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MMEF-Track: Multi-modal Multi-level Fusion for
3D Single Object Tracking
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Abstract—3D single object tracking plays an important role
in computer vision and autonomous driving. The mainstream
methods mainly rely on point clouds to achieve geometry match-
ing between target template and search area. However, texture-
less and incomplete point clouds make it difficult for single-
modal trackers to distinguish objects with similar structures. To
overcome the mentioned limitations of geometry matching, we
propose a Multi-modal Multi-level Fusion Tracker (MMF-Track),
which exploits the image texture and geometry characteristic of
point clouds to track 3D target. Specifically, we first propose a
Space Alignment Module (SAM) to align RGB images with point
clouds in 3D space, which is the prerequisite for constructing
inter-modal associations. After that, in feature interaction level,
we present a Feature Interaction Module (FIM) based on dual-
stream structure, which enhances intra-modal features in parallel
and constructs inter-modal semantic associations. Meanwhile, in
order to refine each modal feature, we propose a Coarse-to-Fine
Interaction Module (CFIM) to realize the hierarchical feature
interaction at different scales. Finally, in similarity fusion level,
we introduce a Similarity Fusion Module (SFM) to aggregate
geometry and texture similarity from the target. Extensive exper-
iments show that our method achieves competitive performance
on KITTI and NuScenes datasets. The code will be opened soon
in https://github.com/LeoZhiheng/MMF-Tracker.git.

Index Terms—3D single object tracking (SOT), Multi-modal
data fusion, Transformer, Siamese network.

I. INTRODUCTION

ECENTLY, 3D single object tracking (3D SOT), as an
important task of the computer vision, has attracted much
attention in autonomous driving and mobile robots. Most 3D
SOT methods [1]-[8] inherit 2D Siamese paradigm [9]-[11]
and estimate the current target states via geometry matching
between the target template and search region, as displayed
in Fig. 1(a). However, due to these single-modal 3D trackers
relying on sparse and textureless point clouds, it is difficult
for them to identify target from the background with similar
structures, such as tracking a specific person in the crowd.
Fortunately, semantically rich images can provide fine-grained
texture features, which could help tracker to distinguish target
from disturbances. Thus, it is valuable to explore multi-modal
3D SOT and combine the advantages of image and point cloud.
F-Siamese [12] is the first multi-modal SOT tracker, which
adopts cascaded structure to connect the 2D tracker with 3D
tracker, as shown in Fig. 1(b). Specifically, F-Siamese first
adopts 2D tracker to estimate 2D bounding box of target and
projects it into 3D viewing frustum based on camera matrix.
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Fig. 1. Comparison of the current 3D single object tracking frameworks.
(a) Single-modal paradigm adopts the geometry matching of point clouds. (b)
Multi-modal paradigm consists of 2D and 3D trackers in series. (¢) Our MMF-
Track employs dual-stream structure and includes three novel modules: space
alignment, feature interaction and similarity fusion.

Then, the 3D tracker extracts point features in the frustum and
finally predicts the 3D target. However, F-Siamese overlooks
the feature interaction between two modalities and loses many
important cues from target. Thus, its performance lags much
behind LiDAR-Only methods.

Apart from the cascaded tracker, the feature-level fusion is
another effective way to aggregate multi-modal information,
which has been verified in 3D object detection [13]-[18]. For
example, PointPainting [13] and PointAugmenting [14] utilize
segmentation scores or semantic features of images to decorate
point clouds in the early stage, meanwhile CLOCs [15] merges
cross-modal features at the instance level. Besides, [16]—-[18]
deeply fuse hierarchical multi-modal features that are extracted
from the 2D and 3D backbones. However, due to the different
frameworks and objectives between tracking and detection,
3D SOT has its own challenges: (1) Data Alignment. Since
tracking usually requires two branches as input, multi-modal
tracker should align different sensor data and search-template
areas, which is more complex and challenging than 3D detec-
tion task. (2) Feature Matching. In order to locate the target
within the search region, multi-modal tracker needs not only
to focus on feature fusion but also consider effective feature
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matching between search and template branches.

To tackle the aforementioned issues, we propose a Multi-
modal Multi-level Fusion Tracker (MMEF-Track), which aims
to guarantee the data alignment for multi-sensor and integrate
multi-modal information in the feature and similarity levels, as
shown in Fig. 1(c). Due to the heterogeneous representations
between point cloud and image, it is non-trivial to effectively
fuse 3D sparse points with 2D dense pixels. Thus, we first
propose a Space Alignment Module (SAM) to generate tex-
tured pseudo points aligned with raw points in 3D space. In
this way, both of them can be further used to establish multi-
modal semantic associations in the following network. Then,
in multi-modal feature interaction, instead of simply com-
bining two modal features, we propose a novel Feature Inter-
action Module (FIM) based on dual-stream network, learning
intra-modal long-range contextual information in parallel and
then establishing inter-modal semantic associations through
attention mechanism. Meanwhile, due to the limited semantic
cues of single-scale feature, we further propose a Coarse-to-
Fine Interaction Module (CFIM), which exploits multi-scale
texture information to refine two modalities by interpolation
and encoding operation. Moreover, in geometry-texture simi-
larity fusion, different from previous methods that only utilize
geometry similarity of raw points, we additionally generate
texture similarity from pseudo points and adaptively fuse two
similarities through Similarity Fusion Module (SFM). Thus,
the texture and geometry cues of target can be aggregated to
search region, resulting in more robust tracking performance.

