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Abstract—Existing data augmentation approaches on LiDAR1

point cloud are mostly developed on rigid transformation, such2

as rotation, flipping, or copy-based and mix-based methods,3

lacking the capability to generate diverse samples that depict4

smooth deformations in real-world scenarios. In response, we5

propose a novel and effective LiDAR point cloud augmentation6

approach with smooth deformations that can enrich the diversity7

of training data while keeping the topology of instances and8

scenes simultaneously. The whole augmentation pipeline can9

be separated into two different parts: scene augmentation and10

instance augmentation. To simplify the selection of deformation11

functions and ensure control over augmentation outcomes, we12

propose three effective strategies: residual mapping, space decou-13

pling, and function periodization, respectively. We also propose14

an effective prior-based location sampling algorithm to paste15

instances on a more reasonable area in the scenes. Extensive ex-16

periments on both the SemanticKITTI and nuScenes challenging17

datasets demonstrate the effectiveness of our proposed approach18

across various baselines. The codes are publicly available at19

https://github.com/skyshoumeng/SmoothDA.20

Index Terms—LiDAR Augmentation, Smooth Deformation,21

Semantic Segmentation.22

I. INTRODUCTION23

LiDAR point cloud semantic segmentation plays a cru-24

cial role in environment understanding for autonomous driv-25

ing [3]–[5]. It is also very important for downstream tasks26

of autonomous driving, such as trajectory prediction [6] and27

motion planning [7]. Data augmentation is proven to be one28

of the most crucial and practical techniques in enhancing29

model performance without additional computation costs in30

the test phase [8]–[12]. This is especially true for tasks31

such as LiDAR point cloud semantic segmentation [3], [13]–32

[16], where creating a large dataset is extremely difficult and33

requires extensive labor work.34

Data-driven deep models often require abundant data to35

sufficiently understand complex LiDAR point clouds in real-36

world scenarios. In contrast to images with lattice structures,37

point clouds are unordered sets of points without inherent38

structure [17]. Therefore, while data augmentation is relatively39
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common for images [18]–[21], it has been relatively underex- 40

plored for LiDAR point clouds [1], [22], [23]. 41

Most of the existing methods are based on rigid transfor- 42

mations, such as the commonly used rotation and flipping. 43

Despite some great progress has been made in recent years, 44

such as the copy-paste based approaches [24] or Mix-based ap- 45

proaches [1], [25]. PointMixup [26] proposed to produce new 46

examples through an interpolation between two scans of point 47

clouds. Copy-Paste [24] proposed to simply copy instances 48

from other scenes and then paste them into the current scenes 49

directly. PolarMix [1] proposed to enrich the diversity of the 50

point cloud through two cross-scan augmentation strategies. 51

They all lack consideration of cases where smooth deforma- 52

tions happen in real-world scenarios [17], [27], such as walk- 53

ing people or a winding road, which is also very important for 54

the diversity of the datasets. Only a few methods are based on 55

local deformations now, such as [17], [28], [29]. PointAugment 56

[28] proposed an adversarial learning framework to optimize 57

an augmented neural network and a task-specific network 58

jointly. PointWOLF [17] proposed to generate the augmented 59

results by applying locally weighted transformations centered 60

at multiple anchor points in the object. PA-AUG [29] proposed 61

to divide instances into partitions and then stochastically apply 62

five different augmentation methods to each local region. 63

However, the above approaches only apply to the point clouds 64

of objects well. This is attributable to the LiDAR point 65

clouds in the outdoor environments were distributed over a 66

wide range [30]–[32], the method should be effective and the 67

augmented results should be reasonable everywhere instead 68

of a single object. In addition, compared with the simple 69

rigid transformations, the augmentation with local deformation 70

transformation is more sophisticated and uncontrollable [17], 71

[27]. Overall, these factors result in augmentation approaches 72

based on deformations for the LiDAR point cloud have not 73

been fully investigated. 74

In this paper, we focus on LiDAR point cloud augmentation 75

with the aim of alleviating the issue of data scarcity for 3D 76

semantic segmentation. Specifically, we propose a novel and 77

effective augmentation approach with smooth deformations 78

for the LiDAR point clouds semantic segmentation task. 79

To simplify the selection and design of the deformation 80

functions, three strategies were proposed: residual mapping, 81

space decoupling, and function periodization. First, drawing 82

inspiration from the residual mapping in ResNet [33], instead 83

of designing a function that maps the source point to the 84

target point directly, we only need to design a function that 85

maps the source point to the offset between the source and 86

target point. Second, we decouple the raw transformation 87
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mIoU
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Fig. 1. The overall comparison between the conventional method, recent state-of-the-art (SOTA) method PolarMix [1], and our proposed augmentation
approach with smooth deformation. The second row shows some augmented samples generated by the corresponding method. The third row is the final
performance of the model trained with each augmentation approach on the SemanticKITTI validation set [2].

mapping {x, y, z} → {x′, y′, z′} into three different mapping88

pairs, making the design of the mapping functions easier and89

the augmentation process more controllable. Third, given the90

LiDAR point clouds were distributed over a wide range, we91

adopt a periodization to the function, allowing concentration92

on a localized area during augmentation function design. In93

addition, to address the unbalanced class in the datasets [2],94

[31], we further propose an effective prior-based location sam-95

pling algorithm, from which a more reasonable location can96

be obtained when we perform the copy-paste-based instance97

augmentation operation. Finally, we evaluate the effective-98

ness of our proposed approach on both the challenging Se-99

manticKITTI and nuScenes datasets across different baselines100

and the experimental results show significant improvement in101

performance on both datasets. The overall comparison between102

the conventional method, the recent SOTA method Polarmix103

[1], and our proposed smooth deformation augmentation ap-104

proach on the Semantic KITTI val set is shown in Figure 1.105

Our contributions are summarized as follows:106

1. We propose a novel LiDAR point cloud augmentation107

approach with smooth deformations for the semantic segmen-108

tation task, our approach can enrich the training data diversity109

and boost the performance of baselines effectively.110

2. We propose three different strategies: residual mapping,111

space decoupling, and function periodization, to simplify the112

selection and design of the deformation augmentation func-113

tions, and also make the augmentation results more flexible114

and controllable.115

3. We propose a simple and effective prior-based location116

sampling algorithm, which can place the augmented instances117

in a more feasible area.118

4. We conduct extensive experiments and show substantial119

and consistent improvements in performance by adopting our 120

proposed augmentation approach. 121

II. RELATED WORK 122

In this section, we give a brief overview of the data aug- 123

mentation approaches for point clouds and LiDAR semantic 124

segmentation tasks. We further divide the data augmentation 125

part into two different categories: Augmentation with Rigid 126

Transformation and Augmentation with Deformation and di- 127

vide the LiDAR semantic segmentation part into 2D-based 128

methods, 3D-based methods, and Fusion-based Methods. 129

A. Data Augmentation 130

Augmentation with Rigid Transformation. Conventional 131

augmentation methods including rotation, flipping, scaling, 132

and perspective transformation are widely used in many recent 133

works, such as [34]–[37], which are typically useful in many 134

cases. Inspired by Mixup [25], PointMixup [26] proposed an 135

interpolation method that produces new examples through an 136

optimal assignment of the path function between two point 137

clouds. Autoaugment [38] proposed to use of reinforcement 138

learning technologies to find the best choices and orders of 139

the augmentation actions to achieve the best performance. In 140

Fast AutoAugment [38], a more efficient search strategy is 141

proposed based on density matching, which does not require 142

any back-propagation for network training for each policy 143

evaluation. InstraBoost [39] proposed to generate a location 144

probability map to explore the feasible locations where in- 145

stances can be placed. By sampling feasible locations from 146

the local contour similarity heatmap, a significant performance 147

improvement can be achieved. Lidar-Aug [40] proposed a 148

plug-and-play rendering-based LiDAR augmentation module 149
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to enrich the training data and boost the performance of the150

