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Abstract—Semantic segmentation and stereo matching are two
essential components of 3D environmental perception systems for
autonomous driving. Nevertheless, conventional approaches often
address these two problems independently, employing separate
models for each task. This approach poses practical limita-
tions in real-world scenarios, particularly when computational
resources are scarce or real-time performance is imperative.
Hence, in this article, we introduce S3M-Net, a novel joint
learning framework developed to perform semantic segmentation
and stereo matching simultaneously. Specifically, S3M-Net shares
the features extracted from RGB images between both tasks,
resulting in an improved overall scene understanding capability.
This feature sharing process is realized using a feature fusion
adaption (FFA) module, which effectively transforms the shared
features into semantic space and subsequently fuses them with the
encoded disparity features. The entire joint learning framework
is trained by minimizing a novel semantic consistency-guided
(SCG) loss, which places emphasis on the structural consistency
in both tasks. Extensive experimental results conducted on the
vKITTI2 and KITTI datasets demonstrate the effectiveness of our
proposed joint learning framework and its superior performance
compared to other state-of-the-art single-task networks. Our
project webpage is accessible at mias.group/S3M-Net.

Index Terms—semantic segmentation, stereo matching, envi-
ronmental perception, autonomous driving, joint learning.

I. INTRODUCTION

3D environmental perception stands as a critical and foun-
dational aspect of autonomous driving [1], [2]. Semantic

segmentation and stereo matching are two key functionalities
in 3D environmental perception systems [3], [5], [54]. The
former provides a comprehensive pixel-level understanding of
the environment, while the latter simulates human binocular
vision to acquire accurate and dense depth information [6].
The combined utilization of both functionalities has become
the mainstream approach in recent years [7]–[12].

In recent years, the research focus in semantic segmentation
has shifted from single-modal networks [13]–[18] with a
single encoder to feature-fusion networks with dual encoders
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[19]–[22]. The latter type of networks extract heterogeneous
features from RGB-X data, where “X” can represent various
forms of spatial geometric information, e.g., depth images
generated from LiDAR point clouds and surface normal
maps obtained through depth-to-normal translation [23]. These
heterogeneous features are subsequently fused to achieve a
more comprehensive understanding of the environment [21].
However, a critical drawback of feature-fusion networks is
their dependency on the availability of the “X” data, which
can pose limitations in scenarios where LiDARs are not
present. Additionally, when the accuracy of the “X” data is
not satisfactory, such as due to variations in camera-LiDAR
calibration, the fusion of these heterogeneous features can
potentially lead to a degradation in the overall performance
of semantic segmentation [24]. While a stereo camera can
serve as a practical and cost-effective alternative to LiDARs for
depth information acquisition, the incorporation of a separate
stereo matching network introduces additional computations,
and therefore, poses difficulties in achieving real-time pro-
cessing speeds for the entire system [9]. Moreover, stereo
matching and semantic segmentation share the same input, and
the representations from RGB images can be more informative
when they are jointly learned by both tasks.

The joint learning of multiple interconnected 3D environ-
mental perception tasks introduces a form of regularization
that has demonstrated superiority over uniform complexity
penalization in reducing over-fitting [25]. Furthermore, rather
than employing separate models for semantic segmentation
and stereo matching, joint learning can potentially reduce
computational complexity [7]–[12], as shared learning repre-
sentations can be used for both tasks. This can be advantageous
in real-time or resource-constrained applications. Moreover,
joint learning enables end-to-end optimization of the entire
system, allowing the model to adapt to the specific challenges
of both tasks simultaneously. Consequently, this can lead
to improved performance when compared to models trained
separately for each task [12]. In addition, stereo matching
can occasionally produce ambiguously estimated disparities,
particularly in texture-less or occluded regions [26]. Semantic
segmentation can provide informative contextual information
that helps disambiguate such cases, ultimately leading to more
reliable disparity estimations [9]. Regrettably, the joint learn-
ing of semantic segmentation and stereo matching, especially
within feature-fusion networks or when faced with a scarcity
of training samples, has received relatively limited attention
in this research area and calls for further investigation.

Therefore, in this article, we present Semantic Segmentation
and Stereo Matching Network (S3M-Net), a joint frame-
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work to simultaneously predict both semantic and disparity
information. S3M-Net begins with the extraction of features
from stereo images. These features are then processed by a
multi-level gate recurrent unit (GRU) operator to generate a
disparity map. Simultaneously, these features are shared with
the semantic segmentation task via a feature fusion adaptation
(FFA) module. Building upon our prior work SNE-RoadSeg
[3], we extract additional features from the estimated disparity
map. Finally, a densely-connected skip connection decoder
is employed to decode the fused features and generate the
semantic predictions. S3M-Net is trained in a fully supervised
manner by minimizing a semantic consistency-guided (SCG)
joint learning loss. Extensive experiments conducted on the
vKITTI2 [27] and KITTI 2015 [28] datasets unequivocally
demonstrate the effectiveness and superior performance of our
proposed S3M-Net.

