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Abstract—In public roads, autonomous vehicles (AVs) face the
challenge of frequent interactions with human-driven vehicles
(HDVs), which render uncertain driving behavior due to varying
social characteristics among humans. To effectively assess the
risks prevailing in the vicinity of AVs in social interactive
traffic scenarios and achieve safe autonomous driving, this
article proposes a social-suitable and safety-sensitive trajectory
planning (S*TP) framework. Specifically, S*TP integrates the
Social-Aware Trajectory Prediction (SATP) and Social-Aware
Driving Risk Field (SADRF) modules. SATP utilizes Transform-
ers to effectively encode the driving scene and incorporates an
AV’s planned trajectory during the prediction decoding process.
SADREF assesses the expected surrounding risk degrees during
AVs-HDVs interactions, each with different social characteristics,
visualized as two-dimensional heat maps centered on the AV.
SADRF models the driving intentions of the surrounding HDVs
and predicts trajectories based on the representation of vehicular
interactions. S*TP employs an optimization-based approach for
motion planning, utilizing the predicted HDVs’ trajectories as
input. With the integration of SADRF, S*TP executes real-time
online optimization of the planned trajectory of AV within low-
risk regions, thus improving the safety and the interpretability of
the planned trajectory. We have conducted comprehensive tests of
the proposed method using the SMARTS simulator. Experimental
results in complex social scenarios, such as unprotected left-
turn intersections, merging, cruising, and overtaking, validate
the superiority of our proposed S*TP in terms of safety and ra-
tionality. S*TP achieves a pass rate of 100% across all scenarios,
surpassing the current state-of-the-art methods Fanta of 98.25%
and Predictive-Decision of 94.75%.

Index Terms—Autonomous driving, social interactive traffic
scenarios, trajectory planning, intention prediction, Social-Aware
Driving Risk Field.

I. INTRODUCTION

Autonomous driving technologies have improved by leaps
and bounds in recent years [1]. The popularization of au-
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tonomous driving will definitely bring great changes and
challenges to the current transportation systems [2]-[5]. In
particular, we will step into human-driven vehicles (HDVs)
and autonomous vehicles (AVs) hybrid and mixed traffic
age. Therefore, considering human driving preferences, social
interactions, and other social characteristics will be crucial for
AVs to be aware of their situation in complex social interactive
scenarios [|6]. In order to make safe and efficient decisions
and plans, AVs need to be able to recognize and understand
the differences in social preferences of various drivers and
make socially appropriate decisions and plans based on these
differences.

Research on the socially appropriate abilities of AVs has
drawn the great attention of scholars from both academia
and industry. Existing research has placed a special empha-
sis on decision-making methods based on social learning
[7]-[Ol, socially balanced trajectory planning [10], driving
style modeling and prediction [11]-[13], and environmental
risk assessment [14]], [15]. However, these methods often
stereotype HDVs and focus on single-traffic scenarios. This
approach compromises the adaptability across varied scenarios
and the accurate representation of driver behavior, resulting in
inadequate risk assessments. Therefore, it is necessary to take
social interactions into account when it comes to practical
applications. To this end, this article focuses on decision-
making and trajectory planning for AVs that consider the social
suitability of the planned trajectories in complex scenarios,
with the goal of achieving safer and more flexible autonomous
driving levels.

In complex traffic scenarios with significant social interac-
tions, such as unprotected left-turn intersections and overtak-
ing, AVs need comprehensive sensing in all directions to make
safe and efficient decisions [16]]. Generally, human drivers of
different ages, genders, and backgrounds have varying prefer-
ences in controversial situations. Therefore, it is important for
AVs to prioritize their capability to interact with and identify
the driving styles and intentions of others, especially those
encountered along their intended paths. Then, in the absence
of direct communication, AVs need to infer the intentions of
the oncoming vehicles and make a risk assessment. Finally,
based on the prediction of intentions and risk assessments of
other vehicles, AVs make decisions to implement trajectory
planning that balances social suitability, safety, and comfort.

Modeling the surrounding scene and conducting risk as-
sessments are the most crucial and challenging tasks for AVs
in complex social interaction scenarios. If scene modeling and
risk assessment are inaccurate, AVs are likely to perform emer-
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gency braking behavior in the final decision-making stage,
which reduces the comfort of autonomous driving and even
causes severe accidents. Therefore, social interactions between
vehicles and the driving intentions of HDVs are important for
AVs to assess the surrounding environment and achieve safe,
comfortable, and efficient trajectory planning, especially in
complex traffic scenarios involving multi-vehicle participation.

Currently, there are two types of risk-based trajectory plan-
ning methods: those based on trajectory prediction [[17], [[18]]
and those based on driving risk fields (DRF) [14], [19], [20],
separately. The first kind of method evaluates the driving
safety risks of the multimodal trajectory of AVs by predicting
the trajectories of other vehicles and selecting the trajectory
with the highest safety score for execution. It models and
evaluates risks through the predicted trajectories. However, this
risk modeling approach is relatively coarse, making it a great
challenge to achieve accurate and comprehensive assessments
of the risks surrounding AVs. Trajectory planning based on the
DRF maps the surrounding risk factors of the AVs, such as
HDVs, pedestrians, and obstacles, onto the DRF represented
by a two-dimensional heatmap and searches for the optimal
trajectory within the risk field. This method can intuitively
depict the distribution of risks in the environment. However,
most of the research on DRF currently faces two challenges.
First, some methods concentrate solely on static risks of
the immediate moment and overlook short-term future traffic
conditions. Second, some approaches neglect the social inter-
actions inherent between AVs and HDVs. These limitations
decrease the precision of risk assessments for AVs, making
it difficult to perform reasonable trajectory planning while
ensuring social suitability, safety, and efficiency.