model. By leveraging the rendering technique to compose151

the augmented objects into the real background frames, the152

occlusion constraints are automatically enforced. RS-Aug [41]153

proposed a Realistic Simulator based data augmentation ap-154

proach, and a heuristic search based object insertion scheme155

is also proposed to enhance rendering quality with collision156

and distance constraints. Both of the above methods require the157

use of simulators to enrich the diversity of objects. SageMix158

[42] proposed a saliency-guided Mixup augmentation for point159

clouds to make sure that the salient local structures are160

preserved. Polarmix [1] proposed to enrich the distribution161

of the point cloud and preserve the fidelity of the point cloud162

through two cross-scan augmentation strategies: scene-level163

and instance-level respectively. For the scene-level augmen-164

tation, points within the same azimuth angle range are ex-165

changed, while for the instance-level augmentation, the points166

selected from another scan were rotated for multiple copies167

and then pasted into another scan. In [43], the authors proposed168

Point Augmentation (PA)-RCNN which aim for small object169

detection task through generating complementary features.170

In [44], the authors proposed to improve the robustness of171

LiDAR-based perception methods in adverse weather with172

different data augmentation techniques, which demonstrates173

that data augmentation can effectively enhance the model’s174

generalization ability in different scenarios. LidarAugment175

[45] introduced a search-based approach for LiDAR point176

clouds augmentation. However, the augmentation policies in177

the search space still come from conventional augmentation178

methods. They all lack consideration of cases where smooth179

deformation happens in real-world scenarios.180

Augmentation with Deformation. PointAugment [28] pro-181

posed an adversarial learning strategy to jointly optimize an182

augmented network and a task-specific network. The learnable183

point augmentation function was formulated with a shape-wise184

transformation and a point-wise displacement, and a specific185

loss function was carefully designed to enable the model to186

adjust the augmentation magnitude based on the learning state187

of the model for the main task dynamically, which allowed188

the generation augmented samples that are more suitable for189

any training stage of the task. In PointWOLF [17], it pro-190

posed to generate the augmented samples by locally weighted191

transformations centered at multiple anchor points, the method192

can produce diverse and realistic augmented samples with193

smoothly varying deformations formulated as a kernel re-194

gression. PatchAugment [27] proposed a new augmentation195

framework, in which different augmentation techniques were196

applied to different local neighborhoods. In PA-AUG [29], it197

also divides instances into partitions and stochastically applies198

five augmentation methods to each local region, then the rich199

information of labels can be better utilized in augmentation.200

3D-VField [46] introduced a new data augmentation approach201

that generates reasonably deformed objects via vector fields202

learned in an adversarial fashion. The method is targeted203

for object detection task and therefore operates only on the204

instances level. Therefore, these methods are specifically de-205

signed for the objects, and not suitable for large-scale LiDAR206

point clouds.207

B. LiDAR Semantic Segmentation 208

Point cloud semantic segmentation is one of the most 209

fundamental tasks for autonomous driving [3], [15], [16], 210

which aims to provide precise semantic information about 211

the surrounding environment. As the 3D Light Detection and 212

Ranging (LiDAR) sensor can capture more precise and farther- 213

away distance measurements of the surrounding environment 214

than conventional visual cameras, it has gradually become an 215

indispensable device in many other scenarios. Currently, the 216

methods for LiDAR semantic segmentation can be categorized 217

into three categories: 2D-based, 3D-based, and fusion-based 218

methods. 219

2D-based Methods. 2D-based Methods can also be referred 220

aa projection-based methods, which can be further divided 221

projection-based methods into two different categories: Range 222

View projection (RV) and Bird’s-Eye-View projection (BEV). 223

For the range-based methods: RangeNet++ [47] proposed a 224

deep-learning-supported approach to exploit the potential of 225

range images and 2D convolutions, and a GPU-accelerated 226

post-processing K-Nearest-Neighbor (KNN) approach is fur- 227

ther proposed to recover consistent semantic information dur- 228

ing inference for entire LiDAR scans. KPRNet [48] improved 229

the convolutional neural network architecture for the feature 230

extraction of the range image, and the commonly used post- 231

processing techniques such as KNN were replaced with KP- 232

Conv [49], which is a learnable pointwise component and 233

allows for more accurate semantic class prediction. For BEV- 234

based approaches, which are consistent with the currently 235

popular representation in BEV space [50], [51]. PolarNet [52] 236

proposed to use the polar Bird’s-Eye-View representation to 237

balance the spatial distribution of points in the coordinate 238

system, and a ring convolution operation was also devel- 239

oped that was more suitable for the polar Bird’s-Eye-View 240

representation. Panoptic-PolarNet [34] was proposed based 241

on PolarNet, which is a proposal-free LiDAR point cloud 242

panoptic segmentation network and can cluster instances on 243

top of the semantic segmentation efficiently. 244

3D-based Methods. 3D-based Methods can be further 245

divided into point-based methods and voxel-based methods. 246

For the point-based method, KPConv [49] proposed a new kind 247

of 3D point convolution that operates on point clouds without 248

any intermediate representation. RandLA-Net [53] proposed 249

an efficient network architecture for directly inferring per-point 250

semantics on large-scale 3D point clouds. It uses random point 251

sampling instead of more complex point sampling approaches 252

for efficiency. it also introduced a local feature aggregation 253

module to preserve geometric details by progressively in- 254

creasing the receptive field for each 3D point. For voxel- 255

based methods, which generally achieve better performance 256

than point-based methods. MinkNet [54] proposed a general- 257

ized 3D sparse convolution and an auto-differentiation library 258

for sparse tensors was proposed. SPVCNN [55] proposed a 259

lightweight 3D module that can boost the performance on 260

the 3D scene understanding tasks effectively. In Cylinder3D 261

[56], it introduced a novel Cylindrical and Asymmetrical 3D 262

Convolution framework, which can effectively and robustly 263

explore the 3D geometric pattern and tackle the difficulties 264
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caused by sparsity and varying density of point clouds. (AF)2-265

S3Net [36] proposed a multibranch attentive feature fusion266

module in the encoder and an adaptive feature selection267

module with feature map re-weighting in the decoder. It fuses268

the voxel-based learning and point-based learning methods269

into a unified framework to process the potentially large 3D270

scene effectively.271

Fusion-based Methods. As 2D-based (range and BEV)272

methods and 3D-based (point and voxel) methods have differ-273

ent advantages while suffering from their own shortcomings274

in the semantic segmentation task [57]. So it is intuitive275

to fuse information from different views together for bet-276

ter segmentation performance. AMVNet [58] proposed an277

assertion-based multiview(range, BEV) fusion network for Li-278

DAR semantic segmentation, where the features of individual279

views were fused later with an assertion-guided sampling280

strategy. RPVNet [57] devised a deep fusion framework with281

multiple and mutual information interactions among three282

(range, point, and voxel) different views to make feature fusion283

more effective and flexible. GFNet [59] introduced a geometric284

flow network to better explore the geometric correspondence285

between two different views(range, BEV) in an align-before-286

fuse manner. CPGNet [60] proposed a cascade Point-Grid287

Fusion Network (CPGNet) effective feature extraction with288

minimal information loss and a consistency loss for better289

inference performance.290

III. METHOD291

In this section, we first provided the details of smooth292

deformation augmentation function selection and design in293

Section III-A, including three strategies: residual mapping,294

space decoupling, and function periodization. Then we de-295

scribe the whole non-rigid augmentation pipeline for LiDAR296

point clouds in Section III-B, which also contains three differ-297

ent modules: the instance augmentation module, prior-based298

location sampling module, and scene augmentation module.299

A. Deformation Function Design300

The deformation augmentation function presents an ex-301

pansive search space [61], [62], making the selection of302

appropriate augmentation functions a considerable challenge.303

To address this issue, we identify specific desired properties304

to narrow down the search space. Specifically, we categorized305

the desired properties from three different aspects, namely,306

continuity of function, scale consistency, and computational307

efficiency.308

First, it is imperative that augmentation functions exhibit309

continuity or smoothness; without this attribute, instances risk310

disintegration after augmentation. Second, the size of the311

augmented instance should remain relatively consistent with312

its original dimensions, as the size is a critical attribute of an313

object. For instance, it would be incongruous to encounter a314

five-meter giant or a mere ten-centimeter individual. Finally,315

the function should preferably be computationally efficient in316

practice.317

mIoU

Input Conventional PolarMix Ours (w/o inst) Ours (w/ inst)

60.7 66.2 63.8 68.5

Input X-Y Y-X R-Z

Fig. 2. The visualization of the space decoupling strategy. Here, we assume
that the horizontal direction is the x-axis, and the vertical direction is the
y-axis. For the second (X-Y) column, the y-coordinate is determined as a
function of the x-coordinate. In the third column (Y-X), the x-coordinate is
derived as a function of the y-coordinate. Lastly, in the column labeled (R-Z),
the x-coordinate is defined as a function of the radius r.