In summary, the main contributions of this article include:
• S3M-Net, a joint learning framework designed to address

semantic segmentation and stereo matching simultane-
ously, where both tasks collaboratively leverage the fea-
tures extracted from RGB images, enhancing the overall
understanding of the driving scenario;

• A feature fusion adaption module to transform the shared
feature maps into semantic space and subsequently fuse
them with encoded disparity features;

• A semantic consistency-guided loss function to supervise
the training process of the joint learning framework,
emphasizing on the structural consistency in both tasks.

The remainder of this article is organized as follows: Sect.
II provides a review of related work. Sect. III introduces
our proposed S3M-Net. Sect. IV presents the experimental
results and compares our framework with other state-of-the-art
(SoTA) approaches. In Sect. V, we discuss the advantages and
limitations of our method. Finally, we conclude this article in
Sect. VI.

II. LITERATURE REVIEW

A. Semantic Segmentation

Semantic segmentation has been a long-standing problem
in the field of computer vision over the past decade [6],
[29]. The SoTA networks in this research area can generally
be classified into two categories: (1) single-modal networks
with a single encoder and (2) feature-fusion networks with
multiple encoders [3], [30], [31]. In the early attempts to
tackle semantic segmentation, researchers primarily focused
on encoder-decoder architectures for pixel-level classification.
Notable examples include SegNet [13], U-Net [14], PSPNet
[15], the DeepLab series [16], [17], and Transformer-based
networks [32]–[34]. The encoder extracts hierarchical deep
features from the input image, while the decoder produces the
segmentation map by upsampling and combining the features
from different encoder layers. However, these networks are
limited in their ability to effectively combine deep features
extracted from different modalities (or sources) of visual in-
formation. As a result, they often struggle to produce accurate
segmentation results in challenging scenarios characterized
by poor lighting and illumination conditions [3]. Therefore,

researchers have turned their focus towards feature-fusion
networks that can effectively integrate deep features learned
from multiple modalities (or sources) of visual information.
This problem is commonly referred to as “RGB-X semantic
segmentation”, where “X” represents the additional modality
(or source) of visual information, in addition to the RGB
images. The most representative feature-fusion networks based
on convolutional neural networks (CNNs) include FuseNet
[19], MFNet [35], RTFNet [20], and our previous works SNE-
RoadSeg series [3], [21]. Furthermore, Transformer-based
RGB-X semantic segmentation networks, such as OFF-Net
[22] and RoadFormer [24], have been recently introduced.
In this article, we design our S3M-Net based on the SNE-
RoadSeg architecture and explore more effective solutions for
the feature fusion operation.

B. Stereo Matching

Conventional explicit programming-based stereo matching
algorithms (local, global, and semi-global) generally consist
of four main procedures: (1) cost computation, (2) cost aggre-
gation, (3) disparity optimization, and (4) disparity refinement
[26]. The performance of these algorithms has been signif-
icantly outperformed by end-to-end deep stereo networks,
thanks to the recent advancements in deep learning techniques.
PSMNet [36], GwcNet [37], AANet [38], LEA-Stereo [39],
RAFT-Stereo [40], and CRE-Stereo [41] are six representative
end-to-end deep stereo networks proposed in recent years.
PSMNet [36] employs a spatial pyramid to capture multi-scale
information and employs multiple 3D convolutional layers to
exploit both local and global contexts for cost computation.
GwcNet [37], on the other hand, builds upon the foundation of
PSMNet by constructing the cost volume via group-wise corre-
lation, thereby enhancing the 3D stacked hourglass network.
In light of the computational demands of 3D convolutions,
researchers have actively sought ways to minimize the trade-
off between efficiency and accuracy in stereo matching. For
example, LEA-Stereo [39] introduces the neural architecture
search (NAS) [42] technique to stereo matching. This pio-
neering approach results in the first end-to-end hierarchical
NAS framework for deep stereo matching. RAFT-Stereo [40],
a rectified stereo matching method that draws inspiration from
the optical flow estimation network RAFT [43], leverages the
RAFT architecture to perform accurate and real-time stereo
matching inference. The network utilizes recurrent structures
to refine correlation features and enhance the disparity estima-
tion accuracy. CRE-Stereo [41], another recent prior art based
on recurrent refinement (to update disparities in a coarse-
to-fine manner) and adaptive group correlation (to mitigate
the impact of erroneous rectification), yields more compelling
disparity estimation results. In this article, we develop our
S3M-Net based on the RAFT-Stereo architecture.