This article proposes a social-suitable and safety-sensitive
trajectory planning (S*TP) framework for AVs, which per-
forms trajectory planning based on a social-aware driving risk
file (SADRF). First, we use Transformer-based encoding and
decoding modules to describe the scene and predict future tra-
jectories of surrounding HDVs through interactive modeling.
After that, we model the driving intentions of surrounding
drivers and predict the trajectories of HDVs based on the
representation of vehicle interactions to construct the SADRF.
Finally, trajectories can be planned online in low-risk areas of
the SADREF to achieve safe and suitable autonomous driving.

S*TP overcomes the limitations of short-term dynamic risks
and the oversight of social interactions by considering the
social interactions of other drivers and future traffic conditions,
thereby enhancing the precision of risk assessment for AVs.
Furthermore, by employing SADRF-based trajectory planning,
S*TP emulates human driving patterns more authentically,
enhancing the ride experience of autonomous driving. The
main contributions of this work are listed as follows:

1) The S*TP framework is proposed to balance the social
suitability, safety, efficiency, and rationality in trajectory
planning for AVs within complex, socially interactive
traffic scenarios. The method employs SADRF-based
condition constraints to generate optimized vehicle tra-
jectories. The optimization algorithm is used to align
with vehicle dynamics, such as acceleration and deceler-
ation rates, turning radius, and vehicle stability, to ensure

reasonable human-like planning control and maintain
safety standards.

2) We propose an effective SADRF algorithm that improves
the safety and comfort of AVs in socially interactive
traffic scenarios. SADRF considers the social dynam-
ics of HDVs, predicts their possible trajectories, and
generates a safer trajectory for the AV by assessing
the surrounding risks. Compared to traditional static
DRF, SADRF more accurately assesses the risks of ego-
circulation in a mixed traffic environment, particularly
for AV itself.

3) S*TP have been validated in four challenging simulated
driving scenarios, demonstrating superior performance
in safety, efficiency, and social suitability compared to
benchmark methods.

The rest of the article is organized into the following
sections: Section [[I] discusses the related literature works and
emphasizes our contributions. Section [III| describes the prob-
lem statement and the details of our proposed S*TP method.
Section [[V] presents the experimental setup and results. Finally,
Section [V] concludes the article.

II. RELATED WORKS
A. Modeling of Driving Risk Field

The DREF is a driver model grounded in theories of traffic
psychology and cognitive science, enabling it to accurately
capture the subjective perceived risk of a driver in various
driving scenarios [21]]. Establishing a DRF model enables
autonomous driving systems to simulate driver behavior and
make decisions more effectively, thus enhancing the safety
and reliability of such systems. The first research dates back
to 1936 when Gibson et al. [22]] proposed that drivers perceive
the qualitative concept of “a field of safe travel” which consists
of the possible paths that the car can take unimpeded. This
theory aims to describe the range within which drivers perceive
their driving to be safe, significantly contributing to improving
safety and reliability in autonomous driving. This pioneering
theory laid the foundation for the “motivational driver model”.
Subsequently, Wilde et al. [23|] proposed the risk steady-state
theory, and Fuller et al. [24] introduced the task difficulty
steady-state theory to elucidate driver behavior characteristics.
These theories provide a solid foundation and invaluable per-
spectives that drive the progress of DRF modeling, fostering a
more thorough and coherent understanding of driver behaviors
and decision-making intricacies.

In recent years, some studies have leaned towards delving
deeper into modeling DRF. For example, the concept of DRF
was first proposed by Kolekar et al. [20], who used a two-
dimensional field that represents the belief of the driver. The
DRF estimates the risk perceived by drivers, serving as a
valuable tool in improving the safety and performance of
autonomous driving systems. However, its inability to ac-
count for real-time traffic scenarios and dynamically changing
factors could lead to potentially inaccurate risk assessments.
Moreover, in efforts to plan trajectories that minimize risk
in traffic scenarios, Nyberg et al. [25] and Zheng et al. [26]
integrated the driving risk by measuring the severity of safety
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constraints violations and modeled target uncertainty using
potential field functions, respectively. Du et al. [|14]] proposed
an innovative data augmentation that leverages DRF alongside
original expert demonstrations to generate critical scenarios.
This approach enables the model to more effectively learn
critical driving behaviors, thereby enhancing driving policies
and, as a result, improving the safety of AVS. However, a
significant limitation in much of the current research on static
DREF is the neglect of social interactions among drivers. This
oversight hinders the dynamic adjustment of risk fields in
scenarios involving social interactions, leading to a reduction
in the accuracy of risk assessments for AVs.

To address the limitations of traditional DRF models, par-
ticularly their inadequacy in dynamically adjusting to real-
time traffic scenarios and social interactions, we introduce
the SADRF. This innovative approach is constructed to as-
sess the expected levels of surrounding risk for AVs when
interacting with HDVs, each characterized by unique social
traits. Through the generation of two-dimensional heat maps
centered on AV, SADRF accurately evaluates the expected
task distribution such as turning, braking, and acceleration,
depending on the traffic situation. By factoring in social
interactions, it provides a nuanced understanding of the driving
risk field across various driving scenarios, ensuring both safety
and comfort in trajectory planning for autonomous driving.

