual prompts and button presses: time instants and
duration of visual prompts (i.e. LED ring lit in red) and
(finger-worn) button presses to record the drivers’ IWL.

• Video streams: from two GoPro cameras, forward and
driver facing, to analyse environmental factors influenc-
ing the reported IWL, and monitor the cabin status (e.g.
to verify the experimental procedure).

C. Procedure

The experiment started at a JLR parking garage where
participants were briefed on the study’s goal and procedure, in-
cluding the routes. Subsequently, they completed the required
documentation, consisting of a consent form, demographic
sheet and driving style questionnaire [33], [34]. In the car,
participants were introduced to the vehicle’s specifications, its
HMI and the experimental equipment. It was emphasised that
the purpose of the lit LED ring light was to ask participants
“Is your instantaneous workload low?” They were instructed
to press the finger-worn button to answer “Yes” and to refrain
from pressing to answer “No”. Participants were also told to
comply with the highway code at all times.

After the experimenter activated the LED ring light, par-
ticipants drove off and followed the familiarization route.
Participants then had a break of approximately 60 minutes,
which gave them a chance to ask questions and rest.

Upon the participant’s return from the break, the experi-
menter activated the LED ring, the CAN bus logging and the
two cameras, and set up the experimental route on the phone.
Subsequently, drivers drove off and completed the 40-minute-
long experimental route. Despite the navigation system on the
phone, a few drivers went off route and had to be rerouted.
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Fig. 3: Example requests (visual prompts) and button-press signals
to illustrate the IWL labels, low and high.

D. Instantaneous Workload Labelling and Average Profiles

All 24 participants completed the experimental route, with
a total of 3730 button presses, 5264 requests, and 828 minutes
of driving performance and video data recorded. The workload
data are labelled as either “High” or “Low” as in the standard
PDT [26]. In particular, in this paper it is considered “Low”
when a button press occurred during or after the request (i.e.
visual prompt), and conversely “High” when no button press
occurred for a specific request. An illustrative example is
depicted in Figure 3. This simple labelling strategy is moti-
vated by adaptive HMI requirements, e.g. revealing appropriate
interaction times, and the binary nature of the drivers’ reports.

Additionally, the average workload experienced by a partic-
ipant throughout a drive is captured here by the Low Workload
Ratio (LWR), LWR ∈ [0, 1], as per

LWR =
#Low

#Low +#High
, (1)

where #X is the number of occurrences of event X in a
journey completed by a participant during the experimental
drive. It is the fraction of situations that a participant reported
a low IWL during the experimental drive; a low LWR score
signifies a high AWP and vice versa (see Section IV-B).

E. Limitations of the Study

Various limitations need to be considered when interpreting
the study results. First, external factors, such as weather and
traffic, can influence a driver’s self-evaluated workload and
consequently their grouping. As the video analysis did not
reveal a strong influence of some external factors and all
experiments were carried out at approximately the same time,
ensuring similar traffic levels, the overall effect should be
small, albeit present. Second, there can be a dissociation
between drivers’ subjective workload assessment and their
actual performance on a specific task [35]. It is challenging
to confirm that the self-reported status (including with PDT)
corresponds to the driver’s true mental/cognitive workload
(e.g. due to lack of familiarity with the PDT procedure)
without collecting reliable physiological data with baselines.
Despite this limitation, self-evaluated workload is an accurate
source of data [12], [25] and has been used widely in human
factors research [9], [23], [28]. Third, all participants were
JLR employees (only four were females) and OEM employees

TABLE II: Identified environmental factors causing high workload
based on the conducted video analysis.

Environmental Factor Percentage of incidents

Approaching, observing and turning at junction 39%
Behaviour of vehicle in front (e.g. braking) 14%
Changing lanes (particularly motorway) 7%
Vulnerable road users (e.g. pedestrians) 7%
Narrow road (sometimes with oncoming traffic) 6%
High traffic density 5%
Accelerating to desired speed 4%
Obstacles on the road (e.g. parked car) 4%
Reading traffic sign 3%
Roadworks 2%
Road bend 2%
Joining motorway 2%

can deviate from the average driver in several aspects, such
as automotive knowledge and experience with car interfaces.
Fourth, whilst in this work the driver’s IWL is either high
or low, in practice it is not binary and can even be treated
as a continuous variable, e.g. [13]. The adopted simplified
labelling here can nonetheless be viewed as reasonable in the
context of adaptive HMI, especially given the binary nature of
the available (ground-truth) subjective IWL reporting. More
elaborate labelling schemes can be considered in future work,
for instance based on the duration between the prompt and
pressing the button as well as the frequency of successive
missed presses (e.g. four labels with medium low and medium
high IWLs). Finally, the choice of red color for the visual
prompts followed from the PDT study [26]. Its potential
impact on the self-reported IWL is unknown as colours can
affect humans’ behaviour [36].

