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Abstract—The 4D millimeter-Wave (mmWave) radar is a
promising technology for vehicle sensing due to its cost-
effectiveness and operability in adverse weather conditions.
However, the adoption of this technology has been hindered by
sparsity and noise issues in radar point cloud data. This paper
introduces spatial multi-representation fusion (SMURF), a novel
approach to 3D object detection using a single 4D imaging radar.
SMURF leverages multiple representations of radar detection
points, including pillarization and density features of a multi-
dimensional Gaussian mixture distribution through kernel den-
sity estimation (KDE). KDE effectively mitigates measurement
inaccuracy caused by limited angular resolution and multi-
path propagation of radar signals. Additionally, KDE helps
alleviate point cloud sparsity by capturing density features. Ex-
perimental evaluations on View-of-Delft (VoD) and TJ4DRadSet
datasets demonstrate the effectiveness and generalization ability
of SMURF, outperforming recently proposed 4D imaging radar-
based single-representation models. Moreover, while using 4D
imaging radar only, SMURF still achieves comparable perfor-
mance to the state-of-the-art 4D imaging radar and camera
fusion-based method, with an increase of 1.22% in the mean
average precision on bird’s-eye view of TJ4DRadSet dataset and
1.32% in the 3D mean average precision on the entire annotated
area of VoD dataset. Our proposed method demonstrates im-
pressive inference time and addresses the challenges of real-time
detection, with the inference time no more than 0.05 seconds for
most scans on both datasets. This research highlights the benefits
of 4D mmWave radar and is a strong benchmark for subsequent
works regarding 3D object detection with 4D imaging radar.

Index Terms—4D imaging radar, radar point cloud, kernel den-
sity estimation, multi-dimensional Gaussian mixture, 3D object
detection, autonomous driving

I. INTRODUCTION

CONVENTIONAL automotive radar has been extensively
utilized in advanced driver assistance systems (ADAS)

and autonomous driving [1], with potential applications in
future cooperative perception systems [2]. However, compared
to LiDAR-based perception [3][4], conventional radar-based
perception technologies [5][6][7] often encounter limitations
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such as the absence of elevation information and low reso-
lution. These limitations impede their ability to detect and
localize objects in the surrounding environment accurately.
In recent years, the development of 4D imaging radar [8]
emerged as a promising solution to overcome these limitations.
4D imaging radar can measure the pitch angle, enhancing
the understanding of the environment and improving object
detection and localization accuracy. The evolution of 4D radar
and its performance have been explored in [9][10][11].

The signal processing scheme for 4D radar typically in-
volves the utilization of multiple-input and multiple-output
(MIMO) arrays for data acquisition, range-Doppler (RD) co-
herent processing, direction-of-arrival (DOA) estimation, and
point cloud generation, as depicted in [12][13][14]. Further
studies focused on point cloud generation for 4D radar have
also emerged. For example, the RPDNet [15] based on UNet
[16] is proposed for radar point detection, and position coding
is introduced in [17] to enhance spatial information extracted
from the RD map. Furthermore, [18] capitalizes on the sparsity
of the spectrum and antenna arrays to reduce the cost in point
cloud generation. These studies have significantly improved
4D radar’s accuracy and density in applications such as ADAS
and autonomous driving.

LiDAR point cloud and 4D radar point cloud exhibit several
similarities. However, the measurements obtained from 4D
radar are subject to noise, primarily stemming from the multi-
path propagation of radar signals. Additionally, 4D radar
captures less geometry and semantic information than the more
dense LiDAR point cloud. As a result, existing 3D object
detection algorithms specifically developed for dense LiDAR
point cloud may yield suboptimal performance when directly
applied to sparse 4D radar point cloud data. Meanwhile, some
existing models proposed for conventional automotive radar-
based object detection might be directly extended for 4D radar-
based object detection. For instance, researchers have pro-
posed PointNet-based [5][19][20] or graph-convolution-based
[6][21][22] methods as potential solutions. These end-to-end
learning methods offer advantages such as larger receptive
fields and simplified structures. However, conventional radar
systems suffer from limitations in measuring the height of
objects. As a result, directly applying these conventional radar-
based algorithms to 4D radar is unsuitable.

Consequently, there is a pressing need to develop effective
and efficient 3D object detection models based on 4D radar
data. Remarkable efforts have recently emerged to tackle
this issue. For example, a self-attention mechanism proposed
by [23] extracts global information from the pillarized radar
point cloud to enhance the detection accuracy of the network.
RadarMFNet [24] adopts a modified PointPillars [25] variant
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Fig. 1: Detection points from the same object tend to be more
concentrated. The sub-figure on the left is from 4D radar point cloud
provided by TJ4DRadSet [27] using Oculii Eagle under enhanced
mode; The sub-figure on the right is from 4D radar point cloud
provided by View-of-Delft (VoD) dataset [28] using ZF FRGen21
with 5 scans accumulation.

to effectively capture spatiotemporal features by integrating
information from the current scan with consecutive scans.
However, they don’t sufficiently tackle the adverse effects of
noise points inherent in the 4D radar point cloud data.

To address the challenges of noise mitigation and efficient
feature extraction from sparse 4D radar point cloud, we pro-
pose a multi-representation feature encoder. Specifically, our
approach involves representing the point cloud as a volumetric
grid of fixed-sized pillars and extracting local features within
each pillar. Furthermore, to overcome the limitations posed by
sparse and noisy data, we introduce a novel approach based
on kernel density estimation (KDE) [26] for extracting density
features from the 4D radar point cloud. Since the points
generated from different objects show different densities, for
example, noise points belonging to clutters are randomly and
irregularly distributed with lower density, while points from
the same object are more concentrated according to a certain
pattern as depicted in Fig. 1, KDE helps to achieve additional
feature which effectively represents the 4D radar point cloud.
By integrating the pillarization method with the KDE method,
we propose a multi-representation feature fusion model for
3D object detection based solely on 4D radar data. The
contributions of our work are summarized as follows:

• We propose a novel spatial multi-representation fusion
(SMURF) model for 3D object detection. This model
is built upon single-modal 4D millimeter-wave radar
data and utilizes pillarization and KDE techniques to
extract multiple feature representations from the radar
point cloud. This study represents the first attempt to
employ KDE to extract additional statistical features from
a 4D millimeter-wave radar point cloud, for 3D object
detection. By capturing the density features of a multi-
dimensional Gaussian mixture distribution, KDE effec-
tively mitigates the adverse impact of inherent noise and
sparsity in the point cloud. SMURF can be a formidable

baseline for future research and applications.
• To validate the effectiveness and generalization ability of

SMURF, we conduct experiments on the VoD dataset [28]
and the TJ4DRadSet dataset [27]. The results demonstrate
that SMURF surpasses the performance of the latest 4D
imaging radar-based approaches and achieves comparable
performance to the state-of-the-art approach using 4D
radar and camera fusion.