B. Trajectory Prediction

Accurate trajectory prediction plays a critical role in au-
tonomous driving [27]. Previous research primarily relied on
historical trajectories and dynamic features of vehicles for
prediction [28]]. These methods used machine learning or
deep learning techniques to learn vehicle behavior patterns
and forecast future trajectories by analyzing historical data.
Early methods, for instance, used CNN-based [29]] and RNN-
based [30] approaches to extract spatial features (using a
bird’s eye view) and time-series information (from histori-
cal trajectories), respectively. However, these methods often
overlooked the interactions between vehicles and other traffic
participants, failing to fully consider the influence of the
entire traffic environment. Recent research has shifted focus to
include social interactions among vehicles, incorporating them
into trajectory prediction models. Graph neural networks [31]]
have been utilized to capture interaction information through
vectorization, and some methods [32], [33]] have introduced
game-theory processes to establish interaction models between
vehicles. However, these models are often considered “black
boxes” because of their complex structure and lack of inter-
pretability. The attention-based mechanism approach [34] has
recently gained significant attention among researchers. This
strategy allows the model to quickly focus on essential factors
by assigning higher weights or greater attention to them. One
particular attention mechanism is the Transformer method
[35]], initially developed for natural language processing tasks
but successfully adapted to the field of autonomous driving. In
this article, we propose a data-driven, social-aware trajectory
prediction method. The method uses the historical trajectories
of the agents in the scene, the planned trajectory of the AV,

and the map polylines as input. We employ a Transformer
network to accurately model the social interactions among
the vehicles, enabling the decoder can generate multimodal
prediction trajectories that are safe and interpretable.

C. Trajectory Planning

The trajectory planning module, as a core component of the
autonomous driving system, receives environmental informa-
tion from the perception module and generates planned tra-
jectories for the downstream control module. In recent years,
trajectory planning has been a subject of extensive research
and exploration to cater to the demands of autonomous driving
systems [36]. Primary methods of trajectory planning include
trajectory optimization, graph search, random sampling, and
learning-based approaches [37|]. Among these, learning-based
and optimization-based methods are the most prevalent.

Learning-based methods utilize neural networks as driving
policies to generate actions or trajectories directly from sensor
inputs or perception results. Examples include imitation learn-
ing [38]-[40] and deep reinforcement learning (DRL) [41]-
[43]. Imitation learning involves observing expert behavior
and learning their strategies to replicate similar behavior in
the agent. It maps perception inputs to action spaces using
neural networks to achieve motion planning. DRL refines the
agent’s strategy through interactions with the environment,
optimizing it by trial and error, guided by reward signals, to
directly produce actions or trajectories. However, despite their
simplicity and efficiency, learning-based methods using neural
networks often face challenges in interpretability, generaliza-
tion, stability, and safety [44].

To address these issues, we have chosen optimization-based
methods for trajectory planning. Optimization-based methods
offer better controllability and stability and can consider
system constraints and limitations [45]. In our work, we
implement real-time online trajectory planning, which involves
executing the initial steps of the trajectory using a low-
level motion controller and then re-planning. By scoring and
evaluating the planned trajectories, we select the one with
the highest safety score for execution by the downstream
controller. Our approach differs from traditional optimization
methods by integrating the predicted trajectories of surround-
ing vehicles, thereby enhancing the robustness of the system.

III. METHODOLOGY
A. Problem Statement

We formulate trajectory planning as an optimization prob-
lem considering the risk of conflicts between AVs and sur-
rounding HDVs and calculate an optimal trajectory based on
safety, efficiency, and comfort indicators.

Assume that at a certain time ¢, the state of the AV is
expressed as my, and the states of HDVs around are expressed
as nf. f represents the trajectory prediction model specifically
designed to forecast the future state of HDVs. Our model
selects the optimal trajectory 7* that minimizes the expected
cost:

7% = argmin C(m{.p, 75.p) (D
€0
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Fig. 1: The overall architecture of the proposed S*TP.

2

In the Eq. (I) and Eq. (2), m$,; is a sequence of the AV’s
future states, which represents the optimal trajectory that we
aim to optimize. 1" refers to the planned trajectory range, 7}
is the historical trajectory range and I' represents the map
information. O represents the collection of viable trajectories
that are generated by considering the initial state my¢ of the
AV. C'is the cost function. The prediction result can have two
forms: one is a distribution of possible future states per HDV;
the other is a prediction of the joint trajectory for multiple
HDVs in the future.

fr = f(nlr,.0, 1, mir)

B. Overall Architecture of S*TP

S*TP is inspired by [20], [46] and adopts the network
architecture shown in Fig. [I] to perform decision-making and
planning tasks. Our proposed framework S*TP contains two
parts, namely social-aware trajectory prediction (SATP) and
social-aware driving risk field (SADRF). SATP is designed
primarily on the basis of the constructed scene represen-
tation and multiple trajectories planned by the AV, which
allows for the prediction of trajectories of surrounding agents.
Specifically, we adopt Transformer-based encoding modules to
model the agent-map and agent-agent interactions in the scene.
Combining the sampled trajectories of the AV, we utilize a
Gated Recurrent Unit (GRU) to autoregressively decode the
AV’s future states, thereby generating predicted trajectories
for the HDVs in the scene. The SADRF module then utilizes
the predicted trajectories from SATP and the sampled AV
trajectories to model the dynamic driving risks around the

scene. Subsequently, real-time online trajectory planning is
carried out within the risk field using an optimization-based
approach.