IV. FACTORS AND AVERAGE WORKLOAD PROFILES

A. Video Analysis of High Instantaneous Workload (RQ1)

The forward-facing videos were studied to understand what
environmental factors triggered high instantaneous workload.
This is called critical incident analysis [37], [38] and is typi-
cally guided by a study question [39], i.e. RQ1 in Section I-A.
Here, analysis started 10 seconds before each reported high
IWL to comprehend the driving environment.

In total, 12 factors (see Table II) were identified from 1534
incidents of high workload. Since some high IWL events could
not be attributed to a cause, the percentages in Table II do
not add up to 100%. Notably, “junctions” and the “car in
front” account for approximately 53% of all self-evaluated
high workload scenarios. This is unlike generic high traffic
density. Noticeable differences in perceived workload were
also observed depending on the road type. This is based
on plotting 1 − LWR, i.e. fraction of number of unpressed
events signifying high IWLs, within a predefined grid of the
experimental drive route; see Figure 4 for all 24 participants.
As expected, the urban parts (including junctions) induced
higher workload than other road sections for most drivers.

B. Average Workload Profile (RQ2)

The frequency of reporting high IWL drastically varied
between the participants during the experimental drive. This
is visible in the scatter plot in Figure 5. It depicts each
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Fig. 4: Heat map of recorded 1 − LWR (i.e. high IWL incidents)
within discretised parts of the route for all 24 participants.

Fig. 5: Scatter plot of the low workload ratio in (1) for all participants.
Red circle are for three identified groups/clusters (number of drivers
per group is in the brackets). Different shapes (i.e. circle, cross, and
diamond) depict the DSQ cluster associated with each driver.

participant’s LWR in (1), with values ranging from 32.81%
to 98.05%. Visual inspection of this plot clearly reveals three
potential groups of drivers, each with a distinctive profile in
relation to average experienced workload during a journey (k-
means algorithm also confirmed this clustering). These groups
are (i.e. as per their LWR score): low (34%-52%), medium
(64%-81%) and high (87%-98%). Accordingly, three average
workload profiles of drivers, i.e. AWP ∈ {L,M,H}, are
defined in this work as per

AWP =

 H if LWR ≤ 55%
M if 55% < LWR ≤ 85%
L if LWR > 85%

(2)

To demonstrate the differences between drivers belonging
to distinct AWPs (e.g. low and high), the time/location of
instantaneous workloads and issued requests (visual prompts)
overlaid on the experimental route map for P40 with AWP =
H and P18 with AWP = L are shown in Figure 6. Here, P40
and P18 are ID codes assigned to the anonymous participants.
In this case, the urban parts of the route caused high workload
for P40 but not for P18, which emphasises the importance
of AWP and the individuality of drivers. This highlights that
these factors can be more influential than trivial environmental
factors such as the road-type. Both participants indicated low
workload for long stretches of the main road sections, i.e.
A429 and A46, where the driving task is not demanding.

(a) P40. (b) P18.

Fig. 6: Workload levels for two participants. Red, blue and cyan cir-
cles are high IWL, low IWL and request/prompt events, respectively.

C. AWP and Driving Style (RQ2.1)

To investigate potential links between the reported (subjec-
tive) driving style of each participant and the three recognised
AWPs, we first cluster the DSQ data (see Section III-B) with
hierarchical clustering. From the dendrogram, the resultant
maximum number of clusters is four and 19 indices [40] pro-
pose three clusters as the best number. These three clusters are
marked in Figure 5, which shows that drivers of different AWP
can belong to each of the three DSQ data clusters (i.e. driving
styles). Hence, it can be deduced that there is no clear correla-
tion between self-reported driving style from the DSQ data and
AWPs. It is noted that Gaussian mixture model suggested 10
clusters and K-means produced an inconclusive number using
the Bayesian information criterion and distortion fK measures,
respectively [41]. Such discrepancy between the outcomes of
the three applied clustering techniques indicate that there is
no clear separation between clusters of DSQ factors.

D. Discussion on Video Analysis and AWP

Examining the reported data revealed that urban roads, often
with high number of road users and diverse infrastructure, usu-
ally cause higher IWL compared with less demanding settings,
such as main roads. This confirms findings in related studies on
workload, e.g. [23], [24], and drivers’ ability to safely perform
secondary tasks on motorways [19], [22]. The video analysis
showed that vehicle control on junctions and monitoring the
behaviour of vehicles in front are amongst the main contrib-
utors to driver’s high instantaneous workload. Unlike prior
work, this study connects automated (i.e. PDT-based) self-
evaluated workload to environmental factors. It illustrates that
a driver workload estimation solution for adaptive HMI can
greatly benefit from access to measurements of contributing
environmental factors such as road type (e.g. from landmark
or road type identification system to recognise junctions or
motorways, and mapping information) and other road users
(e.g. from proximity sensors and pedestrian detection). Other
unobserved factors (e.g. weather and badly maintained roads)
can similarly induce frequent high IWL.

