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Abstract—As an emerging technology and a relatively afford-
able device, the 4D imaging radar has already been confirmed ef-
fective in performing 3D object detection in autonomous driving.
Nevertheless, the sparsity and noisiness of 4D radar point clouds
hinder further performance improvement, and in-depth studies
about its fusion with other modalities are lacking. On the other
hand, as a new image view transformation strategy, “sampling”
has been applied in a few image-based detectors and shown to
outperform the widely applied “depth-based splatting” proposed
in Lift-Splat-Shoot (LSS), even without image depth prediction.
However, the potential of “sampling” is not fully unleashed. This
paper investigates the “sampling” view transformation strategy
on the camera and 4D imaging radar fusion-based 3D object
detection. LiDAR Excluded Lean (LXL) model, predicted image
depth distribution maps and radar 3D occupancy grids are
generated from image perspective view (PV) features and radar
bird’s eye view (BEV) features, respectively. They are sent to
the core of LXL, called “radar occupancy-assisted depth-based
sampling”, to aid image view transformation. We demonstrated
that more accurate view transformation can be performed by
introducing image depths and radar information to enhance
the “sampling” strategy. Experiments on VoD and TJ4DRadSet
datasets show that the proposed method outperforms the state-
of-the-art 3D object detection methods by a significant margin
without bells and whistles. Ablation studies demonstrate that our
method performs the best among different enhancement settings.

Index Terms—4D imaging radar, camera, multi-modal fusion,
3D object detection, deep learning, autonomous driving

I. INTRODUCTION

Perception plays a pivotal role in autonomous driving, since
its subsequent procedures (e.g., trajectory prediction, motion
planning and control) rely on accurately perceiving the en-
vironment. Key tasks in this domain encompass segmentation
[1][2], object detection [3], and tracking [4][5], with 3D object
detection being the most widely researched area.

The approach to performing 3D object detection in au-
tonomous driving varies based on the type of sensor employed.
LiDARs, cameras, and radars are commonly utilized sensors
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TABLE I: The comparison of conventional automotive radars
(3D radars) and 4D imaging radars (4D radars) [9].

Characteristics 3D Radars 4D Radars
Ability to Measure Elevation Angles Weaker Stronger
Resolution Lower Higher
Clutter / Noise More Less
Number of Points Smaller Larger

characterized by distinct data structures and properties. LiDAR
data is in the form of point clouds, providing precise 3D
geometric information regarding an object’s shape, size, and
position. Meanwhile, camera images offer dense and regu-
lar data, supplying rich semantic information. However, the
high cost of LiDARs prohibits their widespread adoption in
household vehicles, and cameras are susceptible to challenging
lighting and weather conditions [6].

In contrast, radars are cost-effective and resilient to external
factors, making them vital for robust detection in current
advanced driver assistance systems (ADAS) and autonomous
driving [7]. Moreover, radars hold promise for future appli-
cations in cooperative perception [8]. However, as shown in
Table I, conventional automotive radars, when used alone,
lack height information and generate sparse point clouds,
posing challenges for 3D object detection. The emergence
of 4D imaging radars has led to the generation of higher-
resolution 3D point clouds [9]. Although there is still a notable
disparity in density and quality compared to LiDAR point
clouds, several studies [10][11][12] have explored 4D radar-
based detection and demonstrated its feasibility.

In 3D object detection, researchers increasingly turn to
multi-modal fusion techniques to overcome the limitations
associated with single-modal data to improve the overall
performance. One prominent approach involves independently
extracting bird’s-eye-view (BEV) features from different sen-
sor modalities and integrating them into a unified feature map.
The utilization of BEV representation offers numerous advan-
tages. Firstly, it enables more efficient processing compared to
point-based or voxel-based methods. Additionally, leveraging
mature 2D detection techniques can facilitate learning pro-
cesses. Furthermore, occlusion, a common challenge in other
representations like the range-view, is mitigated in BEV [13].
Notably, using BEV representation simplifies and enhances the
effectiveness of multi-modal fusion strategies [14].

Despite the benefits of using BEV representation for multi-
modal fusion in 3D object detection, transforming images
from a perspective view (PV) to BEV is intricate. Current ap-
proaches can be categorized into geometry-based [15][16][17]
and network-based methods [18][19]. Geometry-based ap-
proaches, relying on explicit utilization of calibration ma-
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trices, offer a more straightforward learning process than
network-based approaches. One widely employed geometry-
based method is “depth-based splatting”. Initially introduced in
Lift-Splat-Shoot (LSS) [20], this method lifts image pixels into
3D space guided by predicted pixel depth distributions. Several
enhancements have been proposed to improve its performance.
For example, BEVDepth [21] generates a “ground-truth” depth
map from LiDAR points to supervise image depth prediction,
whereas CRN [22] employs a 2D radar occupancy map to
assist view transformation. Another approach, called “sam-
pling”, has demonstrated superior performance even without
explicit depth prediction, as exemplified by Simple-BEV [23].
However, unlike the common practice of “splatting”, few
studies explored the combination of “sampling” with predicted
depths. Moreover, the potential of “sampling” in conjunction
with other modalities remains largely unexplored, indicating
untapped opportunities for further improvement in this area.

Despite growing interest in multi-modal fusion techniques
for 3D object detection, the specific integration of 4D imaging
radar and cameras has received limited attention in the existing
literature. Existing methods designed for LiDAR-based fusion,
such as the popular “splatting” approach, is applicable to 4D
imaging radar and camera fusion, but their enhancements like
BEV-Depth [21] may fail due to the distinct characteristics of
radar point clouds. Specifically, when point clouds from 4D
radars instead of LiDARs can be accessed, the generated depth
maps in BEV-Depth may suffer from sparsity and imprecision
of radar points. Additionally, methods devised specifically for
radars, such as the technique presented in CRN [22], may
introduce computational complexity and hinder the real-time
inference capabilities of the model. Therefore, there is a clear
need to address this research gap by developing novel fusion
methods tailored for 4D imaging radar and camera fusion. In
this study, we aim to enhance the existing “sampling” method
by leveraging the unique advantages of 4D imaging radar.
By conducting extensive ablation studies, we show how 4D
imaging radar can assist in image view transformation and
demonstrate its impact on the overall 3D object detection
performance. The contributions of this work are threefold:

• A LiDAR Excluded Lean (LXL) model is proposed to
perform 4D imaging radar and camera fusion-based 3D
object detection. This is an early attempt in this field, and
serves as the latest benchmark for subsequent studies.

• A “radar occupancy-assisted depth-based sampling” fea-
ture lifting strategy is proposed in our view transforma-
tion module. It utilizes bi-linear sampling to get image
features for pre-defined voxels, followed by two parallel
operations: one combines image 3D features with the in-
formation from predicted image depth distribution maps,
and the other exploits estimated radar 3D occupancy
grids. This design enhances the underdeveloped “sam-
pling” strategy by introducing predicted depth distribution
maps and radar 3D occupancy grids as assistance, leading
to more precise feature lifting results.

• Experiments show that LXL outperforms state-of-the-art
models on the View-of-Delft (VoD) [10] and TJ4DRadSet
[24] datasets by 6.7% and 2.5%, respectively, demonstrat-

ing the effectiveness of LXL. In addition, comparisons of
different feature lifting and radar assistance strategies are
made through ablation studies, showing the superiority of
the proposed view transformation module.