S*TP method is trained online and in real-time using the
SATP module, ensuring that the agent can autonomously
explore and elicit responses from surrounding agents. At the
same time, the model stores the interactions between vehicles
in a replay buffer to effectively train the prediction model.
AV planning is carried out using the SADRF module. Based
on the SADRF, we plan trajectories online in low-risk areas
to generate safe, comfortable, and socially appropriate driv-
ing trajectories that comply with human driving preferences,
which are used for execution.

C. Social-Aware Trajectory Prediction

The SATP consists of a scene encoder and a trajectory
prediction decoder, which collaborate to generate accurate
predictions for HDV trajectories. First, the scene encoder takes
the historical trajectories of surrounding agents and local map
polylines as inputs. Then, we use the multi-head attention
mechanism in the Transformer network to accurately encode
and extract features for the intersection of agent-agent and
agent-map. Finally, the trajectory prediction decoder fully
considers the social interactions of surrounding HDVs and
uses a self-recursive GRU to decode the future states of
HDVs, thereby achieving interaction prediction of surrounding
vehicles. The scene encoder and trajectory prediction decoder
are the two main parts of a prediction model and are detailed
as follows.

Scene encoder:
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Fig. 2: Illustration of modeling the SADRF. To implement our proposed SADRF modeling, we begin by calculating the
predicted trajectories of HDVs based on the vehicle dynamics model, as depicted in (a), where we use the state inputs as
the position(zey, Year), heading ¢, and the steering angle § of HDVs. The predicted path (arc length s) is calculated by
s = v *x t,. (b) Showcases the dynamic generation of DREF, specifically during the planning of an unprotected left-turn path.
(bl), (b2), and (b3) illustrate path planning process, visualization of SADRF alone, and visualization of SADRF incorporated
into the scene, respectively. The individual SADRF graph on the right side represents the risk values within the scene using a
color-coded bar chart ranging from light to dark red. In this visualization, the highest risk value is assigned to HDVs. The risk
value is dynamically computed based on the currently planned trajectory, adapting to changes at subsequent moments during
dynamic planning. (¢) Demonstrate the shape of the SADRF with respect to velocity v and steering angle §. As can be seen,
the SADRF expands as the velocity increases and the steering angle increases, thus improving the security for subsequent

LOW

trajectory planning.

We adopt an encoder structure similar to [37]], [47], and the
scene encoder is based on Transformer networks. For each
HDV i around the AV, the encoder input data includes the
historical state n' ;. ., of the HDV and the polylines of the
local map I' (that is, a list of route points in nearby locations).
Additionally, we explicitly consider the interaction relationship
between the AV and surrounding HDVs, adding the historical
state information n®,, , of the AV to the input data to
construct a complete interaction graph. To maintain the fixed
shape of the tensor, we handle missing time steps in the histor-
ical trajectory and missing points in the polyline of the map by
filling them with zero values. In the experiments, our model
selects a certain number (set to 5 in the experiments) of HDVs
close to the AV and performs zero padding when the number
is insufficient. The original input map polyline is encoded
through a multilayer perceptron (MLP). In order to capture
the temporal relationship in the historical trajectory of other
HDVs, we utilize the Transformer-based self-attention layer
for encoding. As depicted in Fig. [T} we employ a hierarchical
Transformer module to encode the interactions relationships
between the agent-agent and the agent-map, thus extracting
rich contextual information. In particular, we represent all
agents as nodes in the constructed interaction graph and use a
two-layer self-attention Transformer encoder as the interaction
encoder to handle the interaction relationships between agent-
agent in the graph [48], where query, key and value (@, K,

and V) are encoded historical trajectory features of agents.
To capture the agent-map interaction, we employ two cross-
attention Transformers for encoding, separately modeling the
agents on the lane vectors in the map and the agents on
the sidewalk vectors in the map. We utilize the interaction
features of the agents as query () and use a single map
vector (encoding the sequence of path points) as key and value
(K and V). Finally, we concatenate the historical features,
interaction features, and map attention features of the agents
in the scene, and pass them through a trajectory prediction
decoder to generate predicted future trajectories.

Trajectory prediction decoder: Our decoder combines the
sampled trajectory of the AV to predict the future trajectories
of surrounding HDVs. Compared to other recurrent neural
networks, GRU has fewer parameters and does not require an
explicit memory unit, so it performs better when processing
long sequences [49]]. We use GRU in the model to decode the
state sequence of HDV over a period of time in the future
through autoregressive means. To explicitly model the impact
of AV on the future actions of surrounding HDVs, we input
the motion state m§ of AV at time ¢ into the GRU to simulate
the impact of AV on the future state of HDVs and make
interaction-aware prediction. Specifically, at each moment in
the future, the GRU accepts the hidden state of the previous
moment and the joint input representation of the last predicted
state and the AV state at that moment. By updating the hidden
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state to decode the change in the HDV state (including the
coordinates x and y, and the heading angle ¢), which adds up
to the last state at the previous moment, the predicted state
is obtained at the current time. Additionally, we consider the
influence of the AV on each surrounding HDV that is not in the
conflict zone. Furthermore, we also introduce the interactive
gating network G to model the pairwise interactions between
the AV and the target HDV in the intersection scene. G is
an MLP that takes concatenated features from the historical
encoder of the AV and the target HDV as input. The output
scores, obtained through a sigmoid function, represent the
interaction strength between AV and HDV. This interaction
strength is applied to the input of the AV for future states
and passes through the GRU unit. The trajectory prediction
decoder outputs its future multimodal trajectories for each
HDV that participates in the same scenario. For the AV,
we decode its future control actions (i.e., acceleration a and
steering angle J) from the feature vectors using an MLP. We
then utilize a kinematic model to convert the sequence of
actions into trajectories.