• Comparable to the inference speed of real-time detection
works [29][30][31] which typically achieve inference
speeds ranging from 10 to 30 FPS, the inference speed of
the SMURF model implemented in the MMDetection3D
[32] framework is no less than 23 frames per second
(FPS). Therefore, SMURF exhibits promising applicabil-
ity in practical engineering scenarios.

The subsequent sections of this paper are organized as fol-
lows: Section II presents a thorough review of object detection
methodologies employing conventional automotive radar and
4D radar. Section III provides a detailed description of the
proposed SMURF model. In Section IV, the performance of
the SMURF model is evaluated on the VoD and TJ4DRadSet
datasets, demonstrating its effectiveness and efficiency in
object detection using 4D radar data. Finally, Section V
concludes the paper by summarizing the key findings and
suggesting potential directions for future research.

II. RELATED WORKS

In this section, we will begin by reviewing object detec-
tion methods based on conventional automotive radar. Subse-
quently, we will delve into the realm of 3D object detection
utilizing 4D millimeter wave imaging radar.

A. Conventional Automotive Radar-based Object Detection

Typically, common public radar datasets provide data in the
form of point cloud. The sparsity in traditional radar point
cloud poses a significant challenge for extracting sufficient
information using grid-based methods, while methods directly
applied to point cloud can be beneficial in achieving a wider
receptive field and valuable features. For instance, PointNet
[33] is employed in [19] to extract point-wise features, which
are then used for segmentation. Similarly, clustering with
semantic information is utilized in [34] for radar point cloud
instance segmentation, and the same approach is combined
with contrastive learning in [35] to solve the lack of radar
point annotations. Moreover, a PointNet-based network is
employed in [5] for object classification, segmentation, and
2D bounding box prediction on the bird’s-eye view (BEV),
whereas 3D bounding box prediction is addressed in [20].
Furthermore, some studies try to exploit the semantic infor-
mation in the inter-point relationships. For instance, studies
such as [6][21] adopt graph convolutional networks (GCN) by
grouping input points and adding density features to each point
group based on a predefined Euclidean distance threshold.
Similarly, GCN is also utilized in [22] before grid-based
processing, and the efficacy of clustering the point cloud
before feature extraction is demonstrated in [36]. Besides, [37]
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also proposes a GCN method for achieving transformation
invariance, which is robust to unseen scenarios.

However, the information contained within the point cloud
is often diminished due to the involvement of complex dig-
ital signal processing (DSP) in their production. In contrast,
utilizing range-azimuth-Doppler (RAD) tensors collected by
radar can provide more comprehensive information for object
detection tasks. For example, RADDet [38] directly adopts
RAD tensors as the model input, while Major et al. [39]
and RAMP-CNN [40] extract features from the range-azimuth
(RA), RD, and azimuth-Doppler (AD) maps. In addition,
temporal information is incorporated to improve detection
capabilities in [41] and [42]. Furthermore, the CNN-based
model proposed by Cozma et al. [43] utilizes a network
structure search algorithm for target classification.

Although the approaches mentioned above demonstrate out-
standing performance by utilizing the complete information
from RAD tensors, memory utilization remains a significant
concern, necessitating the development of lightweight alter-
natives. In this regard, some studies focus on subsets of
RDA data. For instance, RTCnet [44] utilizes a small subset
from the entire RAD tensor, fed into a CNN to estimate the
semantic information. Furthermore, the target recheck system
[45] based on YOLO [46], T-RODNet [47], Patel et al. [48],
and DAROD [49] take only two dimensions of RAD data, and
the uncertainty estimation is incorporated into bounding box
estimation in [50]. Furthermore, the RA map can be fused
with data obtained from other sensor modalities. For example,
RaLiBEV [51] combines the radar RA heatmap with LiDAR
point cloud data to estimate bounding boxes in the BEV.

Despite the existence of conventional radar-based object
detection algorithms mentioned in this section, they suffer
from a lack of height measurement. This restricts their ca-
pacity to provide comprehensive information and hampers
their ability to predict 3D bounding boxes. Consequently, the
emergence of 4D millimeter-wave radar, which offers height
measurement functionality, has captured the attention from
both the academic and industrial communities.

B. 4D Imaging Radar based 3D Object Detection

Similar to conventional automotive radar, direct learning
methods applied to the entire point cloud can also be extended
to 4D radar data. Radar Transforme [52] is proposed for radar
point cloud classification based on the Transformer model.
The network takes the multi-dimensional information of the
radar point cloud as input, passes it through an encoding layer
dominated by multi-layer attention modules, and performs
classification based on the learned features.

However, with the advancement of 4D millimeter-wave
radar technology, 4D radar point cloud are progressively
becoming denser than conventional radar point cloud. Con-
sequently, applying methods that directly learn point features
from denser data types, such as the entire point cloud, in-
creases computational complexity. Researchers have started
exploring grid-based learning methods as an alternative to
tackle this challenge. For instance, the point cloud is divided
into pillars and global features are then extracted from the

pillars using the attention mechanism in [23]. Similarly, pillar-
based detection is also employed in [24]. Prior to pillarization,
they first estimate the velocity of the ego vehicle to compensate
for the relative radial velocity information in the point cloud
and obtain absolute radial velocity.

Furthermore, the fusion of 4D imaging radar with other
sensor modalities such as cameras, has enhanced 3D object
detection performance. For instance, both the front view
(FV) and BEV images are generated from radar point cloud
data in [53], which are then combined with RGB images.
Two fusion modules are used in [54] to extract and fuse
features from image and point cloud, and the orthographic
feature transform (OFT) [55] is used in [56] for sampling the
image pixels. LXL [57] utilizes predicted depth distribution
maps and radar 3D occupancy grids as auxiliary elements to
transform the multi-level perspective view maps into a BEV
map. In addition to camera images, LiDAR point cloud is
also commonly used for multi-modal fusion with 4D imaging
radar. For example, InterFusion [58] fuses the features of
radar and LiDAR point cloud using a self-attention-based
method, allowing the network to focus on relevant features
while ignoring irrelevant ones. Besides, M2-Fusion [59] first
pillarlizes the point cloud from LiDAR and 4D radar, then
utilizes a self-attention mechanism to learn features from both
modalities and exchange the intermediate layer information.

