
1 

 

A Novel Temporal Multi-Gate Mixture-of-Experts Approach for Vehicle Trajectory and 

Driving Intention Prediction 

 

Renteng Yuan (First author)  

Jiangsu Key Laboratory of Urban ITS  

School of Transportation 

Southeast University, Nanjing, Jiangsu, P. R. China, and 210000 

Email: rtengyuan123@126.com 

 

Mohamed Abdel-Aty 

Department of Civil, Environmental and Construction Engineering  

University of Central Florida, 12800 Pegasus Dr #211, Orlando, FL 32816, USA  

Email: M.aty@ucf.edu 

 

Qiaojun Xiang (Corresponding author) 

Jiangsu Key Laboratory of Urban ITS 

School of Transportation  

Southeast University, Nanjing, Jiangsu, P. R. China, and 210000 

Email: xqj@seu.edu.cn 

 

Zijin Wang  

Department of Civil, Environmental and Construction Engineering  

University of Central Florida, 12800 Pegasus Dr #211, Orlando, FL 32816, USA 

Email: zijinwang@knights.ucf.edu 

 

Ou Zheng 

Department of Civil, Environmental and Construction Engineering  

University of Central Florida, 12800 Pegasus Dr #211, Orlando, FL 32816, USA 

Email: ouzheng1993@knights.ucf.edu 

 

 

Word Count: 6881 words + 2 table (500 words per table) = 7331 words 

Submitted [29/07/2023] 

 

 

 

 

 

 

 

 

 

 

 



Yuan, Abdel-Aty, Xiang, Wang, and Zheng 

2 

 

ABSTRACT 

Accurate Vehicle Trajectory Prediction is critical for automated vehicles and advanced driver 

assistance systems. Vehicle trajectory prediction consists of two essential tasks, i.e., 

longitudinal position prediction and lateral position prediction. There is a significant 

correlation between driving intentions and vehicle motion. In existing work, the three tasks 

are often conducted separately without considering the relationships between the longitudinal 

position, lateral position, and driving intention. In this paper, we propose a novel Temporal 

Multi-Gate Mixture-of-Experts (TMMOE) model for simultaneously predicting the vehicle 

trajectory and driving intention. The proposed model consists of three layers: a shared layer, 

an expert layer, and a fully connected layer. In the model, the shared layer utilizes Temporal 

Convolutional Networks (TCN) to extract temporal features. Then the expert layer is built to 

identify different information according to the three tasks. Moreover, the fully connected 

layer is used to integrate and export prediction results. To achieve better performance, 

uncertainty algorithm is used to construct the multi-task loss function. Finally, the publicly 

available CitySim dataset validates the TMMOE model, demonstrating superior performance 

compared to the LSTM model, achieving the highest classification and regression results. 

Keywords: Vehicle trajectory prediction, driving intentions Classification, Multi-task 

learning, CitySim 
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INTRODUCTION 

Vehicle intelligence, automation, and cooperative control are transformative trends in 

transportation. Vehicle trajectory prediction plays a critical role in various fields, such as 

autonomous driving, advanced driver assistance systems (ADAS), and intelligent 

transportation systems. Accurately predicting vehicle trajectory can help intelligent in-vehicle 

devices understand the surrounding traffic environment, identify potential safety risks, and 

formulate effective control strategies. 

Vehicle trajectories represent the accumulation of driving behavior over time and space. 

It can be represented by longitudinal and lateral position changes. Predicting the vehicle 

trajectory is not a deterministic task since it is influenced by vehicle dynamics, driver 

maneuvers, and the surrounding traffic environment (1, 2). Additionally, changes in driving 

intentions can directly impact vehicle trajectories. Studies indicated that changes in driving 

intentions are a significant factor contributing to errors in vehicle trajectory prediction (3-5). 

In previous research, driving intention recognition modules have been utilized prior to vehicle 

trajectory prediction (1, 6). While improving accuracy, these modeling frameworks face the 

challenge of building separate predictive models for each metric (e.g., intention, longitudinal 

and lateral position), which is limited to some particular scenarios (e.g., lane changing 

process)(7). It is also recognized that there exists a correlation between the longitudinal and 

lateral position of vehicles (8). Considering the correlation between longitudinal and lateral 

positions as well as driving intentions, it is necessary to develop a multi-task prediction model 

for accurate vehicle trajectory prediction. 