In summary, our contributions are as follows:

o We propose MMF-Track, a new multi-modal network for
3D SOT, which leverages both geometry and texture cues
to track target.

o We propose SAM to align different modalities and intro-
duce CFIM to facilitate layer-wise feature interaction via
a dual-stream structure. Additionally, we present SFM to
aggregate the geometry and texture similarity of target.

o Extensive experiments on KITTI and Nuscenes datasets
demonstrate that MMF-Track achieves promising perfor-
mances, and the ablation studies prove the effectiveness
of proposed modules. We will release the source code of
our method to the community.

The rest of this paper is organized as follows. In Sec. II, we
discuss the related work. Sec. III describes detailed structure
of our MMF-Track. In Sec. IV we first compare our methods
with previous methods in KITTI and NuScenes datasets, and
then conduct ablation studies to explore effectiveness of each
module in our methods. Finally, we conclude in Sec. V.

II. RELATED WORK
A. 2D Single Object Tracking

Early works in visual SOT usually utilize correlation fil-
ters [19]-[21] to track object. However, due to depending on
template matching and seldom using deep features from CNN,
they usually fail to capture fast-moving objects. Recently, the
Siamese-like pipeline [9], [22], [23] has received widespread
attention in the visual SOT community. GOTURN [22] is the
pioneering work which fed the template and search frames

to the two branches of the Siamese framework and extracted
features. Then, GOTURN [22] concatenated the two branch
features to regress target location. Inspired by [22], SiamFC [9]
exploited Siamese network to compute the correlation feature
and utilized it to locate target position in the search image.
However, since they only employed the network to classify, the
precision of predicted 2D bounding box is not good enough.
Thus, SiamRPN [23] introduced the idea of region proposal
network (RPN) that consisted of two heads for classification
and regression respectively, resulting in higher regression pre-
cision. Besides, SiamCAR [11] and SiamBAN [24] proposed
a pixel-wise regression method to avoid generating numerous
anchors. DIMP [25] employed a meta-learning formulation to
obtain a robust classification model for target and background.
ATOM [26] utilized overlap maximization and conjugate gra-
dients to achieve accurate predictions. Moreover, many recent
works [27]-[29] have exploited Transformer [30] to achieve
significant performance improvement. Although 2D trackers
have obtained promising results in the large-scale datasets and
practical applications, they are still difficult to handle 3D point
clouds for 3D SOT.

B. 3D Single Object Tracking

Inspired by 2D SOT, the previous 3D SOT approaches [2],
[3], [6] usually calculate the point-wise similarity between the
template and search branches. Specifically, P2B [2] further
embedded cosine similarity map with target clues into search
feature and predicted the target through VoteNet [31]. Later,
BAT [3] proposed BoxCloud to encode the prior knowledge of
target dimension to strengthen the similarity learning ability.
Furthermore, V2B [6] voxelized discrete points to generate the
dense BEV features and regressed 3D target in a pixel-wise
manner. With the popularity of Transformer [30] in computer
vision, some works [4], [5], [7], [32], [33] attempted to apply
Transformer to 3D SOT and obtained stronger tracking perfor-
mance. Specifically, PTT [4] adopted attention mechanism to
weigh point cloud features. LTTR [5] exploited Transformer
to capture the inter- and intra- associations among the different
regions. Additionally, PTTR [7], STNet [32] and SMAT [33]
proposed Transformer encoder-decoder to enhance and merge
features. Different from the above similarity approaches, M-
Track [34] proposed a motion-centric paradigm and estimated
target motion state through point clouds of consecutive frames.
[34] had greatly overcome the problem of point cloud sparsity
and achieved significant performance improvement.

Nevertheless, no matter the motion or similarity paradigm,
these methods relied on sparse point clouds, leading trackers to
easily confuse the objects with similar geometry. To the best of
our knowledge, there are few works exploring the multi-modal
3D SOT task. F-Siamese [12] is the most recent multi-modal
tracker, which utilized 2D tracking result to generate the 3D
frustum and adopted 3D tracker to predict target. However, its
cascaded structure limits the potential capabilities of multi-
modal tracker.

C. Multi-modal Feature Fusion in 3D Object Detection

Though there are few multi-modal 3D SOT methods, many
3D detection methods combining the advantage of image with
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Fig. 2. Overview of our proposed MMF-Track. The network consists of four steps: (a) Space Alignment Module generates textured pseudo points parallel to
the raw points branch. (b) Multi-modal Feature Encoder extracts discriminative features from two modalities. (c) Coarse-to-Fine Interaction Module adopts
Feature Interaction Module and interpolation operation to enhance intra-modal features and construct inter-modal associations iteratively. (d) Similarity

Generator generates geometry and texture similarities and then fuses them via Similarity Fusion Module for regressing the target.

point clouds through feature fusion have been proposed to
overcome the limitations of separate sensors. These methods
can be divided into three categories: early fusion [13], [14],
late fusion [15] and deep fusion [16]-[18]. For example, Point-
Painting [13] decorated image segmentation scores for each
point and generated painted points as network input. Different
from [13], CLOCs [15] generated 2D and 3D proposals, which
were merged at the object level. Besides, most approaches (e.g.
EPNet [16]) deeply combined features extracted from different
backbones and made full use of semantic information in multi-
modal. Inspired by aforementioned works, we design a feature
interaction network that is more suitable for tracking task and
propose a novel similarity fusion method to aggregate texture
and geometry clues of target.