The frequency of reporting a high IWL drastically varied
between participants, albeit all driving the same route. This
is perhaps expected given drivers’ individuality, e.g. con-
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Fig. 7: Framework for classifying drivers into average workload profiles using a sequence filter.

sidering fluctuations found in physiological workload mea-
sures [20] and existing research into personalised workload
prediction [16]. However, it is valuable to confirm here that
such findings apply to drivers’ subjective workload data. Three
groups of drivers (i.e. AWPs) are identified, namely low,
medium and high, emphasising the diverse capabilities among
drivers (e.g. based on driving experience and familiarity with
the route). It is imperative that knowledge of drivers’ AWP
can guide the IWL inference, e.g. it will bias the estimator
towards low IWL values for drivers with AWP = L. It is noted
that drivers’ AWP can change over time (e.g. due to gained
driving experience), hence regularly predicting the drivers’
AWP from accessible data (e.g. driving performance signals)
can be desired, especially if results are to be employed by an
adaptive HMI solution. This is an alternative to determining a
driver’s AWP from large amounts of historical data.

The lack of correlation between objective driving style and
AWP is in line with [42]; this however can still be due to the
unsuitability of the standard DSQ [33] for this purpose.

V. INFERENCE OF AVERAGE WORKLOAD PROFILE

Here we address the problem of inferring the driver’s AWP
from driving performance data, i.e. RQ2.2 in Section I-A. This
is based on the premise that such data (e.g. when analysed over
a finite time window) encapsulates the participant’s driving
experience and style depending on the perceived complexity
of the driving task, which in turn directly influences or
even dictates their AWP. In [20], for instance, this point
is highlighted by demonstrating that drivers react differently
to the same external demand, indicating distinct workload
management capabilities that can be captured in a short period
of driving. The proposed approach is depicted in Figure 7.

A. Overall Classification Framework

Matching a driver to one of the three identified profiles
AWP ∈ {L,M,H} is treated as a standard classification
problem using supervised learning from the selected example
CAN-bus signals in Table I (excluding GPS) and their rate of
change (except for the two steering wheel signals). They are all
labelled with the corresponding AWP as per the participant’s
LWR in Figure 5. Given the importance of harnessing temporal
information/correlations and dependency between the various
data streams to categorise a driver, the input to the recognition
algorithm is a multivariate time series. Thus, this is a Time
Series Classification (TSC) task, which is an alternative to
manually engineering features from segments of data followed
by a traditional classifier such as SVM and random forests.

Two possible TSC techniques, InceptionTime [31] and
MINIROCKET [32], are examined in this work. Each pro-
duces the confidence score in the driver’s AWP for an input
Multivariate Time-series Sequence (MTS). The choice is based
on the classification algorithms’ state-of-the-art accuracy, com-
putational efficiency (e.g. a fraction of the computational
cost of other deep learning techniques) and ability to extract
non-linear discriminative features that are time-invariant; see
[31] and [32] for an overview and benchmarking of various
TSC approaches. Whilst InceptionTime uses an ensemble of
(five) deep convolutional neural network models (each with
randomly initialised weights and created by cascading multiple
Inception modules), MINIROCKET transforms the input time
series with random convolutional kernels and applies a linear
classifier to the transformed features. The same architecture
and parameters as described in [31], [32] are used here.

A major challenge of effectively employing TSC in this
work is the limited available data. For the nth participant, the
data comprises Kn time series sequences, each of length L:
D(n) = {(X1, Yn), (X2, Yn), ...(XKn , Yn)} such that Xi ∈
RQ×L is the MTS, Q = 12 is the number of considered
signals (including their rates of change) and Yn ∈ {L,M,H}
is the driver’s AWP. The total dataset from the conducted
experiment as in Section III is: D =

⋃N
n=1 D(n) for all N = 24

participants. Hence, the common TSC strategy of utilising
longer MTSs (i.e. beyond a few minutes) is not viable here
since it severely limits the training (and testing) data size, as
experimental drive per participant is ≈ 40 minutes.

We therefore propose applying TSC multiple (successive)
times, each on a short time series sequence, during a journey. A
means, dubbed sequence filter, is then applied to combine the
results from these multiple classifications. It can be a moving
average, a majority voting scheme which requires a decision
based on the result from each MTS or even a more complex
scheme such as a tracker of the classifier output. Here, we only
investigate a Simple Moving Average (SMA); an exponential
MA with a reasonable gain had a similar impact as the SMA
and other techniques can be considered in future work. It is
noted that not taking a decision on the inferred AWP prior
to combining all the recognition results (e.g. as with SMA)
is expected to better capture classification certainty over time.
The category with the maximum certainty, i.e. Maximum a
Posteriori (MAP) estimate, is admitted as the driver’s AWP
when assessing the classification performance.