The rest of the paper is organized as follows. Section II
reviews recent works on camera-based, camera and ordinary
automotive radar fusion-based, and 4D imaging radar-based
3D object detection methods. Section III details our proposed
model, with focus on the view transformation module. Ex-
perimental settings and performances of our model and the
corresponding analysis are provided in section IV. Finally, we
summarize the work in this paper and point out the future
research direction in Section V.

II. RELATED WORK

A. 3D Object Detection with Cameras
The camera-based 3D object detection work can be mainly

categorized into three types.
The first type involves directly estimating 3D bounding

boxes based on image PV features [25]. However, due to the
inherent lack of depth information in images, the performances
of these methods are limited.

The second type focuses on directly transforming PV
features into BEV and predicting bounding boxes on the
top-down view [18][19]. This approach requires additional
information, e.g. pixel heights or depths, to achieve accurate
view transformation. Inverse perspective mapping (IPM) [26]
projects PV features onto the BEV with the assumption that all
pixels lie on the ground. However, its performance is limited
as the assumption is not always true. Other methods [18][19]
utilize transformers to learn view transformation and reduce
the impact of inaccurate depth estimation.

The third type involves lifting pixels into a point cloud or
voxels [15][16][17][21][27] and applying networks designed
for LiDAR-based 3D object detection. These approaches as-
sume or estimate pixel depth or depth distributions to guide the
2D-to-3D projection. Pseudo-LiDAR [27] is a pioneering work
that transforms images into point clouds based on regressed
depth. However, these networks cannot be trained end-to-end,
limiting their performance. CaDDN [15], BEVDet [16], and
BEVDepth [21] employ a technique where they discretize the
depth space into bins, and treat the depth estimation as depth
bin classification. Subsequently, image features are lifted into
voxels based on the estimated depth distribution. In contrast,
M2BEV [17] adopts a different strategy by assuming a uniform
depth distribution instead of predicting depth probabilities.
This approach mitigates the computational burden while al-
lowing for effectively lifting image features into voxels.

It is important to note that most of the methods belonging to
the third type also detect objects on the BEV. Projecting image
features from PV to BEV alleviates the occlusion problem
and facilitates multi-modal fusion. As a result, these types of
methods have become more prevalent in recent years.

B. 3D Object Detection with Camera and Ordinary Automo-
tive Radar Fusion

Ordinary automotive radars cannot measure height informa-
tion, posing a challenge for models to estimate 3D bounding
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boxes accurately from 2D radar points solely. Consequently,
researchers have explored the fusion of 3D radar and camera
data for improved 3D object detection, with earlier works
including [28][29][30].

Recent advancements in this field have introduced novel
approaches to fuse camera and radar data [31]. For instance,
Simple-BEV [23] lifts image pixels to 3D voxels and con-
catenates them with radar BEV features before reducing the
height dimension. To enhance the model’s resilience against
modal failure, CramNet [32] transforms the image foreground
into a point cloud and utilizes it along with radar points
for subsequent bounding box prediction. Given the relatively
low reliability of image depth estimation, ray-constrained
cross-attention is proposed in CramNet to refine the 3D
location of pixels. Another work, RCBEV [33], employs a
spatial-temporal encoder to extract features from accumulated
radar sweeps and introduces a two-stage multi-modal fusion
strategy. In contrast to many previous approaches focusing
on feature-level fusion, RADIANT [34] adopts a result-level
fusion strategy, merging depth predictions from radar and
camera heads to achieve lower localization errors.

Attention mechanisms and transformers have been leveraged
to enhance camera and radar fusion performance. MVFusion
[35] and CRN [22] utilize cross-attention to fuse camera
and radar features. Additionally, they employ one modal as
a guide to process the other modal. Specifically, MVFusion
[35] derives a Semantic Indicator from images to extract
image-guided radar features, while CRN [22] projects radar
points onto images and generates occupancy maps within the
view frustum, facilitating the depth-based PV to BEV trans-
formation of image features. CRAFT [36] primarily focuses
on image detection and utilizes radar measurements to refine
image proposals through the Spatio-Contextual Fusion Trans-
former. TransCAR [37] incorporates a transformer decoder
where vision-updated queries interact with radar features.

C. 3D Object Detection with 4D Imaging Radars

With advancements in 4D imaging radars, which can gen-
erate 3D point clouds, there is a possibility of regressing 3D
bounding boxes using radar modality alone. However, despite
the availability of a few datasets providing 4D radar point
clouds [10][24][38] and even 4D radar tensors [39][40], the
research in this area remains limited. Most of the existing
works in this field incorporate modules from LiDAR-based
models, such as using the backbone of SECOND [41] or the
detection head of CenterPoint [42]. Nevertheless, 3D point
clouds generated by 4D imaging radars are typically sparser
and noisier than LiDAR point clouds, often leading to lower
model performance [10].

For example, [10] applies PointPillars [43] to perform
3D object detection using 4D imaging radars and achieves
reasonable results. RPFA-Net [11] modifies the pillarization
operation of PointPillars [43] by replacing the PointNet [44]
with a self-attention mechanism to extract global features,
thereby enhancing the model’s orientation estimation capabil-
ity. Using a spatial-temporal feature extractor on multi-frame
radar point clouds and employing an anchor-based detection

head, RadarMFNet [12] achieves more accurate detection
than single-frame methods. In the most recent work, SMURF
[45], a multi-representation fusion strategy is adopted where
the PointPillars [43] backbone and kernel density estimation
(KDE) extract different radar features in parallel, enabling the
acquisition of enhanced feature maps of radar points.

To leverage the data from other sensors such as LiDARs
and cameras, researchers start to explore the fusion of these
modalities with 4D imaging radars to achieve improved results.
For instance, InterFusion [46] and M2-Fusion [47] employ
attention mechanisms [48] to fuse pillarized LiDAR and
radar features. [49] utilizes self-supervised model adaptation
(SSMA) blocks [50] for a pixel-level fusion of image, radar
BEV, and radar front view (FV) features. Similarly, RCFusion
[51] incorporates an interactive attention module to fuse radar
and image BEV features.

As 4D radar and camera fusion-based 3D object detection
remains an area requiring further investigation, this paper aims
to inspire subsequent researchers to explore this domain.

III. PROPOSED METHOD

A. Overall Architecture
The overall architecture of our model is depicted in Fig.

1. The model comprises four main components: the radar
branch with an occupancy net, image branch with a depth net
and a specially designed view transformation module, fusion
module, and detection head. Each component plays a crucial
role in the 3D object detection process:

1. The radar branch is responsible for processing radar point
clouds as an input. It extracts radar BEV features, which
capture essential information from the radar modality.
Additionally, the radar branch generates 3D radar oc-
cupancy grids, representing the radar points’ occupancy
status within the scene.

2. The image branch focuses on extracting multi-scale im-
age PV features. These features encode relevant visual in-
formation from the image modality. We employ predicted
image depth distribution maps and 3D radar occupancy
grids to assist in transforming the image PV features into
the BEV domain. Aligning the image features with the
radar BEV representation enables effective fusion with
the radar features.