III. METHODOLOGY

A. Overview

Given initial bounding box By = (zo, Yo, 20, W, h,1,0p) €
R” of the specific target at the first frame, 3D single object
tracking aims to utilize sensor data to predict the target state
By = (zf,yf,27,05) € R, f € {1,...,m} frame by frame,
where (z,y, z) is the bounding box center, and 6 is the heading
angle. Following the previous works [2]-[4], we assume that
the target size (w, h,1) is unchanged during tracking.

According to the number of modalities employed, trackers
can be divided into single-modal and multi-modal. And the
former can be formulated as follows:

\If(Bffl,Pf,hPf) i—)Bf (1)

where Pr_1, Py are the two consecutive point clouds. Further-
more, the multi-modal tracker [12] adds image tracking phase
before 3D tracker, forming a two-stage tracking paradigm:

Q(Bffl,fffl,ff)'—}.éf )
‘P(Bf,l,Bf,Pffl,Pf)l—)Bf 3)

where (I;_1,1f),(By_1, By) represent images and predicted
2D bounding boxes in the last and current frames respectively.

Different from the above paradigms, we design a dual-stream
network that processes multi-modal features in parallel, which
is shown in Fig. 2 and formulated as follows:

D(Bf-1,1p-1,1¢, Pf—1,Pf) = By “4)

B. Data Alignment and Feature Extraction

1) Space Alignment Module: Due to the gap in data format
between images and point clouds, we propose a Space Align-
ment Module (SAM) to ensure multi-modal spatial alignment.
Specifically, we first project the point clouds P € {Ps_1, Py}
to the image plane through projection matrix T7;pAR—image
and allocate the depth of each point to its nearest pixel I;;.
Thus, we can generate sparse depth maps S € {Sy_1,Sf}
with the size of H X W x 1 and convert .S into pseudo points
by matrix T;,,qge—1iDAR, Where W and H are the width and
height of image. When given predicted box By_, in the previ-
ous frame, we crop out multi-modal search-template points and
store indexes that indicate the projection relationship between
the pixels and pseudo points. Inspired by [14], we further adopt
FCN [35] to extract semantic features Y € {Y;_,,Y}} from
images I € {Iy_1, Iy} and append Y to pseudo points by the
index memory. Finally, SAM output textured pseudo points
(P}, Pg) and raw points (P!, P?).

Note that our SAM has the following novelties: 1) Different
from [14] using image features to augment the raw points, we
generate textured pseudo points parallel to raw points branch,
which is convenient for subsequent multi-modal semantic as-
sociation. Besides, FCN [35] can be trained with our network
and online decorate points rather than offline painting features
as in [14]. 2) Instead of viewing the point clouds in By_; as
template, we argue that contextual information of background
could help tracker perceive the target motion. Therefore, we
crop out the template with the same size as search region and
maintain background points surrounding target.

2) Multi-modal Feature Encoder: To avoid confusion be-
tween target and background information in template branch,
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Fig. 3. Dual-stream structure of Feature Interaction Module (FIM). Self-
attention and cross-attention are utilized to enhance two modal features and
construct semantic associations.

we introduce template mask M to distinguish target and back-
ground points. Specially, for the textured pseudo points, the
mask M, (i € {1,2,...,N}) indicates whether the template
point P;i is located in By_; by padding with 1 or 0, where N
is the number of points. After combining points P; with mask
M, € RN*!, we feed pseudo points P, € {P{®M,, P5} into
PointNet++ [36] to generate texture features [}, € {F;, FJ}:

F} = PointNet++; (P} ® M,), F;; = PointNet++3(P5)  (5)

where © is feature concatenation along channel dimension. For
the raw points, we first utilize 3D backbone of SECOND [37]
to generate dense BEV features G, € {G', G5} with the size
of Hy x Wi x D and merge Gi with M,., where W, and
H, denotes the width and height of BEV features. Note that
M, € RF1*Wix1 ig similar to M,, but projected to the BEV
plane. Then, we adopt a group of convolution as 2D Backbone
to further encode G, and get geometry features F,. € {F!, F*}
with the same size as G,.:

F! = Convy(G:. ® M,.), F¥ = Convy(G?) (6)

C. Feature Enhancement and Interaction

In this part, we design a dual-stream structure to propagate
multi-modal information bidirectionally and propose a coarse-
to-fine strategy to refine each modal iteratively. To simplify
description, we explain the search branch that is the same as
the template and replace (F};, F?) with (Fy, F.).