While there have been several methods, they do not ade-
quately tackle the issue of noise present in the 4D radar point
cloud. Additionally, multi-modal fusion methods typically re-
quire strict synchronization and a lot of computational power,
which are problematic. Therefore, in this work, we seek to
address these issues and develop a novel approach that uses
fewer computational resources and aims to reduce the impact
of noise while extracting distinctive features from the single
sparse 4D radar point cloud only.

C. Other Applications with 4D Imaging Radar

In addition to object detection, 4D millimeter-wave radar
finds extensive utility across various domains. For instance, Li
et al. [60] propose a SLAM framework called 4DRaSLAM,
which addresses the challenges of simultaneous localization
and mapping. It filters out ghosts and random points from the
4D radar point cloud, utilizes static points and their Doppler
velocity information to estimate self-velocity, and achieves
improved pose estimation. While 4DRadarSLAM [61], com-
prising three modules, enhances SLAM performance by incor-
porating the probability distribution of each point and other
factors. Besides SLAM, 4D radar can be employed for other
tasks as well. For instance, Ding et al. [62] employ self-
supervised learning to estimate scene flow from 4D radar point
cloud, enhancing support for downstream motion segmentation
tasks. While CMFlow [63] leverages cross-modal supervision
to perform scene flow estimation based on 4D radar. As a re-
sult, it is evident that 4D radar possesses extensive application
prospects and potential.
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Fig. 2: The pipeline of our proposed SMURF 3D object detector consists of two stages, taking point cloud as the input data. The feature
encoding stage consists of two branches: The first branch is the pillarization branch, responsible for extracting features by partitioning the
point cloud space into pillars, while the second branch conducts KDE on the tensor of the point cloud with different bandwidths, normalizes
it, and then partitions the resulting point cloud into voxels to extract features. The combination of these two branches enables the extraction
of multi-representation features of the point cloud. In the following neck and head stage, the multi-representation features are fused, followed
by further feature extraction and encoding using a multi-scale network approach. Finally, an anchor-box-based detection head is employed
to generate prediction results for 3D bounding boxes, object categories, confidence scores, and other relevant attributes.

III. THE PROPOSED METHOD

In this section, we provide detailed descriptions of SMURF
for object detection based on the fusion of multiple feature
representations extracted from a single modal 4D radar. The
structure of SMURF is illustrated in Fig. 2. The point cloud
obtained from the 4D millimeter-wave radar is characterized
by sparsity and a higher noise level than sensors such as Li-
DAR. These characteristics pose challenges to effective feature
extraction using a single-representation approach. To address
this, we propose a novel method for multi-representation
feature encoding with two branches.

The proposed SMURF model consists of two stages. The
first stage is the feature encoding stage. It incorporates the
pillarization branch and the point-wise KDE branch. They
are responsible for extracting point cloud pillarization features
and KDE features, respectively. The second stage is the neck
and head stage. The neck includes the multi-representation
feature fusion (MRFF) module and the multi-scale feature fu-
sion (MSFF) module, where MRFF fuses multi-representation
features, and MSFF is responsible for further extraction and
integration of multi-scale features. Finally, an anchor-box-
based detection head is employed to generate prediction re-
sults, including 3D bounding boxes and object categories.

A. Feature Encoding Stage: Pillarization Branch

In this branch, we follow the methodology proposed in
PointPillars [25]. First, we partition the 4D radar point cloud

into pillars along X and Y axes. Let P denote the number
of non-empty pillars. The number of points within each non-
empty pillar may vary and can be assigned a reference value
N . For pillars containing more than N points, we extract a
random subset of N points. For pillars with fewer than N
points, we artificially add additional points with zero values to
ensure the total number of points equals N . Next, we extend
the features of each point p to dimension D. The extended
feature representation can be defined as follows:

D = [Draw, xc, yc, zc, xp, yp, zp], (1)

where Draw represents the original features of the point, and
[xc, yc, zc] represents the distance of each point with respect
to the centroid of pillars. [xp, yp, zp] represents the distance of
each point with respect to the geometric center of pillars, in
contrast to PointPillars [25], which only considers [xp, yp]. As
a result, we obtain a sparse (D,P,N) tensor that encapsulates
the point cloud information in a structured manner.

The (D,P,N) sparse tensor, representing the point cloud,
undergoes a mapping process to transform it into a (C,P,N)
space along the D axis, where C represents the mapped fea-
tures. This transformation is achieved by applying linear, batch
normalization, and ReLU layers. Subsequently, a max pooling
operation is performed along the N dimension, resulting in
a (C,P ) tensor. This tensor is then passed through a multi-
layer perceptron (MLP) layer, yielding a tensor with a shape of
(C1, P ). Finally, to restore the tensor to a (C1, H,W ) feature
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map, the position encoding of the (C1, P ) tensor is combined
with the size of the dense tensor.

B. Feature Encoding Stage: Point-wise Kernel Density Esti-
mation Branch

To enhance the semantic features of the point cloud, we
introduce the non-parametric KDE method in the feature
encoding stage. In this point-wise kernel density estimation
branch, we consider an input tensor of shape (Np, Craw),
where Np represents the number of radar points, and Craw

denotes the (x, y, z) coordinates as well as other raw features
associated with each radar point. To extract density features,
we employ the KDE block as illustrated in Fig. 3, which
is composed of a multi-dimensional Gaussian function. For
each point, the KDE block calculates the differences on multi-
feature dimensions between itself and the surrounding points
within a specific range. These differences are then mapped
using a Gaussian kernel function. The resulting values are mul-
tiplied across the multi-feature dimensions and subsequently
summed and averaged to obtain an estimation of the density
for that particular point. Specifically, the density feature ρ(p)
of each point p is defined by taking into account the (x, y, z)
coordinates and Doppler information (as an example):

ρ(p) =
1

MpR3

Mp∑
i=1

∏
t∈(x,y,z,Dop)

KR(t, ti), (2)

subject to


|x− xi| ≤ R

|y − yi| ≤ R

|z − zi| ≤ R,

(3)

where Dop represents the Doppler feature of points, and Mp

represents the number of other points pi with the (xi, yi, zi)
coordinates within a certain distance from p. The kernel
function KR(·, ·) is defined as Gaussian kernel:

KR(t, ti) = e||
t−ti
R ||2 , t ∈ (x, y, z,Dop, . . .). (4)

Since Gaussian kernel function is used, the KDE of radar de-
tection points reflects the multi-dimensional Gaussian mixture
distribution of the points, as shown in Fig. 3.

