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Abstract

Lidar and cameras serve as essential sensors for automated vehicles and intelligent robots, and they are frequently fused in
complicated tasks. Precise extrinsic calibration is the prerequisite of Lidar-camera fusion. Hand-eye calibration is almost
the most commonly used targetless calibration approach. This paper presents a particular degeneration problem of hand-eye
calibration when sensor motions lack rotation. This context is common for ground vehicles, especially those traveling on urban
roads, leading to a significant deterioration in translational calibration performance. To address this problem, we propose a
novel motion-based Lidar-camera calibration framework based on cross-modality structure consistency. It is globally convergent
within the specified search range and can achieve satisfactory translation calibration accuracy in degenerate scenarios. To verify
the effectiveness of our framework, we compare its performance to one motion-based method and two appearance-based methods
using six Lidar-camera data sequences from the KITTI dataset. Additionally, an ablation study is conducted to demonstrate
the effectiveness of each module within our framework.

Our codes are now available on githubfor reproduction.
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Targetless Lidar-camera Calibration via
Cross-modality Structure Consistency

Ni Ou, Hanyu Cai, Junzheng Wang*

Abstract—Lidar and cameras serve as essential sensors for
automated vehicles and intelligent robots, and they are frequently
fused in complicated tasks. Precise extrinsic calibration is the
prerequisite of Lidar-camera fusion. Hand-eye calibration is
almost the most commonly used targetless calibration approach.
This paper presents a particular degeneration problem of hand-
eye calibration when sensor motions lack rotation. This context
is common for ground vehicles, especially those traveling on
urban roads, leading to a significant deterioration in translational
calibration performance. To address this problem, we propose
a novel targetless Lidar-camera calibration method based on
cross-modality structure consistency. Our proposed method uti-
lizes cross-modality structure consistency and ensures global
convergence within a large search range. Moreover, it achieves
highly accurate translation calibration even in challenging sce-
narios. Through extensive experimentation, we demonstrate that
our approach outperforms three other state-of-the-art targetless
calibration methods across various metrics. Furthermore, we
conduct an ablation study to validate the effectiveness of each
module within our framework.

Index Terms—Calibration, Lidar, camera, automated vehicles

I. INTRODUCTION

IN the past decade, since Lidar and camera have comple-
mentary characteristics, Lidar-camera fusion has sparked

increasing interest in the field of autonomous driving. Lidars
are able to directly measure the distances of sparse points in
the surrounding environment, while cameras can capture dense
pictures with rich texture information. By fusing data from
both sensors, intelligent vehicles are capable of effectively
handling perception [1]–[3] and navigation tasks [4]–[6] in
sophisticated environments.

The extrinsic calibration of the Lidar and camera sensors
provides the relative transformation between the two, allowing
for the processing of Lidar and camera data in a shared
coordinate system. The establishment of cross-modality cor-
respondences is a crucial step in Lidar-camera calibration. It
often involves designing loss functions based on these cor-
respondences for calibration purposes [7], [8]. Lidar-camera
calibration algorithms can be broadly classified into two types
based on whether a specific target is used for correspondence
extraction: target-based and targetless.

Target-based calibration algorithms typically rely on man-
made targets with known dimensions. The chessboard is the

This work is supported the National Natural Science Foundation of China
under Grant 62173038

The authors are all with the State Key Laboratory of Intelligent Control
and Decision of Complex Systems, Beijing Institute of Technology, Beijing,
China. (Corresponding author: Junzheng wang, email: wangjz@bit.edu.cn)

most common and widely studied target for Lidar-camera
calibration [8]–[10]. With known grid size, its position and
orientation can be easily estimated by a monocular vision sen-
sor through corner detection algorithms [11], [12]. Meanwhile,
when this target is scanned by an adequate number of Lidar
beams, it can also be localized in the Lidar coordinate system
through plane fitting [13]. Aside from chessboards, planar
objects with regular features, such as tags [14], holes [15],
or specifically shaped objects [16], are also feasible targets
for calibration. Overall, target-based methods are useful when
a calibration target with high machining accuracy is available,
but they can be labor-intensive since the target needs to be
moved to different places manually. Additionally, in certain
cases, target-based methods may be less effective than target-
less ones [17], [18].

On the opposite, targetless methods establish correspon-
dences in natural scenes rather than relying on specific objects.
These methods can be broadly categorized into two branches:
appearance-based and motion-based. The former utilizes cross-
modality correspondence by either designing artificial rules or
learning them through self-supervision. For example, Lidar-
camera edge association is a widely-studied appearance-based
correspondence [19], [20], which is based on the compre-
hensive Euclidean distance between Lidar depth-discontinuous
edges and camera intensity-discontinuous edges. Recent re-
search has focused on extracting Lidar depth-continuous
edges [17], [21] through voxel-level plane fitting, as this
kind of Lidar edges are immune to the foreground inflation
and blending points problems. Other branches of appearance-
based algorithms rely on mutual information [22], [23] or
self-supervised training [24]–[26]. In contrast, motion-based
approaches rely on constraints across frames for calibration
optimization. One practical technique for initial calibration
estimation is hand-eye calibration (HECalib), which is based
on pose-based constraints and has been widely studied [27],
[28]. HECalib is globally convergent and only requires the
relative poses (motions) of the Lidar and camera as inputs.
There have been several improvements in HECalib. On the
input side, its performance can be enhanced by refining
Lidar and visual odometry [18], [29] and optimizing timing
offsets [30], [31].

In addition to the aforementioned two classes of calibration
algorithms, a growing number of hybrid methods have been
developed to combine their respective strengths. For instance,
certain proposals employ HECalib for an initial calibration
and then utilize specific appearance-based metrics for further
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improvement [31]–[33]. However, these methods tend to
be less effective when HECalib is inadequate, particularly
in degenerate situations involving limited rotational sensor
motions [34]. Unfortunately, few methods have thoroughly re-
solved the degeneration problem in calibration, which becomes
particularly severe when the vehicle travels in straight lines.