1) Feature Interaction Module: To enhance multi-modal
features which represent the same semantic object, we propose
a Feature Interaction Module (FIM) composed of intra-modal
feature enhancement and inter-modal semantic interaction.
Intra-modal Feature Enhancement. In Fig. 3, we exploit
vanilla self-attention to learn long-range contextual informa-
tion in F}, and obtain a more discriminative texture feature

4
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FIM, FIM,
=2 2 1 0
F p = FPU l F sz
I:I;I—/‘ (I T ]
| 25 -
: CETF, T EF,
Interpolation & Encoding Interpolation & Encoding
SECOTWF, (O
4
N e e e e e e e e e e e = 7

Interpolation and Encoding
F= (Nk 1+ Dy 1) (Nk D  + D) MLP F=(N,_,,D,,)

1Dy (N1, D +D 1)
interpolate U_}@ U_}@gﬁ@

Fig. 4. The detail of Coarse-to-Fine Interaction Module (CFIM). CFIM
utilizes multi-scale information to refine multi-modal features iteratively by
Interpolation and Encoding operation as well as Feature Interaction Module.

F, by attention weights. Meanwhile, to reduce computational
complexity of attention mechanism, we employ deformable
attention [38] to F;. and get a non-local geometry feature F,.
The process of feature enhancement is described as follows:

Q=a(F)+E K=3F)+EV=~F)
F, = LN(SelfAttn(Q,, K,, V},)) + Qp ®)
F, = LN(DeformAttn(Q,., K, V;)) + Q, 9

where E € {E,, E,} is the position encoding of two modali-
ties. LN means layer normalization, and «, /3, 7y represent three
linear layers with non-shared weights.

Inter-modal Feature Interaction. Due to the two modalities
focusing on different information, we design a dual-stream
structure to realize bilateral interaction rather than the classical
unilateral fusion. To construct a semantic association between
the texture and geometry features, we first convert 7, to Q,
by Eq. 7 in the geometry branch and map F, to (K,,V),)
in another branch. After that, we feed (Q,,C,, V) to cross-
attention operation, which encodes semantic consistent texture
information to geometry feature and generate a more robust
feature representation .%,.. Meanwhile, in the texture branch,
we also utilize the same approach to enhance the semantic
information of texture feature J,:

F, = LN(CrossAttn(Q,, K, V,)) + Q,
Z, = LN(CrossAttn(Q,, K, Vp)) + O,

(10)
(an

Finally, we feed (.%,,.%,) to fully connected feed-forward
network and generate enhanced features (Fp,ﬁ‘r). After the
above steps, we not only realize multi-modal interaction but
also retain each modal feature independently. Thus the features
can be refined iteratively and generate geometry and texture
similarities in the following modules.

2) Coarse-to-Fine Interaction Module: Although simply
stacking FIM could enhance two modal features, it is still
difficult to construct complex semantic associations depending
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on single-scale features. Meanwhile, due to the down-sampling
operation in the feature encoder, the number of texture fea-
tures becomes very small at the end, limiting multi-modal
interaction in FIM. Therefore, we propose a Coarse-to-Fine
Interaction Module (CFIM) that exploits multi-scale features
to achieve multi-modal interaction layer by layer and finally
obtains finer features. As shown in Fig. 4, we first utilize layer-
wise texture features f:']f € RNexDr (| € {0,1,2}) extracted
by PointNet++ [36] as the source of multi-scale information,
where Nj and Dy mean the seed point number and channel
dimension in the k-th set-abstraction layer. Then, in the j-th
CFIM layer (j € {1,2}), we apply FIM; to interact F,_
with F,

Ti—1

1
and generate Ffj € RNkXDk,FTj € RHixWixDy

ko k
E¥ B, =FIM;(F} | F, )

12)

_ Later, following feature propagation in [36], we interpolate
Ej with F~" and adopt a MLP to generate feature F,;~' €
RNk 1xDic by Eq. 13, where 7 is the interpolation function.
k=1 _ Pl k1Y fk—1
F,;~" = MLP(Concat(r(Fy, , Fy""), "))

(13)
Finally, by repeating the above processes, our CFIM could
utilize multi-scale information to complement and refine multi-

modal features iteratively.

D. Similarity Generation and Fusion

Similarity Generation. For geometry features (F, F)¥) from
CFIM, we calculate the pixel-wise similarity [39] and generate
geometry similarity S, € R71*W1xD Meanwhile, for texture
feature (F;;7 F}), we use cosine distance as metric and gener-
ate point-wise texture similarity S; € RNo*P_ Then, to ensure
feature alignment, we perform the pillarization process by Max
Pooling to convert S; into BEV feature S;;, € RF<WixD,

Similarity Fusion. We propose a Similarity Fusion Module
(SFM) that adaptively combines S, with Sy, and aggregates

geometry and texture clues from target. Specifically, as shown
in Fig. 5, we first use three linear layers to generate attention
vector Qq, Ky, Vip, respectively. Then, to maximize the use of
significant information in each-modal similarity, we propose
an Attention Pre-weighting Module (APM) to enhance target
clues in attention vector. The APM is described as follows:

W = o(MLP(Concat(MLP(R),Max(R), Avg(R))))
R=RW +R

(14)
5)

where o is the sigmoid function and R € {Qg, K, Vis},
R € {Qg,f(tb,f/tb}. Max and Avg represent Max Pooling
and Average Pooling, respectively. Finally, we adopt the pre-
weighted attention vector Qg, Ktb, th to calculate the atten-
tion weight and achieve similarity fusion by Eq. 16.