The performance evaluation block is added to Figure 7 to
highlight the need to interpret the TSC results in the context of
the goal of this categorising task and how AWP information is
used, i.e. facilitate personalised IWL estimation for adaptive
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HMI applications. For example, falsely classifying a driver
with medium AWP as high AWP is more acceptable than
classifying them as low AWP; this is discussed further below.

B. Data Pre-Processing and Training Strategy

Two example raw CAN-bus signals are displayed in Figure
8 to show the asynchronous nature of the considered data
streams, each with their own rate. Consequently, several steps
were taken to prepare the data for TSC algorithms, since they
expect the input (i.e. MTS) to be of fixed length and all its
entries to be synchronised. Due to the nature of the AWP
inference task (i.e. determining a driver’s long-term workload
capabilities), such pre-processing (including buffering) of the
received data and any resultant delays can be tolerated since
no (near) real-time updates of the driver’s AWP is required
here contrary to the IWL estimation in Section VI. First, a
linear interpolation was used to fill in for the missing values
of the inherently asynchronous and irregularly spaced CAN-
bus data streams. Second, the data set was downsampled by a
factor of ten to have MTS of manageable size (raw signals are
recorded at a rate of ≈ 200 Hz). Third, various MTS periods
between 5 and 90 seconds were defined for the time series
sequences’ length, i.e., L ∈ {100, 200, 400, 600, 1200, 1800}
corresponding to duration of TSeq = {5, 10, 20, 30, 60, 90}
seconds. Four, the data were scaled using the RobustScaler
provided by the scikit-learn library. Finally, the data were split
randomly into a training and test set with a ratio of 80% to
20%, respectively.

C. Results and Discussion on AWP Inference

Table III depicts the classification accuracy and F1 score
without and with the sequence filter SMA. It clearly demon-
strates the benefits of combining recognition results from
multiple sequences. SMA consistently improves performance
for both TSC models, e.g. by up to ≈ 40%. It is noted that
with the sequence filter we have only N = 24 classifications in
comparison to significantly more results (depending on TSeq)
for no SMA. This table also indicates that the quality of
the classifications generally improves as the MTS duration
increases; it then stagnates or declines after it exceeds 20 sec-
onds for InceptionTime. This could be explained by the trade-
off of increasing the sequence’s length which provides more
observable patterns at the expense of reducing the number of
time series sequences available for training. Irrespective of the
MTS length, MINIROCKET persistently delivers a superior
TSC performance, which can be attributed to its ability to

Fig. 8: Two example raw CAN-bus signals for P40 within 1 minute
time window; solid line is linear interpolation.

TABLE III: F1 score and accuracy of drivers classification into
AWPs with and without a sequence filter for various durations TSeq.

Algorithm TSeq F1score Accuracy F1score Accuracy

w/o Sequence Filter w/t Sequence Filter

MINIROCKET

5 s 0.59 0.6 0.87 0.88
10 s 0.59 0.61 0.83 0.83
20 s 0.64 0.65 0.92 0.92
30 s 0.61 0.63 0.77 0.79
60 s 0.64 0.65 0.81 0.83
90 s 0.63 0.65 0.92 0.92

InceptionTime

5 s 0.48 0.5 0.38 0.5
10 s 0.51 0.53 0.67 0.71
20 s 0.48 0.49 0.7 0.71
30 s 0.5 0.56 0.52 0.58
60 s 0.46 0.52 0.5 0.58
90 s 0.46 0.5 0.45 0.5

TABLE IV: Confusion matrix showing the MINIROCKET perfor-
mance with a sequence period of either 20 or 90 seconds.

Predicted class

Low Medium High

True class
Low 7 1 0

Medium 0 10 0
High 0 1 5

generalise better compared to InceptionTime. We stress that
any other applicable sequence classifier can be assessed within
the presented AWP inference framework.

The MINIROCKET Receiver Operating Characteristic
(ROC) and its area, i.e. Area Under the Curve (AUC), for the
three AWP categories are shown in Figure 9 for TSeq = 20 sec-
onds. It demonstrates the effectiveness of this TSC approach,
where specific performance can be attained by the suitable
choice of a certainty threshold value (instead of the MAP
decision criterion). Interestingly, achieving the highest AUC
for the high average workload profile is particularly desirable
in the context of adaptive HMI since a classification of a
driver within this class into a lower AWP (i.e. they are more
available to interact with the HMI and/or receive information)
can be considered more detrimental for driving safety and user
satisfaction/acceptance than the contrary situation.