The multi-task learning (MTL) model, initially proposed by Caruana in 1997 (9), is a 

specialized type of deep learning model designed to simultaneously train and learn multiple 

related tasks. As a promising area in machine learning, MTL aims to improve the 

performance of multiple related learning tasks by leveraging useful information across tasks 

(10). This paper presents a novel methodology, referred to as the Temporal Multi-Gate 

Mixture-of-Experts (TMMOE) model, for simultaneously recognizing driving intention and 

predicting vehicle trajectory. The proposed model comprises three layers: a shared layer, an 

expert layer, and a fully connected layer (FCN). The shared layer utilizes Temporal 

Convolutional Networks (TCN) to extract temporal features from the input data. The expert 

layer employs Long Short-Term Memory (LSTM) to adaptively differentiate between tasks 

and capture long-term dependencies in the time series data. Each task is associated with an 

FCN layer, which utilizes the extracted features to generate target values. 

LITERATURE REVIEW 

There are three commonly employed methods for predicting vehicle trajectories: 

physics-based models, maneuver-based models, and learning-based models (4, 11). Physics-

based methods represent vehicles as dynamic entities governed by the laws of physics. These 

models focus on establishing vehicle motion model or utilizing fitting techniques to model 

vehicle trajectories (12-14). Common methods include polynomials (15, 16), Gaussian 

processes (17), and Kalman filter (13). However, these methods do not consider interactions 

between the surrounding vehicles in vehicle trajectory prediction and are limited to short-term 

motion prediction (7, 18). Maneuver-based methods involve early recognition of driving 

intention and classify vehicle trajectories into a finite set of typical patterns (1). Markov 
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models (HMMs), Bayesian networks, and Support vector machine (SVM) classifiers are three 

commonly used methods (6, 14, 19). Nevertheless, these methods classify vehicle motion into 

distinct categories, ignoring the continuous and holistic nature of driver behavior. In recent 

years, learning-based models, particularly deep learning methods, have gained significant 

attention. One such method is the recurrent neural network (RNN), which utilizes large-scale 

datasets to learn complex relationships and improve the accuracy of vehicle trajectory 

prediction (20). 

The Long Short-Term Memory (LSTM) Network is a special type of Recurrent Neural 

Network (RNN) that has been widely used in the prediction of vehicle trajectories (21, 22). In 

order to enhance the predictive performance, several studies have incorporated an attention 

mechanism into LSTM models (11, 14, 23). However, there are still two limitations that have 

not been addressed in these approaches: the issue of vanishing gradients and the lack of 

parallel computation capability (24). To overcome these limitations, Zeng et al.(25), Islam et 

al. (26),and Xie et al.(27) proposed a CNN-LSTM sequential model for vehicle trajectory 

prediction. In their work, the convolutional neural network (CNN) was employed to extract 

data features and input them into the LSTM network. However, CNN employs fixed-size 

filters to handle input data as independent samples, limiting its ability to effectively model 

temporal correlations and sequential structures. Bai et al.(28) designed a special CNN, 

Temporal Convolutional Network (TCN), for processing sequential data, such as time series 

or natural language (29-31). With dilated causal convolution layers, the TCN can effectively 

capture long-term dependencies across multiple time scales within input sequences. Previous 

research reported that the TCN model has achieved significant promotion in both regression 

and classification tasks (31-34). 

Multi-tasks learning is a special deep learning framework. In traditional multi-task 

learning, a neural network is typically utilized to simultaneously predict multiple tasks. 

Previous research has shown that the intricate relationships among tasks have a significant 

impact on the performance of multi-task learning models (10, 35, 36). In practical engineering 

applications, the correlation among tasks may dynamically change with time or spatial 

dimensions. For instance, vehicle states during lane changing are more sensitive to the 

surrounding traffic environment than the car following process (8). The Multi-gate Mixture-

of-Experts (MMOE) model, initially proposed by Ma et al.(37), is a novel approach in multi-

task learning that effectively handle task differences without requiring explicit task difference 

measurements. The MMOE model combines expert and gate networks to capture task 

relationships among tasks and learn task-specific functionalities. It has achieved significant 

promotion in both regression and classification tasks, involving health status (38), energy 

systems load prediction (39), and sound classification (40). While the MMOE (Mixture of 

Experts) model is developed within the framework of the DNN (Deep Neural Network) 

structure, further advancements are needed to optimize its effectiveness in handling time 

series data.  

As mentioned above, vehicle trajectory prediction involves simultaneously predicting 

multiple indicators. To enhance the accuracy of predicting vehicle trajectories, this study 

proposes an improvement to the MMOE model. It incorporates TCN networks for feature 

extraction and LSTM networks for gating memory mechanisms. This integration enhances the 

effectiveness of the model in handling time series data and improves the accuracy of 
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trajectory prediction.  

 

METHOD 

The objective of this study is to develop a unified model that can simultaneously 

recognize driving intentions and predict vehicle trajectories. Vehicle trajectories are 

represented by both the lateral and longitudinal positions. The driving intentions are classified 

into three categories: lane keeping (LK), lane changing to the left (LCL), and lane changing to 

the right (LCR). In order to achieve this, the model had to learn three tasks simultaneously, 

which include two regression tasks and one classification task. It is very challenging to 

directly observe and quantify the complex mapping relationships between changes in 

longitudinal and lateral positions. To address these challenges in a unified model, this 

research proposed a novel data-driven multi-task learning (MTL) model for the recognition of 

driving intentions and the prediction of vehicle trajectories. 