A o T
Qg\/f%’wb +8,, 8 =MLP(S) + S
where 1/d}, is the scale factor. Different from vanilla cross-
attention, our proposed SFM adaptively enhances the critical
target clues in geometry and texture similarities before ex-
changing information with each other. Thus, compared with
simply stacking, adding, or directly using cross-attention, SFM
can obtain a more discriminative similarity feature S.

S = (16)

E. Prediction and Training

Following CenterPoint [40], we use fusion similarity S to
predict the target’s spatial location and orientation in a center
manner. The training loss is formulated as follows:

L= MXgsLes + )\regLreg )

where we use focal loss [41] as L to train heatmap classifi-
cation and adopt L1 loss as L,..4 for box regression. Ac, and
Areg are weights for the two losses, respectively.

IV. EXPERIMENTS
A. Experimental Settings

Datasets. We conduct experiments on two large-scale datasets
to evaluate proposed MMF-Track: KITTI tracking dataset [42]
and NuScenes dataset [43]. For the KITTI tracking benchmark,
we follow the default setting of previous works [2]-[4] which
adopts the sequences 0-16 for training, 17-18 for validation
and 19-20 for testing. Moreover, different from the KITTI [42],
NuScenes [43] is a larger dataset which contains a total of
1,000 scenes with 20s duration in each. Equipped with the 32-
beam LiDAR sensor, NuScenes dataset contains about 300,000
points in every frame and has 360-degree view annotations for
various objects. Compared to KITTI dataset, NuScenes is more
challenging for object tracking since it has more challenging
scenes. Additionally, it has been officially divided into training,
validation and testing scenes. Following the setting of [3], [34],
we also adopt the official 700 train scenes to train and the 150
val scenes to test.

Evaluation Metrics. For KITTI and NuScenes datasets, we
use One Pass Evaluation (OPE) as evaluation metric, including
Success and Precision. Specially, the Success measures the 3D



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE I
PERFORMANCE COMPARISON ON THE KITTI DATASET. L MEANS
LIDAR-ONLY METHODS. LC DENOTES LIDAR-CAMERA METHODS. M
AND S ARE MOTION-BASED AND SIMILARITY-BASED PARADIGMS.

TABLE II
PERFORMANCE COMPARISON BETWEEN OURS AND M2-TRACK ON THE
MODIFIED KITTI. PED AND CYC IS AN ABBREVIATION FOR PEDESTRIAN
AND CYCLIST.

IoU between the predicted box and ground truth, ranging from
0 to 1, while the Precision measures the accuracy between the
predicted target center and ground-truth center, ranging from
0 to 2 meters. Following the previous work, we calculate the
average performance based on the number of frames in each
category and call it F-Mean. Besides, we also adopt C-Mean
as a mean metric, which is obtained according to the number
of categories.

Implementation Details. In data processing, due to the differ-
ent sizes of the categories in datasets, we apply the different
settings for point cloud voxelization in the raw point branch.
Specially, for Car, we set point cloud range as [-3.2m, 3.2m]
along the x-y axis, and voxel size is [0.025m, 0.025m, 0.05m].
For Van, we set the point cloud range as [-4.5m, 4.5m] and the
voxel size as [0.0375m, 0.0375m, 0.05m]. And for Cyclist and
Pedestrian, we set a smaller range and voxel size for their small
size, which is [-1.2m, 1.2m] and [-1.8m, 1.8m] respectively,
and voxel size is the same as Car. Meanwhile, all height ranges
are [-3m, 1m] in KITTI but [-5m, 3m] in NuScenes dataset
along the z-axis. The template and search points are voxelized
following [46]. Then, a maximum of five points are randomly
sampled from each voxel. For pseudo point branch, we process

Method Modalit Car Ped. Van Cyc.|F-Mean C-Mean Category Car Ped. Van Cyc.|F-Mean C-Mean
etho odality 6,424 6,088 1,248 308 | 14,068 14,068 Frame Number | 1,328 1,248 255 65 | 2,896 2,896
SC3D [1] 413 182 404 415 31.2 35.4 Success M2—Track* 40.4 199 164 16.6 28.9 23.3
P2B ] 562 287 408 32.11 424 395 Ours 43.0 304 189 21.0| 35.0 28.3
PTT [4] 67.8 449 436 372| 55.1 48.4 Precision M?2-Track* 46.9 340 160 17.3| 38.0 28.6
BAT [3] 60.5 42.1 524 337 51.2 472 Ours 47.2 45.7 202 21.5 43.6 33.7
LTTR [5] 65.0 332 358 66.2| 48.7 50.1 w— OUrs o— M2-Track
. V2B [6] L+S 70.5 483 50.1 40.8| 584 52.4 0 4o
§ C2FT [44] 67.0 48.6 53.4 38.0| 572 51.8 3 .
= MLSET [45] 69.7 50.7 552 41.0| 59.6 54.2 R 30.2 29.9
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KITTI and Nuscenes respectively

the number of points to N = 1024 through randomly copying
and discarding. Then, we adopt PointNet++ [36] consisting of
three set-abstraction (SA) layers to encode pseudo points. The
ball-query radii are set to 0.3m, 0.5m and 0.7m. We train 40
epochs for MMF-Track with Adam optimizer and set batch
size 32 on NVIDIA 2080Ti GPU.