The MINIROCKET confusion matrix for TSeq = {20, 90}
seconds (identical for both) with the sequence filter is dis-
played in Table IV. It can be seen that only two drivers (one
with low and one with high AWP) are incorrectly categorised
with a medium AWP, i.e. success rate ≈ 92%. Additionally, it
can be argued that such misclassifications can have a limited
impact on personalisation for adaptive HMI (e.g. personalised
IWL estimation) compared with placing a driver with a low
AWP into the high category and vice versa.

The explored AWP classification approach, comprising the
MINIROCKET algorithm and a sequence filter, showed high
performance, for instance 92% accuracy in predicting the
drivers’ AWP. This is particularly notable since: 1) the input
signals are only a few widely available driving performance
data streams; 2) classifiers run on relatively short data seg-
ments; and 3) applied algorithms (namely MINIROCKET)
have remarkably low computational resource requirements (i.e.
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are suitable for the automotive environment). Nonetheless, it
is reasonable to argue that processing more vehicle signals
(e.g. lane deviation and proximity to nearby vehicles) and
even physiological measures (e.g. eye gaze and heart rate), and
collecting larger data sets (e.g. permit using longer MTS) can
further improve the classifier performance and generalisability,
thereby facilitating a more reliable and personalised driver
workload monitoring system.

However, utilising standard classification performance met-
rics (e.g. accuracy and F1 score) might not adequately cap-
ture the AWP classification efficacy without considering an
adaptive HMI system’s requirements. For instance, while in-
ferring a lower than the true driver AWP category can have
adverse effects on the user experience and safety, the opposite
reduces an adaptive HMI’s number of interactions. Thus, other
performance metrics that weigh the outcomes for each class
differently (e.g. based on the importance of its True Positives
TPs and False Positives FPs) might be needed (e.g. skewed or
weighted F1 scores); formulating these appropriately should
be investigated in future research. Next, we present an IWL
estimator that can exploit AWP classifications results to deliver
a personalised inference.

VI. PROPOSED INSTANTANEOUS WORKLOAD ESTIMATOR

Here we describe and evaluate a simple Bayesian filtering
approach to estimate driver’s IWL from asynchronous driving
performance data streams, i.e. address RQ3 in Section I-A.
Adapting the inference model is also discussed, e.g. incorpo-
rating AWP, road type information, and new data sources.

A. Bayesian Filtering Approach

Let yk ∈ RQn be the observations (i.e. values of Qk CAN-
bus signals) at time instant tk; y1:k = {y1, y2, ..., yk} are the
successive measurements collected at {t1, t2, ..., tk} and are
available at tk. From Bayes’ rule [29], the posterior of the
sought latent state xk (i.e. the driver’s instantaneous workload)
at tk based on y1:k can be expressed by:

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1)

= p(yk|xk)
∑

xk−1∈{L,H} p(xk|xk−1)p(xk−1|y1:k−1), (3)

Fig. 9: ROC curves for MINIROCKET with sequence length 20 s.

Fig. 10: Markov chain model of IWL with transition matrix entries.

under the Markov assumption p(xk|x1:k−1) = p(xk|xk−1) and
since xk ∈ {L,H} is a discrete variable, i.e. for low and high
IWLs. It follows from the “predict” step with marginalisation:

p(xk|y1:k−1) =
∫
xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

Since p(xk−1|y1:k−1) pertains to the previous time step tk−1

and is available at tk, computing p(xk|y1:k) in (3) entails
defining: i) dynamical model of the latent state evolution over
time xk|xk−1 ∼ p(xk|xk−1) ; and ii) observation likelihood
yk|xk ∼ p(yk|xk) which maps the measurements (e.g. CAN-
bus data) to the state (i.e. IWL). Both are defined next.

1) Dynamical Model: We propose using the first-order
Markov Chain (MC) in Figure 10 as a simple model for
p(xk|xk−1). It is described by its transition matrix Ak, which
can change over time, albeit not frequently (e.g. to adapt to a
situation such as approaching a junction, and/or to personalise
for a specific driver’s AWP). Its entries1 are:

• A1,1,k = ρL|L,k: probability of low IWL remaining low
• A1,2,k = ρH|L,k: probability of low IWL becoming high
• A2,1,k = ρL|H,k: probability of high IWL becoming low
• A2,2,k = ρH|H,k: probability of high IWL remaining high

such that ρL|L,k + ρH|L,k = 1 and ρL|H,k + ρH|H,k = 1 since
∀i,

∑
j Ai,j = 1. These model parameters, which we only need

to set two of them, are physically meaningful and represent
prior knowledge on how we expect workload to change over
time. For instance, while it is valid to assume that a low IWL
can become high swiftly (e.g. due to environmental factors
that induce a high IWL such as a front car suddenly braking),
it is unrealistic for a high IWL to transition to low as rapidly.
This implies that we should have ρH|L,k > ρL|H,k.