This paper presents a targetless hybrid method to effectively
tackle the aforementioned problem. Our approach comprises
a modified HECalib mechanism with regularization and a
global optimization module. The former helps mitigate its
degeneration, while the latter refines the initial calibration
parameters across an extensive range of values. The global
optimization is developed based on the principle of cross-
modality structure consistency, which assumes that the 3D
points detected by Lidar are also captured by the camera.
Unlike other hybrid methods, our approach does not include
any predefined appearance-based metrics or densification tech-
niques. Instead, our method leverages the natural cross-frame
geometry constraints and generalizes well to a wide array of
scenarios. We validate the effectiveness of our approach across
various degenerate scenarios, including an extreme case where
the vehicle undergoes only unidirectional translational motions
(Sequence 04, as indicated in Table I). Our main contributions
are summarized below.

• We analyze the degeneration problem in HECalib and
propose a regularization approach to suppress the trans-
lational calibration error.

• We propose a novel targetless Lidar-camera calibration
method using cross-modality structure consistency. This
method is globally convergent and immune to degenera-
tion, and it can be applied to gray-scale cameras as well.

• We evaluate our method and compare it to a motion-based
method [30] and two appearance-based methods [19],
[24] using six sequences from the KITTI datasets (a total
of 14,316 frames). We also conduct an ablation study to
confirm the effectiveness of each module we designed.
Additionally, we make our codes openly available on
GitHub to benefit the research community.

II. RELATED WORKS

A. Sensor Motion Estimation

The input of HECalib are individual sensor motions of
Lidar and camera, and we review relevant literature from two
perspectives: Lidar odometry and visual odometry. Regarding
the former, Iterative Closest Point (ICP) [35] has been widely
applied to compute relative transformations between adja-
cent frames in many motion-based calibration methods [29],
[31], [32]. It is closed-formed and efficient when the initial
alignment is good enough. Moreover, our previous work [18]
provides a unique solution to robust pose estimation for low-
resolution Lidar with the assistance of camera data. Further-
more, Lidar SLAM (Simultaneous Localization and Mapping)
has proven to be reliable for consecutive Lidar pose estima-
tion [36]–[38]. This is due to its consideration of the motion
model and the utilization of scan-map registration to reduce
accumulated error. In the case of large-scale scenes, back-end

optimization techniques are commonly employed to further
enhance the performance of Lidar SLAM [39], [40].

Unlike Lidar, the estimation of monocular motions presents
a challenge due to the scale ambiguity problem in translation.
Although an initial scale factor can be determined by HECalib,
maintaining a consistent scale throughout the entire trajectory
remains difficult [41], [42]. Visual SLAM techniques [43]–[45]
are able to address this problem by employing global and local
bundle adjustment (BA) [46], especially when integrated with
the use of loop closure detection [47]. In comparison to BA,
Structure from Motion (SfM) is a more powerful technique for
computing camera poses and recovering 3D mappoints [48],
but it becomes computationally expensive as the number of
frames increases, which limits its versatility. Aside from these
systematic methods, an optical-based pipeline is proposed in
[29] aiming to address the scale ambiguity, which jointly
optimizes the extrinsic parameters and camera motions by
tracking Lidar points.

B. Structure Consistency

The consistency of the Lidar-camera structure is closely
tied to our method, and it has become increasingly popular in
recent calibration studies. Some approaches leverage this prior
knowledge by establishing cross-frame geometry constraints
between the Lidar and camera. For instance, a self-supervision
appearance-based method [49] incorporates a synthetic view
constraint to validate the accuracy of the reprojected Lidar
depth map. Additionally, Lidar poses can be directly utilized
to create reprojection residuals for calibration within a visual
SLAM framework [30]. A method similar to ours is presented
in [50], where joint calibration is utilized to minimize the
distance between scaled visual mappoints and Lidar points.

Another category of methods considers Lidar-camera cal-
ibration as an equivalent task of joint 3D reconstruction. In
this case, the calibration error is regarded as the 3D distance
between visual and Lidar maps. This theory can be simply
applied to the calibration of stereo (or RGB-D) cameras and
Lidar [51], and it can be extended to the calibration of monoc-
ular cameras and Lidar with the initial scale factor provided
by HECalib [18]. Techniques such as vision densification [52]
and semantic information [53] can also enhance the calibration
performance in these scenarios. Moreover, similar to Lidar
odometry [36], point-line and point-plane distances have also
been employed to establish the connection between visual
SfM points and Lidar points for calibration [54]. However,
implementing visual 3D reconstruction [55], [56] in degenerate
scenes is still challenging since this technique requires the
camera to capture a fixed object from multiple angles.

III. METHOD

A. Overview

The whole framework of our method is present in Fig. 1. In
the first stage, Visual and Lidar SLAM predict respect camera
and Lidar pose from the sequence of raw data. Meanwhile,
some intermediate data of the Visual SLAM are recorded, in-
cluding the positions of triangulated keypoints and cross-frame
keypoint-keypoint correspondences. Then, HECalib estimates

https://github.com/gitouni/Spatial-Temporal-LiDAR-camera-Calibration
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Fig. 1. Framework of our method. Mappoint indicates the triangulated keypoints in the visual map, and Keypoint Matching refers to the keypoint-keypoint
correspondences for each pair of covisible keyframes.

the initial extrinsic matrix T
(0)
CL and initial monocular scale s(0)

using the predicted sensor poses. Finally, a global optimization
process is performed to find the best extrinsic matrix T ∗

CL

and monocular scale s∗. The two losses depicted in Fig 1,
namely the Cross Modality BA Loss and the Cross-modality
Alignment Loss, are designed using the principle of cross-
modality structure consistency. These losses will be introduced
in detail in Sections III-C and III-D.

The remaining parts of Section III are structured as fol-
lows. Firstly, Section III-B reviews the principles of HECalib
and investigates the occurrence of degeneration caused by
the absence of rotational sensor motions. In the same sec-
tion, we apply a regularization term to modify the ordinary
HECalib to suppress negative impacts made by degeneration.
Then, the subsequent two sub-sections jointly introduce the
main body of our method. Section III-C briefly reviews the
structure of Visual SLAM and introduces the development
of Cross-modality BA Loss, while Section III-D describes
Cross-modality Alignment Loss and three constraints to form
the entire global optimization module. Ultimately, for the
purpose of reproduction, we provide implementation details
in Section III-E.

B. HECalib with Regularization
Let Fi denote Frame i, and let TC

ij ,T
L
ij ∈ R4x4 represent

the relative poses between Fi and Fj for camera and Lidar,
respectively. As described in [27], the constraint for HECalib
is formulated in (1), which can be expanded into (2) and (3).