 

The Proposed Model 

 

Figure 1 Flowchart of the proposed model 

As shown in Figure 1, the proposed model includes a shared layer, an expert layer, and a 

fully connected (FCN) layer. Based on the input data, the shared layer is employed to extract 

temporal features. The Expert layer employs a multi-gate mixture-of-experts (MMoE) 

network structures to adaptively differentiate tasks and extract valuable information. The 

shared information extracted from the shared layer is separately used as the input of the expert 

network. The gate network helps the model learn task-specific information for each task. The 

aggregated results from the experts are subsequently fed into the task-specific FCN layer. 

Each specific task is associated with an FCN layer, which leverages the obtained features to 

generate the target values. 

The following introduces three layers: the shared layer, the expert layer, the FCN layer. 

Moreover, the joint loss function for model training is described. 

The Shared Layer 

The Temporal Convolutional Network (TCN) is utilized in the shared layer to extract 

temporal features. TCN is composed of causal convolution and dilated convolution (28, 29). 

Causal convolutions are used to ensure the temporal dependencies of the input data. Dilated 
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convolutions are incorporated into causal convolutions to increase the receptive field, 

allowing the model to capture a wider range of temporal information. The one-dimensional 

fully-convolutional network (1DFCN) architecture is employed to produce the same length 

output as the input (41). For a filter𝑓: {1,2, . . . , 𝑘 − 1}, the dilated convolution operation F on 

the element 𝑠 of a 1-D sequence 𝑥 ∈ 𝑅𝑛is formulated as, 

   ( ) ( ) ( )
1

s (x )
0

k
F f s f k x

d s d ii

−
=  =  −=

                   (1) 

Where 𝑑 is the dilation parameter and is used to control the size of the interval, 𝑘 is the 

filter size and represents the number of convolution kernels, * is the convolution operator, 

𝑠 − 𝑑 ∙ 𝑖 accounts for the direction of the past. The dilated causal convolution structure is 

depicted in Figure 2. 
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Figure 2 A dilated causal convolution with dilation factors d = 1,2,4 and kernel size k = 2 

(42)  

 

As shown in Figure 2, the kernel size is set to 2, and the depth of the causal convolution 

is 3. The convolution indicated that the output at time t is associated with the input points 

from time t-7 to time t. Residual blocks are used to address disappearance and gradient 

expansion in TCN. By incorporating techniques such as longer convolutional kernels and 

residual connections, TCN is able to capture long-term dependencies effectively. Figure 3 

illustrates the architecture of the residual block, utilizing a Rectified Linear Unit (ReLU) as 

the activation function and incorporating batch normalization for the convolutional filter. A 

1x1 convolution is added in the residual block when the input and output data have different 

lengths.  
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Figure 3 TCN residual block (8) 

 

The Expert Layer 

In this section, we present notable enhancements to the MMOE model, with a specific 

emphasis on its utilization for time series forecasting and analysis. The output of task k can be 

described as: 

( )( )k k k

t ty h f x=                           (2)  

( ) ( ) ( )
1

n
k k

t t i ti
i

f x g x f x
=

=                  (3) 

Where 𝑥𝑡 represents the input sequence at time t, 𝑦𝑡
𝑘 represents the output indicator at 

time t for task k. 𝑓𝑘represents the shared bottom network task k, and ℎ𝑘 represent the tower 

networks where k =1, 2, ..., K for each task respectively. 𝑓𝑖(𝑥𝑡) is the 𝑖𝑡ℎ expert network. 

 𝑔𝑘(𝑥𝑡)𝑖 represents the gating network for task k, and is the weight for the 𝑖 𝑡ℎ expert 

network, and ∑ 𝑔𝑘(𝑥𝑡)𝑖
𝑛
𝑖=1 = 1. In our proposed model, the gating networks are 

implemented using LSTM cells and then ensemble the results from all experts. The weights of 

the expert networks are dynamically adjusted based on the input time series. The architecture 

of the gating networks can be described as follows. 

 ( ) ( )( )t tg x softmax h x=                    (4) 

 ( ) ( )=t t th x tanh c                       (5) 

1=t t t t tc f c i c− +                       (6) 

Where 𝑐𝑡is the memory cell at time t-1, �̃�𝑡 is the candidate memory at time t, h(xt) is 

the outcome at time t.⊙represents vector element-wise product. 𝑖𝑡 is the input gate, 
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𝑓𝑡 𝑖𝑠 the forget gate, and 𝜊𝑡 is the output gate. These gates are computed as follows. 