D. Social-Aware Driving Risk Field

To effectively evaluate the surrounding driving risk in
complex interaction scenarios, we construct an SADRF model
that uses the predicted trajectories of the surrounding HDVs
and the sampling trajectories of the AV. Our model considers
the social interactive relationships between AV and HDVs in
complex traffic scenarios and evaluates future risks, providing
valuable support for AV planning and decision-making.

The proposed SADRF model is constructed on the basis
of DRF theory [20]. DRF model builds a 2D Gaussian
distribution along the predicted path to represent the subjective
perception of HDVs in the surrounding environment [[14].
The heights a and width o of the Gaussian distribution are a
function of the arc length s. The length of the arc refers to the
length of the trajectory followed by the AV. The predicted path
and the corresponding Gaussian in each cross section along the
predicted path are defined by the equation:

V@2 + (g - yo)* - Rew
202

Gl,y) = als) exp

3)
L

tand @
In Eq. (3) and Eq. (@), Rca is the predicted trajectory radius
calculated according to the vehicle wheelbase L and the steer-
ing angle 4. In this article, we calculate the predicted trajectory
of the vehicle using a kinematic model. As shown in Fig. [2[a),
the rotation center(x.,y.) of the vehicle is determined using
position (Zcyr, Year), heading (deor). This center is then used
to calculate the arc length s measured along the predicted
path. The Gaussian distribution G(x,y) assigns probabilities
to possible locations of the AV in the next step, based on its
values at each (x,y) coordinate. Height a is modeled as a
parabola:

Rcar =

a(s) = p (s — vty)? 5)

In Eq. @), tla is a fixed look-ahead time, and the look-
ahead distance is assumed to increase linearly with speed v.
The parameter p determines the slope or “steepness” of the
Gaussian parabolic curve. The width o is modeled as a linear
function of arc length s, which refers to the length of trajectory
that AVs follow:

o= (m—+kld])s+c (6)
. 1, inner o
L= { 2, outer o @

In Eq. (6) and Eq. (7), m defines the slope of widening
of the DRF when § = 0 (driving straight). k; and ko exhibit
a proportional relationship to the width of the DRF, where
they increase (or decrease) as the absolute steering angle ¢
increases. The parameter c is defined as the width of the
DRF at the location of the vehicle and is directly related
to the car width. In this article, ¢ is equal to car-width/
4, which corresponds to +2 o of a Gaussian distribution,
accounting for 95% of the distribution’s probability density
[20]. The parameters k; and k, are utilized to define the
inner and outer edges of the DRF, respectively, enabling the
representation of an asymmetric DRF. The DRF expands when
both k; and ko are positive and contracts when both are
negative. In summary, the DRF is characterized by parameters
such as p, t;q, m, ¢, ki, ko, and is dependent only on the
driver’s state, without taking into account the surrounding
environment. In the same traffic scenario, drivers with larger
parameter values of the DRF tend to perceive a higher level
of risk compared to those with smaller values. Besides, the
objective cost map of the environment is unaffected by the
driver’s subjective perspective, ensuring consistency across
all individuals. Consequently, the parameter settings are kept
consistent for all vehicles in this work.

To calculate future actions for the DRF model, SADRF
adopts an approach similar to [20]], where the perceived risk
is calculated based on the current velocity v and the steering
angle 0 of the AV. Then, an optimization process is carried
out based on the risk threshold theory to determine the future
velocity and steering angle that keep the perceived risk below
the assigned threshold.

Our SADRF can dynamically adjust at the time step ¢ of the
AV and matches the dynamic parameters of different risk field
models according to different speeds v based on the existing
static DRF [20]. This enables SADRF to have the ability
to dynamically assess HDV risk levels. The construction of
SADRF includes the following steps:

First, we predict the HDV trajectories at the future time
step t and construct a static DRF based on the AV pose.
When constructing the static DRF, we consider factors such
as the speed v and direction ¢ of other vehicles to improve
the accuracy of the predictions. This process depends on Eq.
[3] to be completed.