TC
ij TCL = TCLT

L
ij (1)

RC
ijRCL = RCLR

L
ij (2)

(RC
ij − I)tCL + s · tCij = RCLt

L
ij (3)

where I ∈ R3×3 is the identity matrix, RC
ij ,R

L
ij ∈ R3x3 are the

corresponding rotation matrices of TC
ij and TL

ij ; tCij , t
L
ij ∈ R3

are the respect translations of TC
ij and TL

ij .

According to [34], RCL can be solved individually from (2)
using singular value decomposition (SVD). After substituting
the obtained value of RCL into (3), tCL and s can be solved
using the linear least square method.

Unfortunately, HECalib is prone to performance deterio-
ration when rotational movements are insufficient to activate
the calibration. Mathematically, when there is no rotation in
the sensor motions, i.e., RC

ij = RL
ij = I , Constraint (2)

is no longer applicable. Moreover, the coefficient of tCL in
Constraint (3) becomes zero (matrix), indicating that the value
of tCL is no longer restricted by (19). We refer to this occur-
rence as degeneration. It is worth noting that degeneration
always occurs in both sensors. Given that the Lidar and camera
sensors are mounted on the same rigid body, if either RC

ij

or RL
ij equals the identity, it implies that both of them must

be identity. Although RC
ij and RL

ij can not be strictly equal
to identity in practice, empirical observations indicate that a
substantial number of sensor movements with minor rotation
can lead to highly inaccurate solutions for tCL.

Based on the analysis above, the error in solving tCL

can primarily be attributed to a lack of appropriate con-
straints. Therefore, we develop a regularization term to impose
loose constraints on tCL while ensuring its adherence to
the HECalib constraints. Extrinsic parameters are solved by
the non-linear optimization on error items formulated in (4).
The initial value of RCL & s are solved through ordinary
HECalib while the initial value of tCL is replaced with a rough
estimation tµ. This regularization method is practical in real-
world applications because tµ does not require a high level
of precision—even errors within a few tens of centimeters are
acceptable.

ξij = ∥(RC
ij−I)tCL+s·tCij−RCLt

L
ij∥22+wr∥tCL−tµ∥22 (4)

where wr is a constant regularization weight for each ξij .
This non-linear optimization problem can be easily imple-

mented using specialized libraries such as g2o [57] or ceres-



solver [58]. We set tµ = 0 for our experiments on the
KITTI dataset. The effectiveness of translational regularization
is demonstrated in the first two rows of each sequence group
in Table I. With the proposed regularization, the calibration
error in rotation remains almost unchanged, while the error
in translation significantly decreases to a more reasonable
magnitude.

C. Cross-modality Reprojection

𝐹𝑖 𝐹𝑗 𝐹𝑗

Lidar Point

Matched Lidar Point

𝒌𝑖
(𝑡) 𝒌𝑗

(𝑡) ഥ𝒌𝑗
(𝑡)

𝒎𝑖
(𝑡)

𝒑𝑖
(𝑡)

Fig. 2. Cross-modality Reprojection between Lidar and camera. Fi: Frame
i, Fj : Frame j, F j : Virtual Frame j. Lidar points (black) shown in the figure
have been transformed to the camera coordinate system of Fi (OC

i ), and that
matched with the keypoint k(t)

i is highlighted in blue.

In this section, we develop Cross-modality Reprojection
error based on cross-modality structure consistency, aiming
to further improve the accuracy of tCL. Different from other
works reviewed in Section II-B, Cross-modality Reprojection
can be applied to scenarios with degenerate sensor motions,
as it does not rely on the camera being placed at different
capturing angles. To facilitate comprehension of this theory,
we will begin with a concise overview of Visual SLAM.

Taking Monocular SLAM as an example, the first stage
involves extracting keypoints in each frame and employing
keypoint matching between successive frames. Subsequently,
two frames with sufficient parallax will be selected for ini-
tialization using matched keypoints. The initialization process
includes the recovery of the relative pose through fundamental
matrix computation and the construction of an initial visual
map through triangulation. Following initialization, the visual
map is tracked in each subsequent frame. Additionally, Bun-
dle Adjustment [59] (BA) is implemented to simultaneously
optimize camera poses and mappoint positions. If new trian-
gulation operations are successful, the relevant mappoints will
also be added. As a consequence, a mappoint can correspond
to several keypoints in different frames (at most one keypoint
in one frame), and keypoint-keypoint correspondences across
frames are also established through the mappoint-keypoint
connection. These steps can also be applied to stereo and
RGB-D Visual SLAM. Detailed information on this subject
can be found in [44], [45].

With the above preliminaries, we present the schematic
diagram of Cross-modality Reprojection in Fig. 2, with cor-
responding notifications shown in its caption. This figure

showcases a pair of matched keypoints k
(t)
i & k

(t)
j across

Fi & Fj as well as their corresponding mappoint m(t)
i . For

the convenience of the following description, we present the
following assumptions for reference.

(1) The extrinsic matrix TCL is completely accurate;
(2) The 3D point in real world corresponding to m

(t)
i is

also scanned by Lidar, which is denoted as q
(t)
i .

In fact, p(t)
i in Fig. 2 is transformed from q

(t)
i using (5).

p
(t)
i = TCLq

(t)
i (5)

First, we review the form of BA reprojection error [46].
The reprojection errors of m

(t)
i on Fi & Fj are formulated

in (6) & (7), correspondingly. Note that BAe
(t)
i & BAe

(t)
j are

vectors, and the same applies to the following error items.

BAe
(t)
i = π(m

(t)
i )− k

(t)
i (6)

BAe
(t)
j = π(RC

ijm
(t)
i + tCij)− k

(t)
j (7)

where π(·) stands for the projection function of the camera.
In contrast to ordinary BA, our reprojection is predicated

on Lidar points instead of triangulated visual mappoints.
Considering the scale equivalence of visual projection, our
reprojection error in Fi can be expressed as (8). To extend this
reprojection to Fj , we introduce the concept of virtual frames.
The only difference between Frame Fj and Virtual Frame F j

lies in their poses. As the scale of TC
ij is determined by visual

initialization and p
(t)
i is of real size, we modulate the relative

translation between Fi & F j to s ·tCij , thereby maintaining the
reprojection similarity relationship depicted in Fig. 2. With the
concept of virtual frames, our reprojection error in F j can be
formulated as (9).