3. The fusion module is a key component in integrating the
BEV features from both radar and image branches. It
combines the complementary information each modality
provides, allowing for enhanced object detection perfor-
mance. The fusion process leverages the BEV features
to generate a unified representation that captures the
combined strengths of radar and image data.

4. The detection head is responsible for bounding box
regression and classification for each potential object in
the scene. It utilizes the fused features to estimate the
3D position, dimensions, orientation, and category of the
objects. By leveraging the comprehensive information
from both radar and image modalities, the detection head
produces accurate predictions.

Further details regarding the proposed method are elabo-
rated in the subsequent subsections.
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Fig. 1: The overall architecture of LXL. The radar branch and image branch extract features of the corresponding modal, resulting in radar
BEV feature maps and image PV feature maps. After that, radar 3D occupancy grids and image depth distribution maps are generated and
sent to the view transformation module, assisting the image PV-to-BEV transformation. The resulted image BEV feature maps are fused
with radar BEV feature maps, and bounding boxes are predicted from the output feature map of the fusion module.

B. Radar Branch

In the radar branch, the input radar point cloud is initially
pillarized via the process employed in PointPillars [43]. Subse-
quently, the pillar representation is fed into the radar backbone
and neck modules to extract relevant features. Following the
widely referenced network SECOND [41], the radar back-
bone and neck are constructed. The radar backbone extracts
multi-level BEV features from the voxelized pillars. These
features capture important spatial and contextual information
inherent in the radar modality. The radar neck module then
combines these multi-level features into a unified single-scale
representation, facilitating subsequent fusion and analysis.
The obtained radar BEV feature maps serve two primary
purposes within our model. Firstly, they are forwarded to the
fusion module, where they are integrated with the image BEV
features for effective object detection. Secondly, the radar BEV
feature maps are utilized to predict radar 3D occupancy grids.
The motivation behind the occupancy generation is discussed
further in Section III-D.

To generate radar 3D occupancy grids, we employ an
occupancy net. The radar BEV feature map, denoted as FP

BEV
with a shape (X,Y,CP ), is fed into the occupancy net. Here,
X and Y represent the dimensions of the feature map, and CP

corresponds to the number of channels. In our framework, the
height of the 3D occupancy grid, denoted as Z, is predefined.
The occupancy net can be formulated as follows:

OP
3D = Sigmoid(ConvCP→Z(F

P
BEV)), (1)

where OP
3D ∈ RX×Y×Z is the predicted 3D occupancy grid

and Conva→b represents a 1×1 convolution layer with a input
channels and b output channels. Note that during training, there
are no direct supervise signals for occupancy prediction.

To transform the image view from PV to BEV, we leverage
the radar 3D occupancy grids as an assistance. The specific
details and the process of this transformation will be elaborated
upon in Section III-D.

C. Image Branch

The image branch consists of several key modules: image
backbone, neck, depth net, and view transformation module.

The image backbone extracts multi-level image PV features.
The image neck is embraced to further enhance the features
by mixing them at different scales. In our model, we employ
the same architecture as YOLOX [52] to achieve this design,
utilizing CSPNet [53] and PAN [54].

The depth net is implemented as a 1 × 1 convolutional
layer for each multi-level image PV feature. Similar to many
existing methods [15][16][20][21], we discretize the depth
space into multiple bins and treat the depth estimation task
as a depth bin classification task. Consequently, the depth net
outputs a depth probability distribution for each pixel. Given
the image PV feature map of the i-th level, denoted as FI

i,PV ∈
RHi×Wi×CI , the depth distribution map DI

i ∈ RHi×Wi×D can
be obtained as

DI
i = Softmax(ConvCI→D(FI

i,PV)), i = 1, 2, · · · , Nlvl, (2)

where D represents the pre-defined number of depth bins, Nlvl
denotes the number of levels and Softmax(·) is applied along
the depth dimension.

The final module in the image branch is the view transfor-
mation module which is also the core of LXL. Its primary
objective is to lift the image PV features into a 3D space and
compress the height dimension. The detailed workings of this
module will be elaborated upon in Section III-D.
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Fig. 2: The view transformation module in LXL. During the feature lifting process, image PV features are transformed to 3D voxel features
through the “sampling” strategy. The result is then multiplied by sampled depth probabilities and radar 3D occupancy grids respectively,
obtaining depth-assisted image 3D voxel features and radar occupancy-assisted image 3D voxel features. Finally, the two aforementioned
image 3D features are concatenated before height compression.

D. View Transformation

The process of view transformation, which incorporates
predicted multi-scale depth distribution maps and radar 3D
occupancy grids, is illustrated in Fig. 2. This method is referred
to as “radar occupancy-assisted depth-based sampling” in this
paper. To the best of the authors’ knowledge, this is the first
work to enhance the “sampling” feature lifting strategy with
both predicted image depth distribution maps and radar 3D
occupancy grids.

Feature Lifting: There are two primary strategies for
geometrically lifting image features into 3D space. The first
strategy is “sampling”, where pre-defined 3D voxels are
projected onto the image plane, and the features of nearby
pixels in the projected region are combined to form the voxel
feature. Representative models utilizing this strategy include
[17][23][55]. The second strategy, “splatting”, involves trans-
forming each image pixel into points or frustum voxels along
a straight line in 3D space based on the calibration matrix.
The features of these points or frustum voxels are determined
by their corresponding pixel features. Subsequently, the points
are voxelized, or the frustum voxels are transformed into
cubic voxels. Prominent models that employ the “splatting”
technique for view transformation include [15][16][20].

Simple-BEV [23] has demonstrated that the “sampling”
approach outperforms “splatting”, and our experiments in
Section IV-D corroborate this conclusion. Therefore, we have
chosen the “sampling” strategy for view transformation in our
model. Specifically, given the 3-dimensional coordinates of

the pre-defined 3D voxels, denoted as VP ∈ RX×Y×Z×3

in the radar coordinate system, the radar-to-image coordinate
transformation matrix Tr2c ∈ R3×3, and the camera intrinsic
matrix I ∈ R3×4, we first project the voxel centers onto the
image plane using the following equation:

VI
i,j,k = I · T̄r2c · V̄P

i,j,k, (3)

where V̄P
i,j,k = [VP

i,j,k, 1] ∈ R4 is the extended coordinates,
and

T̄r2c =

[
Tr2c 0
0 1

]
∈ R4×4 (4)

is the extended coordinate transformation matrix. VI
i,j,k =

[ud, vd, d] is the projected coordinate in the image coordinate
system, where (u, v) and d denotes the pixel index and the
image depth, respectively.