2) Observation Likelihood: This likelihood is learnt for
both possible scenarios, i.e. p(yk|xk = H) and p(yk|xk = L),
from the available CAN-bus data of the on-road study, labelled
by the corresponding reported IWL (i.e. around the time in-
stants when requests to press the finger-worn button are issued
and press events, if any). Each of the driving performance data
streams are assumed to be independent conditioned on IWL,
which is reasonable since different factors that can instigate a
high IWL impact different signals. For example, a car braking
at the front can affect pedal position but not necessarily lateral
acceleration. We can then write:

p(yk|xk) =

Qk∏
q=1

p(y
(q)
k |xk), (4)

where y
(q)
k is for the qth data source (e.g. one of the CAN-

bus signals in Table I) and Qk is the total number of streams

1Ai,j is the for the entry in the ith row and jth column of matrix A.
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Fig. 11: Univariate observation likelihoods p(y
(q)
k |xk) in (4) for xk ∈ {L,H} for the Q = 7 used CAN-bus signals.

present at tk. This is owed to the asynchronous nature of the
CAN-bus signals (e.g. see example signals in Figure 8). Here,
the Kernel Density Estimate (KDE) [43] is utilised to learn the
univariate observation likelihood for each of the considered
data streams from labelled data. This low-complexity non-
parametric technique enables approximating Probability Den-
sity Functions (PDFs) of arbitrary shapes from data. Example
observation likelihoods obtained from all 24 participants are
shown in Figure 11, with noticeable differences (albeit subtle
at times and mostly distinguishable in the tail distributions for
some signals) between the low and high workload scenarios
for all considered 7 data sources. For example, larger changes
in the steering wheel angles are more likely to be observed in
high IWL situations. PDFs from two or more signals, e.g.
to capture possible correlations between them as with the
bivariate likelihood of vehicle speed and braking in [9], can be
similarly obtained with multivariate KDE and employed within
a suitably modified (4). We also recall that the seven CAN-bus
signals in Figure 11 and Table I were chosen to illustrate the
IWL estimation capability and other streams (e.g. longitudinal
acceleration, etc.) can be incorporated into (4).

3) Bayesian Recursion: With the above dynamical and
observation models, the driver’s IWL at tk can be sequentially
estimated from (3) using the Bayesian filter (BF):

p(xk = i|y1:k) ≈ πi,k =
π̂i,k∑
j π̂j,k

, i, j ∈ {L,H} (5)

π̂L,k = ℓL,k

[
ρL|L,kπL,k−1 + (1− ρH|H,k)πH,k−1

]
,

π̂H,k = ℓH,k

[
(1− ρL|L,k)πL,k−1 + ρH|H,kπH,k−1

]
,

where ℓL,k = p(yk|xk = L) and ℓH,k = p(yk|xk = H) are
the observation likelihoods.

4) Computational and Implementation Complexities: A key
advantage of the used Bayesian filter is its simplicity and
low computational complexity; it is a closed-form analytical
solution of the Bayesian recursion equation. In fact, imple-
menting (5) entails only a few add-multiply operations and
the univariate likelihoods of (4) can be applied as lookup
tables; thus the proposed inference is amenable to real-time
implementation and supports producing estimates at relatively

Fig. 12: System graphical representation where contextual informa-
tion mk (e.g. AWP or road-type) can drive the state transition.

high rates (e.g. matching the incoming data frequencies),
whilst demanding remarkably low computational resources.

5) Adaptability of the IWL Estimator: Adapting or person-
alising the estimator can be achieved by adjusting: a) either
the dynamical model state transition matrix A (e.g. to facilitate
a faster transition to and retaining a high IWL via larger
ρH|L and ρH|H values for drivers with high AWP); and/or b)
the observation likelihood function. The former approach can
be interpreted as conditioning the state transition on external
information mk at time tk (e.g. AWP and road-type) such
that xk|xk−1 ∼ p(xk|xk−1,mk). This revised system model
is shown in Figure 12. Most importantly, this does not involve
retraining the inference model (albeit the need to choose
an appropriate Ak based on mk). Furthermore, incorporating
data from new sources (e.g. other raw or processed CAN-bus
signals, sensory measurements from other vehicle sensors such
as proximity to nearby vehicles, and even biometrics data)
can be handled within the adopted Bayesian formulation by
including its univariate likelihood in (4).

Therefore, the proposed estimator of the driver instanta-
neous workload level not only has low computational and
implementational complexities, but also it can be easily per-
sonalised. Examples of such adaptations are presented below.