Furthermore, the bandwidth for regulating the influence
range of the kernel function, R, is important in controlling
the degree of smoothing versus oscillation of the estimated
density function. In this branch, we have incorporated different
bandwidth sizes for KDE to extract features from objects of
varying sizes in the 4D radar point cloud. The choice of
bandwidth size influences the shape of the kernel function used
in KDE, which, in turn, affects the sensitivity to objects of
different sizes. Specifically, a smaller bandwidth corresponds
to a kernel function with a narrower window, resulting in
higher sensitivity to smaller objects within the point cloud.
Conversely, a larger bandwidth leads to a flatter kernel func-
tion, allowing for a wider window and better capturing of
features related to larger objects in the point cloud.

After KDE, the shape of the point cloud tensor is trans-
formed to (Np, C2), where C2 = 1. It is important to note
that the 4D radar point cloud often contains significant noise.

Fig. 3: The KDE block operates by extracting density features from
point cloud data to obtain a multi-dimensional Gaussian mixture
distribution heatmap. The sub-figure on the left demonstrates the
process of density feature extraction using a local perspective of point
cloud data (shown in blue). Each point computes its kernel function
based on the points within a certain distance range (shown as an
yellow cube) centered around that point. The sub-figure on the right
visualizes the local resulting Gaussian mixture distribution heatmap.
Heat values corresponding to two points (shown in green) in the left
sub-figure increase with point density.

When using the input tensor composed of all points for
KDE calculation, the presence of noise can adversely affect
the density estimation results. Consequently, density values
may become non-zero for all points, including those noise
points from clutters. To address this issue, it is desirable to
assign negative density values to isolated noise points. This
normalization step helps ensure that the density characteristics
of the input tensor, which represents the 4D radar point cloud,
are appropriately adjusted. For each point p with density
feature ρ, the normalization is performed by

µ =

Np∑
i=1

ρi, (5)

σ2 =
1

Np

Np∑
i=1

(ρi − µ)2, (6)

ρbi =
ρi − µ√
σ2 + ϵ

, (7)

where µ and σ represent the mean value and variance of the
density feature of the point, respectively; and ϵ is a parameter
set to prevent division error caused by zero variance. Based on
the normalization of every point p, its corresponding density
feature ρb can be obtained.

Noise points in the 4D radar point cloud often exhibit a
random distribution and isolation phenomenon, resulting in
lower density values than genuine signal points. The network’s
sensitivity to noise points is reduced by performing feature
extraction through KDE, leading to improved detection per-
formance, as illustrated in Fig. 4. Moreover, the 4D radar
point cloud is sparse, while points belonging to the same
object tend to be relatively concentrated. By employing KDE,
valuable information regarding the spatial distribution and
concentration of points can be effectively extracted, enhancing
the discriminative power of the network.

To further extract 3D spatial features from point cloud,
the voxelization method [64] is introduced in this branch.
Following the normalization process, the point cloud is divided
into voxels, resulting in a tensor of shape (C2, D,H,W ),
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Fig. 4: The denoising effect of the KDE method. Here we use
a scan of radar and image data from the TJ4DRadSet dataset as
an example. (a) shows the image captured from the synchronized
camera, while (b) is the 3D point cloud heatmap after KDE and
normalization. (c) displays the ground truth bounding boxes within
the scene, highlighted in red, with the red points indicating the
original point cloud. (d) displays the ground truth bounding boxes
along with a heatmap of the point cloud on the BEV plane. It is
evident that isolated noise points, which do not fall within the ground
truth bounding boxes, exhibit lower density values. By assigning
lower density characteristics to these points, KDE helps mitigate the
effect of noise points on the network.

where D, H and W are the depth, height, and width of
the 3D pseudo-image, respectively. Subsequently, the middle
encoding layers are employed to extract more discriminative
features. These layers primarily consist of convolutional layers
and a middle-layer (ML) block. The ML block is constructed
using a heterogeneous combination of 3D submanifold sparse
convolutional [65] and sparse convolutional [66] layers, nor-
malization layers, and ReLU layers. The combination of these
layers facilitates the extraction of higher-level features from
the voxelized point cloud data. Notably, 3D sparse convolution
is particularly advantageous in reducing redundant computa-
tions and inference time. By selectively computing features
only for active voxels, it effectively exploits the sparsity of
the data while retaining significant features.

Finally, we obtain pseudo-images with shapes (C2,1, H,W )
and (C2,2, H,W ) from KDE branch, where C2,1 and C2,2

are equal, representing the density features of objects with
different sizes.

C. Neck and Detection Head

The neck network of our model comprises two key compo-
nents: the MRFF module and the MSFF module.

In the MRFF module, the pseudo-images obtained from
the pillarization branch with shape (C1, H,W ) are combined

with the pseudo-images from the KDE branch, which have
shapes (C2,1, H,W ) and (C2,2, H,W ). To prevent overfitting
of features and simplify the model structure, we use the fusion
method that directly concatenates the features along the chan-
nel dimension. This fusion process results in a pseudo-image
with the shape (Cf , H,W ), where Cf = C1 + C2,1 + C2,2.

The MSFF module we adopted is from [67]. To effec-
tively detect detection targets with multiple categories such
as cars and pedestrians, the MSFF module applies different
numbers of convolutional layers to obtain multi-scale feature
maps. This process increases the network’s receptive field,
allowing it to capture both local and global features. The ob-
tained multi-scale feature maps have different shapes, namely
(Cm1, H,W ), (Cm2, H/2,W/2) and (Cm3, H/4,W/4), re-
spectively. These maps represent features at different scales,
with the spatial dimensions being halved at each scale. By
employing convolutional layers at different scales, the network
can capture information at various levels of detail. To ensure
compatibility for subsequent operations, the multi-scale feature
maps are upsampled to the same size. Following the upsam-
pling process, the feature maps are concatenated along the
channel dimension, resulting in a feature map with the shape
(Cm, H,W ), where Cm = Cm1 + Cm2 + Cm3.

Finally, to generate predictions for object detection, our
proposed SMURF model incorporates an anchor-box-based
single-stage detection head, similar to the approach used in
PointPillars [25]. The network refines the predicted bounding
boxes by computing the loss function. This loss function
evaluates the disparity between the predicted bounding boxes
and the ground truth bounding boxes.