Second, we add the social interactions of surrounding HDV's
through the interactive prediction model described in Subsec-
tion and obtain the multimodal trajectories of HDVs,
thus obtaining the pose prediction results of other vehicles. As
illustrated in [20], we know that the perceived risk of the driver
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(¢) Cruise scenario

(b) Merge scenario

(d) Overtake scenario

Fig. 3: Four designed driving scenarios in the SMARTS environment.

is the convolution product of the subjective DRF map G(z,y)
of the HDVs and the objective cost map M (x,y) of the traffic
environment. To construct the cost map, the AV considers other
vehicles as static obstacles at time t. For each obstacle, based
on its dynamic risk characteristics (such as distance to the
AV, velocity difference, etc.), it assigns an appropriate risk
level. The cost map denoted M (x,y), is built by combining
the risk levels of all obstacles with the geometry of the road
map. It is important to note that the information from the cost
map can be used for both path planning and path evaluation
purposes. It enables the system to select paths with lower risk
levels, thus aiding in safer navigation and decision-making.
Therefore, we consider the predicted results of the HDV poses
as static obstacles at time ¢, and use the road map to construct
a static cost map M;(xy,y;) at time ¢. For each sampled AV
trajectory, we obtain a series of risk field maps G(x,y;) and
cost maps M (zy, y;) at different times in the future, and based
on this, we can generate a Social-Aware Driving Risk Field
G1(x¢,y:) based on social interactions between AV and HDV.
Thus, by obtaining a series of risk field maps and cost maps,
the AV can better understand the safety and driving conditions
of the surrounding environment and make more accurate and
efficient decisions.

Finally, for any time step ¢, we can obtain the total risk
threshold Ri;s (t), which can be calculated by multiplying the
cost map and the SADREF. The expression is as follows:

T
Reigc(t) =Y Gi(xe, y) * My, yr) (®)
t=1

In the Eq. (§), 7" represents the total number of time steps.
It is important to note that both the risk field and the cost
map dynamically change with the speed v and the steering
angle J of the AV. Therefore, the total risk value calculated at
each time step will be different. The AV needs to continuously
update the risk field and the cost map based on new data
information and calculate the total risk value to make final

decisions in real time.
We visualized the correspondence of our proposed SADRF
model with speed and steering angle through Gaussian plots,

which is shown in Fig. 2Jc). As the speed of the AV increases,
the range of the SADRF expands accordingly. Similarly, with
an increase in the steering angle, the SADREF also expands to
predict potential risks

E. SADRF-Based Trajectory Planning

By constructing the SADREF, as demonstrated in Fig. 2{b),
we map the surrounding risk factors of the AV ( such as
other vehicles, pedestrians, etc.) into a two-dimensional heat
map representation of the risk field and use the sum of the
total risk within a certain future time period as a standard
to evaluate the safety of the AV trajectory. Subsequently, the
AV performs online trajectory planning within low-risk areas.
In the planned trajectory, a scoring calculation is conducted
using preferred trajectories. The trajectory with the highest
safety score is selected for execution by the downstream con-
troller, resulting in safer automated driving decision-making
and planning. Compared to the traditional static DRF method,
S*TP models the risk of the AV trajectory in a more granular
way. This intuitively represents the distribution of risk in the
environment, achieving a safer and more robust AV trajectory
planning. Furthermore, our method avoids generating overly
conservative trajectories, ensuring that AVs can swiftly pass
through intricate social interaction scenarios.

IV. EXPERIMENTS
A. Experimental Setup

As depicted in Fig. [3] we applied four typical autonomous
driving scenarios within the SMARTS simulator [50] to assess
the effectiveness of the proposed method as follows. (1)
Unprotected left-turn: In the absence of signals or protection,
the AVs encounter traffic from different directions and must
coordinate with other HDVs to navigate the intersection safely
and efficiently. (2) Intersection merging: The AV needs to
seamlessly merge into traffic flow at an intersection where
two or more roads converge and navigate safely through
dense traffic on the main road. (3) Road cruising: The AV
navigates along a predetermined road route while abiding by
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traffic regulations and safety laws. (4) Lane overtaking: The
AV performs a maneuver of passing a vehicle ahead while
driving. To ensure fairness in the comparative experiments, we
conducted 500 episode tests for each scenario. Episodic data is
stored in a replay buffer, and batch samples are subsequently
drawn from this buffer to train the motion predictor.

B. Baselines

We compared the proposed S*TP with the following strong
baselines:

1) Fanta [51]]: This is the first-place solution in the NeurIPS
2022 autonomous driving competition. It proposes a
hierarchical architecture, where the upper-level module
(meta-controller) decides whether the AV should move
or remain stationary, trained using supervised and DRL.
The lower-level module includes three policies used
to determine the AV’s speed, heading, and whether to
switch to a different lane.

2) SMARTS [50]: It is a solution that considers multi-HDV
DRL with social interaction for trajectory planning,
which can serve as a benchmark method for DRL and
multi-HDV autonomous driving research. This approach
focuses on diverse interaction experiences.

3) Discrete-SAC [43]]: This method trains a multitask RL
AV and a scene classifier. For multitask RL training, the
SoftModule network is used as the backbone architecture
for the policy networks and Q-networks of the SAC al-
gorithm. The MLP scene classifier receives observations
as input and generates a one-hot encoding to determine
which task module to be utilize.

4) Predictive-Decision [46]: This is the third-place solution
in the NeurIPS 2022 autonomous driving competition.
It proposes an interactive perception motion prediction
model that uses a Transformer network to encode driving
scenes and predicts other HDVs’ future trajectories in
combination with the AV’s future planning.

5) Static DRF [20]]: This is a method based on a static
driving risk field to generate a predictive model of
human driving behavior. This method models static and
dynamic obstacles in the scene to construct a static
driving risk field. Then, by combining vehicle position
and velocity information with a static driving risk field,
a risk measurement is generated, which can be converted
into vehicle control operations, such as acceleration,
deceleration, and steering for decision-making.