Data Augmentation. To get the template and search data in
the training phase, we first acquire the search point clouds and
image by the index X. Then, we randomly select another index
ranging [X — 5, X + 5] from the same tracking sequence of
the search data to obtain the template point clouds and image.
In this way, the difference in target appearance between the
template and search points will be randomly enlarged during
training, which is beneficial for the network to better adapt to
target appearance change and improve model generalization in
the testing phase.

B. State-of-the-arts Comparison

Quantitative results on KITTI. As demonstrated in Tab. I,
the former LiDAR-Only methods could be separated into the
similarity-based [1]-[7], [32], [33], [44], [45], and the motion-
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TABLE III
PERFORMANCE COMPARISON ON THE NUSCENES DATASET. *
REPRESENTS THE RESULTS WE TESTED WITH THE OFFICIAL CODE.

TABLE IV
PERFORMANCE COMPARISON ON THE NUSCENES DATASET. PED AND BIC
IS AN ABBREVIATION FOR PEDESTRIAN AND BICYCLE.

Car Ped. Bus Bic. |F-Mean C-Mean . Car Ped. Bus Bic. |F-Mean C-Mean
Method Method Modality
64,159 33,227 2,953 2,292|102,631 102,631 64,159 33,227 2,953 2,292(102,631 102,631
Success TransFusion*® [47]| 37.42 12.85 32.44 19.45| 28.92 25.54 SC3D [1] 2231 11.29 29.35 16.70| 18.82 19.91
Ours 50.73 32.80 52.73 37.53| 44.69 43.45 PTT [4] 4122 1933 43.86 28.39| 3394 33.45
Precision TrANSFusion® [47]] 46.52 26.82 36.01 41.96] 39.74  37.83 § P2B [7] L+S |38.81 2839 32.952632| 3499 31.62
Ours 58.51 66.25 52.78 68.59| 61.08 61.53 ;3') BAT [3] 4073 28.83 35.44 27.17| 36.42 33.04
SMAT [33] 43.51 32.27 39.42 25.74| 3936 35.24
Sequence Number — emmemss SC3])  emspome OB emffemm BAT ey SMAT e MMF-Track M2—Track[ ] L+M 55.85 32.10 51.39 36.32| 47.60 43.92
90 35 Ours LC+S |50.73 32.80 52.73 37.53| 44.69 4345
80 20 30 SC3D [1] 2193 12.65 24.08 28.12| 19.13  21.70
w 70 25 - PTT [4] 4526 32.03 39.96 51.19| 40.96 42.11
S S
E 60 20 2 P2B [2] L+S [ 43.18 52.24 27.41 47.80| 45.76  42.66
<
) 20 2 18 s 5| marp 4329 5332 2801 51.37| 4627  44.00
5 40 10 SMAT [33] 49.04 60.28 34.32 61.06| 52.52 51.18
30 5 M2-Track [34]| L+M |65.09 60.92 51.44 67.50| 63.40 61.24
3 Ours LC+S | 58.51 66.25 52.78 68.59| 61.08 61.53
20 0
(0, 10] (10, 20] (20, 30] (30, 40] (40, 50]  >50
Number of points on the first frame TABLE V
TIME CONSUMPTION OF EACH MODULE IN OUR MMF-TRACK.
Fig. 7. Effect of the number of points in the first frame. In most cases,
our MMF-Track outperforms other methods by a significant margin. Module ‘ Space Alignment ‘ Feature Encoder ‘ Feature Interaction
Time 14.4 ms 20.3 ms 25.1 ms
based [34] methods. Due to only relying on geometry match- Module | Similarity Generation | Regression Head Overall
ing of sparse points, the similarity-based paradigm has some Time | 13.2 ms ‘ 26 ms ‘ 75.6 ms

limitations as mentioned in Sec. I. In contrast, motion-based
paradigm [34] considers target motion between two frames and
achieves better performance than the matching-based methods.
However, benefiting from introducing image information and
texture matching, our multi-modal method outperforms [34]
by 4.5% and 4.2% on the F-Mean and C-Mean Success. This
result shows that utilizing multi-sensor data could develop the
potential of similarity-based paradigm and surpass the motion-
based method [34]. Moreover, compared with LIDAR-Camera
method F-Siamese [12], we achieve a significant performance
improvement in all categories. It validates that by multi-modal
interaction and geometry-texture similarity fusion, our dual-
stream structure could effectively integrate target clues from
different modalities and is better than cascaded multi-modal
tracker [12].

To test the tracking performance when the target is moving
rapidly, we take one frame out of every 5 frames as the valid
frame on KITTI. In this way, the relative motion between two
frames will become bigger, which causes a greater challenge
to the tracker. Nonetheless, in the modified KITTI, our method
still outperforms M2-Track [34] by 6.1% and 4.4% in F-Mean
performance in Tab. II, which verifies that MMF-Track could
adapt to large motion of the target. Moreover, similar to [34],
we randomly add car instances to the testing scenes of KITTI
and test the robustness of tracker to distractors. As illustrated
in Fig. 6(a), when the number of distractors increased from 50
to 100, our method can maintain higher performance compared
with M2-Track [34].