( )1=t i t i t ii W x U h b− + +                    （7） 

( )1=t f t f t ff W x U h b− + +                  （8）    

( )t o t o t-1 oo = W x +U h +b                  （9） 

Where𝜎represents the sigmoid activation function; 𝑥𝑡represents the input sequence at 

time t;ℎ𝑡−1represents the hidden state; W is the parameter matrix at time t and represents the 

input weight; U is the parameter matrix at time t -1, and represents the recurrent weight;𝑏𝑖,𝑏𝑓, 

and 𝑏𝜊 represents bias. In addition, each expert network is built as an independent LSTM 

model. The internal update state of the LSTM recurrent cells can be expressed as: 

 

Figure 4 LSTM block structure  

 

The FCN Layer  

The FCN layer, serving as the final output module in our proposed model, consists of 

independent network layer structures. The results of the assembled experts are then passed to 

the task-specific FCN networks. The FCN layer leverages the aggregated information to 

perform task-specific processing and produce the final outputs. Each task is associated with 

its own dedicated FCN layer. The Rectified Linear Unit (ReLU) activation function was 

selected as the activation function.  

 

Multi-task Loss Function Based on Homoscedastic Uncertainty 

This research involves two types of tasks: classification and regression. In this paper, we 

utilize the cross-entropy loss function to achieve driving intention classification. Cross-

entropy is a commonly used loss function that effectively measures the difference between 

predicted probabilities and true labels (43). It offers advantages in gradient computation and is 

based on the concept of information theory. This loss functions L(θ) are defined as follows: 

( ) ( )
i

1

1 M

c ic ic

c

L y log p
N =

 = −                 （10） 

Where 𝜃 represents the model parameters, M denotes the number of classes, yic 

represents a sign function where y equals 1 if the true class of sample i is equal to c, and 0 

otherwise, pic represents the predicted probability that observation i belongs to class c. 
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Vehicle trajectory prediction is a regression issue. The Mean-Squared Loss is a prevalent 

loss function employed in regression tasks. It quantifies the average squared difference 

between the predicted values and the corresponding true values of the target variable. 

Minimizing the Mean-Squared Loss enables models to optimize their parameters, aiming to 

achieve the best possible fit to the training data and reduce overall prediction errors. In this 

research, the Mean-Squared Loss is adopted as the loss function for the regression task. The 

formula for Mean-Squared Loss is as follows: 

( ) ( )
2

1

1 N

r i i

i

ˆL y y
N =

 = −                    （11） 

Where N represents the number of samples, 𝑦𝑖 represents the i-th sample labels, and �̂�𝑖 

represents the predicted value for the i-th sample. 

  The weight settings of the joint loss functions across tasks have a significant influence 

on the performance of the model. The homoscedastic uncertainty method facilitates a 

balanced optimization process for learning diverse quantities with varying units or scales 

through a tradeoff in the joint loss functions(44). Considering the inherent uncertainty of 

different tasks, this paper utilizes the homoscedastic uncertainty method to dynamically adjust 

the weights of the joint loss functions. For classification tasks, the softmax function is 

employed to estimate probabilities. The probability function and log likelihood for the 

classification task can be expressed as follows. 

( )( ) ( )c c2

1
, Softmaxc

c

p y f x f x
 

=  
 

 


                         (12) 

( )( ) ( ) ( )c c '2 2
'

1 1
log , log expc n c n

nc c

p y n f x f x f x= =

 
= = −  

 
  

 
        (13) 

Where 𝑓𝑐
𝜔(𝑥) represents the prediction result of a neural network with weight ω on input 

x. 𝑦 is the corresponding label. 𝜎𝑐
2 is a positive scaling factor, which can be interpreted as a 

Gibbs distribution where the input is scaled by 𝜎𝑐
2. 𝑓𝑐=𝑛′

𝜔(𝑥) represents the 𝑛′th element of 

the vector𝑓𝑐
𝜔(𝑥). For regression tasks, the likelihood is defined as a Gaussian with mean 

given by the model output. The log likelihood for this output can be obtained by substituting 

the Gaussian distribution function into the log-likelihood function, resulting in the following 

expression.  

( )( ) ( )( )2

r,r r rp y f x N f x=  ，                   (14) 

( )( ) ( )
2

r 2

1
log , log

2
r r r

c

N y f x y f x= − − −  


     (15) 

In our proposed model, the outputs comprise three vectors 𝑓𝑐
𝜔(𝑥), 𝑓𝑟1

𝜔(𝑥)and 𝑓𝑟2
𝜔(𝑥). 

These vectors are modeled using two regression likelihoods and one classification likelihood. 