1) Residual Mapping: For a deformation augmentation 318

operation, establishing a direct mapping between the raw 319

points and augmented points is challenging due to the vast 320

number of points and their expansive range. 321

Inspired by the deep residual network [33], we propose 322

to focus on generating the residual coordinates for each 323

point rather than directly computing the final augmented 324

coordinates. Specifically, for a given point cloud scan P = 325

{p0, p1, . . . , pN−1}, the deformation augmentation function 326

ϕ() doesn’t aim to yield the target coordinates P ′ = 327

{p′

0, p
′

1, . . . , p
′

N−1}, 328

we only need to compute the residual coordinates, repre- 329

sented by P
′ − P , thus the augmentation process becomes: 330

P ′ = P + αϕ(P ), (1)

where α represents a scale parameter. The residual coordinate 331

generation has the following advantages: first, as mentioned 332

in [33], the residual function is relatively simple and easier to 333

learn, which also makes the design of the augmentation func- 334

tion easier. Second, the augmented samples were only affected 335

by the residual branch, so the magnitude of augmentation can 336

be easily controlled by α. 337

2) Space Decoupling: While the residual mapping strategy 338

can make the design of the augmentation function much 339

easier, the task remains complex due to the interdependence 340

of spatial coordinates. Generally, the augmentation function 341

takes the coordinates {x, y, z} of each point as input, and the 342

corresponding offset {x′ − x, y′ − y, z′ − z} is generated. 343

The coupling between three coordinates makes controlling 344

augmented results more difficult. However, in the real-world 345

scenario, the {x, y, z} three-dimensional space is not always 346

coupled. For instance, the road may be undulating while 347

straightforward, or a winding and twisting road but very 348

smooth at the same time. Based on the above observations, we 349

propose space decoupling to further simplify the augmentation 350

function design. Specifically, for the raw coupled mapping: 351

{x, y, z} → {x′, y′, z′}, (2)
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IAM:  Instance Aug Module  SAM:  Scene Aug Module  PRSP:  Priori-based FPS & Paste 
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PLSM

Road Extraction

Instance
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Fig. 3. The pipeline of our proposed augmentation approach. Given a scan of a point cloud, it is first divided into two different parts: ‘scene’ and ‘things’ [63].
Then Instance Aug Module (IAM) takes the instances as input, the augmented instances are input into the prior-based Location Sampling (PLSM) module
and then they are placed in the sampled locations on the road area. Next, the augmented instances and the scene are combined to form a new scan with more
instances. Finally, the new scan is input into the Scene Aug Module (SAM) to obtain the final augmented result. The augmented point clouds are taken as
input for model training.

we decouple it into three different mapping pairs:352

{x → y
′
− y}; {y → x

′
− x}; {r → z

′
− z}, (3)

where r =
√
(x2 + y2). The above equation shows that for353

each mapping pair, we only need to consider the impact of one354

dimension on another dimension, without taking into account355

the impact of all dimensions, which simplifies the design and356

selection of the augmentation function. The concept of space357

decoupling is illustrated in Figure 2. From the visualization, it358

can be seen that for each decoupled pair, the generated samples359

are both intuitive and plausible within real-world contexts.360

3) Function Periodization: With residual mapping and361

space decoupling, the selection and design of the augmen-362

tation function have been largely simplified. However, as the363

coordinates of the input points were distributed over a wide364

range in the real-world scenario [2], [31], the functions for365

augmentations should be under control over a wide range366

of inputs. The commonly used functions, such as functions367

from the binomial family or gaussian family may not handle368

this situation well, as their outputs could exhibit significant369

variations across different regions of a point cloud.370

To overcome the aforementioned challenges, we propose371

periodizing a simple augmentation function which tailored for372

a localized area to encompass the entire scan of points. Despite373

its simplicity, the periodization strategy greatly facilitates the374

selection and design of the augmentation. which also means375

that the selected function can be adapted to both the instances376

and scenes, making our method more concise and unified.377

Finally, the overall deformation augmentation for the point 378

cloud can be expressed as: 379

x′ = x+ ϕ(y, fy ∗ ξ(.), βy ∗ ξ(.)) ∗ αy ∗ ξ(.),
y′ = y + ϕ(x, fx ∗ ξ(.), βx ∗ ξ(.)) ∗ αx ∗ ξ(.),
z′ = z + ϕ(r, fz ∗ ξ(.), βz ∗ ξ(.)) ∗ αz ∗ ξ(.),

(4)

where ϕ(.) is a periodic function, ξ(.) generates random 380

numbers between 0-1, r is the radius distance, fx ∗ ξ(.), 381

fy ∗ξ(.) and fz ∗ξ(.) controlling the frequency of deformation 382

augmentation function, βx ∗ ξ(.), βy ∗ ξ(.) and βz ∗ ξ(.) 383

controlling the phase of the periodic function, αx, αy , and 384

αz is the amplitude of augmentation, with distinct values 385

designated for instance and scene augmentation. 386

Next, we provide further descriptions and explanations 387

about Equation 4. First, we observe that the augmentation is 388

applied in a residual manner. Specifically, for each dimension 389

x, y, and z, the change before and after augmentation can be 390

simply represented as x′ = x + xoffset, y′ = y + yoffset, and 391

z′ = z + zoffset, respectively. Then, for the offset generation, 392

taking xoffset as an example, from the first line of Equation 4, 393

we can see that xoffset only depends on y among the three x, y, 394

and z dimensions. This simplifies the generation of xoffset as we 395

only need to consider the y dimension rather than interference 396

from x and z. It should be noted that the simplification 397

remains consistent with potential real-world scenarios like a 398

winding, twisting, yet smooth road. Finally, since we chose 399

ϕ(.) as a periodic function, we only need to ensure the offset 400

output from ϕ(.) is reasonable within one period. This frees us 401
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Fig. 4. Visualization of augmented instances.

from considering the large-scale distribution of LiDAR point402

cloud scenes when designing and selecting parameters for the403

augmentation function.404

B. Augmentation Pipeline405

The overall framework of our proposed approach is illus-406

trated in Figure 3. It consists of three main modules: an407

Instance Augmentation Module (IAM), a Prior-based Location408

Sampling Module (PRLS), and a Scene Augmentation Module409

(SAM). First, the raw point cloud is separated into two410

different parts through the ground truth label: instance and411

scene [63]. For the instance branch, the separated instances are412

fed to the instance augmentation module for the deformation413

augmentation. Next, we use the prior-based location sampling414

module to generate multiple candidate locations. Then we415

paste each instance on the sampled location. Finally, the whole416

point cloud is fed to the scene augmentation module and the417

global deformation transformation is performed.418

1) Instance Augmentation: As the instance may be dis-419

tributed over a wide range in the point cloud, a decentralization420

operation is performed before the deformation augmentation421

operation is performed. Although the deformation augmenta-422

tion operation can increase the diversity of the samples, the423

unbalanced count of classes in the datasets was not yet solved.424

To address this, we propose to generate more samples with425

diversity by applying the augmentation operation on each in-426

stance multiple times with different augmentation parameters.427

Specifically, for each instance I , we generate more than one428

augmented sample Iaug = {F(I, θ1),F(I, θ2), . . . ,F(I, θk)},429

where F(, ) is the augmentation operation, θi is the different430

augmentation parameters, k is the number of augmented431

samples we want to generate. We visualize some augmented432

instances in Figure 4.433

Then we need to paste the augmented instances into the434

scene. In copy-paste [24], the instances are copied from other435

scenes and pasted directly, the place in one scene may be436

inappropriate for another. In PolarMix [1], the instances were437

simply cut from another scan and then rotated before being438

pasted to the current scan. Both methodologies overlook a439

further exploration regarding the placement of instances. To440

tackle these challenges, we further propose a more reasonable441

and effective prior-based location sampling algorithm.442

2) Prior-based Location Sampling: In [24], the authors443

utilize a plane equation to represent the road, ensuring that444

augmented instances remain grounded. While this provides a445

foundational approach, we go a step further for the prior-based446

location generation.447

Algorithm 1 Semantic Segmentation Model Training Proce-
dure with Our Proposed Augmentation Approach
Require:

1: Dataset D: LiDAR points, semantic label, and panoptic
label: P , YS , YP ;

2: Deformation augmentation operation F(, ), Parameter
space Θ1,Θ2 for scene augmentation and instance aug-
mentation respectively. Max augmented times for each
instance n;

3: Initialized Segmentation Model Minit;
4: Maximum training iteration MAXiter.

Ensure: Trained Model Mtrained.
5: while iter < MAXiter do
6: Sample batch of D: B ∼ D, B = {P0, ..., Plen(B)};
7: Augmentation results: Raug = ∅
8: for P in B do
9: Separate each scan P into scene PS and instances

PI with ground-truth label YS ;
10: Divide PI into separated instance: Instance =

{I1, I2, ..., In} with ground-truth label YP ;
11: // For instance augmentation //
12: Initialize instance bank IB = ∅
13: for inst in Instance do
14: Sampling augmentation times K in [0, n];
15: for k in range(K) do
16: Sampling parameters θ1 in Θ1:
17: instaug = F(inst, θ1, centering = True)
18: IB.append(instaug)
19: end for
20: end for
21: // For prior-based FPS //
22: Separate points of road Pr with label YS ;
23: Farthest Sampling length(IB) points:
24: {p1, p2, ..., plength(IB)} = Prior-based FPS(Pr)
25: for i in range(length(IB)) do
26: Paste instance IB[i] at pi on scene PS ;
27: end for
28: // For scene augmentation //
29: Sampling augmentation parameters θ2 in Θ2:

sceneaug = F(PS , θ2, centering = False)
Raug .append(sceneaug)

30: end for
31: Input Raug to model and obtain the predictions;
32: Back-propagate and update parameters of the model;
33: iter = iter + 1;
34: end while
35: Return the trained model Mtrained.

Specifically, given a scan of point clouds P , first, an 448

appropriate Region of interest (ROI) area is cropped, and only 449

the points residing within this ROI undergo subsequent farthest 450

point sampling operation. This methodology addresses the 451

prevalent issue of outliers in point clouds, which is extremely 452

unfriendly for the FPS algorithm, as the sampled points may 453

have a large probability of being outliers. Second, we separate 454

the points of the road by the ground-truth label and project the 455

points to a predefined Bird’s eye view(BEV) map following the 456
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TABLE I
QUANTITATIVE COMPARISON OF MINKNET [54] AND SPVCNN [55] TRAINED WITH THE PROPOSED AUGMENTATION APPROACH AND OTHER METHODS.

THE RESULTS ARE REPORTED IN TERMS OF THE MIOU ON THE SEMANTICKITTI VALIDATION SET. CGA INDICATES CONVENTIONAL GLOBAL
AUGMENTATION WHICH INCLUDES RANDOM SCALING AND RANDOM ROTATION. IT CAN BE SEEN THAT OUR APPROACH CLEARLY ACHIEVES THE BEST

SEMANTIC SEGMENTATION PERFORMANCE ACROSS DIFFERENT AUGMENTATION METHODS.
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mIoU
MinkNet 95.9 3.7 44.9 53.2 42.1 53.7 68.9 0.0 92.8 43.0 80.0 1.8 90.5 60.0 87.4 64.5 73.3 62.1 43.7 55.9
+CGA 96.3 8.7 52.3 63.2 51.6 63.5 74.4 0.1 93.3 46.6 80.4 0.8 90.3 60.0 88.0 65.1 74.5 62.8 46.8 58.9(+3.9)
+CutMix 96.0 10.2 59.3 78.7 52.1 63.4 79.4 0.0 93.5 47.8 80.7 1.6 90.3 61.0 87.5 66.2 73.3 64.0 46.8 60.6(+5.7)
+CopyPaste 96.6 18.4 62.8 76.3 64.6 68.9 82.8 1.0 93.1 45.3 80.2 1.4 90.5 60.7 88.1 67.8 74.6 63.7 49.1 62.4(+6.5)
+Real3DAug 96.5 39.1 71.9 60.9 67.0 67.6 81.0 15.3 91.8 42.6 80.2 1.6 89.9 59.2 88.0 66.3 74.3 63.8 48.6 63.5(+7.6)
+Mix3D 96.3 29.6 61.8 68.5 55.4 72.7 77.7 1.0 94.3 52.9 81.7 0.9 89.1 55.5 88.3 69.3 74.6 65.2 50.3 62.4(+6.5)
+PolarMix 96.3 51.2 75.6 63.4 63.9 71.9 85.6 4.9 93.6 45.8 81.4 1.4 91.0 62.8 88.4 68.5 75.0 64.6 49.9 65.0 (+9.1)
+Ours 97.6 55.9 78.9 86.2 75.8 74.3 87.0 13.8 93.8 44.1 80.4 1.6 90.4 60.7 89.1 66.5 77.0 63.6 52.5 67.9(+12.0)
SPVCNN 94.9 9.1 55.8 66.5 33.7 61.8 75.9 0.2 93.1 45.3 79.6 0.4 91.4 62.7 87.5 66.2 72.9 62.8 42.7 58.0
+CGA 96.1 21.8 57.8 69.2 49.8 66.7 80.8 0.0 93.4 44.8 80.1 0.2 90.9 62.9 88.5 64.8 75.7 63.6 46.2 60.7(+2.7)
+CutMix 96.1 21.4 59.6 71.2 54.2 66.8 81.8 0.0 93.5 49.6 81.1 2.2 90.9 63.1 87.9 66.9 74.1 63.8 49.8 61.7(+3.7)
+CopyPaste 96.0 32.4 66.4 67.1 52.9 74.8 84.3 3.6 93.3 46.9 80.2 2.5 91.1 64.1 88.1 67.0 73.9 64.0 51.6 63.2(+5.2)
+Real3DAug 95.9 44.1 73.4 49.2 48.4 70.3 85.5 12.0 92.8 45.7 79.7 2.9 89.4 57.0 89.2 67.6 76.7 63.7 48.9 62.8(+4.8)
+Mix3D 96.0 32.4 66.4 67.1 52.9 74.8 84.3 3.6 93.3 46.9 80.2 2.5 91.1 64.1 88.1 67.0 73.9 64.0 51.6 63.7(+5.7)
+PolarMix 96.5 53.9 79.7 68.5 64.9 75.6 87.8 7.5 93.5 47.3 81.2 1.1 91.2 63.8 88.2 68.2 74.2 64.5 49.4 66.2 (+8.5)
+Ours 97.6 56.1 77.7 85.6 75.0 79.4 86.9 24.7 93.9 47.0 80.7 2.2 89.9 57.0 88.2 67.1 74.4 64.9 52.9 68.5(+10.7)

TABLE II
QUANTITATIVE COMPARISON OF MINKNET [54] AND SPVCNN [55] TRAINED WITH THE PROPOSED AUGMENTATION APPROACH AND OTHER METHODS.
THE RESULTS ARE REPORTED IN TERMS OF THE MIOU ON THE SEMANTICKITTI TEST SET. IT CAN BE SEEN THAT OUR APPROACH CLEARLY ACHIEVES