CBAe
(t)
i = π(p

(t)
i )− k

(t)
i (8)

CBAe
(t)
j = π(RC

ijp
(t)
i + s · tCij)− k

(t)

j (9)

This form of reprojection resembles the structure of Bundle
Adjustment (BA) reprojection; hence, we term it as Cross-
modality BA (CBA) reprojection. Intriguingly, the CBA re-
projection would devolve to BA reprojection if Assumption
(1) and (2) are both sustained. This property can be simply
validated by substituting the ideal condition p

(t)
i = s · m(t)

i

into (8) & (9).
In fact, CBA errors (8) & (9) are both implicitly restricted by

TCL and can be applied to extrinsic parameters optimization.
By substituting (5) into (8) and (9), we can explicitly display
the error formulas with TCL and s as independent variables,
as shown in (10) and (11). For convenience, the superscript
notation CBA of error items will be omitted henceforth.

e
(t)
i = π(RCLq

(t)
i + tCL)− k

(t)
i (10)

e
(t)
j = π(RC

ijRCLq
(t)
i +RC

ijtCL + s · tCij)− k
(t)

j (11)

Unfortunately, it is infeasible to directly utilize (10) and (11)
for the optimization of TCL and s because the acquisition of
q
(t)
i (or p(t)

i ) relies on the satisfaction of Assumptions (1) and
(2). If Assumption (1) is not met, it will be impossible to



Algorithm 1: Cross-modality BA Loss
Input: RCL, tCL, s, δπ , δ1
Output: Loss L1

L1 = 0
n = 0
for i = 1, 2, ..., Nf do

Pi = R
(0)
CLQi + t

(0)
CL

Ui = π(Pi)
Build 2-D KD-Tree Γi on Ui

for k
(t)
i in keypoints of Fi do

a∗ = argminua∈Ui
∥k(t)

i − ua∥22 via Γi

if ∥k(t)
i − ua∗∥22 > δ2π then

continue
end
Select p(t)

i from Pi using index a∗

for Fj in covisible frames of Fi do
if ∃k(t)

j matched with k
(t)
i then

Compute e
(t)
j using (11)

if ∥e(t)j ∥22 ≤ δ21 then
L1 = L1 + ∥e(t)j ∥2
n = n+ 1

end
end

end
end

end
return L1/n

select the correct p(t)
i that corresponds to k

(t)
i since the entire

Lidar point cloud is transformed using the erroneous TCL.
Likewise, if Assumption (2) is not satisfied, it implies that a
corresponding p(t) does not exist in the Lidar point cloud. In
other words, the Lidar sensor fails to capture the pertinent 3D
structural point in the real-world context.

Furthermore, it is apparent that Assumption (1) will never
be satisfied because TCL & s (hereafter collectively denoted
as x) are variables to be optimized. To address this problem,
we alternate between acquiring p

(t)
i and optimizing x, rather

than performing these actions simultaneously. This alternating
optimization starts with T

(0)
CL and s(0) calculated by HECalib.

Firstly, transform the Lidar point clouds into OC
i using (5).

Subsequently, p
(t)
i is identified by minimizing e

(t)
i , whose

index in the Lidar point cloud is determined via a KD-Tree-
based nearest neighbor search within the projected Lidar points
around k

(t)
i . In the third step, the x is optimized by minimizing

(11) with the selected p
(t)
i . Finally, these steps are carried out

iteratively, commencing each cycle from the first step.
In contrast, Assumption (2) might not hold for certain image

keypoints, especially those that extend beyond the vertical
scanning angle of the Lidar. Consequently, we devise an error-
based criterion to determine if there is a corresponding p

(t)
i

that matches keypoint k(t)
i . Specifically, we employ a KD-Tree

search to locate the projected Lidar point that is nearest to
k
(t)
i . If the minimum distance exceeds a predefined threshold

(a) before optimization (mean error: 5.91, #error: 108)

(b) after optimization (mean error: 2.80, #error: 126)

Fig. 3. Visual difference of CBA loss before (a) and after (b) global
optimization. To improve visibility, we only sampled 50 keypoints using
Farthest Point Sampling [60] for drawing. The number of error items is
denoted by ”#error”. The solid and hollow small circles respectively denote
the reprojection of the matched Lidar points onto F j and their corresponding
keypoints, which are the minuend and subtrahend on the right side of (9). A
pair of solid and hollow circles of the same color indicates a match.

δπ , we infer that there is no corresponding Lidar point for
k
(t)
i . Finally, we have also incorporated an error threshold δ1

to simply filter out outliers. Denote Qi as the ith frame of
Lidar point cloud; denote Pi = TCLQi; denote Nf as the
number of frames. The complete algorithm to compute CBA
loss is summarized in Algorithm 1. Please note that the values
of RCL, tCL, s are obtained from the current optimization
iteration, and the same applies to Algorithm 2.

Finally, as depicted in Fig. 3, we showcase the visual
disparity in CBA error (11) before and after optimization
for one specific frame F j . In this figure, Fj is one of
the covisible frames of Fi and matched Lidar points are
selected by minimizing (8) in Fi and then reprojected to
F j using (9). Overall, these reprojected Lidar points (solid
circles) are closer to the keypoints (hollow circles) in F j after
optimization. Two noticeable differences between Fig. 3(a)
& 3(b) are annotated by red squares. Before optimization,
the two hollow circles were positioned on the foreground
objects, whereas their corresponding solid circles were located
in the background. However, after optimization, both circles
are correctly projected onto the foreground objects.

D. Global Optimization
Following the introduction of CBA loss, we describe the

remaining components of the proposed global optimization
in this section, including Cross-modality Alignment (CA)
Loss and inequality constraints. We introduce CA loss as an
auxiliary loss function to complement CBA loss and enhance
the convergence performance of our optimization approach.
The inspiration for the development of CA loss comes from the
Iterative Closest Point (ICP) algorithm [35]. Our optimization
process involves optimizing either the point-point or point-
plane distance when the scaled visual mappoints s ·m(t)

i are
sufficiently close to the Lidar points p

(t)
i , allowing for the

refinement of the alignment.