The loss function includes the 3D bounding box regres-
sion loss Lbbox inspired by [68], the classification loss
Lcls from [69], and the direction loss Ldir used in Point-
Pillars [25]. The 3D bounding box regression loss Lbbox

represents the difference between the ground truth bound-
ing box bbox and the predicted bounding box bboxp,
where bbox = [xg, yg, zg, wg, lg, hg, θg] and bboxp =
[xp, yp, zp, wp, lp, hp, θp]. Thus Lbbox is defined by

Lbbox =
1

Npos

Npos∑
i=1

∑
ti∈[xi,yi,zi,wi,li,hi,θi]

SmoothL1(δti),

(8)

SmoothL1(x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise,
(9)

δt =



tg − tp√
(wp)2 + (lp)2

, if t ∈ [x, y]

tg − tp

hp
, if t = z

log(
tg

tp
), if t ∈ [w, l, h]

sin(tg − tp), if t = θ,

(10)

where Npos represents the number of positive samples, and
positive and negative samples are divided based on Intersection
over Union (IoU) values within ground truth bounding boxes.
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The classification loss Lcls is defined by

Lcls = − 1

Npos

Npos∑
i=1

Ncls∑
j=1

σi,jαj(1− pi,j)
γ log pi,j , (11)

σi,j =

{
1, if C(Si) = j

0, otherwise,
(12)

where Si represents the current sample, and C(·) is used
to determine the current object category. Ncls represents the
number of object classes; αi,j is the weight factor; and p is
the probability of an anchor belonging to a certain category.

Finally, the total loss L is defined by

L = β1Lbbox + β2Lcls + β3Ldir, (13)

where Ldir represents the loss between the predicted target
direction and the ground truth direction; and β1, β2, and β3

represent the weight of each loss value.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset and Evaluation Metrics

Point cloud data is a commonly provided format in publicly
available 4D radar datasets. For instance, the Astyx 6455
HiRes millimeter-wave radar is used to collect data in [70],
providing ground truth annotations for seven classes, including
cars and buses, but with only 500 scans. In contrast, the VoD
dataset [28] provides synchronized data of images, LiDAR
point cloud, and 4D radar point cloud, comprising 8,600
scans and 3D bounding box annotations for over 26,000
pedestrians, 10,000 cyclists, and 26,000 cars. The VoD dataset
includes three types of 4D radar point cloud: single-scan,
three-scan, and five-scan. However, one limitation is the lack
of common driving scenarios, such as highways. As a valuable
complement, TJ4DRadSet [27] offers diverse driving scenarios
with different lighting conditions and traffic types. It provides
well-annotated 3D bounding boxes and track IDs for more
than 16,000 cars, 5,300 trucks, 4,200 pedestrians, and 7,300
cyclists, encompassing 7,757 scans of data.

On another note, raw radar tensors preserve more com-
prehensive information compared to radar point cloud data.
RADIal [71] provides ADC data along with the RAD tensor
and RA map. It consists of approximately 25,000 scans and
offers 2D bounding box labels for 9,550 vehicles. However,
the absence of 3D bounding box labels may limit its applica-
bility for certain tasks. K-Radar dataset [72] includes the raw
ADC data and the Range-Azimuth-Elevation-Doppler (RAED)
tensor. This dataset encompasses 35,000 scans with annotated
3D bounding boxes for 93,300 objects, covering various types
of traffic participants, such as sedans, pedestrians, and buses.
Furthermore, it encompasses challenging driving conditions
in adverse weather conditions (e.g., fog, rain, and snow)
and various road structures, making it suitable for studying
4D radar robustness. However, in practical applications, the
size of ADC data or RAED tensor is too large for the
transmission capacity of the controller area network-bus (CAN
bus) protocol on vehicle, making it impossible to employ
them in neural networks for 3D object detection. Besides,

commercially available 4D millimeter-wave radars commonly
offer only point cloud outputs. Although the K-Radar dataset
provides point cloud with only (x, y, z) features, the absence
of Doppler information is unacceptable for a 4D millimeter-
wave radar point cloud. To ensure algorithm generalization,
we exclude this dataset from consideration.

In this study, we evaluate the generalization capability of
the proposed SMURF method using the VoD and TJ4DRadSet
datasets. For the VoD dataset, we utilize the original features
extracted from the point cloud, which consist of seven dimen-
sions. The feature vector is represented as:

Draw = [x, y, z, RCS, vr, vrc, τ ], (14)

where (x, y, z) denote the coordinates of the radar points,
RCS represents the radar signal reflection-intensity, vr is
the radial Doppler velocity relative to the ego vehicle, vrc
is the absolute Doppler velocity, and τ indicates the time
ID indicating which scan the point belongs to. On the other
hand, for the TJ4DRadSet dataset, we also utilize the original
features extracted from the point cloud, which consist of five
dimensions. The feature vector is denoted as:

Draw = [x, y, z, vr, SNR], (15)

where SNR denotes the signal to noise ratio of the detection.
For the VoD dataset, we utilize 5-scan accumulated radar

point cloud data to evaluate the detection of three distinct
object categories: cars, pedestrians, and cyclists. The evalu-
ation metrics employed include 3D average precision (AP3D)
values for each object category, as well as the mean 3D AP
(mAP3D) and mean BEV AP (mAPBEV) values. These met-
rics are computed separately for the entire annotated area and
driving corridor specified in the official guidelines. Following
the official settings, the IoU thresholds used for calculating
the performance metrics are set to 0.5 for cars, 0.25 for
pedestrians, and 0.25 for cyclists.

On the other hand, for the TJ4DRadSet dataset, we eval-
uate the detection performance on four object categories:
cars, pedestrians, cyclists, and trucks. Similarly, following
the settings in [56], the IoU thresholds for each category
are set to 0.5 for cars, 0.25 for pedestrians and cyclists,
and 0.5 for trucks. Unlike the VoD dataset, the TJ4DRadSet
dataset allows for the specification of evaluation areas based
on the distance to the onboard sensors. In our evaluation,
we focus on objects within a range of 70 meters from the
radar. The evaluation metrics considered for the TJ4DRadSet
dataset include BEV AP (APBEV) and AP3D values for each
category. The mAPBEV and mAP3D values are also crucial
evaluation metrics to assess the overall performance of the
SMURF method on the TJ4DRadSet dataset.

B. Implementation Details

1) Hyper-parameter Setting: For the VoD dataset, the radar
point cloud has a range interval of 0 to 51.2 meters on the x-
axis, −25.6 to 25.6 meters on the y-axis, −3 to 2 meters on
the z-axis. Similarly, for the TJ4DRadSet dataset, the radar
point cloud has a range interval of 0 to 69.12 meters on the
x-axis, −39.68 to 39.68 meters on the y-axis, −4 to 2 meters
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on the z-axis. Pillar dimensions are set to 0.16m in length and
width and voxel dimensions are set to 0.16m (length) × 0.16m
(width) × 0.24m (height) for both datasets.