BETTER PERFORMANCE THAN POLARMIX.
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mIoU
MinkNet+PM 96.2 56.5 57.1 47.9 52.3 64.7 70.3 16.8 89.2 64.5 72.8 30.0 91.4 67.0 85.8 70.8 70.6 59.7 64.9 64.7
MinkNet+Ours 97.0 59.5 59.1 49.8 56.2 66.5 69.1 46.3 89.3 64.7 72.8 28.4 92.0 67.7 85.0 70.4 69.4 60.9 64.6 66.8(+2.1)
SPVCNN+PM 96.2 57.4 61.1 48.3 50.6 69.2 72.8 24.3 89.0 63.3 72.7 30.3 91.0 66.1 85.3 70.7 69.8 60.6 65.5 65.5
SPVCNN+Ours 97.0 60.8 59.3 48.5 54.1 67.6 73.2 39.1 89.6 64.1 73.5 28.9 92.0 67.8 84.8 70.6 68.7 60.8 66.1 66.6(+1.1)

approach in Pointpillar [64]. Depending on whether the grid457

of maps has points or not, the grids were classified into two458

different states: valid and empty, which are represented by “1”459

and “0” respectively. Third, an erosion operation is performed460

on the BEV map. Without the erosion operation, the sampled461

locations will be mainly distributed at the boundaries of the462

road. We refer to this as boundary effects, which are obviously463

not appropriate in the real-world scenario. Finally, the Farthest464

Point Sampling (FPS) is adopted for generating more uniform465

distributed locations for instance to be pasted.466

3) Scene Augmentation: The scene augmentation procedure467

is more simple and straightforward compared to instance aug-468

mentation. Specifically, we first paste the instances generated469

from IAM at the sampled location on the scene. Then the470

whole point clouds can be processed according to the equation471

4 but with different parameter settings { fx, fy , fz , βx,472

βy , βz , αx, αy , αz }. We summarize the overall semantic473

segmentation training procedure with our proposed smooth474

deformation augmentation approach in Algorithm 1. Note that475

our method operates only on the model input data, allowing476

for seamless integration into the training process of current477

segmentation models.478

IV. EXPERIMENTS 479

A. Dataset and Metrics 480

Dataset. We evaluate our proposed nonrigid augmentation 481

approach over two LiDAR datasets of driving scenes that 482

have been widely adopted for benchmarking in semantic 483

segmentation. The first is SemanticKITTI [2], which is a large- 484

scale dataset for semantic scene understanding using LiDAR 485

sequences. It is based on the KITTI Vision Benchmark and has 486

a dense semantic annotation for the entire KITTI Odometry 487

Benchmark. It has a total of 43,551 scans sampled from 22 488

sequences and collected in different cities in Germany. In the 489

dataset, over 21,000 are available for training (sequences 00 to 490

10), the rest (sequences 11 to 21) are used as the test set, and 491

sequence 08 is often used as the validation set. It has 19 classes 492

for training and evaluation, and the details of each class are 493

listed in Table I. The second is nuScenes-lidarseg [31], which 494

has 40,000 scans captured in a total of 1000 scenes of 20s 495

duration. It is collected with a 32 beams LiDAR sensor and 496

is sampled at 20Hz. The dataset was split into training and 497

validation sets officially. After similar classes were merged 498

and rare classes were removed, there remained 16 classes for 499

the LiDAR semantic segmentation. 500

Evaluation Metric. To evaluate our proposed method, we 501

follow the official guidance to leverage means intersection 502
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TABLE III
QUANTITATIVE COMPARISON OF POLARNET [52] AND CYLINDER3D [56] TRAINED WITH THE PROPOSED AUGMENTATION APPROACH AND OTHER
METHODS. THE RESULTS ARE REPORTED IN TERMS OF THE MIOU ON BOTH THE SEMANTICKITTI VALIDATION AND TEST SET. ∗ REPRESENTS THE

RESULT REPRODUCED BY THE OFFICIALLY RELEASED CODE.
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mIoU
PolarNet 91.5 30.7 38.8 46.4 24.0 54.1 62.2 0.0 92.4 47.1 78.0 1.8 89.1 45.5 85.4 59.6 72.3 58.1 42.2 53.6
+PolarMix (val) 92.5 37.5 47.9 74.6 34.5 61.6 76.2 0.0 92.8 43.7 78.6 2.1 90.4 54.2 84.1 53.6 66.8 59.1 41.7 57.5(+3.9)
+Ours 93.1 46.7 58.1 70.7 35.8 64.3 82.4 0.0 93.9 46.5 79.9 6.2 87.1 42.0 86.6 53.3 74.2 62.2 42.0 58.9(+5.3)
PolarNet 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5 54.3
+PolarMix (test) 94.1 33.3 29.9 24.8 36.8 53.0 61.5 34.0 89.9 61.7 71.8 15.6 90.3 63.3 84.3 63.3 64.2 53.9 58.2 57.0(+2.7)
+Ours 93.8 52.3 33.8 28.9 32.3 54.1 62.6 34.0 90.4 63.0 74.0 20.3 90.6 63.4 83.9 65.9 67.7 54.7 59.6 59.2(+4.9)
Cylinder3D∗ 96.1 50.7 67.1 79.0 53.4 74.4 85.6 0.0 92.7 40.7 78.3 5.4 90.6 60.2 86.2 67.7 69.8 64.6 48.2 63.7
+PolarMix (val) 96.3 53.2 67.3 64.8 60.4 75.1 87.7 10.6 94.1 47.8 80.6 2.5 89.9 57.9 87.2 70.5 72.1 65.4 50.8 64.9(+1.2)
+Ours 95.8 52.7 78.3 79.8 56.1 76.3 84.1 14.1 94.5 43.0 81.3 0.2 90.1 56.5 86.7 68.9 71.0 65.0 52.2 65.6(+1.9)
Cylinder3D∗ 96.7 60.1 57.4 43.2 49.6 70.0 65.1 12.0 91.6 64.6 76.0 24.3 90.0 63.4 84.8 70.7 67.6 62.0 64.0 63.9
+PolarMix (test) 96.2 64.3 57.1 30.8 47.8 72.0 67.6 30.7 91.4 65.9 76.2 18.6 90.4 64.1 84.4 72.7 67.4 62.6 64.3 64.5(+0.6)
+Ours 96.4 66.0 59.1 31.2 49.8 73.8 69.4 36.5 91.8 67.0 77.0 20.6 90.7 65.0 84.9 73.4 68.2 63.6 65.2 65.8(+1.9)

TABLE IV
QUANTITATIVE COMPARISON OF MINKNET [54] AND SPVCNN [55]

TRAINED WITH THE PROPOSED AUGMENTATION APPROACH AND OTHER
METHODS ON THE NUSCENES VALIDATION SET. OUR APPROACH

ACHIEVES SIGNIFICANT IMPROVEMENTS OVER THE TWO DIFFERENT
BASELINES.