Algorithm 2: Cross-modality Alignment Loss
Input: RCL, tCL, s, δ2, ϵp, rmin

Output: Loss L2

L2 = 0
n = 0
for i = 1, 2, ..., Nf do

Pi = R
(0)
CLQi + t

(0)
CL

Build 3-D KD-Tree Γi on Pi

for k
(t)
i in keypoints of Fi do

Retrieve mappoint m(t)
i matched with k

(t)
i

Compute dpt and select p(t)
i using (12) with Γi

if dpt > δ2 then
continue;

end
Find neighboring points around p

(t)
i via Γi

Compute the normalized normal of p(t)
i : n(t)

i

if (14) & (15) are satisfied under ϵp, rmin then
Compute dpl using (13)
L2 = L2 + dpl

else
L2 = L2 + dpt

end
n = n+ 1

end
end
return L2/n

The detailed steps for computing CA loss are introduced
as follows. Firstly, we retrieve the visual mappoint m

(t)
i

corresponding to k
(t)
i from the established mappoint-keypoint

correspondences built in Visual SLAM. Next, a KD-Tree
is utilized to select the Lidar point p

(t)
i that is closest to

s ·m(t)
i . Subsequently, the same KD-Tree is used to identify

neighboring Lidar points of p(t)
i and compute the normalized

point normal [61] of p
(t)
i . Then, the p

(t)
i and its minimal

distance to s · m(t)
i are obtained using (12). If the Lidar

points surrounding p
(t)
i can fit a plane, we replace point-

point distance with point-plane distance as formulated in (13).
Ultimately, similar to CBA, an error-based threshold δ2 is also
employed for outlier rejection.

dpt = min
p
(t)
i ∈Pi

∥s ·m(t)
i − p

(t)
i ∥2 (12)

dpl =
∣∣∣⟨s ·m(t)

i − p
(t)
i ,n

(t)
i ⟩

∣∣∣ (13)

where ⟨·, ·⟩ denotes the inner product operation between two
vectors and ∥ · ∥2 denotes the second norm of the vector.

Moreover, we devise two criteria (14) and (15) to assess
the validity of the plane fitted by the Lidar points surrounding
p
(t)
i . (14) constraints the regression error of the plane while

(15) ensure the fitted plane has sufficient size. Both criteria
must be satisfied for the fitted plane to be considered valid.
All the above procedures for computing CA loss are outlined
in Algorithm 2. Furthermore, it is unnecessary to apply δ2 to

(a) before optimization (mean error: 0.567, #error: 134)

(b) after optimization (mean error: 0.353, #error: 162)

Fig. 4. Visual difference of CA loss before and after global optimization
(bird-eye view). Yellow points denote the Lidar points Pi in Algorithm 2;
red points denote the scaled visual mappoints s ·m(t)

i ; light blue points mark
the nearest yellow point matched by the red point.

verify dpl because dpl is always less than dpt.∑
j

∣∣∣⟨p(j)
i − p

(t)
i ,n

(t)
i ⟩

∣∣∣ < N
(t)
i · ϵp (14)

max
j

∥p(j)
i − p

(t)
i ∥2 > rmin (15)

where N
(t)
i represents the number of p(j)

i in the neighborhood
of p

(t)
i ; n

(t)
i denotes the normalized point normal of p

(t)
i ;

ϵp, rmin are preset thresholds.
Similar to Fig. 3, the visual difference of CA error before

and after optimization for a specific example frame F1 is also
presented in Fig. 4. The visual mappoints observed by F1

have been scaled by s, and the Lidar points of F1 have been
transformed into the camera coordinate system of F1 using
TCL. In comparison to Fig. 4(a), the transformed Lidar points
(yellow) in Fig. 4(b) exhibit better alignment with the scaled
visual mappoints (red). Three pairs of white circles highlight
noticeable visual differences between the two figures.

Finally, as indicated in (16), we compute the aggregate loss
by combining the L1 and L2 losses using their respective



weights w1 and w2. This aggregate loss is the actual objective
function to be optimized.

L = w1 · L1 + w2 · L2 (16)

Regarding the constraints of global optimization, we first
utilize the Lie algebra formulation to remove the implicit con-
straints in TCL. Specifically, we formulate the 7-dimensional
optimization variable x (used to denote TCL & s before) in
(17), where ω, ρ ∈ R3 are the rotation and translation vectors
of Lie algebra while the scalar s denotes the scale factor. With
this representation, the initial value of x can be derived from
T

(0)
CL and s(0). We define the bilateral bound constraint in

(18) to determine the search range of x, where x0 denotes
the initial value of x and ∆x is a 7-dimensional vector that
represents the search radius in each degree.

x = [ω, ρ, s] (17)

−∆x + x0 ≤ x ≤ ∆x + x0 (18)

Furthermore, an inequality constraint (19) is imposed to
ensure that the HECalib constraint (1) is satisfied within a
specified error range. Despite the potential degeneration in
hand-eye calibration, it can serve as a necessary but insuf-
ficient condition for verifying the correctness of the obtained
solutions.∑

i,j

∥Log(TCLT
L
ij )− Log(TC

ij TCL)∥22 ≤ Nf · δh (19)

where Log(·) transfers Lie groups to Lie algebras; Nf repre-
sents the number of Constraint (19); δh is a preset threshold.

The final constraint is imposed to limit the minimum inlier
ratio of the CBA loss. When the Lidar and camera are
accurately calibrated, the inlier ratio of the CBA reprojection
errors should be significantly high since these errors are linked
to correct correspondences. By applying Constraint (20), we
can effectively exclude extreme cases where both the inlier
ratio and the value of L1 are low.

nv
1/n1 ≥ δv (20)

where nv
1 denotes the number of valid e

(t)
j that satisfy e

(t)
j ≤

δ1; n1 denotes the total number of e(t)j ; δv is a preset threshold.
Thus far, we have presented all the components of our

proposed global optimization. Different from [21], [24], [26],
[53], our method does not involve any appearance-based
metrics in calibration or self-supervision training. Instead, we
utilize cross-modality structure consistency to design adapt-
able and unsupervised loss functions. This strategic approach
enhances generalization ability and eliminates human-labeled
data and training requirements.

E. Implementation Details

Due to the existence of KD-Trees in Algorithm 1 and 2,
neither L1 nor L2 is differentiable. As a consequence, we opt
to employ a derivative-free optimization algorithm called Mesh
Adaptive Direct Search (MADS) [62], [63] for the optimiza-
tion process. MADS effectively explores the variable space
and accommodates both bound and nonlinear constraints.

In terms of the primary parameter settings of the MADS
algorithm, the minimum mesh size is set to 10−6 for each
degree, and the maximum number of black box evaluations
(BBE) is set to 5000. Furthermore, the Variable Neighborhood
Search (VNS) option, as proposed by reference [64], is enabled
to suppress the occurrence of local optima. Ultimately, the
weighted sum w1 and w2 given in (16) are both set to 1 in
our experiments.