Quantitative results on NuScenes. Since there is no multi-

modal SOT approach evaluated on NuScenes, we utilize the
advanced multi-modal detection method, TransFusion [47], to
perform multi-object tracking and transfer its results into the
SOT task. As displayed in Tab. III, our method outperforms
[47], which may be attributed to the difficulty in using target-
specific features for TransFusion. Besides, MMF-Track obtains
the best results among similarity-based methods [1]-[4], [33]
in Tab. IV, proving that our method can improve tracking per-
formance by effectively combining geometry and texture sim-
ilarities. Then, compared with the motion-based method [34],
our approach has advantages for tracking small-size objects.
Especially for the Pedestrians, MMF-Track achieves 66.25%
in the Precision and outperforms [34] by 5.33%. Furthermore,
consistent with KITTI, we also validate the tracker after adding
the different number of distractors in Fig. 6(b). The results are
shown that with the increase of distractors, the performance of
M2-Track will drop faster and even lower than our method. In
contrast, MMF-Track exhibits more robust performance, which
may be because image texture can help tracker to differentiate
target from distractors and improve the robustness of tracker.
Visualization results on KITTIL. We visualize tracking results
of different categories in Fig. 8. In the scene with a few points,
such as the 15t and 2" case, BAT and M2-Track are prone to
interference from backgrounds, resulting in the target loss. But
our method can alleviate the impact of point cloud sparsity and
better distinguish the target and backgrounds. When there are
some objects similar to target (in the 3"¢ and 4" case), the M?-
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Case 2 Case 1

,Case 3

D Ground Truth

Track and BAT both incorrectly capture similar objects due to
depending on textureless points. In contrast, our MMF-Track
achieves robust tracking results by using texture features.
Robustness to Sparseness. In Fig. 7, following [1]-[3], [33],
we display tracking performance under the different number
of points in the first frame. The result demonstrates that due
to introducing rich texture information, MMF-Tracker could
maintain high performance in most cases and achieve better
robustness than other single-modal methods.

Running speed. The time consumed by each module of the
network is shown in detail in Tab. V. We observe that MMF-
Track can achieve 13.2 FPS on a single NVIDIA 2080Ti GPU
and makes certain improvement compared with the 5 FPS of
multi-modal F-Siamese [12].

C. Ablation Study

We conduct ablation studies to validate the effectiveness of
the proposed modules. Most experiments are performed on the

oo

Fig. 8. Visualization of tracking results on KITTI dataset. From top to bottom, we compare our MMF-Track with BAT, M2-Track and show the cases
of Car and Pedestrian categories.

rs

Car category of KITTI.

Model Components. In Tab. VI, we demonstrate the effec-
tiveness of our modules. Due to Al only relying on geometry
matching of sparse point clouds, its tracking result is not ideal.
Then, compared with AS, removing any modules (in A2~A4)
will result in performance degradation. Thus, every module is
indispensable for the network. Specifically, A2 reflects that the
template mask plays a critical role and helps tracker perceive
target well by contextual background. Besides, as shown in A3
and A4, lacking multi-modal interaction or similarity fusion
will also cause bad results, especially in A4, which validates
that effectively using multi-modal information is the key to
multi-modal tracker.

Feature Interaction. We compare different feature interaction
methods in Tab. VII. First, as shown in B1, although cross-
attention is commonly utilized to fuse different modalities, it
is not enough to construct complex multi-modal associations.
Instead of simple two-in-one manner, FIM can enhance intra-
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TABLE VI
ABLATION STUDIES ON MODEL COMPONENTS. CFIM MEANS
COARSE-TO-FINE INTERACTION MODULE. SFM REPRESENTS
SIMILARITY FUSION MODULE. TM IS THE TEMPLATE MASK.

Modality ‘ ™ ‘ CFIM ‘ SFM ‘ 3D Success ‘ 3D Precision

Al L X| X X | 654185 | 746195

A2| LC X |V v | 704135 80.7 13.4

A3 LC v | X v | 706133 81.0 3.1

Ad LC v | v X | 700139 | 795 146

A5 LC v |V v 73.9 84.1
TABLE VII

ABLATION OF THE STREAM STRUCTURE AND FEATURE INTERACTION
METHODS. FIM IS THE FEATURE INTERACTION MODULE.

Stream Structure| Interaction Strategy |3D Success|3D Precision

Bl| Two-in-One |Single Cross-Attention|  68.4 78.8

B2| Dual-Stream Single FIM 70.2 80.8

B3| Dual-Stream Stacking n FIMs 71.9 82.1

B4| Dual-Stream CFIM 739 84.1
TABLE VIII

ABLATION STUDIES OF SIMILARITY FUSION STRATEGIES.

Similarity Fusion Strategy 3D Success 3D Precision
C1 Addition 71.4 80.7
C2 Concat 71.3 81.8
C3 Cross-Attention 70.6 80.3
Cc4 SFM 73.9 84.1
TABLE IX

ABLATION STUDIES OF DIFFERENT PAINTING STRATEGIES.