Methods MinkNet SPVCNN FLOPs Time
(ms)

None 67.1 68.4 - -
+CGA 70.2(+3.1) 69.1(+0.7) 1.0 M 1.27
+CutMix 70.4(+3.3) 71.7(+3.3) 0.1 M 0.02
+Copy-Paste 70.8(+3.7) 71.3(+2.9) - -
+Mix3D 70.1(+3.0) 70.5(+2.1) - -
+PolarMix 72.0(+4.9) 72.1(+3.7) 0.6 M 0.95
+Ours 73.3(+6.2) 73.5(+5.1) 2.6 M 2.13

over-union (mIoU) as the evaluation metric as defined in [2].503

The evaluation metric be formulated as:504

IoUc =
TPc

TPc + FPc + FNc
, (5)

where TPc, FPc, and FNc represent true positive, false505

positive, and false negative of class c respectively. The final506

mIoU is the mean value of IoU over all classes in the dataset.507

B. Implementation Details508

In our experiments, we adopt the cosine function as the509

augmentation function ϕ(.). This function aptly aligns with the510

characteristics delineated in our analysis. For the {x → y′−y},511

{y → x′ − x}, and {r → z′ − z} mapping, the wavelength512

1/fx, 1/fy , and 1/fz of the cosine function is randomly513

sampled from a uniform distribution within the interval [1/10π,514

1/30π], the phase of the cosine function is randomly sampled515

from a uniform distribution within the interval [0, π], and516

amplitude of the function is randomly sampled from a uniform517

distribution within the interval [0, 1] and [0, 10] for the518

instance and scene, respectively. The max augmented times519

n for each instance are set to 4 in all our experiments. For520

the ROI crop operation in the prior-based location sampling521

module, we randomly select an ROI area with size 70m ×522

70m from the predefined range [-50m, 50m] in the training523

stage.524

C. Experimental Results 525

We evaluate our proposed augmentation approach over 526

SemanticKITTI [2] and nuScenes-lidarseg [31] datasets across 527

MinkNet [54], SPVCNN [55], PolarNet [52] and Cylinder3D 528

[56] baselines. We choose MinkNet and SPVCNN as they are 529

also adopted in other augmentation methods, which allows 530

us to make a more comprehensive and fair comparison. In 531

addition, we further chose PolarNet and Cylinder3D to further 532

prove the effectiveness and generalization of our proposed 533

approach. To clarify the definition, we use CGA to represent 534

conventional global augmentation which includes random scal- 535

ing and random rotation. 536

For the MinkNet and SPVCNN baselines on the Se- 537

manticKITTI val set, the evaluation results are shown in Table 538

I. It can be seen that a significant improvement can be achieved 539

with our approach, which suppresses the baseline by 12.0% 540

and 10.7% mIoU respectively, and suppresses the PolarMix 541

method by 2.9% and 2.2% respectively. For the comparison 542

results on the SemanticKITTI test set, as the annotations of 543

test data are not available, predicted segmentation results are 544

submitted to the online server for a fair evaluation to prevent 545

overfitting to the test set. The result is shown in Table II. We 546

can see that our approach achieves clear performance gain 547

compared with the PolarMix [1]. We suppress the Polarmix 548

by 2.1% and 1.1% on the MinkNet and SPVCNN baseline, 549

respectively. 550

We also conduct experiments with the PolarNet [52] and 551

Cylinder3D [56] baselines on both the SemanticKITTI val and 552

test set to demonstrate the effectiveness and generalization of 553

our approach, and the results is shown in Table III. Better 554

performance is also achieved over the two different baselines. 555

Specifically, we suppress the PolarNet and Cylinder3D base- 556

lines by 5.3% and 4.9% on the SemanticKITTI val set. Com- 557

pared with PolarMix, we achieved an additional performance 558

gain of 1.4% and 2.2%, respectively. On the SemanticKITTI 559

test set, we suppress the baseline by 1.9% and 1.9%. Compared 560

with PolarMix, we attained an additional performance gain of 561

0.7% and 1.3%, respectively. 562

To further demonstrate the generalization of our method, we 563

further conduct experiments with the MinkNet and SPVCNN 564
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TABLE V
QUANTITATIVE COMPARISON OF TWO MAIN CATEGORIES: INSTANCE AND

SCENE. THE EXPERIMENTAL RESULTS ARE CONDUCTED ON BOTH THE
SEMANTICKITTI VALIDATION AND TEST SET. FOR THE STATISTICS OF

BASELINES AND POLARMIX METHODS, WE USE THE RESULTS REPORTED
IN WORKS [1], [52].

Methods
val test

Instance
(mIoU)

Scene
(mIoU)

Instance
(mIoU)

Scene
(mIoU)

MinkNet 45.3 63.6 - -
+PolarMix 64.1 65.7 57.7 69.7
+Ours 71.2 65.4 62.9 69.6
SPVCNN 49.7 64.1 - -
+PolarMix 66.8 65.7 60.0 69.5
+Ours 72.9 65.3 62.5 69.7
PolarNet 43.5 61.0 38.1 66.0
+PolarMix 53.1 60.6 45.9 65.1
+Ours 56.4 61.3 49.0 66.7
Cylinder3D 63.3 64.0 60.6 66.7
+PolarMix 67.7 62.5 61.9 66.7
+Ours 67.2 64.5 63.8 67.6

TABLE VI
QUANTITATIVE COMPARISON BETWEEN CDA, POINTWOLF [17] AND

OUR SMOOTH DEFORMATION AUGMENTATION APPROACH FOR THE
INSTANCE AUGMENTATION OPERATION IN THE IAM. RESULTS ARE

REPORTED ON THE SEMANTICKITTI VALIDATION SET.

Method CDA POINTWOLF [17] Ours
mIoU 68.0 68.4 68.5

baselines on the nuScenes-lidarseg dataset, the evaluation565

results are shown in Table IV. It can be seen that our ap-566

proach achieves obvious improvements over the two different567

baseline models. We suppress the baseline model by 6.2%568

and 5.1% mIoU, respectively. Compared with the PolarMix,569

we achieve a 1.3% performance gain on the MinkNet baseline570

and suppress the PolarMix by 1.4% on the SPVCNN baseline.571

In addition, Table IV compares computational costs and572

practical inference times across augmentation methods. For573

FLOPs, we assume 100,000 points per scan, ignoring instance574

operations due to their small contribution. We conducted575

inference experiments on an Intel(R) Core(TM) i5-12500H @576

2.50GHz CPU, running each method 100 times and averaging.577

Our method consumes more computational resources and CPU578

time than others to generate augmented samples. However,579

in training, we experimentally found negligible differences in580

speed between the augmentation methods.581

Taking the experimental results analysis one step further, we582

categorize the mIoU performance into two main categories [2]:583

the Instance mIoU and the Scene mIoU. Here, we aim to584

compare the effectiveness of different methods on scene and585

instance levels, as both our approach and the PolarMix contain586

two main components: scene-level augmentation and instance-587

level augmentation. Results of the analysis are shown in Table588

V. It can be seen that we achieve significant improvements589

on the instance level as we have more specific designs590

for instance augmentation (IAM and PLSM) compared with591

scene augmentation (only scene deformation augmentation592

is adopted), but we still achieve competitive results for the593

Scene mIoU. Specifically, for the MinkNet and SPVCNN594

baseline, compared with PolarMix, the performance improve-595

ments on the Instance mIoU remains significant, with 7.1%596

TABLE VII
ABLATION STUDY OF EACH COMPONENT IN OUR PROPOSED APPROACH

ON THE FINAL PERFORMANCE OF THE SPVCNN MODEL ON THE
SEMANTICKITTI VALIDATION SET.

SPVCNN SAM IAM Copy
paste PLSM mIoU

√
58.0

√ √
63.8

√ √ √
65.8

√ √ √
67.6

√ √ √ √
67.3

√ √ √ √
68.5

and 6.1% improvements on the val set, and 5.2% and 2.5% 597

improvements on the test set respectively. For the mIoU of 598

scene, our advantages over Polarmix become less obvious 599

or even slightly worse as our augmentation operation for 600

the scene is relatively simple, but we still achieve obvious 601

performance improvements over the baseline model, 1.8% 602

and 1.2% improvements compared with the MinkNet and 603

SPVCNN baseline. For the PolarNet baseline, we achieve a 604

consistent and significant performance improvement on both 605

the val and test set, suppress the PolarMix method by 3.3% 606

instance mIoU and 0.7% scene mIoU on the val set, and 607

improve the performance by 3.1% instance mIoU and 1.6% 608

scene mIoU on the test set. For the Cylinder3D baseline 609

method, we are slightly worse than the PolarMix by 0.5% 610

instance mIoU on the val set, but suppress PolarMix by 2% 611

scene mIoU. On the test set, we suppress the PolarMix method 612

by 1.9% instance mIoU and 0.9% scene mIoU, respectively. 613

The above experimental results demonstrate that our method 614

holds advantages over the PolarMix in both instance and scene 615

aspects, and also prove the effectiveness of the IAM, PLSM, 616

and SAM modules we designed. 617

As for object-level augmentation used in the Instance 618

Augmentation Module (IAM), we conduct experiments and 619

make comparisons with other popular augmentation meth- 620

ods for instance including Conventional Data Augmentation 621

(CDA) and POINTWOLF [17], where CDA including rotation, 622

flipping, scaling, and point-wise jittering as in [65]. For a 623

fair comparison, we simply replace the method used in our 624

paper for instance augmentation with the above methods. The 625

experimental results are shown in Table VI. It can be seen 626

that our method has a slight advantage compared to methods 627

tailored for object augmentation. 628

D. Analysis 629

Here, we give a more in-depth analysis of why our approach 630

can deliver such promising performance improvement. The 631

overall improvement in performance comes from two aspects: 632

the performance improvement of instance classes and the 633

performance improvement of scene classes. Correspondingly, 634

our method can be divided into two parts: augmentation of the 635

scene and augmentation of the instance. 636

Firstly, for the scene part, our method considers smooth 637

deformations — a non-rigid point cloud transformation that 638

has not been fully utilized in other augmentation techniques. 639

However, such deformation transformations commonly exist in 640
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reality, like curved roads. Unlike other augmentation methods641