So the multi-task loss function 𝐿 (ω, 𝜎c, 𝜎r1, 𝜎r2) is given as 

( ) ( ) ( ) ( )
1 2 1 2 1 2

1 2

c c2 2 2

c

1 1 1
, ,

2 2
r r c r r r r

r r

L L L L log log log + + + + +         
  

,      (16) 
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The detailed derivation process can be found in Yan et al(43), Kendall et al (44),and Liu 

et al(45)  Algorithm 1 shows the method for determining the optimal parameters in the 

proposed model based on the homoscedastic uncertainty function. 

 

Algorithm 1 The proposed model optimization by using the homoscedastic uncertainty 

function. 

Input:  

Training feature x, classification label 𝑦𝑐  and regression label 𝑦𝑟1
, 𝑦𝑟2

 ; the maximum 

epoch 𝐸max, batch size ϑ; Model initial parameters θ and loss function parameters 𝜎𝑐 , 

𝜎𝑟1
 and 𝜎𝑟2

. 

Output: θ, 𝜎𝑐, 𝜎𝑟1
 and 𝜎𝑟2

. 

1: i←0 ; ∕ ∗The index of the epoch.∗ ∕ 

2: while 𝑖 < 𝐸max do 

3: for each batch ϑ do 

4: Input feature data 𝑥, classification label  𝑦𝑐  and regression label 𝑦𝑟1
, 𝑦𝑟2

  into the 

model; 

5: Update model parameters  𝜃 , 𝜎𝑐 , 𝜎𝑟1
 and 𝜎𝑟2

  using Adam optimizer to find the 

minimum of 𝐿(𝜃, 𝜎𝑐 , 𝜎𝑟1
, 𝜎𝑟2

) =
1

𝜎𝑐
2 𝐿𝑐(𝜃) +

1

2𝜎𝑟1
2 𝐿𝑟1

(𝜃) +
1

2𝜎𝑟2
2 𝐿𝑟2

(𝜃) + 𝑙𝑜𝑔𝜎𝑐 +

𝑙𝑜𝑔𝜎𝑟1
+ 𝑙𝑜𝑔𝜎𝑟2

; 

6: end for 

7: 𝑖←𝑖+1 

8: end while 

9: Return the 𝜃,𝜎𝑐 , 𝜎𝑟1
, 𝜎𝑟2

 and stop 

 

DATASET 

Experimental data were obtained from the publicly available CitySim dataset (46). The 

CitySim dataset is a collection of vehicle trajectory data obtained from drones. So far it 

includes data from 14 locations and has a high sampling frequency of 30 Hz. Notably, the 

dataset supplies the vehicle center, head, tail, and bounding box vertices locations , thereby 

enabling an intricate assessment of their movements. We chose a sub-dataset, freeway-B, with 

six lanes in two directions to evaluate the performance of our proposed model. Figure 5 

shows a snapshot of the freeway-B segment. The freeway-B dataset was collected using two 

UAVs simultaneously, covering a 680 meters basic freeway segment. Each lane has a width of 

3.75 meters. A total of 5623 vehicle trajectories were extracted from 60 minutes of drone 

videos. 
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Figure 5 A snapshot of the freeway-B segment  

 

Data Processing 

In the original dataset, the position of each lane marking was represented by extracting 8 to 

10 points, manually selected from the provided images. It is important to acknowledge that 

there may be inherent errors or uncertainties in the accuracy of these points. To mitigate these 

issues, this study leverages available information, such as the lane width and the positional 

coordinates of the points, to reconstruct the position information of the lane markings. The 

reconstruction process is depicted in Figure 6.  

 

Figure 6(a) depicts the actual lane markings captured in the drone video.  

Figure 6(b) depicts the projection operation applied to the lane markings.  

Figure 6(c) illustrates the reconstructed lane markings after the projection process.  

Figure 6(d) shows the overlay of the reconstructed lane markings onto the original image.  

Figure 6 Reconstructed Lane Coordinates 

 

To begin with, all the points on the lane markings are projected onto the outermost lane line 

by subtracting the corresponding lane width. Following this, a moving average algorithm is 

employed to process the projected coordinate values, as depicted in the Figure 6(c). Next, a 

translation operation is conducted to determine the coordinates for the remaining lane lines. It 

is crucial to acknowledge that even minor positioning errors can significantly affect the 

extraction indicators, such as speed and acceleration (47). To mitigate the negative impact of 

these errors, a moving average (MA) method is utilized to smooth the trajectory. The moving 

average filter is set to 15 frames (corresponding to a duration of 0.5 seconds), and the 

sampling rate is configured at 3. A comparative analysis of the original trajectory and the 
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processed trajectory is depicted in Figure 7. For a more in-depth explanation of the data 

processing methods used in this study, please refer to our previous study (8). 