B. IWL Estimation Results

The CAN-bus signals in Table I (except GPS) are used
here by the proposed IWL estimator, which is applied directly
on the asynchronous data streams without any pre-processing
steps (e.g. interpolation) and the typical associated latencies.
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TABLE V: Various transition matrices with their diagonal entries.

Probability AStandard
k A

(H)
k A

(Ha)
k A

(La)
k A

(L)
k

ρL|L 0.8 0.4 0.7 0.75 0.9
ρH|H 0.92 0.98 0.92 0.8 0.8

At each time instant, the Bayesian filter updates the workload
posterior distribution in (5) from the available data sources
at tk. Thus, it can produce estimates at the same rate as the
input signals. In the performance evaluation below, which is
based on over 339,000 high IWL and 953,000 low IWL events
(i.e. around and between the requests to press the button), the
BF observation likelihoods are learnt with KDE from data of
all participants except the driver being tested. It is noted that
these PDFs do not noticeably differ from the ones in Figure
11. Whereas, the model transition matrix Ak entries in Table
V are chosen intuitively and from (minimal) manual tuning.

First, we benchmark the introduced Bayesian filtering tech-
nique with A

(Standard)
k against the following two methods:

• Rule-based technique in [13]: utilises prescribed mem-
bership functions and entails defining features such as
cruising state derived from the vehicle speed.

• SVM classifier: uses standard SVM as in [9], [10] with
a Gaussian radial basis function and treats determining
IWL as a binary classification task.

• LSTM: adopts an off-the-shelf long short-term sequence
classifier as in [44]. A sequence length L = 10 is
employed for this task, based on experimenting with
various L values and increasing the length (e.g. to 20)
did not result in an improved performance.

Since these three techniques expect the input vectors to be
of the same length, CAN-bus signals had to be interpolated
to cope with missing data. For both SVM and LSTM, a
stratified sampling strategy is applied in order to account for
the skewed class proportions when training from all available
data, except that pertaining to the tested participant (i.e. as
with attaining the BP observation likelihoods). Hence, the
same evaluation process is performed for each driver and the
average performance is computed. The results are displayed
in Table VI such that the true positives are for high IWL
and true negatives are for low IWL. Threshold that leads
to the highest F1 score is used for deciding IWL from the
probabilities/scores of the BF and rule-based methods.

Table VI shows that BF delivers the best performance and
the SVM-based approach exhibits the poorest overall results.
This can be attributed to the probabilistic and sequential nature
(i.e. intrinsically propagates and combines estimation certainty
over time) of the presented Bayesian filtering approach to
IWL estimation. It outperforms the LSTM-based sequence
classifier, which is a more suitable standard classifier for
use with the processed sequence data compared to more
conventional techniques such as SVM. Nonetheless, more
sophisticated machine learning techniques for time series mod-
elling such as transformers [45] and more elaborate Recurrent
Neural Networks (RNNs) are not explored further here since
these methods cannot be readily employed for multiple highly
asynchronous data streams with output expected in (near)

TABLE VI: Average accuracy, recall, precision and F1 score for the
rule-based, SVM, LSTM and proposed Bayesian filtering techniques.

Estimator Accuracy Recall Precision F1 score

SVM 0.59 0.16 0.26 0.12
LSTM 0.66 0.30 0.41 0.30
Rule-based 0.43 0.72 0.37 0.35
Proposed BF 0.72 0.85 0.62 0.67

real-time unlike with AWP in Section V. Adapting them to
accommodate missing data is still an open research question
and is out of the scope of this paper.

Next, we illustrate how the introduced Bayesian filtering
can be adapted by adjusting its transition matrix Ak as per:

1) Road-type (e.g. from navigation service, road signs
identification, etc.): four such types are assumed based
on their potential to induce a high IWL, see heatmap in
Figure 4, namely junctions with A

(H)
k , urban road with

A
(Ha)
k , country road with A

(La)
k and motorway with A

(L)
k .

2) Average Workload Profile (i.e. from the inference
framework in Section V): A(L)

k , A(Standard)
k and A

(H)
k for

drivers with low, medium and high AWP, respectively.
In this case, the IWL estimates, in near real-time,
incorporate the AWP inference results.

The ROC, area under its curve (AUC), and F1 scores of
these two adaptations, BF using a fixed A(Standard)

k and rule-
based method in [13] are depicted in Figure 13 for all 24
participants. The figure illustrates that significant improve-
ments in the workload estimation can be achieved by suitably
personalising the inference model and confirms the importance
of incorporating contextual information (e.g. AWP and road-
type) as noted in [9]. Whilst using road-type led to the biggest
enhancement in AUC and the ROC curve, utilising AWP led
to a modest increase of ≈ 15% in the F1 score. This highlights
that certain environmental factors, such as road-type, can have
more pronounced effects on drivers in terms of inducing high
IWL (i.e. true positives) as per the video analysis in Table
II. Conversely, participants with a low AWP and substantially
high low workload ratio in (1), i.e. tend to often report a
low workload level as seen with P18 in Figure 6b, are less
exposed to such factors. For instance, F1 score for driver P18
remarkably increased from 0.23 to 0.95 when including AWP
information. It is noted that in Figure 13 the results of the 10
drivers with medium workload profiles did not change since
AStandard

k was adopted for them. Adapting the IWL inference
model based on several simultaneous contextual information
(e.g. AWP, road-type and others) would require devising rules
to reflect their collective impact on the driver’s workload,
which is not treated here.