employing only rigid transformations, our smooth deforma-642

tion augmentation preserves the continuity and topological643

structure of point clouds while simultaneously altering the644

3D representations during training. We believe this criti-645

cally enhances the model’s generalization ability to diverse646

scenarios by encouraging better learning and utilization of647

structural information for semantic prediction. Furthermore,648

experimental results in Table V clearly demonstrate significant649

improvements in scene segmentation performance with our650

technique.651

Regarding the instance part, two primary factors limit652

instance segmentation performance: data imbalance and lack653

of diversity. Compared to scene classes spanning hundreds of654

thousands of points, instance point clouds typically contain655

only hundreds or thousands of points. Many existing augmen-656

tation methods solely apply global transformations without657

considering instance-level augmentations, resulting in poor in-658

stance segmentation performance. To address these factors, we659

propose tailored solutions. Firstly, to mitigate data imbalance,660

we develop an improved instance copy-paste algorithm with661

prior location selection. Unlike original copy-paste randomly662

pasting instances scene-wide, we incorporate constraints on663

viable pasting locations to mimic realistic scenarios better.664

For instance, pedestrians and vehicles generally occupy roads;665

thus, we limit pasting to road areas. However, roads provide666

limited space, so random pasting risks instance conflicts. To667

resolve this, we apply farthest point sampling (FPS) of road668

point clouds and pasting instances across the distributed FPS669

locations, nearly eliminating inter-instance conflicts. Secondly,670

to improve instance diversity, we apply non-rigid smooth671

deformations, which can demonstrably enhance model gen-672

eralization [17]. As Table VI shows, our smooth deformation673

instance augmentations further improve model performance.674

E. Ablation Study675

To verify the effectiveness of each component, we conduct676

ablation studies of the SPVCNN model on the SemanticKITTI677

validation set. The experimental results are shown in Table678

VII. We can see that only the scene augmentation can obtain679

a 5.8% mIoU improvement, and with the copy-paste instance680

augmentation, the performance can be improved by 2% mIoU.681

Together with our instance deformation augmentation, the per-682

formance can be further improved by 1.5% mIoU. When the683

copy-pasted instance augmentation operation is replaced with684

our prior-based location sampling module, the performance685

can obtain another 1.2% mIoU improvement. All the above686

results demonstrate the effectiveness of each component of687

our proposed approach.688

F. Sensitivity Analysis689

We further conduct a sensitivity analysis for the frequency690

parameters fx, fy, fz , and amplitude parameters αx, αy, αz691

in equation 4, as these are the very crucial parameter for692

our proposed approach. For simplicity, in the experiments,693

we performed scaling by multiples based on the default694

experimental parameter settings as mentioned in Section IV-B. 695

The experiment results are shown in Figure 6. 696

In the experiments, we have established four distinct sets 697

of coefficients for the sensitivity analysis, 0.25×, 0.5×, 1×, 698

and 2×, respectively. Notably, the performance for both the 699

frequency parameters f∗ and amplitude parameters a∗ slightly 700

declined on both the left and right of 1×, which is also the 701

default parameter setting chosen for our experiments. The best 702

performance is always obtained at 1× location. 703

G. Visualization 704

To demonstrate the model’s capability in responding to 705

scene changes after training with our approach, we visualize 706

changes in feature representations for point clouds before and 707

after augmentation for both instance and scene classes, and 708

also make comparisons with the baseline model. Notably, for 709

the road class, we employ the erosion operation mentioned 710

in Section III-B2, removing boundary areas since features are 711

easily affected by surroundings in these areas. The results are 712

shown in Figure 5. It can be seen that after training with our 713

augmentation approach, the extracted features exhibit better 714

consistency despite structural changes in objects and scenes. 715

We believe that the consistency of feature representation is 716

crucial for achieving robustness segmentation results in real- 717

world scenarios. 718

In addition, to provide a more intuitive understanding of 719

our augmentation approach, we visualize different scenes 720

before and after augmentation in Figure 7. We show five 721

augmentation results for each scene generated from different 722

augmentation parameters. The first three columns mainly show 723

the augmentation in the x−y plane, while the last two columns 724

show z-direction augmentation. The results demonstrate that 725

our approach can generate a wide variety of samples, which 726

will be highly beneficial for model learning. 727

Finally, Figure 8 visualizes segmentation results for qual- 728

itative comparison. In the first two rows, our augmentation 729

approach provides correct segmentations while PolarMix in- 730

correctly labels instances. Specifically, in the first row, Po- 731

larMix incorrectly classifies the other-vehicle as a car. In the 732

second row, it mislabels the fence as a building. Notably, 733

PolarMix inconsistently labels classes bearing similarity, re- 734

quiring precise discrimination between vehicles or man-made 735

structures. Our augmentations enable a deeper understanding 736

of subtle inter-class differences, improving generalization. 737

Both methods incorrectly predict parts of other-ground as 738

vegetation or terrain in the third row — a challenging case 739

even for humans lacking scene context. Further augmentation 740

advances targeting contextual reasoning could provide correct 741

predictions. Overall, qualitative results demonstrate that our 742

augmentations produce consistently accurate segmentations 743

compared with PolarMix, overcoming limitations posed by 744

small inter-class discrepancies. However, complex scenes war- 745

rant further augmentation to deeply understand relationships 746

and ambiguity. 747

V. CONCLUSION 748

In this work, we proposed a novel and effective augmenta- 749

tion approach with smooth deformation for the LiDAR point 750
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person bicyclist road

baseline with aug input baseline with raw input ours with aug input ours with raw input

Fig. 5. Visualization of the spatial distribution of features for both instances and scenes before and after deformation augmentation. The first row shows the
point cloud before and after augmentation. The second row shows t-SNE visualization of corresponding point cloud features. Green and blue represent results
from the baseline and proposed model, respectively. Solid shapes indicate models take point clouds after augmentation as input, while hollow shapes indicate
models take point clouds before augmentation as input.