 

Figure 7 Comparison of original trajectory and processed trajectory  

 

In total, 1047 vehicle trajectories were extracted from the freeway-B dataset. This includes 

647 lane change (LC) vehicle trajectories, comprising 272 left lane change (LCL) trajectories 

and 375 right lane change (RCL) trajectories. Additionally, 400 lane-keeping (LK) vehicle 

trajectories were randomly selected from the dataset. To mitigate the numerical differences' 

influence on network training, the lateral position is adjusted accordingly. In the CitySim 

dataset, the local coordinate y represents the distance from the survey image boundary. With a 

known road width of 3.75m, all vehicle trajectory origins are shifted to the middle lane. The 

extracted partial vehicle trajectory is shown in Figure 8. Figure 8(a) represents the raw vehicle 

trajectory. Figure 8(b) depicts the processed vehicle trajectory. 

 
(a)  

 
(b) 

Figure 8 the extracted partial vehicle trajectory 

Driving Intention Labeling 

Within this study, the driving intentions are classified into three distinct categories: lane 

keeping (LK), left lane change (LCL), and right lane change (RCL). Each sequence extracted 

from the vehicle trajectories can be represented as either LCL, RCL, or LK. The lane-
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changing process consists of two stages: the lane change decision (LCD) and the lane change 

execution (LCE). In this study, the LCE is defined as the period when the vehicle's front 

bounding box points touch the target lane boundary until the vehicle's rear bounding box 

points enter the target lane. Figure 9 shows one event, RCL, where point D touches the lane 

boundary and is recognized as the start time of an LCE process. 

 

Figure 9 Lane changing process division  

The LCD occurs before the execution of the lane change. In general, the initiation of 

LCD is defined as the point in time when the lateral velocity of the vehicle surpasses 0.1 m/s 

(or -0.1m/s) for the first time (48, 49). Based on Figure 6(c), it can be observed that the lane 

line exhibits an approximate lateral deviation of 8m. Additionally, based on statistical 

analysis, it has been observed that vehicles travel for an average duration of approximately 26 

seconds on this road segment. Consequently, in this study, the LCD is determined based on 

the lateral velocity (vy) exceeding 0.3m/s, which indicates the LCD to the right. Conversely, 

the LCD to the left is determined when the lateral velocity (vy) falls below 0m/s. 

The driver's response time ranges from 0.3 to 1.35 seconds, while the braking system's 

activation time is approximately 0.15 seconds (50). This study reveals that vehicles have an 

average duration of 1.70 seconds for the LCD process, while the average duration for the LCE 

is 2.71 seconds. To capture the process of lane change execution (LCE), this study sets the 

predicted time window to 3 seconds. During the labeling process, the extracted sequences are 

categorized based on the location of their endpoints. If the endpoint falls within the lane 

change decision (LCD) stage, the sequence is labeled as either left lane change (LLC) or right 

lane change (RLC). On the other hand, if the endpoint is outside the LCD stage, the sequence 

is labeled as lane keeping (LK). Furthermore, the data labels are encoded as (0, 1, 0) for LLC, 

(0, 0, 1) for RLC, and (1, 0, 0) for LK 

 

EXPERIMENT AND RESULTS  

This section focuses on comparing the proposed model with existing models and the 

subsequent quantitative analysis of the results. The dataset is randomly split into a training 

dataset and test dataset with a ratio of 8:2. A ten-fold cross-validation method was used for 

model training and evaluation on the training dataset. All models are trained within the Keras 

2.11.0 framework. The experimental operations are conducted on an Intel(R) Core (TM) i7-

4770 CPU @3.40GHz hardware environment.  

 

Input Variables  

The movement of the target vehicle is influenced by other vehicles. The input variables 

in this research are divided into three categories: vehicle trajectory information and vehicle 

interaction information. The vehicle trajectory information comprises trajectories of the target 

vehicle and surrounding vehicles, including the nearest preceding and following vehicles in 
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adjacent and current lanes. Vehicle interaction information is used to describe the interaction 

between vehicles. To evaluate the driving status of vehicles, we first introduce the concept of 

system coupling coordination degree. Each vehicle is treated as an independent subsystem, 

while the target vehicle and its adjacent surrounding vehicles constitute a complete system. 

The system coupling coordination degree is calculated using the instantaneous speeds of each 

vehicle, as shown in the following expression. 

1 2 3

t

1 2 3

n
,t ,t ,t n ,t

,t ,t ,t n ,t

n v v v ...v
C

v v v . .. v
=

+ + + +
                         （17） 

Where Ct represents the coordination degree within the system at time t for a given target 

vehicle. vi,t represents the instantaneous speed of vehicle i at time t. n represents the number 

of vehicles, including the target vehicle and surrounding vehicles. The maximum value of n is 

7. If the surrounding corresponding vehicle does not exist, the corresponding v value is not 

included in the formula. A lower Ct value indicates greater speed differentials among vehicles. 