For our Visual SLAM and Lidar SLAM tools, we select
ORB-SLAM [44] and F-LOAM [37], respectively. ORB-
SLAM is a state-of-the-art monocular SLAM method that
incorporates loop closure detection [65] and global bundle ad-
justment. Considering that F-LOAM lacks similar loop closure
capabilities, we integrate Scan Context [40] into F-LOAM to
enable loop closure detection and back-end optimization.

IV. EXPERIMENTS AND RESULTS

A. Dataset Introduction

The KITTI dataset [66] is a widely used benchmark for eval-
uating computer vision and autonomous driving algorithms. It
comprises 22 sequences of data captured by multiple sensors,
including Lidar and camera. This dataset also includes the
ground-truth Lidar-camera calibration extrinsic matrix. In our
experiments, six KITTI sequences (00, 02, 03, 04, 05, 07)
are selected for calibration evaluation. The majority of sensor
motions in these sequences predominantly consist of straight-
line movements, with only a small portion involving slight
rotations due to curved road segments. Sequence 04 is the
most extreme case, where the vehicle exclusively travels along
a straight highway without any perceptible turns.

The sensors to be calibrated consist of a Velodyne HDL-
64E Lidar and a gray-scale PointGray camera (camera-0). To
provide clarity, we present a schematic diagram illustrating the
relative transformation between the Lidar (OL) and the camera
(OC) in Fig. 5. In this diagram, Axis XL & ZC are parallel
to the forward direction of the vehicle while Axis ZL & YC

are perpendicular to the ground. For sequence 04, the sensor
motions pertain solely to translation along Axis XL (ZC). For
other sequences, considering the presence of vehicle turns,
there are additional translational movements along Axis YL

(XC) and rotational motions around Axis ZL (YC).
The following content of this section is organized below.

First, we evaluate the calibration performance of our method
and three baseline methods [19], [24], [30] on six KITTI
sequences in Section IV-B. We also conduct an ablation
study to verify the effectiveness of each component in our
framework. Next, in Section IV-C, we present detailed infor-
mation about the optimization process and analyze the prop-
erties of the proposed loss functions. Finally, we evaluate the
degeneration-resistance performance of our method through an
unidimensional analysis in Section IV-D. The experiments in
Section IV-C and Section IV-D focus on sequence 04, which
is the most representative degenerate KITTI sequence.

B. Calibration Accuracy

First, we compare the calibration accuracy of our method to
that of other baselines. Eight metrics are defined for evaluation



TABLE I
CALIBRATION ERROR ON DIFFERENT KITTI SEQUENCES

Sequence Method Roll (◦) Pitch (◦) Yaw (◦) X (cm) Y (cm) Z (cm) RRMSE (◦) TRMSE (cm)

00
(4541 | with)1

HECalib2 3.34 -0.58 -0.03 -281.2 -1386 -138.3 3.39 1421
HECalib + Reg3 1.88 -2.83 1.72 31.47 -4.07 -7.15 3.81 32.53
Levinson [19] -0.03 -0.32 0.10 31.49 4.28 -7.26 0.33 32.60
CalibNet [24] 2.71 -0.36 1.66 27.14 1.09 5.71 3.20 27.75

Park [30] 1.78 -1.77 0.91 40.37 -62.99 -256.24 2.67 266.94
CBA4 -0.02 -0.21 -0.09 3.41 -0.62 0.09 0.23 3.46

CBA + CA (PT)5 -0.07 -0.21 -0.12 1.54 2.35 -0.46 0.25 2.85
CBA + CA (PT+PL)6 -0.12 -0.22 -0.07 2.93 1.59 0.18 0.26 3.33

02
(4661 | with)

HECalib 8.25 -2.39 -1.56 -8919 5526 -1707 8.73 10630
HECalib + Reg 8.25 -2.39 -1.56 29.18 -1.14 -5.62 8.73 29.74

Levinson -0.23 0.22 -0.17 23.69 0.30 8.11 0.36 25.04
CalibNet 1.15 -0.92 -1.27 19.27 0.29 5.65 1.94 20.08

Park 0.22 0.22 0.14 -29.80 91.91 2.85 0.34 96.66
CBA 0.00 -0.38 -0.21 -2.67 -1.45 -2.15 0.43 3.72

CBA + CA (PT) -0.09 -0.39 -0.19 3.62 0.87 -1.93 0.44 4.19
CBA + CA (PT+PL) -0.01 -0.25 -0.16 -2.80 1.63 1.18 0.29 3.45

03
(801 | w/o)

HECalib 2.11 -0.48 -0.23 -903.9 -253.0 -543.2 2.18 1085
HECalib + Reg -2.36 -1.57 -2.67 26.47 -0.95 -8.54 3.89 27.83

Levinson -0.74 -0.67 0.05 26.46 0.91 8.57 1.00 27.82
CalibNet -4.56 0.17 0.20 13.85 13.06 3.99 4.57 19.45

Park 0.07 0.08 -0.01 -7.62 13.10 66.05 0.11 67.76
CBA -0.05 -0.11 -0.11 -5.52 1.87 0.48 0.16 5.85

CBA + CA (PT) -0.08 -0.07 -0.13 1.75 6.85 0.44 0.17 7.08
CBA + CA (PT+PL) -0.08 -0.10 -0.09 -3.25 3.23 1.22 0.15 4.74

04
(271 | w/o)

HECalib 1.81 0.55 1.50 1658 336.5 179.6 2.41 1701
HECalib + Reg 1.81 0.55 1.49 33.35 0.48 -7.56 2.42 34.20

Levinson -0.25 -1.05 -0.54 33.36 -0.48 -7.54 1.21 34.21
CalibNet 1.82 -2.55 0.85 23.40 7.33 18.25 3.25 30.56

Park -0.06 0.07 -0.10 -106.8 44.61 37.16 0.14 121.5
CBA -0.05 -0.10 0.22 2.29 2.68 -1.10 0.25 3.68

CBA + CA (PT) -0.03 -0.08 -0.03 0.61 0.12 2.66 0.09 2.73
CBA + CA (PT+PL) 0.01 -0.09 0.05 1.03 -0.19 1.10 0.11 1.52

05
(2761 | with)