Fig. 6. Sensitivity analysis on the augmentation frequency parameters f∗
(left) and amplitude parameters a∗ (right) in equation 4. For convenience,
the default parameter settings in Section IV-B are used as the baseline (1×).
Experiments are then conducted by scaling the default settings by factors of
0.25, 0.5 and 2, respectively.

cloud semantic segmentation task. The overall augmentation751

pipeline has two main components: scene augmentation and752

instance augmentation. To simplify the selection and design753

of the smooth deformation augmentation functions and make754

the augmentation results more flexible and controllable, three755

different effective strategies were proposed: residual mapping,756

spacing decoupling, and function periodization, respectively.757

We also propose an effective prior-based location sampling758

algorithm that aims to paste the augmented instance on a more759

feasible area in the scene. As a result, our approach can enrich760

the diversity of training data and boost the performance of761

various baselines consistently and significantly. Finally, we762

conduct extensive experiments on both the SemanticKITTI763

and nuScenes challenging datasets. The experimental results764

demonstrate that our method shows an obvious advantage765

compared to other methods.766

REFERENCES767

[1] A. Xiao, J. Huang, D. Guan, K. Cui, S. Lu, and L. Shao, “Polarmix: A768

general data augmentation technique for lidar point clouds,” NeurIPS,769

vol. 35, pp. 11 035–11 048, 2022. 770

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, 771

and J. Gall, “Semantickitti: A dataset for semantic scene understanding 772

of lidar sequences,” in ICCV, 2019, pp. 9297–9307. 773

[3] J. Mei and H. Zhao, “Incorporating human domain knowledge in 3-d 774

lidar-based semantic segmentation,” IEEE Transactions on Intelligent 775

Vehicles, vol. 5, no. 2, pp. 178–187, 2019. 776

[4] S. Qiu, F. Jiang, H. Zhang, X. Xue, and J. Pu, “Multi-to-single 777

knowledge distillation for point cloud semantic segmentation,” in ICRA, 778

2023, pp. 9303–9309. 779

[5] Z. Zhao, W. Zhang, J. Gu, J. Yang, and K. Huang, “Lidar mapping 780

optimization based on lightweight semantic segmentation,” IEEE Trans- 781

actions on Intelligent Vehicles, vol. 4, no. 3, pp. 353–362, 2019. 782

[6] Z. Wang, J. Guo, H. Zhang, R. Wan, J. Zhang, and J. Pu, “Bridging the 783

gap: Improving domain generalization in trajectory prediction,” IEEE 784

Transactions on Intelligent Vehicles, pp. 1–13, 2023. 785

[7] S. Teng, X. Hu, P. Deng, B. Li, Y. Li, Y. Ai, D. Yang, L. Li, Z. Xuanyuan, 786

F. Zhu et al., “Motion planning for autonomous driving: The state of the 787

art and future perspectives,” IEEE Transactions on Intelligent Vehicles, 788

2023. 789

[8] J. Yoo, N. Ahn, and K.-A. Sohn, “Rethinking data augmentation for 790

image super-resolution: A comprehensive analysis and a new strategy,” 791

in CVPR, 2020, pp. 8375–8384. 792

[9] C. Luo, Y. Zhu, L. Jin, and Y. Wang, “Learn to augment: Joint data 793

augmentation and network optimization for text recognition,” in CVPR, 794

2020, pp. 13 746–13 755. 795

[10] A. Dabouei, S. Soleymani, F. Taherkhani, and N. M. Nasrabadi, “Super- 796

mix: Supervising the mixing data augmentation,” in CVPR, 2021, pp. 797

13 794–13 803. 798

[11] S. Li, K. Gong, C. H. Liu, Y. Wang, F. Qiao, and X. Cheng, “Metasaug: 799

Meta semantic augmentation for long-tailed visual recognition,” in 800

CVPR, 2021, pp. 5212–5221. 801

[12] C. Wang, C. Ma, M. Zhu, and X. Yang, “Pointaugmenting: Cross-modal 802

augmentation for 3d object detection,” in CVPR, 2021, pp. 11 794– 803

11 803. 804

[13] T.-H. Chen and T. S. Chang, “Rangeseg: Range-aware real time seg- 805

mentation of 3d lidar point clouds,” IEEE Transactions on Intelligent 806

Vehicles, vol. 7, no. 1, pp. 93–101, 2021. 807

[14] G. Xian, C. Ji, L. Zhou, G. Chen, J. Zhang, B. Li, X. Xue, and J. Pu, 808

“Location-guided lidar-based panoptic segmentation for autonomous 809

driving,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 810

1473–1483, 2022. 811

[15] Y. Qian, X. Wang, Z. Chen, C. Wang, and M. Yang, “Hy-seg: A hybrid 812

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3348805

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Input Auged Samples

Fig. 7. Visualization of some augmented scenes. For each scene, we show five different augmentation results generated from different parameters. The first
three columns mainly show the augmentation on the x-y plane, while the latter two columns mainly show the augmentation along the z direction. It can be
seen that our method can generate a large number of samples with extensive diversity.

method for ground segmentation using point clouds,” IEEE Transactions813

on Intelligent Vehicles, vol. 8, no. 2, pp. 1597–1606, 2022.814

[16] P. Ni, X. Li, W. Xu, D. Kong, Y. Hu, and K. Wei, “Robust 3d semantic815

segmentation based on multi-phase multi-modal fusion for intelligent816

vehicles,” IEEE Transactions on Intelligent Vehicles, 2023.817

[17] S. Kim, S. Lee, D. Hwang, J. Lee, S. J. Hwang, and H. J. Kim, “Point818

cloud augmentation with weighted local transformations,” in ICCV,819

2021, pp. 548–557.820

[18] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and D. Soudry,821

“Augment your batch: Improving generalization through instance repe-822

tition,” in CVPR, 2020, pp. 8129–8138.823

[19] C. Gong, D. Wang, M. Li, V. Chandra, and Q. Liu, “Keepaugment: A824

simple information-preserving data augmentation approach,” in CVPR,825

2021, pp. 1055–1064.826

[20] X. Zhang, N. Tseng, A. Syed, R. Bhasin, and N. Jaipuria, “Simbar:827

Single image-based scene relighting for effective data augmentation for828

automated driving vision tasks,” in CVPR, 2022, pp. 3718–3728.829

[21] S. Li, M. Xie, K. Gong, C. H. Liu, Y. Wang, and W. Li, “Transferable830

semantic augmentation for domain adaptation,” in CVPR, 2021, pp.831

11 516–11 525.832

[22] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-833

ularization strategy to train strong classifiers with localizable features,”834

in ICCV, 2019, pp. 6023–6032.835

[23] A. Nekrasov, J. Schult, O. Litany, B. Leibe, and F. Engelmann, “Mix3d:836

Out-of-context data augmentation for 3d scenes,” in 3DV, 2021, pp.837

116–125.838

[24] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le,839

and B. Zoph, “Simple copy-paste is a strong data augmentation method840

for instance segmentation,” in CVPR, 2021, pp. 2918–2928.841

[25] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond 842

empirical risk minimization,” in ICLR, 2018. 843

[26] Y. Chen, V. T. Hu, E. Gavves, T. Mensink, P. Mettes, P. Yang, and C. G. 844

Snoek, “Pointmixup: Augmentation for point clouds,” in ECCV, 2020, 845

pp. 330–345. 846

[27] S. V. Sheshappanavar, V. V. Singh, and C. Kambhamettu, “Patchaug- 847

ment: Local neighborhood augmentation in point cloud classification,” 848

in ICCV, 2021, pp. 2118–2127. 849

[28] R. Li, X. Li, P.-A. Heng, and C.-W. Fu, “Pointaugment: an auto- 850

augmentation framework for point cloud classification,” in CVPR, 2020, 851

pp. 6378–6387. 852

[29] J. Choi, Y. Song, and N. Kwak, “Part-aware data augmentation for 3d 853

object detection in point cloud,” in IROS, 2021, pp. 3391–3397. 854

[30] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous 855

driving? the kitti vision benchmark suite,” in CVPR, 2012, pp. 3354– 856

3361. 857

[31] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr- 858

ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal 859

dataset for autonomous driving,” in CVPR, 2020, pp. 11 621–11 631. 860

[32] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, 861

J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception for 862

autonomous driving: Waymo open dataset,” in CVPR, 2020, pp. 2446– 863

2454. 864

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 865

recognition,” in CVPR, 2016, pp. 770–778. 866

[34] Z. Zhou, Y. Zhang, and H. Foroosh, “Panoptic-polarnet: Proposal-free 867

lidar point cloud panoptic segmentation,” in CVPR, 2021, pp. 13 194– 868

13 203. 869

[35] M. Hahner, D. Dai, A. Liniger, and L. Van Gool, “Quantifying data 870

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3348805

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

other-vehicle - car 

Fence-building

other-ground - vegetation

Input GT PolarMix Ours
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