6) Safety-Balance [[10]: This method utilizes a mixture-of-
experts approach and combines it with a Transformer
model to achieve scene-consistent multimodal trajectory
prediction. It also facilitates safe and efficient trajectory
planning by considering uncertain social circumstances
and interactions with vehicles of different driving styles.

Predictive-Decision and static DRF are used in ablation
experiments, where Predictive-Decision is the method without
adding SADRE, and static DRF replaces the SADRF module
with a static risk field.

C. Implementation Details

In order to ensure comparability, we adopted the experi-
mental settings introduced in [46], which promote a fairer
evaluation of results. Our framework uses a prediction and
planning time horizon of 3 seconds(I'" = 30), a historical
observation range for the HDV of 1 second(7}, = 10) with a
time interval of 0.1 seconds. We select the five HDVs closest to
the AV and predict their future trajectories. The polyline map
input to the model includes 50 waypoints for each path taken
by HDVs, with a separation of 1 meter between each waypoint.
Our model is implemented in PyTorch [52] and trained on a
NVIDIA V100 GPU. We used a batch size of 64 and trained
with Adam optimizer with an initial learning rate of 2e-4 and
a decay factor of 0.9 every 4000 training steps. There are
1000 training episodes, each followed by 50 gradient steps.
Our DRF model-related parameter settings are consistent with
those in [20]. For the hyperparameters, we set p = 0.0064,
tie = 3.5, ¢ = 0.5, m =0.05, k; = 0.5 and k; = 1.38 in Eq.
().

D. Evaluation Metric

The compared trajectory planning methods will be evaluated
on the following indicators:

1) Success: Complete goal rate. This metric is calculated
by dividing the total number of non-collisions by the
total number of episodes, and a bigger value indicates a
lower frequency of failure instances.

2) Time: Number of steps taken and final distance to the
goal. This metric is calculated by dividing the cumu-
lative number of AV adjustments in each episode and
the distance to the destination by the total number of
episodes.

3) Humanness: Similarity to human behavior. This metric
is obtained by dividing the cumulative distance measure-
ments by the obstacle, the cost of the jerk degree, and
the cost of road offset by the total number of episodes
in all vehicles. The calculation formula is as follows.

H= C((dOb + jan + jin + lcen)/nall )

where d, represents the distance between the AV and
obstacles, 7., represents the angular jerk, ji, represents
the linear jerk, .., represents the distance of the AV
from the center of the lane, m,; represents the total
number of vehicles in the scene, C' represents the cost
function, and H represents the humanness metric, which
can be used to assess the degree of human-like behavior
exhibited by the vehicle. A lower value indicates a
behavior that is more human-like.

E. Comparison Results

We conduct a comparison between our proposed method
and several benchmark methods. To evaluate the performance
of S*TP, we conduct performance tests by introducing an
increase in the diversity of traffic flows within the scenario.
Table |I| displays the evaluation results of 500 different traffic
flow patterns, which indicate that our method significantly
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TABLE I: Performance comparison of different trajectory planning methods in various scenarios

Scenario Metric ‘ Fanta SMARTS Discrete-SAC  Safety-Balanced ‘ Predictive-Decision ~ Static DRF  S*TP (Ours)
Success T 94% 85% 88% 89% 89% 80% 100%
Left Turn Time | 187.68 235.99 251.43 200.51 148.67 241.74 22.60
Humanness | 2148.53 1739.49 35.05 1132.39 920.48 1047.13 515.69
Success T 100% 4% 98% 90% 91% 79% 100%
Merge Lane  Time | 168.92 831.56 161.20 178.16 130.77 245.80 46.26
Humanness | 3195.57 967.74 16.87 78.08 360.09 1191.81 4.77
Success T 99% 80% 100% 94% 99% 100% 100%
Cruise Time | 161.62 363.81 150.04 154.03 55.69 60.16 46.07
Humanness | 872.11 939.05 31.29 34.65 14.36 25.32 0.00
Success T 100% 66% 97% 98% 100% 100% 100%
Overtake Time | 168.92 465.91 215.44 118.66 60.16 57.82 57.82
Humanness | 3195.57 940.43 26.19 28.21 25.32 16.54 16.54
All Overall Success 1 \ 98.25% 58.75% 95.75% 92.75% \ 94.75% 89.75% 100%

outperforms RL or other methods in terms of both success
rate and efficiency. According to Table [l in unprotected left-
turn intersections, AV needs to coordinate with HDV coming
from different directions to navigate the intersection safely.
However, the static DRF method relies solely on historical
data and geographical information for scene encoding, with-
out considering the driver’s real-time perception and specific
social preferences. This limitation prevents the method from
dynamically recording various complex situations and changes
in the real driving environment, resulting in a lower success
rate. SMARTS and Discrete-SAC employ traditional DRL
methods and have achieved some level of success. However,
due to the inherent drawbacks of DRL methods, their models
exhibit limited generalization ability in complex interactive
scenarios. The Safety-Balance method takes into account the
driving styles of surrounding HDVs and uses a Transformer-
based encoding-decoding network to model the interactions
between vehicles. Although this method performs well in the
scenario of an unprotected left turn, particularly focusing on
interactions at crossroads, its performance is average when
compared to the other three scenarios. The Fanta method
combines supervised learning and reinforcement learning for
training and incorporates a traditional rule-based collision
detection module for self-vehicle decision planning, resulting
in good results. In comparison, our approach improves upon
the Predictive-Decision method by introducing SADRF during
the self-vehicle planning phase. This allows us to dynamically
adaptively model the risks in the scene and accurately assess
the driving risks around the self-vehicle, leading to better inter-
pretability and generalization. Therefore, our method achieves
the best results when compared to other methods. Taking
advantage of rich SADRF information, the proposed S*TP
achieves a success rate of 100% in all test scenarios, while
the state-of-the-art (SOTA) algorithm Fanta [51] exhibits a
success rate of 98. 25% and the predictive decision exhibits a
success rate of 89.75% in all scenarios. Furthermore, for other
intersection scenarios, such as merge lane, cruise, and overtake
scenarios, our method also achieved the best experimental
results in the evaluation metrics of “time” and “humanness”.
This further demonstrates that S*TP can achieve safer and
more comfortable decision planning for autonomous driving.