HECalib 5.70 -0.78 0.06 -1369 -368.5 -360.8 5.76 1463
HECalib + Reg 1.73 -2.99 -2.08 26.39 -4.88 -11.41 4.03 29.16

Levinson -0.06 -0.48 -0.52 30.06 -4.23 -13.75 0.71 33.32
CalibNet 2.45 -1.84 0.85 21.54 8.95 13.08 3.18 26.74

Park 1.22 -1.62 -2.00 91.63 24.61 -56.9 2.85 576.6
CBA -0.10 -0.29 -0.05 2.55 3.60 -1.23 0.31 4.58

CBA + CA (PT) 0.03 -0.16 0.06 2.66 0.56 -0.73 0.18 2.81
CBA + CA (PT+PL) 0.01 -0.19 -0.15 1.95 1.56 -0.54 0.24 2.56

07
(1101 | with)

HECalib -4.91 0.20 -0.21 -773.4 -1010 1379 4.92 1876
HECalib + Reg 1.60 -3.03 -2.08 30.55 -4.21 -13.34 4.01 33.60

Levinson -0.06 -0.48 -0.52 30.06 -4.23 -13.75 0.71 33.32
CalibNet 2.45 -1.84 0.86 21.54 8.95 13.08 3.18 26.74

Park 2.37 -7.60 -0.19 42.13 -76.06 16.75 2.37 88.55
CBA 0.07 -0.66 -0.35 1.09 0.11 -10.89 0.75 10.95

CBA + CA (PT) 0.08 -1.69 -2.41 3.76 -1.69 -2.41 0.30 4.78
CBA + CA (PT+PL) -0.05 -0.04 -0.20 1.07 2.07 0.14 0.21 2.34

1 Number of Frames | with/without (w/o) loop closure
2 Ordinary HECalib without translational regularization
3 HECalib with translational regularization
4 Calibration optimization only with Cross-modality BA Loss
5 Calibration optimization with Cross-modality BA Loss and point-point Cross-modality Alignment Loss
6 Calibration optimization with Cross-modality BA Loss and normal Cross-modality Alignment Loss (point-point + point-plane)

based on the definition of Te formulated in (21). These metrics
includes three Euler angles (∆roll,∆pitch,∆yaw) of the rota-
tion of Te, three translation components (∆X ,∆Y ,∆Z) of Te.
Additionally, we consider two other metrics, namely RRMSE
and TRMSE, which are defined in (22) and (23), respectively.
RRMSE and TRMSE reflect the comprehensive translational
and rotational calibration error of methods.

Te =
(
T gt
CL

)−1
T p
CL (21)

where T gt
CL is the ground-truth extrinsic matrix provided by

KITTI dataset and T p
CL is the predicted extrinsic matrix.

RRMSE =
√
∆2

roll +∆2
pitch +∆2

yaw (22)

TRMSE =
√
∆2

X +∆2
Y +∆2

Z (23)

As mentioned in Section I, two appearance-based meth-
ods [19], [30] are incorporated in our baselines. Since these
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Fig. 5. The coordinate system relationship between Lidar and camera in the
KITTI dataset. OC and OL are the coordinate origins of the camera and
LiDAR, respectively. Each axis of camera and Lidar coordinate systems is
annotated in the figure.

methods work for single-frame mode, we compare their best
single-frame result to the multi-frame result of our method.
For each of them, we evaluate its calibration results frame by
frame on the dataset, and only the best single-frame result
with minimum RRMSE+TRMSE is presented in Table I for
comparison.

For CalibNet [24], we substitute the camera-0 images with
camera-2 images as its input, since it is developed for cali-
brating Lidar and RGB camera. For the sake of consistency
with the other groups of experiments, we assume that the
transformation from camera-0 to camera-2 is already known
prior to calibration. Then, we obtain the initial (T (0)

CL) and
output (T (1)

CL) extrinsic matrices for CalibNet using (24) and
(25), respectively. Furthermore, for self-supervision of Calib-
Net, sequence 11 to 17 are used for training and sequence 18,
20, 21 are used for validation.

T
(0)
CL = TC2,C0T

(0)
C0,L (24)

T
(1)
CL = T−1

C0,C2T
(1)
C2,L (25)

where TC0,C2 denotes the transformation from camera-0 to
camera-2; T (0)

C0,L denotes the initial transformation from Lidar
to camera-0 estimated by HECalib; T (1)

C2,L denotes the trans-
formation from Lidar to camera-2 predicted by CalibNet.

Quantitative results are present in Table I. The initial cali-
bration for each method (below the 2nd row) is provided by our
modified HECalib introduced in Section III-B. It is illustrated
that our method (the last row) significantly outperforms the
baseline methods in terms of both RRMSE and TRMSE. In
contrast, appearance-based approaches (3rd & 4th rows) do
not effectively reduce the calibration error compared to the
initial estimation (2nd row). One possible reason for this is that
these methods can only converge from a small bias toward the
ground-truth point. However, the initial calibration obtained
by HECalib is not accurate enough for them. In comparison,
the motion-based method (5th row) is globally convergent.
However, it directly substitutes the HECalib constraint (1) into
(7) to construct its reprojection error, resulting in a similar
degeneration issue as HECalib. Consequently, its rotational
errors are low while its translational errors are high, aligning

with our previous analysis that the degeneration solely causes
significant errors in tCL.

Subsequently, we also conduct ablation experiments by
creating two variants of the proposed framework. The first
variant eliminates the use of CA loss, while the second retains
CA loss but exclusively applies point-point distance (12) for
optimization. As illustrated in the final three rows of Table I,
our method and both variants yield similar rotational errors.
However, notable differences arise in translation. The last
and the third-to-last rows of Table I jointly showcase that
significant refinement of the TRMSE metric is achieved by
adding CA loss. The complete form of our method (the last
row) achieves the lowest TRMSE on almost all the sequences
except for sequence 00.

Nevertheless, the second variant of our method, does not
always perform better than the first. Its TRMSE metric is not
as good as the first variant in sequences 02 and 03, illustrating
the importance of the proposed point-plane distance. Regard-
ing computational efficiency, the first variant runs faster than
the second due to the absence of CA loss, and the second
is more efficient than our complete version because Criterion
(14) and (15) are no longer required to be validated.