Three traffic conflict indicators were used to measure the collision risk of target vehicles, 

including TTC (time to collision)(51), MTTC (modified time-to-collision) (52, 53), and 

DRAC (Deceleration Rate to Avoid a Crash) (54, 55). The conflict values between this 

vehicle and the front and rear vehicles in the target lane, as well as the front and rear vehicles 

in the same lane, are extracted. The conflict indicator is defined as follows.  

0 ( ) 
 =

1 ( )

have no conflict if  MTTC = TTC = DRAC = 0
Conflict indicator

have conflict otherwise





 （18） 

Where TTC, MTTC, and DRAC are all binary variables with values of 0 and 1, where 1 

indicates the presence of a conflict, and 0 indicates no conflict. Both the TTC threshold and 

MTTC threshold are set to 2.5 seconds, and the DRAC threshold is set to 3.35 m/s², based on 

previous studies (52, 56). 

 

Experimental Details 

The performance of a model is inherently affected by its parameter settings. In order to 

identify the optimal parameter configuration, we conducted sensitivity experiments using the 

control variable method on four different models. This research chose the parameters based 

on two key metrics: classification accuracy and training time. Our goal was to find the 

optimal parameter settings that strike a balance between these two factors. Specifically, we 

aim to minimize the training time and reduce the complexity of the model while ensuring that 

the accuracy of the model remains uncompromised. In the shared layer, the size of dilated 

convolution interval is set to {21,22,23,…,2n}, which depends on the input time series length, 

along with 64 filters, one stack of residual blocks, and a kernel size of 2. In the expert layer, 

the number of expert networks is set to 12, and each expert network is implemented using an 

independent LSTM model with 64 units. The FCN layer for each task consists of 64 units, 

respectively, and the ReLU is used as the activation function. The batch size is set to 256, and 

training epochs are set to 200. The optimizer is Adam. 

 

Performance Evaluation Metrics of Intention and Trajectory Prediction 

To measure the performance of the model, classification tasks were assessed using the 
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area under the curve (AUC) and accuracy metrics, while regression tasks were evaluated 

based on the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). To 

investigate the effect of input sequence length on classification outcomes, samples with 

different data lengths D (D = 3s, 6s, 9s) are extracted, before the LCE process. In each epoch, 

the loss function is computed independently for the test set. As an example, Figure 10 depicts 

the convergence process of the loss function during the training of the proposed model with 

6s as the input length. 

 

 

(a)                                     (b) 

Figure 10 Convergence process of loss function during training with 6s as input.  

 

In Figure 10(a), the cumulative loss is obtained by utilizing the loss function of 

homoscedastic uncertainty. Task 1 represents driving intention classification, Task 2 

represents longitudinal position prediction, and Task 3 represents lateral position prediction. 

Figure 10(b) presents the classification accuracy of driving intention. Figure 10 demonstrates 

the convergence of the prediction model, as four loss functions consistently decrease over 

time, proving the proposed model’s convergence. To compare the performance of the 

proposed model, we also employ the LSTM model with different input data lengths, and the 

results are summarized in Table 1. 

 

Table 1 Model performance comparison 

Model Task 
3s 6s 9s 

Acc RMSE MAE Acc RMSE MAE Acc RMSE MAE 

TMMOE 

Inte  0.9222 -- -- 0.9544 -- -- 0.9123 -- -- 

Lon  -- 2.5756 1.878 -- 2.323 1.785 - 3.081 2.197 

Lat  -- 0.3067 0.2039 -- 0.2963 0.199 - 0.415 0.362 

LSTM 

Inte  0.8471 -- -- 0.8796 -- -- 0.8931 --  

Lon  -- 7.831 5.8726 -- 8.280 6.1573 -- 9.723 7.3337 

Lat -- 0.646 0.4768 -- 0.6274 0.4839 -- 0.645 0.4785 

Note: Inte represents driving intention; Lon represents longitudinal position; Lat represents lateral position; Acc represents average 

accuracy.   

Table 1 shows that the performance (regression and classification) of the model proposed 
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in this study outperforms the corresponding LSTM model for a specific input length. The 

TMMOE model achieved the highest performance in the classification and regression tasks 

when the input time series was set to 6 seconds. Specifically, table 1 presents that the 

TMMOE model showed a significant improvement in classification accuracy compared to 

LSTM models, increasing from 0.9222 to 0.9544 with a six-second input time series. Hence, a 

time duration of six seconds was chosen as the input sequence length. To comprehensively 

evaluate the performance of the TMMOE model, the Receiver Operating Characteristic 

(ROC)curve for each class is shown in Figure 11. 