Subsequently, the feature of each pre-defined voxel can
be obtained through bi-linear sampling on each multi-level
image PV feature map. Specifically, we select the 2 × 2
pixels closest to (u, v) and compute the weighted sum of
their features, which is then assigned to the corresponding
voxel as its feature. This step is accomplished using the
“torch.nn.functional.grid sample” operation, resulting
in image 3D voxel features FI

3D ∈ RNlvl×X×Y×Z×CI .
Depth-Based Sampling: However, the aforementioned op-

erations do not consider the predicted image depths, which
may lead to sub-optimal feature lifting. While LSS [20]
employs the outer product for “depth-based splatting”, this
approach is not directly applicable in our “sampling” case
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due to the different coordinate systems of the predicted depth
distribution maps and image 3D features. To address this issue,
we leverage tri-linear sampling, the 3D extension of bi-linear
sampling, on the predicted multi-scale image depth distribution
maps in the image coordinate system, denoted as DI

i , to obtain
depth probabilities DI

3D ∈ RNlvl×X×Y×Z for the pre-defined
voxels in the radar coordinate system. Concretely, the pre-
defined voxels in the radar coordinate system are projected
onto the image plane to determine the nearest 2×2×2 image
frustum voxels. As each image depth probability corresponds
to a frustum voxel, the weighted sum of depth probabilities
from the selected frustum voxels is calculated as the sampled
depth probability of the pre-defined voxel.

Subsequently, the image 3D voxel features are multiplied by
the sampled depth probabilities using the following equation:

F′I
3D = FI

3D ⊙DI
3D. (5)

Here, ⊙ represents element-wise multiplication with broad-
casting, and F′I

3D ∈ RNlvl×X×Y×Z×CI denotes the result of
the “depth-assisted image feature lifting” process.

Radar Occupancy-Assisted Sampling: The model faces
challenges in learning accurate depth prediction without direct
supervision, as the image depth information is often ambigu-
ous [21]. To address this issue, one possible approach is to
“generate” depth supervision using radar points. This method
involves projecting radar points onto images and assigning
their depths as the ground-truth depths of the nearest pixels.
However, due to the sparsity of radar point cloud, only a few
pixels have ground-truth depth information, and the accuracy
of the ground-truth depths are limited because of the noise
inherent in radar measurements.

As a result, we choose another approach, leveraging the
radar modality differently by adding a branch for lifting the
image PV features and fusing with the aforementioned lifted
features F′I

3D. The latest work of this approach, CRN [22],
projects the 2D radar points onto the image plane and applies
convolutional operations after pillarization. The resulting con-
volution output, referred to as the radar occupancy map, is
in the image coordinate system, and aids in the view trans-
formation process. However, the coordinate transformation
and pillarization procedures are time-consuming. In addition,
when combing CRN with our “sampling” strategy, the radar
occupancy map must be re-sampled to the radar coordinate
system, which further increases the complexity. Thus, our
proposed method generates radar occupancy grids in the radar
coordinate system directly, as explained in Section III-B.

It is worth noting that in our model, radar 3D occupancy
grids are predicted instead of radar 2D occupancy maps, as 4D
radar is capable of capturing height information. Moreover,
since the required occupancy grids and radar BEV features
share the same BEV resolution, they are generated from the
radar BEV features for simplicity.

Specifically, in this “radar-occupancy assisted sampling”
step, the predicted radar 3D occupancy grids OP

3D are mul-
tiplied by FI

3D to obtain the radar-assisted image 3D features
F′′I

3D ∈ RNlvl×X×Y×Z×CI using the following equation:

F′′I
3D = FI

3D ⊙OP
3D. (6)

Height Compression: The resulting radar-assisted image
3D features, denoted as F′′I

3D, and the depth-assisted image
3D features, denoted as F′I

3D are concatenated along the
channel dimension and summed along the level dimension.
Subsequently, the tensor is reshaped from X × Y × Z × 2CI

to X×Y ×(Z ·2CI), enabling the application of convolutional
layers to facilitate spatial interaction. The process can be
mathematically expressed as

FI
BEV = Convs(Reshape(Concat(F′I

3D,F
′′I

3D))), (7)

where FI
BEV ∈ RX×Y×CI represents the final image BEV

features, which are the output obtained from the view transfor-
mation module utilizing the radar occupancy-assisted depth-
based sampling method.

E. Multi-modal Fusion and Detection Head

After acquiring the radar and image BEV features, the
fusion module integrates their information and produces fused
BEV feature maps. In our approach, the radar BEV features,
denoted as FP

BEV, and the image BEV features, denoted as
FI

BEV, have the same resolution, allowing for concatenation
and fusion through convolutional operations. The resulting
fused BEV features are subsequently fed into the detection
head to predict 3D bounding boxes. In this work, we adopt
the methodology of CenterPoint [42] to generate category-
wise heatmaps and perform object detection. It is important
to note that our fusion strategy and detection head are not
limited to specific methods. For instance, our model can also
incorporate attention-based fusion techniques and employ an
anchor-based detection head.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset and Evaluation Metrics

Dataset: In this study, we utilize two datasets, View-of-
Delft (VoD) [10] and TJ4DRadSet [24], to evaluate the perfor-
mance of our proposed model. These datasets are designed for
autonomous driving and encompass data from various sensors,
including LiDAR points, 4D radar points, and camera images.
Each object in the datasets is annotated with its corresponding
category, a 3D bounding box, and a tracking ID. Moreover, the
datasets provide coordinate transformation matrices between
different sensors.

The VoD dataset encompasses three object categories we
used in experiments: Car, pedestrian, and cyclist. On the other
hand, the TJ4DRadSet includes an additional class, truck.
It also presents a more diverse range of driving scenarios
than VoD. Notably, it exhibits significant variations in lighting
conditions throughout the dataset, as well as different road
types such as crossroads and elevated roads. Consequently,
the 3D object detection task becomes considerably more
challenging when working with the TJ4DRadSet dataset.

For both datasets, we adopt the official data splits pro-
vided. Specifically, the VoD dataset comprises 5139 frames
for training and 1296 frames for validation. Since the official
test server for the VoD dataset is not yet released, evaluations
and analyses are performed solely on the validation set. In
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TABLE II: Comparison with state-of-the-art methods on the validation set of VoD [10], where R denotes 4D imaging radar and
C indicates camera. The results of methods marked with † are inherited from [51]. Note that BEVFusion [58] is implemented
according to the radar + camera configuration file on its official github.

Method Modality AP in the Entire Annotated Area (%) AP in the Region of Interest (%) FPSCar Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
PointPillars† (CVPR 2019) [43] R 37.06 35.04 63.44 45.18 70.15 47.22 85.07 67.48 N/A

RadarPillarNet† (IEEE T-IM 2023)[51] R 39.30 35.10 63.63 46.01 71.65 42.80 83.14 65.86 N/A
LXL - R R 32.75 39.65 68.13 46.84 70.26 47.34 87.93 68.51 44.7

FUTR3D (CVPR 2023) [57] R+C 46.01 35.11 65.98 49.03 78.66 43.10 86.19 69.32 7.3
BEVFusion (ICRA 2023) [58] R+C 37.85 40.96 68.95 49.25 70.21 45.86 89.48 68.52 7.1

RCFusion† (IEEE T-IM 2023) [51] R+C 41.70 38.95 68.31 49.65 71.87 47.50 88.33 69.23 N/A
LXL (Ours) R+C 42.33 49.48 77.12 56.31 72.18 58.30 88.31 72.93 6.1

the case of the TJ4DRadSet, the training set consists of 5717
frames, while the test set encompasses 2040 frames.

Evaluation Metrics: Our proposed model is evaluated
using specific metrics for each dataset.