C. Discussion on IWL Estimation

The introduced simple and computationally efficient
Bayesian filtering approach delivers a reasonable, overall IWL
estimation performance, particularly when considering that
only seven CAN-bus signals were used. Utilising other data
streams, including other raw or processed CAN-bus signals
and even biometric data if available, is expected to enhance
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Fig. 13: ROC curves, AUCs and F1 scores of the rule-based method
in [13] and the various considered versions of the introduced BF.

the inference accuracy. This can be readily accomplished with
BF via updating the observation likelihood in (4).

On the other hand, advanced machine learning algorithms,
such as time series classifiers (e.g. transformers and carefully
designed RNN networks), can be applied to determine the
driver’s IWL and have the potential to achieve superior results
compared to BF. This is provided that they can be used
with multivariate asynchronous time series signals and that
sufficiently large training datasets are available. The LSTM
performance in Table VI might have been restricted by the size
of the available training dataset, which is limited compared
to other application scenarios with speech and text data. The
adopted Bayesian filtering however has several clear advan-
tages compared with such classifiers, namely it: i) naturally
handles asynchronous data arriving at different rates (i.e. no
pre-processing steps are required) and is amenable to real-
time implementations; ii) has low training data requirements
with reduced risks of over-fitting, iii) is fully explainable and
causes of failures can be quickly identified; iv) can be easily
adapted or personalised based on additional information (e.g.
driver profile) without requiring an extensive training dataset
specific to the new scenario (e.g. a profile); and v) is inherently
sequential and combines/integrates results across time (i.e. no
need for a sequence filter). We emphasise that the choice of
the model parameters here, i.e. matrix Ak, did not involve
extensive fine tuning, which indicates that BF is a robust
means for instantaneous workload estimation. Nevertheless,
an invalid choice of priors in Ak and/or configuring the
observation likelihoods based on unrepresentative data can
severely degrade the BF performance. Learning Ak from the
data for a chosen observation likelihood function p(yk|xk),
e.g. by maximising the resultant likelihood p(y1:k|x1:k) for
entire journeys, in fact led to a reduced average inference
accuracy here; this parameterisation strategy might be better
suited for learning and applying a specific Ak for each driver.

Finally, more complex transition models can be tackled by
the closed-form BF from equation (3), for instance for IWL

with more than two possible values based on a new labelling
scheme of the subjective workload that takes into account the
duration between a visual request/prompt and the user pressing
the button. Other continuous state models for xk can also be
explored within the introduced Bayesian tracking formulation,
e.g. the IWL is a continuous random variable that can take
any value within a defined range.

VII. CONCLUSION

This is the first study to collect drivers’ self-evaluated work-
load through a modified PDT in naturalistic driving scenarios
and identify external factors that induce high workload levels.
While junctions and monitoring other road users (e.g. cars
in front) are associated with high workload levels, driving
on a motorway often led to low workload. Data analysis
additionally revealed three average (long-term) workload pro-
files, i.e. low, medium and high, amongst the drivers. This
highlights drivers’ individuality and the driving environment’s
influence on workload assessment, reiterating the necessity for
personalised workload estimation. Subsequently, time series
classification within a supervised learning framework was first
shown to be capable of accurately matching a driver to one of
the aforementioned workload profiles from the driving perfor-
mance data. A simple and flexible Bayesian filtering approach
was then introduced for estimating the driver’s instantaneous
workload from a number of selected asynchronous CAN-bus
signals. Its ability to effectively leverage contextual informa-
tion (such as road type and driver profile) to achieve enhanced
estimation performance was demonstrated, i.e. personalised
inference. Whilst only seven example driving performance
data streams were considered here, more sources can be used
by the proposed instantaneous workload estimator.

This study serves as an impetus to motivate further research
into robust workload estimation for adaptive HMI that can fuse
asynchronous as well as heterogeneous data streams (if/when
available) and leverage contextual information for personalised
workload inference. Bayesian filtering methods is shown here
to be a good candidate for the IWL estimation task and
more extensive benchmarking against other existing as well
as continuously emerging machine learning algorithms (e.g.
classifiers) from larger on-road datasets should be considered
in future work.
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