In summary, our method achieves the best performance across
all scenarios compared to other SOTA approaches.

F. Ablation Study

Fig. [] illustrates the visualization results while compar-
ing our SADRF method with Predictive-Decision [46] and
static DRF [20] in a specific unprotected left-turn intersection
scenario. For clearer differentiation, the trajectory planning
processes are showcased at the 3rd, 8th, 13th, and 18th frames.
Besides, any instances of collisions are emphasized and dis-
tinctly marked. Among them, Predictive-Decision operates
without adding SADRF, and static DRF substitutes SADRF
with static risk field. As shown in Fig. [[a), the strategy
generated by static DRF [[20] is overly conservative, leading to
a significantly slower decision making process when passing
through the intersection. Moreover, it encounters substantial
difficulty during restarts, ultimately leading to a collision with
an oncoming HDV. Simultaneously, Fig. f{b) demonstrates the
results from the 8th to 18th frames, it becomes evident that
after completing trajectory planning, Predictive Decision [46]]
struggles to adjust its strategy in real-time when confronted
with aggressive or previously unnoticed vehicles (vehicles
not observed or obscured) suddenly emerging in the driving
scene, resulting in a collision with a human-driven vehicle.
In contrast, as demonstrated in Fig. c), S*TP allocates a
pre-set margin for the vehicle prior to planning to antici-
pate unforeseen circumstances. Unlike conservative strategies,
S*TP dynamically adapts to the movement of other HDVs
within the scene in real-time. This can ensure the avoidance of
dangerous situations at a specific future moment and generate
more human-like driving trajectories.

It should be noted that our method incorporates a driving
risk field model, which allows it to dynamically adjust the
driving risk field considering real-time road conditions and
vehicle status. This adaptive capacity enables better prediction
and avoidance of potential risks and hazards, resulting in
metrics that exhibit improved human likeness. The quanti-
tative results further substantiate that this innovative feature
improves the adaptability of our method in real-world road
scenarios, providing a higher level of safety assurance for
autonomous driving.
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[
(a) Ours w/ Stataic DRF |

(b) Ours w/o SADRF

(Predictive-Decision)

(¢) Ours

8 frame

3 frame

13 frame 18 frame

Fig. 4: Visual comparison of planning trajectories between our proposed S*TP, the baseline Prediction-Decision, and the static
DRF in unprotected left-turn intersection scenario. The red box and line are the AV and its planned trajectory; the blue boxes
are the surrounding agents. (a) The proposed SADRF-based planner excels at accurately assessing surrounding risk levels in
complex social interaction scenarios, thus ensuring the safety of the AV. In contrast, (b) the Prediction-Decision planner, which
may disregard risk fields, fails to accurately assess the surrounding risk levels and consequently results in collisions. (c) The
static DREF, lacking the ability to dynamically assess trajectory risk values, leads to overly conservative strategy generation in

complex scenarios compared to SADRF.

V. CONCLUSION

In this article, we propose a social-suitable and safety-
sensitive trajectory planning method, named S*TP. This
method considers the risks associated with social interaction in
complex mixed traffic environments, ensuring safe, efficient,
and socially appropriate trajectory planning for AVs. The
proposed method employs Transformer-based encoding and
decoding modules for scene representation and predicts future
trajectories of surrounding HDVs using interactive modeling.
Based on these predicted multistep trajectories, an SADRF
model is constructed to produce autonomous driving trajec-
tories aligned with human driving behavior. Our approach
utilizes multi-task learning in an end-to-end framework fa-
cilitating both training and evaluation in simulated driving
scenarios. The results demonstrate the superiority of our
approach over benchmark methods. With the SADRF module,
we achieve higher success rates compared to traditional static
DRF models or trajectory planning methods that neglect social
interaction.

Future research will Focus on incorporating a risk field
module in the model to establish pedestrian-vehicle interaction
relationships, accurately identify pedestrian position and mo-

tion states, and allow safe and comfortable trajectory planning.
This approach will contribute to improving the safety and
adaptability of AVs in complex road conditions, ensuring the
safety of all road users. Such a method is one of the core parts
of parallel planning methodologies [53]]. Further methods will
be designed and developed to enrich the content of parallel
planning, which utilizes the complementarity of online-offline
processes and the real-virtual interactive and iterative learning
of AVs. These advancements aim to gradually improve the
safety and social suitability of AVs as they gain more driving
experience.
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