In the evaluation of the SMURF model on VoD and
TJ4DRadSet datasets, KDE is employed with different band-
width parameters. Specifically, for VoD dataset, two bandwidth
values are utilized: 1.5 meters and 2 meters. For TJ4DRadSet
dataset, bandwidth values of 0.6 meters and 1 meter are
employed. These bandwidth values are chosen to adapt to the
specific characteristics and resolution of each dataset.

Taking the VoD dataset as an example, after the MRFF
stage, the resulting feature map has a resolution of 320×320.
In the subsequent MSFF stage, a set of multi-scale feature
maps is generated using down-sampling rates of 2, 4, and 8.
These feature maps are then up-sampled to a resolution of
160×160 for the purpose of feature map fusion. As a result, all
the feature maps input into the detection head have a consistent
resolution of 160×160. The selection of resolution in our study
is based on two considerations. Firstly, we draw insights from
the prior works including Second [64]. Secondly, we take into
account the inherent sparsity of radar point cloud. Excessively
high down-sampling rates would lead to a substantial loss of
informative content in the resulting feature maps.

Moreover, in the object detection process, predefined anchor
boxes are utilized in the detection head. For the VoD dataset,
anchor boxes are defined for the car, pedestrian, and cyclist
classes. The dimensions of the anchor boxes for these classes
are (3.9m, 1.6m, 1.56m), (0.8m, 0.6m, 1.73m), and (1.76m,
0.6m, 1.73m), respectively. The z coordinates of the bottom
center positions for these anchor boxes are predefined as
−1.78m, −0.6m, and −0.6m, respectively. Additionally, the
orientation angles of the anchor boxes are predefined to be
either 0 degrees or 90 degrees.

Similarly, for the TJ4DRadSet dataset, anchor boxes are
defined for the car, pedestrian, cyclist, and truck classes. The
anchor box dimensions for these classes are set to (1.84m,
4.56m, 1.70m), (0.6m, 0.8m, 1.69m), (0.78m, 1.77m, 1.60m),
and (2.66m, 10.76m, 3.47m), respectively. The z coordinates
of the bottom center positions for these anchor boxes are
predefined as −1.363m, −1.163m, −1.353m, and −1.403m,
respectively. The orientation angles of the anchor boxes are
also predefined as either 0 degrees or 90 degrees. The pa-
rameters about the predefined anchor boxes designed for both
datasets are obtained directly from their official configurations.

2) Training Setting: The training of SMURF is processed
on a single NVIDIA V100 GPU using MMDetection3D tool-
box [32]. The network is trained using the step decay learning
rate strategy, with an initial learning rate of 1e-3. The AdamW
is employed as optimizer, and the batch size is set to 16.

In addition, data preprocessing plays a crucial role in prepar-
ing the input data for training. It includes data normalization,
data augmentation, point filtering, and so on. Point filtering is
utilized to eliminate points outside the radar point cloud range
and the camera’s field of view. Data augmentation techniques,
including global scaling and flipping around the x-axis are
employed to enhance the model’s generalization ability.

C. Ablation Study for SMURF

To validate the effectiveness of SMURF, ablation experi-
ments were conducted on VoD dataset as a preliminary step.
Table I compares SMURF’s performance with two single
models: a single KDE feature representation model without the
pillarization branch, and a single pillarization representation
model without KDE feature extraction.

It can be observed that the model without the pillarization
branch demonstrates noticeably poorer performance compared
to SMURF. This can be attributed to KDE being introduced
solely as an auxiliary density feature extraction tool that
doesn’t utilize other raw features of the point cloud. Con-
sequently, our subsequent analysis primarily emphasizes the
contribution of KDE to enhancing the model’s performance
rather than focusing on its standalone performance.

The results demonstrate that SMURF achieves improve-
ments across all selected evaluation metrics compared to
the one without KDE branch. Specifically, when consider-
ing the entire annotated area of the radar, SMURF shows
increased AP3D values for cars, pedestrians, and cyclists.
The improvements are observed as a 1.20% increase for cars,
a significant 2.00% increase for pedestrians, and a notably
substantial improvement of 5.58% for cyclists. This perfor-
mance enhancement can be attributed to the sparsity of the
4D radar point cloud, which causes smaller objects to have
more concentrated points while larger objects may not be fully
detected. Thus, introducing KDE feature extraction contributes
to a more significant improvement in the evaluation of smaller
objects. Furthermore, the mAP3D and mAPEBV values across
all three object categories show respective increases of 2.93%
and 1.57%. In the driving corridor, substantial performance
improvements are also observed. Specifically, for the AP3D

metric, SMURF achieves increases of 1.73% for cars, 2.50%
for pedestrians, and 0.69% for cyclists. Similarly, the mAP3D

and mAPBEV values across all three categories demonstrate
improvements of 1.64% and 2.76%, respectively.

To further validate the generalization ability of SMURF,
an evaluation was conducted on the TJ4DRadSet dataset, and
the corresponding performance metrics are also presented in
Table I too. The improvements in AP3D achieved by SMURF
compared to the one without KDE branch are 0.97% for
cars, 1.87% for pedestrians, a substantial increase of 5.52%
for cyclists, and 3.70% for trucks. Similarly, when evaluated
on the BEV plane, SMURF exhibits superior performance
compared to the single-feature model, achieving improvements
in APBEV for cars, pedestrians, cyclists, and trucks by 4.96%,
2.93%, 6.10%, and 3.88%, respectively. Moreover, the mAP3D

and mAPBEV values across all four object categories demon-
strate increases of 3.02% and 4.47%, respectively.

Through the conducted ablation experiments on the VoD
and TJ4DRadSet datasets, we have established the efficacy
of SMURF. By incorporating density features extracted from
raw point cloud, our model effectively enriches the informa-
tion within the point cloud data, leading to improved object
detection performance. These findings not only validate the
effectiveness of SMURF but also provide a solid basis for
further research and experimentation in the field of 4D radar-
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TABLE I: Ablation Study of SMURF on both the VoD validation dataset and TJ4DRadSet test dataset. All the approaches are
executed with 5-scans radar detection points on VoD dataset and single-scan radar detection points on TJ4DRadSet dataset.