 

          (a) TMMOE                           (b) LSTM 

Figure 11 The ROC curve of driving intention classification with input 6 seconds 

 

In Figure 11, the class labels are defined as follows: Class 0 represents the LK samples, 

Class 1 represents the RLC, and Class 2 represents the LLC samples. Figure 11(a) shows the 

ROC curve for TMMOE, and Figure 11(b) shows the ROC curve for LSTM. As shown in 

Figure 11(a), the AUC for Class 0 is 0.94, while the AUC for both Class 1 and 2 is 0.98. The 

results indicate that the proposed model achieved higher AUC values for each class compared 

to LSTM. It can be concluded that the TMMOE model has a strong ability to effectively 

differentiate between the three classes. In addition, it is worth noting that the misidentification 

of LK categories as RLC and LLC is identified as the primary source of classification errors.  

In terms of vehicle position prediction results, the TMMOE model shows promising 

vehicle position prediction results with an RMSE of 2.323m and an MAE of 1.785m for the 

longitudinal position, as well as an RMSE of 0.2963m and a MAE of 0.199m for the lateral 

position. The TMMOE model demonstrates significant improvement over the LSTM model, 

for instance, reducing the RMSE from 8.280m to 2.323 for longitudinal prediction and from 

0.6274m to 0.2963m for lateral prediction. In addition, the RMSE index is significantly lower 

compared to previous studies (14, 18). The results show that considering the correlation 

between driving intentions, longitudinal and lateral positions are crucial for accurately 

predicting vehicle trajectories. Figure 12 displays the longitudinal position prediction results 

for selected samples. Figure 12 illustrates the lateral position and trajectory prediction results. 
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Figure 12 Vehicle longitudinal position prediction results  

 

Figure 13 Vehicle lateral position prediction results  

Figure 13(a) and 13(c) depict the vehicle's lateral position prediction results over time. 

Figure 13(b) and 13(d) illustrate the vehicle trajectory prediction results at a spatial scale. 

Figure 13(a) and 13(b) correspond to sample 1 from Figure 12. Figures 13(c) and 12(d) 

correspond to sample 2 from Figure 12. 

 

Sensitivity analysis of Decision Variables 

Sensitivity analysis was conducted to verify the rationality of the conflict indicator and 

coupling degree used in the proposed TMMOE model. The control variable method is a 

commonly used approach in sensitivity analysis (57). The testing procedure involved 

removing one of the input variables (i.e., conflict indicator and coupling degree) at a time to 

create a new vehicle trajectory prediction model. The importance of each variable was then 

analyzed by comparing the changes in predicted outcomes when the variable was removed 

from the model. The evaluation metrics of the TMMOE model with one decision variable 
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removed are presented in Table 2. It is evident that removing the conflict indicator and 

coupling degree variable resulted in a decrease in classification accuracy and an increase in 

the RMSE and MAE. Specifically, the accuracy decreased from 0.9544 to 0.9157 and 0.8907, 

respectively, compared to the original TMMOE model. The results highlight the significance 

of traffic conflict indicator and coupling degree variable in predicting vehicle trajectories. 

Table 2 Evaluation metrics of the TMMOE model when one of the decision variables is removed. 

Remove variable Task Acc RMSE MAE 

Coupling degree 

Inte  0.9157 -- -- 

Lon  -- 2.4021 2.848 

Lat  -- 0.2888 0.201 

Conflict indicator 

Inte  0.8907 -- -- 

Lon  -- 3.1512 2.592 

Lat  -- 0.3013 0.2041 

Note: Inte represents driving intention; Lon represents longitudinal position; Lat represents lateral position; Acc represents average 

accuracy.   

 

CONCLUSIONS 

In this research, we construct a novel Temporal Multi-Gate Mixture-of-Experts 

(TMMOE) model for simultaneously predicting the vehicle trajectory and driving intention. 

The proposed model is capable of simultaneously recognizing the driving intention and 

predicting the vehicle's trajectory. The architecture of the proposed approach consists of a 

shared layer, an expert layer, and a fully connected layer. In order to capture temporal features 

effectively, the TCN was integrated into the shared layer. Furthermore, by utilizing LSTM 

units as the gating mechanism, the expert layer is able to effectively model and retain relevant 

information over extended sequences, thereby enhancing its capacity for long-term 

dependency modeling. To achieve better performance, homoscedastic uncertainty algorithm is 

used to construct the multi-task loss function. The publicly available CitySim dataset is used 

to validate the performance of the TMMOE model. Nonetheless, there are some shortcomings 

and limitations of this study. Only one dataset, CITYSIM, was used in this study. Therefore, 

future studies should utilize additional datasets to enhance the validation of the model's 

portability. This study exclusively focuses on evaluating the model's performance using input 

time series lengths of 3, 6, and 9 seconds. However, it could be worth attempting to 

incorporate finer input time series lengths. 
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