For the VoD dataset, there are two official evaluation met-
rics: AP in the entire annotated area (EAA AP) and AP in the
driving corridor (RoI AP). The driving corridor, considered as
a region of interest (RoI), is located close to the ego-vehicle
and is defined as a specific area, DRoI = {(x, y, z)| − 4m <
x < 4m, z < 25m}, within the camera coordinate system.
The Intersection over Union (IoU) thresholds used in the
calculation of AP are 0.5, 0.25, and 0.25 for cars, pedestrians,
and cyclists, respectively. For each predicted bounding box
defined as a True Positive (TP), these thresholds determine the
minimum overlap required between it and the ground truth.

In the case of the TJ4DRadSet dataset, evaluation metrics
include 3D AP and BEV AP for different object classes within
a range of 70 meters. The IoU thresholds for cars, pedestrians,
and cyclists follow the same values as those used in the VoD
dataset. Additionally, for the truck class, the IoU threshold is
set to 0.5.

B. Implementation Details
The model implementation is based on MMDetection3D

[56], an open-source framework for 3D object detection tasks.
Hyper-parameter Settings: The hyper-parameters are de-

termined following the official guidelines of the VoD dataset.
The point cloud range (PCR) is set to a specific range,
DPCR = {(x, y, z)|0 < x < 51.2m,−25.6m < y <
25.6m,−3m < z < 2m}, in the radar coordinate system. The
pillar size in the voxelization process of radar points is defined
as 0.16m × 0.16m. The stride of the radar feature extractor,
which consists of the backbone and neck, is adjusted to 2 to
achieve a final BEV resolution of 160× 160.

For the detection head, we utilize the CenterPoint [42]
framework. During training, the minimum Gaussian radius for
generating ground-truth heatmaps is set to 2. During inference,
the top 1000 detections are considered, and a post-processing
step with non-maximum suppression (NMS) is applied. The
distance thresholds for NMS are set to 4m, 0.3m, and 0.85m
for cars, pedestrians, and cyclists, respectively.

Regarding the TJ4DRadSet dataset, the PCR is set to
DPCR = {(x, y, z)|0 < x < 69.12m,−39.68m < y <
39.68m,−4m < z < 2m}, and the other hyper-parameters
remain consistent with those used in the VoD dataset. For the
truck category, the distance threshold for NMS is 12m.

Training Details: During training, both images and radar
points are normalized with the mean and standard deviation
values of the corresponding data in the whole training set
before being fed into the model:

i = (i− µI)/σI ,

pm = (pm − (µP )m)/(σP )m,m /∈ {x, y, z, t},
(8)

where i is the RGB value of an image pixel, and p is the
original feature of a radar point; I and P represent the whole
set of image pixels and radar points, and the subscript m
denotes the corresponding feature vector component. µX and
σX is the mean and standard deviation of set X (X = I
or P ), respectively. In addition, radar points and ground-truth
bounding boxes outside the image view are filtered out to
ensure data consistency. This is achieved by projecting radar
points and centers of bounding boxes onto the image plane and
discarding those falling outside the image. Moreover, random
horizontal flipping is applied as a data augmentation technique
for both input data and BEV features.

The model is trained for 80 epochs using the AdamW
optimizer and StepLR scheduler. The batch size is set to 6,
and the initial learning rate is set to 1e-3. It is important to
note that the image backbone and neck are loaded from a
pre-trained model, and their parameters are frozen to prevent
overfitting. The pre-trained model is from MMDetection [59],
which is YOLOX [52] trained on the COCO [60] dataset for
the 2D object detection task.

C. Results and Analysis

Results on VoD: The experimental results on the VoD
[10] validation set are presented in Table II. We also present
the detection accuracy of LXL-R, which is our single-modal
baseline without the image branch, occupancy net, and fu-
sion module. The RoI AP for cars and cyclists is relatively
high for LXL-R, indicating that 4D radar alone is effective
in perceiving the environment at close range. However, the
RoI AP for pedestrians is limited due to two main reasons.
Firstly, pedestrians are small in the BEV representation, often
occupying only a single grid or even a fraction of it, making
it challenging for the network to accurately regress bounding
boxes. Additionally, millimeter waves have weak reflections
on non-metallic objects, resulting in sparse and less accurate
measurements from pedestrians. Another observation is that
the radar-modal-only model performs poorly in terms of EAA
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Fig. 3: Some visualization results on the VoD [10] validation set (best viewed in color and zoom). Each column corresponds to a frame of
data containing an image and radar points (gray points) in BEV, where the red triangle denotes the position of the ego-vehicle, and orange
boxes represent ground-truths. Blue boxes in the second row stand for predicted bounding boxes from LXL. Note that in the third row, the
detection results of LXL-R are also shown as green boxes for comparison.

AP for all categories, highlighting the challenges of detecting
far-away objects due to the sparsity and noise in radar points.

Upon fusing camera images with radar data, the detec-
tion results of different models are improved, particularly
in the EAA metric and on pedestrians and cyclists. These
improvements suggest that dense images with rich semantic
information can compensate for the sparsity and noise in radar
points, enhancing radar perception for objects that are porous,
non-metallic, or located at a distance. Compared to RCFusion
[51], the latest benchmark on 3D object detection with 4D
imaging radar and camera fusion, our LXL model achieves
higher detection accuracy across almost all categories and
evaluation regions. This indicates that the proposed “radar

occupancy-assisted depth-based samping” strategy is able to
achieve precise image view transformation and amplifies the
effectiveness of fusion with images. As our LXL utilize a
center-based detection head that is skilled in detecting small
objects [6] while RCFusion adopts an anchor-based head, the
performance improvement is higher on pedestrians (+10.5%)
and cyclists (+8.8%) than that on cars (+0.6%). FUTR3D [57]
and BEVFusion [58] are also implemented on VoD according
to the code on their official github, getting 7% lower results
than LXL as these methods are not specially designed for 3D
points from 4D radars. It is interesting to notice that FUTR3D
outperforms LXL in the car category. This can be attributed
to the sampling strategy in its transformer decoder head that
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samples features from the K nearest radar points. However,
when the object size is small, there are often not enough points
to be sampled, and the sampled features will be polluted by
other irrelevant sampled points. Thus, the detection accuracy
of pedestrians and cyclists is limited.

The inference speed of LXL and some other models are
also listed in Table II, measured on a single V100 GPU. The
radar modal-only model, LXL-R, can detect objects in real
time, while multi-modal methods all require more than 100ms
(FPS < 10) to generate predictions due to the introduction
of images. Although LXL runs slightly slower than FUTR3D
[57] and BEVFusion [58], the performance gain of more than
7% makes it relatively acceptable.

Fig. 3 showcases the visualization results of our LXL model,
demonstrating its accurate detection of various object classes.
The predictions of LXL-R are also provided for comparison.
Notably, in some cases, LXL even detects true objects that
are not labeled (e.g., the bottom-right cyclist in the second
column of the image). Moreover, when the radar point cloud
is sparse, LXL has the ability to leverage camera information
to detect objects that are missed by LXL-R. It is also able
to utilize radar measurements to detect objects occluded in
the camera view. Therefore, our model effectively leverages
the advantages of both modalities to reduce missed detections
and improve detection accuracy.