Method Entire Annotated Area AP In Driving Corridor AP
Car Ped Cyc mAP3D mAPBEV Car Ped Cyc mAP3D mAPBEV

SMURF without pillarization 34.62 13.74 32.55 26.97 31.60 66.09 22.65 56.60 48.45 52.09
SMURF without KDE 41.11 37.09 65.92 48.04 55.20 70.01 48.04 86.18 68.08 69.29

SMURF (ours) (x, y, z, Doppler, RCS) 42.31 39.09 71.50 50.97 56.77 71.74 50.54 86.87 69.72 72.05

Method AP3D APBEV

Car Ped Cyc truck mAP3D Car Ped Cyc truck mAPBEV

SMURF without pillarization 15.19 7.41 19.97 6.52 12.27 23.21 7.95 21.72 12.82 16.43
SMURF without KDE 27.50 24.35 49.09 18.94 29.97 38.17 26.26 52.71 28.92 36.51

SMURF (ours) (x, y, z, Doppler, SNR) 28.47 26.22 54.61 22.64 32.99 43.13 29.19 58.81 32.80 40.98

(a) (b) (c) (d)

Fig. 5: Some visualizing results on the VoD dataset: (a) represents the image captured by the synchronized cameras. (b) displays the
corresponding ground truth 3D bounding boxes for the selected scan, which are highlighted in red. The red dots within the selected scan
represent the radar points. (c) shows the predicted bounding boxes obtained from SUMRF without KDE, which are highlighted in dark
green. (d) presents the predicted bounding boxes obtained from our proposed SUMRF, which are highlighted in blue.

(a) (b) (c) (d)

Fig. 6: Visualizing partial results of the TJ4DRadSet. The content and its meaning are congruent with Fig. 5

based object detection.
To visually demonstrate the performance gain brought by

our proposed SMURF method, we performed visualizations
on a subset of the data, as depicted in Fig. 5 and Fig. 6. The
visualizations clearly highlight the advantages of our SMURF
method in enhancing the detection capability compared to
using a single PointPillars feature representation. Through the
introduction of KDE feature representation, SMURF excels in
discerning which points are likely to belong to the same object,
resulting in a significant improvement in detection accuracy
across various scenarios, particularly for small objects such as
pedestrians and cyclists, as discussed earlier in this section.

The visual representations show the effectiveness of the
SMURF model in reducing missed detections and false alarms
for pedestrians and cyclists when compared to a single feature

representation model. Furthermore, even for cars with sparsely
distributed radar detection points, the SMURF method exhibits
a certain degree of detection performance, as exemplified in
case (d) in Fig. 5.

D. Comparison with Other State-Of-The-Art Methods

In this study, we comprehensively evaluate the performance
of our SMURF method on the VoD and TJ4DRadSet datasets.
The experimental results are summarized in Table II and Table
III, respectively. To provide a comprehensive comparison,
we assess our approach against various 3D object detectors
originally designed for LiDAR point cloud, including the
anchor-based detector PointPillars, the anchor-free detector
CenterPoint, and the state-of-the-art approach PillarNeXt [73].
Additionally, we compare our SMURF method with the
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TABLE II: Comparison on the validation set of VoD dataset. All the approaches are executed with 5-scans radar detection
points. The results of PointPillars and RadarPillarNet are inherated from [56].

Method Entire Annotated Area AP In Driving Corridor AP
Car Ped Cyc mAP3D mAPBEV Car Ped Cyc mAP3D mAPBEV

PointPillars (CVPR 2019) [25] 37.06 35.04 63.44 45.18 N/A 70.15 47.22 85.07 67.48 N/A
CenterPoint (CVPR 2021) [3] 32.74 38.00 65.51 45.42 52.75 62.01 48.18 84.98 65.06 67.05
PillarNeXt (CVPR 2023) [73] 30.81 33.11 62.78 42.23 52.93 66.72 39.03 85.08 63.61 68.35

RadarPillarNet (IEEE T-IM 2023) [56] 39.30 35.10 63.63 46.01 N/A 71.65 42.80 83.14 65.86 N/A
SMURF (ours) (x, y, z, Doppler, RCS) 42.31 39.09 71.50 50.97 56.77 71.74 50.54 86.87 69.72 72.05

TABLE III: Comparison on the test set of TJ4DRadSet dataset. All the approaches are executed with single scan radar detection
points. The results of PointPillars, RPFA-Net and RadarPillarNet are inherated from [56].

Method AP3D APBEV

Car Ped Cyc truck mAP3D Car Ped Cyc truck mAPBEV

PointPillars (CVPR 2019) [25] 21.26 28.33 52.47 11.18 28.31 38.34 32.26 56.11 18.19 36.23
CenterPoint (CVPR 2021) [3] 22.03 25.02 53.32 15.92 29.07 33.03 27.87 58.74 25.09 36.18
PillarNeXt (CVPR 2023) [73] 22.33 23.48 53.01 17.99 29.20 36.84 25.17 57.07 23.76 35.71
RPFA-Net (ITSC 2021) [23] 26.89 27.36 50.95 14,46 29.91 42.89 29.81 57.09 25.98 38.94

RadarPillarNet (IEEE T-IM 2023 ) [56] 28.45 26.24 51.57 15.20 30.37 45.72 29.19 56.89 25.17 39.24
SMURF (ours) (x, y, z, Doppler, SNR) 28.47 26.22 54.61 22.64 32.99 43.13 29.19 58.81 32.80 40.98

recently proposed 3D object detection methods specifically
designed for 4D radar, such as RPFA-Net [23] and RadarPillar-
Net [56]. To further evaluate the effectiveness of our approach,
we compare it with RCFusion [56], which represents the
latest benchmark in 3D object detection utilizing image and
4D radar fusion. The following paragraphs delve into more
detailed experimental results and insights derived from these
comparative evaluations.

Our proposed SMURF object detection model demonstrates
superior performance compared to several conventional detec-
tion methods, showing its high detection accuracy. Evaluating
the SMURF method on the VoD dataset reveals remarkable
improvements over the anchor-free detector CenterPoint, with
an increase of 5.55% and 4.66% increase in mAP3D across
the entire annotated area and the driving corridor, respec-
tively. Despite the impressive performance of the anchor-
box-free detector PillarNeXt, which achieves state-of-the-art
results in 3D object detection with LiDAR point cloud, our
SMURF method still outperforms it in terms of mAP3D,
with respective improvements of 8.74% and 6.11% across the
entire annotated area and driving corridor. When compared
to anchor-box-based detectors like PointPillars and RadarPil-
larNet, our method consistently demonstrates superior perfor-
mance, achieving no less than a 4.96% increase in mAP3D

across the entire annotated area and no less than a 2.24%
increase in mAP3D in the driving corridor. Similar to the
findings on the VoD dataset, our SMURF method achieves
significant performance improvements over many existing
methods when evaluated on the TJ4DRadSet dataset as well.
However, it is important to note that the detection accuracy
of our SMURF method for pedestrians is lower than that of
PointPillars, and the APBEV for car detection is lower than
that of RadarPillarNet. This disparity could be attributed to the
scarcity of pedestrian detection points and the near absence of
detection points from certain cars in the TJ4DRadSet dataset,
which hinder the ability of KDE to effectively extract density
features of these objects. Nonetheless, our SMURF method
still shows superior performance across various scenarios and

object categories, highlighting its effectiveness as a robust 3D
object detection framework.