Finally, we choose examples from four sequences (00, 03,
04, 07) to qualitatively demonstrate the calibration accuracy
of our method. In Fig. 6, Lidar points are projected onto
images using the predicted extrinsic matrix (left column) and
the ground-truth (right column) one, respectively. Only slight
visual differences can be recognized between two columns of
corresponding images, which are marked with yellow circles.

C. Optimization Process
In this section, we analyze the trend of the final loss function

L in the MADS algorithm. We plot the curve of L using the
feasible points generated by MADS in Fig. 7. Feasible points
refer to solutions that satisfying Constraint (19) & (20). Based
on our observations, all the infeasible points depicted in Fig. 7
satisfy (20) but not (19). Therefore, all subsequent analyses
concerning the infeasible points focus on (20).

Initially, L decreases rapidly, but its rate of decrease grad-
ually slows down as the optimization process continues. The
variation of L follows a step-like pattern, with noticeable drops
at indices 1022, 2624, and 3603. Even towards the end of the
optimization, L still shows a decreasing trend and has not fully
reached convergence (although the optimization terminates due
to the minimum mesh condition being met). This reflects the
difficulty of optimizing L, which is mainly attributed to its
discontinuity.

As expressed in (16), the final loss function L is a weighted
sum of L1 and L2. Both L1 and L2 exhibit discontinuity due to
variations in correspondences. The cause of the discontinuity
in the CA loss is similar to that in the ICP algorithm [35].
CA correspondences can vanish or change while the relevant
Euclidean distances exceed a predefined threshold δ2. Similar
patterns are observed in CA correspondences, which is an
explanation to why the number of correspondences changes
after optimization. The variation in CA correspondences is
visually depicted by the white circles in Fig. 4 while that in
CBA correspondences is marked by orange circles in Fig. 3.



Fig. 6. Left column: Lidar points are projected onto images using the predicted extrinsic matrix; Right column: Lidar points are projected onto images using
the ground-truth extrinsic matrix. From top to bottom: samples from KITTI seq 00, 03, 04, 07. Some perceptible differences are denoted with paired yellow
circles.

Comparatively, the discontinuity in the CBA loss primarily
stems from the reprojection operation. By minimizing (8), the
position of p

(t)
i can undergo a shift during selection, leading

to a sudden value change in the reprojection error calculated
in (9). Discontinuity also happens when some p

(t)
i selected

by (8) can not be tracked in the next iteration. Moreover,
similar to CA, a subset of CBA correspondences may change
or disappear when filtered by the threshold δ1. To illustrate,
we mark three changed CBA correspondences using a pair of
orange circles in Fig. 3(a) and Fig. 3(b).

D. Unidimensional Analysis.

Taking the sequence 04 as an example, we show the
degeneration that occurs in HECalib and the degeneration-
resistance performance of our method in this section. The
values of L and meeting statuses of (19) under unidimensional
offsets of the optimization variable x are drawn in Fig. 8. As
discussed in Section III-B, the solution of HECalib for tCL

becomes degenerate in this case. As shown in Fig. 8(d), 8(e)
and 8(f), no infeasible points appear as the translational offset
increases. According to the theory of Lie algebra, the physical
translation t equals the translation vector ρ when rotation
degrades to zero. Therefore, this observation implies that the
meeting status of (19) does not alter with the variation of tCL,
which aligns with our theoretical derivations in Section III-B.

Fig. 7. Curve of the loss (16) during optimization. Part of the curve (index ≥
1022) has been zoomed for better viewing. The label of the x-axis indicates
the index of feasible points in the MADS algorithm.

However, our designed loss function is sensitive to transla-
tion changes in the calibration parameters. On the theoretical
side, it is observed in (11) that the coefficient of tCL does not
degrade to zero when RC

ij ≈ I , signifying that the solution of
tCL is not degenerate in CBA loss. Similar derivations can be
applied to CA loss if we substitute (5) into (12) & (13). On the
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Fig. 8. Values of L and meeting statuses of (19) under unidimensional offsets of the optimization variable x. The zero offset point is our optimization result
x∗. Blue curves (L): the curve of (16); Black triangles (IFeas): infeasible points that do not satisfy (19); Red inverted triangles (gt): the ground-truth point

experimental side, Fig. 8(d), 8(e), and 8(f) jointly demonstrate
that the ground-truth solution (red inverted triangle) is close
to the zero-offset point, indicating the accurate estimation
of tCL through our optimization method. In addition, these
three curves indicate that the optimization in translational
dimensions of x is almost convex. Despite the appearance of
local minima in Fig. 8(d), the shape of L still guarantees the
minimum value is achieved near the ground-truth point.

On the opposite, it is demonstrated in Fig. 8(a), 8(b) and
8(c) that the optimization in rotational dimensions is much
easier. The HECalib constraint (19) successfully narrowed
down the search range to the vicinity of the ground-truth and
the variations of the function on either side of the zero-offset
are almost strictly monotonic.

Concerning the scale dimension, the ground-truth scale is
unknown because we do not have the ground-truth visual 3D
map, so we adopt the initial scale s(0) from HECalib as the

zero-offset point and plot relevant curves in Fig. 8(g). The
scale dimension is not directly associated with our calibration
task, but its value is required by the optimization process.
Fig. 8(g) demonstrates that the HECalib constraint (19) also
works in the scale dimension.

In terms of the function of other constraints (18) and (20),
constraint (18) is predefined to determine the initial search
range and (20) is applied to prevent runtime errors in extreme
cases.

V. CONCLUSION

In this paper, we propose a novel targetless Lidar-camera
calibration method based on cross-modality structure con-
sistency. The performance of this method in degenerate
scenes is demonstrated through experiments, and its theoretical
degeneration-resistance property is derived. This property en-
ables its application in scenarios where the vehicle only moves



forward without rotation, which is common in autonomous
driving applications.

Whereas, due to the discontinuity of the loss functions, it is
tricky to use derivative-based algorithms in our framework. In
our future research, we aim to develop a continuous and differ-
entiable form of the loss function for calibration. Derivative-
based optimization methods are generally more computation-
ally efficient than derivative-free ones. Additionally, with the
availability of gradients, joint optimization of the extrinsic
matrix and camera poses is expected to yield more accurate
extrinsic parameters.
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[64] C. Audet, V. Béchard, and S. L. Digabel, “Nonsmooth optimization
through mesh adaptive direct search and variable neighborhood search,”
Journal of Global Optimization, vol. 41, pp. 299–318, 2008.
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