To compare the performance of LiDAR-based 3D object
detection and 4D radar-based 3D object detection, Table
III exhibits the experimental results of LXL and LiDAR-
based PointPillars [43]. As expected, the detection accuracy
of PointPillars-LiDAR is 19.1% higher than that of LXL-R,
because LiDAR points are much denser and less noisy than 4D
radar points, as mentioned in Section I. However, when fused
4D radar points with camera images, the performance gap is
significantly narrowed to 9.6%, and LXL even outperforms
PointPillars-LiDAR in the cyclist category. This result shows
that the mutual compensation of low-cost sensors can make
4D radar-camera fusion-based methods have the potential to
replace high-cost LiDARs in some aspect.

Results on TJ4DRadSet: To evaluate the generalization
ability of our proposed model, we conduct additional exper-
iments on the TJ4DRadSet [24] dataset. Table IV presents
the performance of different methods on the test set of
TJ4DRadSet, where LXL outperforms other 4D radar-camera
fusion-based models by more than 2.4% in 3D mAP. Fig.
4 provides visualizations of the detection results in various
scenarios. These results demonstrate the effectiveness of our
model in fusing radar and camera information for 3D object
detection, even under challenging lighting conditions such as
darkness or excessive illumination.

To further investigate the influence of lighting conditions
and object distances on our LXL model, we analyze the
detection results on TJ4DRadSet. Specifically, we divide the
test set into three subsets based on the brightness of the
scenarios: dark, standard, and over-illuminated (referred to as
“Shiny” in Table V). These subsets account for approximately
15%, 60%, and 25% of the entire test set, respectively. We
report the detection accuracy on these subsets in Table V. To
mitigate the influence of road conditions across subsets, we

TABLE III: Comparison between classical LiDAR-based
PointPillars (the result is inherited from [61]) and 4D imaging
radar and camera fusion-based LXL on the validation set of
VoD [10], where L denotes LiDAR, R denotes 4D imaging
radar, C indicates camera.

Method Modality
AP in the Entire Annotated Area (%)

Car Pedestrian Cyclist mAP
LXL - R R 32.8 39.6 68.1 46.8

LXL (Ours) R+C 42.3 49.5 77.1 56.3
PointPillars (CVPR 2019) [43] L 66.6 56.1 75.1 65.9

TABLE IV: Comparison with state-of-the-art methods on the
test set of TJ4DRadSet [24], where R denotes 4D imaging
radar and C indicates camera. The results of methods marked
with † are inherited from [51]. Note that BEVFusion [58] is
implemented according to the radar + camera configuration
file on its official github.

Method Modality 3D mAP (%) BEV mAP (%)
RPFA-Net† (ITSC 2021) [11] R 29.91 38.94

RadarPillarNet† (T-IM 2023) [51] R 30.37 39.24
LXL - R R 30.79 38.42

FUTR3D (CVPR 2023) [57] R+C 32.42 37.51
BEVFusion (ICRA 2023) [58] R+C 32.71 41.12
RCFusion† (T-IM 2023) [51] R+C 33.85 39.76

LXL (Ours) R+C 36.32 41.20

also include the performance of LXL-R, which is less affected
by lighting conditions, in the table. By comparing the results
of LXL with LXL-R on the same subset, we observe that
image information is beneficial in normal lighting conditions,
as expected.

Interestingly, even in dark scenarios, fusion with images
a performance gain of 2.3% on the 3D mAP because the
headlights and taillights of vehicles provide valuable cues
for object classification and localization. However, in cases
of excessive illumination, the performance deteriorates due to
unclear images under such conditions. To address this issue,
a simple rule-based approach could be employed, such as
switching to LXL-R with a single 4D imaging radar mode
when the image quality illumination factor falls below a certain
threshold. As there are few studies about camera and 4D
radar fusion-based 3D object detection, we aim to improve the
overall performance here, and robustness against image quality
degradation is not the primary focus of this work. Improving
model robustness will be a subject of our future research.

Furthermore, we evaluate our model on objects at different
distances from the ego-vehicle and present the results in Table
VI. The LXL model exhibits higher detection accuracy than
LXL-R for objects at almost all distances, and the performance
decreases as the distance increases due to the sparsity of radar
points. Moreover, as the semantic information from images
aids in identifying objects at a distance, there are fewer missed
detections and more TPs for far-away objects. In contrast,
the radar-only modality demonstrates some ability to detect
objects at medium range, and the introduction of images
primarily improves bounding box regression accuracy. Since
the number of TPs significantly impacts the AP, long-range
objects benefit more from multi-modal fusion than medium-
range objects.
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Fig. 4: Some visualization results on the TJ4DRadSet [24] test set (best viewed in color and zoom). Each column corresponds to a frame of
data containing an image and radar points (gray points) in BEV, where the red triangle denotes the position of the ego-vehicle, and orange
boxes represent ground-truths. Blue boxes in the second row stand for predicted bounding boxes from LXL. Note that in the third row, the
detection results of LXL-R are also shown as green boxes for comparison.

TABLE V: The performances of our model on different light-
ing conditions. Note that there are no pedestrians in the “dark”
subset, and the AP is considered as 0 in the computation of
the mAP metric.

Model 3D mAP (%) BEV mAP (%)
Dark Standard Shiny Dark Standard Shiny

LXL-R 20.17 30.76 22.68 22.36 35.47 36.66
LXL 22.50 45.74 20.33 25.19 49.55 28.13

TABLE VI: The evaluating results of our model on different
distances of objects.

Model 3D mAP (%) BEV mAP (%)
0-25m 25-50m 50-70m 0-25m 25-50m 50-70m

LXL-R 36.62 20.93 9.48 43.69 28.68 14.81
LXL 47.30 22.00 14.55 51.69 27.08 17.85

D. Ablation Study

In this subsection, we perform several experiments to vali-
date the effectiveness of key design choices in our model on
the VoD [10] dataset. Specifically, we focus on two aspects:
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TABLE VII: Ablation studies on image feature lifting and radar assistance. Experiments are conducted on VoD [10] dataset.

AP in the Entire Annotated Area (%) AP in the Region of Interest (%)Image Feature
Lifting Method Radar Assistance Car Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP

Splatting None 38.05 45.01 68.12 50.39 70.73 54.92 87.28 70.98
Sampling None 42.63 45.74 74.30 54.22 71.66 52.05 87.09 70.27
Sampling Depth Supervise 41.79 48.71 74.65 55.05 71.05 53.93 88.18 71.05
Sampling 3D Occupancy Grids (CRN)* 42.01 45.86 76.07 54.65 71.00 50.70 87.52 69.74
Sampling 3D Occupancy Grids (Ours) 42.33 49.48 77.12 56.31 72.18 58.30 88.31 72.93

* Note: Since additional elevation could be measured by 4D imaging radar but ordinary automotive radar used in CRN [22] can only
measure range and azimuth of objects, 3D occupancy grids rather than the 2D occupancy maps used in [22] are employed.
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Image Plane

BEV Grids
Pin Hole

Grids Outside the Image View

Empty Grids
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BEV Grids
Pin Hole