The obtained results highlight the challenges posed by the
sparsity of 4D radar point cloud, which results in a limited
number of detection points for many objects. Consequently,
anchor-free detectors face difficulties in accurately predict-
ing the center of object bounding boxes and other essential
information. Additionally, the limitations of the single-pillar
representation method in extracting discriminative features
further hinder the performance of existing approaches. In
contrast, our proposed SMURF model addresses these chal-
lenges by incorporating a KDE branch. This feature extraction
process not only captures valuable density information from
the raw point cloud but also mitigates the impact of noise. As
a result, SMURF demonstrates superior performance in 3D
object detection tasks based on 4D radar.

Despite relying solely on single-modal radar data, SMURF
demonstrates competitive performance and sometimes outper-
forms the latest multi-modal fusion method RCFusion across
various metrics. For instance, SMURF achieves significant
improvements in AP3D for all three object categories across
both the entire annotated area and the driving corridor on
the VoD dataset, as shown in Table IV. Notably, our method
exhibits a remarkable 3.19% increase in the detection accuracy
for bicycles in the entire annotated area. On the TJ4DRadSet
dataset, our method demonstrates comparable performance
overall and even achieves superior detection results in the
BEV domain compared to RCFusion. This highlights the
effectiveness of SMURF in leveraging single-modal 4D radar
point cloud data for accurate object detection.

Furthermore, the utilization of image data typically requires
substantial computational resources due to the large volume of
data. In contrast, SMURF achieves remarkable performance
solely with 4D radar point cloud data, while using fewer
computational resources. Specifically, our SMURF model im-
plemented in the MMDetection3D framework [32], exhibits
efficient inference times. On the validation set of the VoD
dataset, the average inference time per scan is approximately
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TABLE IV: Comparison SMURF which only requires 4D imaging radar, with state-of-the-art 4D imaging radar and camera
fusion method on both the VoD validation dataset and TJ4DRadSet test dataset. All the approaches are executed with 5-scans
radar detection points on VoD dataset and single-scan radar detection points on TJ4DRadSet dataset for fair comparison.

Method Entire Annotated Area AP In Driving Corridor AP
Car Ped Cyc mAP3D mAPBEV Car Ped Cyc mAP3D mAPBEV

RCFusion (IEEE T-IM 2023) [56] 41.70 38.95 68.31 49.65 N/A 71.87 47.50 88.33 69.23 N/A
SMURF (ours) (x, y, z, Doppler, RCS) 42.31 39.09 71.50 50.97 56.77 71.74 50.54 86.87 69.72 72.05

Method AP3D APBEV

Car Ped Cyc truck mAP3D Car Ped Cyc truck mAPBEV

RCFusion (IEEE T-IM 2023) [56] 29.72 27.17 54.93 23.56 33.85 40.89 30.95 58.30 28.92 39.76
SMURF (ours) (x, y, z, Doppler, SNR) 28.47 26.22 54.61 22.64 32.99 43.13 29.19 58.81 32.80 40.98

TABLE V: Inference speed. All results are obtained from the
test set of TJ4DRadSet dataset, where the inference speed of
RCFusion is sourced from [56].

Method FPS
PointPillars (CVPR 2019) [25] 42.9
CenterPoint (CVPR 2021) [3] 34.5
PillarNeXt (CVPR 2023) [73] 28.0
RPFA-Net (ITSC 2021) [23] N/A

RadarPillarNet (IEEE T-IM 2023 ) [56] N/A
RCFusion (IEEE T-IM 2023) [56] 4.7−10.8

SMURF (ours) (x, y, z, Doppler, SNR) 23.1

0.033 seconds, while on the test set of the TJ4DRadSet dataset,
it is around 0.043 seconds. In other words, the inference
speed of SMURF exhibits a lower bound of 23 FPS, which
outperforms the range of 4.7−10.8 FPS achieved by model
RCFusion as shown in Table V. It is sufficient to consider a
frame rate of at least 10 FPS for real-time object detection
applications [30]. Despite slightly slower inference speed of
SMURF compared to PillarNeXt, as shown in Table V, a
frame rate of 23 FPS is adequate to fulfill the real-time
detection requirements. Besides, our inference speed is on par
with works claiming real-time detection, like [29][30][31] with
normal inference speeds ranging from 10 to 30 FPS, further
indicating that SMURF effectively meets the requirements for
real-time detection. These results demonstrate that SMURF
can effectively meet the requirements for real-time object
detection.

V. CONCLUSION

The utilization of 4D radar data poses challenges due to the
sparsity of detection points, noises, and the limited feature
extraction capacity of existing methods. In this paper, we
propose the SMURF method for 3D object detection using
4D imaging radar point cloud. In the feature encoding stage,
we adopt a pillar-based point cloud representation to minimize
computational overhead. At the same time, to mitigate the ad-
verse effect caused by inherent noise in the original point cloud
and extract richer semantic information from sparse point
cloud, we introduce the KDE method. By fusing multiple-
representation features of point cloud, we successfully enhance
the precision of 3D object detection.

Through extensive experimental evaluation on VoD and
TJ4DRadSet datasets, we have demonstrated the effectiveness
and generalization capability of SMURF. Our results indicate
that SMURF offers competitive performance when compared
to the state-of-the-art multi-modal model that leverages both

4D radar and images information. However, the introduction of
KDE does not effectively eliminate the impact of background
objects, as points from background objects such as trees can
also be dense. We leave this problem for future work.

By showing superior performance, SMURF has the potential
to serve as a robust baseline for future research in the field of
3D object detection using 4D radar. Its compact architecture
and high inference speed further enhance its viability for
practical applications that require real-time object detection ca-
pabilities. The improved detection accuracy positions SMURF
as a promising solution for real-world scenarios, and could
be potentially helpful for subsequent downstream tasks like
planning and control [74][75].
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