Painting Strategy 3D Success 3D Precision
D1 w/o Painting 67.9 77.1
D2 w/ RGB 71.5 81.2
D3 w/ Feature Offline 72.0 82.3
D4 w/ Feature Online 73.9 84.1

modal features and construct inter-modal associations, which
improves the Success/Precision by 1.8%/2.0%. Then, we can
obtain further performance improvement by stacking n = 3
FIMs. Lastly, benefiting from the coarse-to-fine strategy, B4
achieves the best performance, higher than B3 with 2.0% in
both Success and Precision, which proves that our CFIM has
a stronger ability to construct semantic association.

Similarity Fusion. As shown in Tab. VIII, we compare dif-
ferent similarity fusion strategies. Our proposed SFM achieves
the best performance in C4, surpassing C1 by 2.5% and 3.4%
in Success and Precision, respectively. Then, compared with
directly using cross-attention in C3, our method obtains 3.3%
and 3.8% improvement, showing the effectiveness of APM. It
is interesting that the performance of C3 is lower than C1 and
C2. We think that it’s because directly using cross-attention
may break the similarity between template and search features.
But thanks to our APM that adaptively adjusts each-modal
similarity in advance, we can effectively aggerate geometry-

TABLE X
THE RESULTS OF DIFFERENT TEMPLATE GENERATION STRATEGIES.

Strategy | PTT [4] | V2B [0] [SMAT [33]| MMF-Track
First GT 62.9/76.5]67.8/79.3] 68.1/775 | 69.2/79.8
Previous result 64.9/77.5/70.0/81.3| 66.7/76.1 | 71.9/81.9
First GT & Previous result|67.8/81.8|70.5/81.3| 71.9/82.4 | 73.9/84.1
All previous results  |59.8/74.5/69.8/81.2| 69.9/79.8 | 71.7/81.4

TABLE XI
COMPARISON TRACKING PERFORMANCE W/ OR W/O IMAGE BRANCH ON
THE NUSCENES.

Car Ped. Bus Bic. F-Mean
64,159 33,227 2,953 2,292 102,631

v 50.73/58.51(32.80/66.25|52.73/52.78|37.53/68.59/44.69/61.08
X 43.67/51.09|27.46/61.31{47.23/47.52|31.80/62.44/38.26/54.55
7.06/7.42 | 5.34/4.94 | 5.50/5.26 | 5.73/6.15 | 6.43/6.53

Image Branch

Decreasing

t-1 frame

t frame

t-1 frame

Fig. 9. Visual comparison of tracking results and heatmaps from two
consecutive frames. The predicted and ground-truth boxes are in red and
green, respectively.

texture clues in the subsequent step.

Painting Strategy. In Tab. IX, we compare different painting
strategies for pseudo points. Compared with not painting any
information in D1, appending RGB to pseudo points achieves
better results in D2 (3.6%/4.1% improvement). Furthermore,
following [14], we utilize semantic features extracted from an
offline network to paint pseudo points in D3 and outperform
D2 by 0.5%/1.1%. But the offline network can not be trained
with tracker and will limit tracking performance. In contrast,
in D4, our SAM can realize online painting and end-to-end
training for the whole network, resulting in the best results.
Template Generation Strategy. As demonstrated in Tab. X,
we compare our MMF-Track with the previous works [4], [0],
[33] under different template generation strategies. The “first
GT” means to adopt the ground-truth target points in the first
frame as a template, while the “previous result” denotes using
tracking result in the previous frame. The results show that our
method achieves the best and relatively stable results on four
template generation schemes, which proves the superiority of
our multi-modal method.

LiDAR-Camera vs. LIDAR-Only. To further verify the role
of image in tracking, we first validate our MMF-Track without
image branch on NuScenes. As shown in Tab. XI, the tracker
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Fig. 10. Failures cases of our MMF-Track on the Nuscenes dataset. The predicted and ground-truth boxes are displayed in red and green, respectively.

occurs a certain performance degradation without texture fea-
ture. Then, for Pedestrian, we visualize tracking results of two
consecutive frames and the corresponding heatmap in Fig. 9.
The results display that the texture features extracted from the
image could help tracker differentiate the target correctly when
existing a distractor of the same class. Thus, we believe that
image plays an important role in our multi-modal tracker.

D. Failure Cases

In Fig. 10, we illustrate some failure cases of MMF-Track
on the Nuscenes, which has lower point density compared to
KITTI. And we can observe when the target is occluded, the
point clouds and pixels are rare or even missing, which makes
it challenging for our MMF-Track to capture effective target
characteristics and cause tracking failure. Therefore, in future
work, we will further attempt to efficiently exploit more point
cloud frames and extract the spatial-temporal information to
improve MMF-Track. Besides, another improvement strategy
is to integrate the long-term motion estimation with our multi-
modal network through a more delicate design.

V. CONCLUSION

In this paper, we introduce a novel multi-modal network
MMF-Track for 3D SOT task. First, we design Space Align-
ment Module to generate textured pseudo points aligned with
the raw points in 3D Space. Then, we propose a novel dual-
stream structure to enhance intra-modal features and construct
inter-modal semantic associations. Finally, we present a Simi-
larity Fusion Module to aggregate geometry and texture clues
from the target. Extensive experiments show that MMF-Track
significantly outperforms previous multi-modal methods and
achieves competitive results. We hope our work would inspire
researchers to further study multi-modal 3D SOT.
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