Grids Outside the Image View

Fig. 5: The illustration of the basic idea of “splatting” strategy.
For ease of understanding, it is shown in the overhead view. As
each image pixel is transformed into radar coordinate system with
indefinite depth, it corresponds to a ray in 3D space, named pixel
ray. The feature of a BEV grid is related to that of a pixel, if the
BEV projection of the pixel ray passes through the grid. Otherwise,
the BEV grid is empty. In practice, descretized depth values are
predefined and each image pixel only corresponds to several points
on the pixel ray, leading to more empty grids in the far distance.

the image feature lifting strategy and the utilization of radar
in the image branch. We investigate the commonly used geo-
metrical feature lifting strategies, “sampling” and “splatting”,
as described in Section III-D. For the “splatting” process,
we follow the implementation approach in LSS [20]. Table
VII presents results of these experiments. While “sampling”
exhibits slightly lower performance in terms of RoI AP com-
pared to “splatting”, it significantly outperforms “splatting” in
terms of EAA APs. It suggests that while “splatting” may
have a slight advantage at short distances, its performance
deteriorates significantly as the distance increases, leading
to lower performance compared to “sampling” in a broader
range. This observation can be attributed to sparsity of splatted
point clouds with increasing distance. After pillarization, a
considerable number of far-away BEV grids may remain
empty, as illustrated in Fig. 5. In contrast, “sampling” ensures
that each 3D voxel is associated with a sampled image feature,
as long as the corresponding grid falls within the camera
view. Consequently, “sampling” proves to be more effective
in capturing information across a wide range.

Regarding radar assistance in the image branch, we com-
pare our “radar occupancy-assisted sampling” method with
two alternative approaches. One alternative, referred to as
“Depth Supervise” in Table VII, is similar to the approach
used in BEVDepth [21]. It leverages radar points to generate
supervision signals for image depth distribution prediction.

Specifically, the radar points are first transformed into the
image coordinate system. Subsequently, for each projected
radar point, we identify the nearest pixel and assign the
radar depth as the ground-truth depth for that pixel. In cases
where multiple radar points correspond to a single pixel, we
compute the average depth to determine its ground-truth value.
However, we find that reducing the depth loss during training
using this method is challenging. This difficulty arises due
to the inherent noisiness and sparsity of radar points. The
noise in the radar measurements leads to inaccuracies in the
derived ground-truth depths, while the sparsity of radar points
poses challenges for the convergence of the depth estimation
network. Consequently, this alternative method only yields
a slight improvement in detection accuracy compared to the
approach without radar assistance.

An alternative approach involves generating radar 3D occu-
pancy grids by following CRN [22], namely “3D Occupancy
Grids (CRN)” in Table VII, which differs from our method.
For “3D Occupancy Grids (CRN)”, the radar points are pro-
jected onto the image plane and voxelized to match the shape
of the image depth distribution maps. Subsequently, sparse
convolutions are employed to generate radar 3D occupancy
grids in the image coordinate system, and tri-linear sampling
is applied for image-to-radar coordinate transformation. It is
important to note two differences between the aforementioned
method and the original approach in CRN [22]. Firstly, since
the radar points come from 4D radars and contain height
information, 3D occupancy grids are generated instead of 2D
occupancy maps. Secondly, the feature lifting method here
is “sampling” rather than “splatting”, so the occupancy grids
need to be resampled to transform back to the radar coordinate
system before being multiplied with the 3D image features.
Nonetheless, the underlying idea is the same as CRN.

Compared to the “Depth Supervise” approach discussed
earlier, the performance of the “3D Occupancy Grids (CRN)”
method is even more significantly affected by the sparsity of
radar points, due to the larger number of empty grids in 3D
space. Furthermore, this method requires a time-consuming
projection and voxelization process, whereas our approach
only relies on a simple occupancy net to predict radar 3D
occupancy grids in the radar coordinate system directly. Con-
sequently, our “radar occupancy-assisted sampling” strategy
offers performance and inference speed advantages.

V. CONCLUSION

In this paper, a new camera and 4D imaging radar fusion
model, namely LXL, is proposed for 3D object detection.
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It is shown that LXL outperforms existing works by a
large margin, mainly because its elaborate “radar occupancy-
assisted depth-based sampling” view transformation strategy
can effectively transform image PV features into BEV with the
aid of predicted image depth distribution maps and radar 3D
occupancy grids. This design demonstrates that there is a large
room for improving the “sampling” strategy, where a small
enhancement can boost the view transformation significantly.

The proposed LXL provides a framework capable of in-
spiring subsequent researches in camera and 4D imaging
radar fusion-based 3D object detection. Future works includes
improving the robustness of LXL via attention-based trans-
former to achieve adaptive interaction between modals, and its
applications in subsequent planning and control tasks [62][63].

REFERENCES

[1] J. Liu, W. Xiong, L. Bai, Y. Xia, T. Huang, W. Ouyang, and
B. Zhu, “Deep instance segmentation with automotive radar
detection points,” IEEE Transactions on Intelligent Vehicles,
vol. 8, no. 1, pp. 84-94, 2023.

[2] W. Xiong, J. Liu, Y. Xia, T. Huang, B. Zhu, and W. Xiang,
“Contrastive learning for automotive mmWave radar detection
points based instance segmentation,” in Proceedings of the IEEE
International Conference on Intelligent Transportation Systems
(ITSC), 2022, pp. 1255-1261.

[3] Y. Yang, J. Liu, T. Huang, Q.-L. Han, G. Ma, and B. Zhu,
“RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor
Box Free Object Detection Systems,” 2022, arXiv:2211.06108.

[4] J. Liu, L. Bai, Y. Xia, T. Huang, B. Zhu, and Q.-L. Han, “GNN-
PMB: A simple but effective online 3D multi-object tracker
without bells and whistles,” IEEE Transactions on Intelligent
Vehicles, vol. 8, no. 2, pp. 1176-1189, 2023.

[5] P. Sun, S. Li, B. Zhu, Z. Zuo, X. Xia, “Vision-Based Fixed-Time
Uncooperative Aerial Target Tracking for UAV,” IEEE/CAA
Journal of Automatica Sinica, vol. 10, no. 5, pp. 1322-1324,
2023.

[6] J. Mao, S. Shi, X. Wang, and H. Li, “3D object detection for
autonomous driving: A review and new outlooks,” International
Journal of Computer Vision (IJCV), vol. 131, pp. 1909–1963,
2023.

[7] S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for
advanced driver-assistance systems and autonomous driving:
Advantages and challenges,” IEEE Signal Processing Magazine,
vol. 37, no. 4, pp. 98–117, 2020.

[8] A. Caillot, S. Ouerghi, P. Vasseur, R. Boutteau, and Y. Dupuis,
“Survey on cooperative perception in an automotive context,”
IEEE Transactions on Intelligent Transportation Systems, vol.
23, no. 9, pp. 14204-14223, 2022.

[9] Z. Han, J. Wang, Z. Xu, S. Yang, L. He, S. Xu, and J. Wang,
“4D millimeter-wave radar in autonomous driving: A survey,”
2023, arXiv:2306.04242.

[10] A. Palffy, E. Pool, S. Baratam, J. F. Kooij, and D. M. Gavrila,
“Multi-class road user detection with 3+1D radar in the View-
of-Delft dataset,” IEEE Robotics and Automation Letters, vol.
7, no. 2, pp. 4961–4968, 2022.

[11] B. Xu, X. Zhang, L. Wang, X. Hu, Z. Li, S. Pan, J. Li, and Y.
Deng, “RPFA-Net: A 4D radar pillar feature attention network
for 3D object detection,” in Proceedings of the IEEE Inter-
national Intelligent Transportation Systems Conference (ITSC),
2021, pp. 3061–3066.

[12] B. Tan, Z. Ma, X. Zhu, S. Li, L. Zheng, S. Chen, L. Huang,
and J. Bai, “3D object detection for multi-frame 4D automotive
millimeter-wave radar point cloud,” IEEE Sensors Journal,
2022, doi: 10.1109/JSEN.2022.3219643.

[13] M. Drobnitzky, J. Friederich, B. Egger, and P. Zschech, “Survey
and systematization of 3D object detection models and meth-
ods,” The Visual Computer, pp. 1-47, 2023.

[14] Y. Ma, T. Wang, X. Bai, H. Yang, Y. Hou, Y. Wang, Y.
Qiao, R. Yang, D. Manocha, and X. Zhu, “Vision-centric BEV
perception: A survey,” 2022, arXiv:2208.02797.

[15] C. Reading, A. Harakeh, J. Chae, and S. L. Waslander, “Cat-
egorical depth distribution network for monocular 3D object
detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp.
8555–8564.

[16] J. Huang, G. Huang, Z. Zhu, and D. Du, “BEVDet: High-
performance multi-camera 3D object detection in bird-eye-
view,” 2023, arXiv:2112.11790.

[17] E. Xie, Z. Yu, D. Zhou, J. Philion, A. Anandkumar, S. Fidler,
P. Luo, and J. M. Alvarez, “M2BEV: Multi-camera joint 3D
detection and segmentation with unified birds-eye view repre-
sentation,” 2022, arXiv:2204.05088.

[18] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and
J. Dai, “BEVFormer: Learning bird’s-eye-view representation
from multi-camera images via spatio-temporal transformers,”
in Proceedings of the 17th European Conference on Computer
Vision (ECCV). Springer, 2022, pp. 1–18.

[19] Y. Jiang, L. Zhang, Z. Miao, X. Zhu, J. Gao, W. Hu, and Y.-
G. Jiang, “PolarFormer: Multi-camera 3D object detection with
polar transformers,” 2022, arXiv:2206.15398.

[20] J. Philion and S. Fidler, “Lift, Splat, Shoot: Encoding images
from arbitrary camera rigs by implicitly unprojecting to 3D,”
in Proceedings of the 16th European Conference on Computer
Vision (ECCV). Springer, 2020, pp. 194–210.

[21] Y. Li, Z. Ge, G. Yu, J. Yang, Z. Wang, Y. Shi, J. Sun, and Z.
Li, “BEVDepth: Acquisition of reliable depth for multi-view
3D object detection,” 2022, arXiv:2206.10092.

[22] Y. Kim, S. Kim, J. Shin, J. W. Choi, and D. Kum, “CRN:
Camera radar net for accurate, robust, efficient 3D perception,”
in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2023.

[23] A. W. Harley, Z. Fang, J. Li, R. Ambrus, and K. Fragkiadaki,
“Simple-BEV: What really matters for multi-sensor BEV per-
ception?” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2023.

[24] L. Zheng, Z. Ma, X. Zhu, B. Tan, S. Li, K. Long, W. Sun,
S. Chen, L. Zhang, M. Wan, et al., “TJ4DRadSet: A 4D radar
dataset for autonomous driving,” in Proceedings of the IEEE
25th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2022, pp. 493–498.

[25] G. Brazil and X. Liu, “M3D-RPN: Monocular 3D region
proposal network for object detection,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 9287–9296.

[26] H. A. Mallot, H. H. Bülthoff, J. Little, and S. Bohrer, “Inverse
perspective mapping simplifies optical flow computation and
obstacle detection,” Biological Cybernetics, vol. 64, no. 3, pp.
177–185, 1991.

[27] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell,
and K. Q. Weinberger, “Pseudo-LiDAR from visual depth
estimation: Bridging the gap in 3D object detection for au-
tonomous driving,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
8445–8453.

[28] T.-Y. Lim, A. Ansari, B. Major, D. Fontijne, M. Hamilton, R.
Gowaikar, and S. Subramanian, “Radar and camera early fusion
for vehicle detection in advanced driver assistance systems,” in
Proceedings of the 33rd Conference on Neural Information Pro-
cessing Systems (NeurIPS), Machine Learning for Autonomous
Driving Workshop, vol. 2, 2019, p. 7.

[29] R. Nabati and H. Qi, “Radar-camera sensor fusion for joint ob-
ject detection and distance estimation in autonomous vehicles,”
2020, arXiv:2009.08428.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 13

[30] R. Nabati and H. Qi, “CenterFusion: Center-based radar and
camera fusion for 3D object detection,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2021, pp. 1527–1536.

[31] S. Yao, R. Guan, X. Huang, Z. Li, X. Sha, Y. Yue, E. G. Lim,
H. Seo, K. L. Man, X. Zhu, and Y. Yue, “Radar-camera fusion
for object detection and semantic segmentation in autonomous
driving: A comprehensive review,” IEEE Transactions on Intel-
ligent Vehicles, 2023. doi: 10.1109/TIV.2023.3307157.

[32] J.-J. Hwang, H. Kretzschmar, J. Manela, S. Rafferty, N.
Armstrong-Crews, T. Chen, and D. Anguelov, “CramNet:
Camera-radar fusion with ray-constrained cross-attention for ro-
bust 3D object detection,” in Proceedings of the 17th European
Conference on Computer Vision (ECCV). Springer, 2022, pp.
388–405.

[33] T. Zhou, J. Chen, Y. Shi, K. Jiang, M. Yang, and D. Yang,
“Bridging the view disparity between radar and camera features
for multi-modal fusion 3D object detection,” IEEE Transactions
on Intelligent Vehicles, vol. 8, no. 2, pp. 1523–1535, 2023.

[34] Y. Long, A. Kumar, D. Morris, X. Liu, M. Castro, and P.
Chakravarty, “RADIANT: Radar-image association network for
3D object detection,” in Proceedings of the 37th AAAI Confer-
ence on Artificial Intelligence, 2023.

[35] Z. Wu, G. Chen, Y. Gan, L. Wang, and J. Pu, “MVFusion:
Multi-view 3D object detection with semantic-aligned radar
and camera fusion,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2023, pp.
2766-2773.

[36] Y. Kim, S. Kim, J. W. Choi, and D. Kum, “CRAFT: Camera-
radar 3D object detection with spatio-contextual fusion trans-
former,” 2022, arXiv:2209.06535. Accepted by the 37th AAAI
Conference on Artificial Intelligence.

[37] P. Su, M. Daniel, and R. Hayder, “TransCAR: Transformer-
based camera-and-radar fusion for 3D object detection,” 2023,
arXiv:2305.00397. Accepted by the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[38] M. Meyer and G. Kuschk, “Automotive radar dataset for deep
learning based 3D object detection,” in Proceedings of the IEEE
16th European Radar Conference (EuRAD), 2019, pp. 129–132.

[39] J. Rebut, A. Ouaknine, W. Malik, and P. Pérez, “Raw high-
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