C. Multi-Task Joint Learning for Semantic Segmentation and
Stereo Matching

Existing frameworks that jointly address semantic segmen-
tation and stereo matching generally focus on improving
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Fig. 1: The architecture of our proposed S3M-Net for end-to-end joint learning of semantic segmentation and stereo matching.

disparity accuracy by leveraging semantic information [7]–
[12], while the discussion regarding the utilization of dis-
parity information to enhance semantic segmentation at the
feature level for joint learning remains limited, except for the
exploration of “RGB-X semantic segmentation” discussed in
Sect. II-A. Nevertheless, these prior arts either require a large
amount of well-annotated training data or involve intricate
training strategies for the joint learning of both tasks. For
instance, SegStereo [7] and DispSegNet [8] require an initial
unsupervised training phase on the large-scale Cityscapes [44]
dataset, followed by a subsequent supervised fine-tuning on the
smaller KITTI 2012 and 2015 [28], [45] datasets. Similarly,
the studies presented in [9], [11], [12] involve the pre-training
of their spatial branches (performing stereo matching) on the
large-scale SceneFlow [46] dataset, followed by the fine-tuning
of both semantic and spatial branches on the KITTI 2012
and 2015 datasets [28], [45]. DSNet [10] adopts a different
joint learning strategy in which the training alternates between
the semantic segmentation and stereo matching networks,
with each network being frozen during the training of the
other. However, achieving simultaneous convergence of the
two networks can be challenging, as the shared features are
not learned in an end-to-end manner. Additionally, we were
unable to locate publicly available source code (in PyTorch or
TensorFlow) for these prior arts, and re-implementations carry
the risk of introducing errors. In contrast to the aforementioned
approaches, our proposed S3M-Net is trained in an end-to-end
fashion and capable of jointly learning semantic segmentation
and stereo matching even when the training data are limited.

III. METHODOLOGY

As illustrated in Fig. 1, our proposed S3M-Net consists of
five main components:
(1) Joint encoder to extract shared features from RGB im-

ages;
(2) Multi-level GRU update operator to refine disparity maps;

(3) Feature fusion adaptation module to transform shared
features into the semantic space and fuse them with
features extracted from the disparity maps;

(4) Densely-connected skip connection decoder to decode
fused features and produce final semantic predictions;

(5) Semantic consistency-guided loss to supervise the entire
joint learning process.

A. Joint Encoder

Given a pair of well-rectified stereo images IL, IR ∈
RH×W×3, where H and W denote their height and width,
respectively, we employ a joint encoder consisting of a series
of residual blocks and downsampling layers to extract features
FL =

{
FL

1 , . . . ,F
L
n

}
and FR =

{
FR

1 , . . . ,F
R
n

}
from IL

and IR, respectively. FL is subsequently shared with the
semantic segmentation task.

B. Multi-Level GRU Update Operator

Using the features FL and FR extracted by the joint
encoder, we first construct an initial 3D correlation volume
C1 ∈ RH×W×W as follows:

C1(i, j, k) = FL
n(i, j, :) · F

R
n (i, k, :), (1)

where i represents the i-th row, and j and k represent to the j-
th and k-th columns in the left and right shared feature maps,
respectively. We then construct a pyramid of 3D correlation
volumes C = {C1, . . . ,Cm} by downsampling C1 with
average pooling operations. The m-th 3D correlation volume
Cm ∈ RH×W× W

2m−1 is constructed from the (m − 1)-th 3D
correlation volume Cm−1 using 1D average pooling with a
kernel size of 2 and a stride of 2. Inspired by RAFT-Stereo
[40], we adopt a multi-level GRU update operator to refine
a sequence of disparity maps D = {D1, . . . ,Dn}, where
Di ∈ RH×W (i = 1, . . . , n). This refinement process is
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Fig. 2: An illustration of our proposed FFA module.

performed in a coarse-to-fine manner, starting from an initial
disparity map D0 in which all disparities are initialized to 0.

C. Feature Fusion Adaptation Module

In stereo matching, a lower number of channels, e.g., the
256 channels utilized in RAFT-Stereo [40], is often suffi-
cient for capturing relevant features for 1D correspondence
search, especially when considering computational efficiency.
On the other hand, semantic segmentation requires pixel-level
classification and a more in-depth scene understanding. It
benefits from complex feature representations that can capture
fine-grained details and object boundaries, making a larger
number of channels, e.g., the 2048 channels employed in
SNE-RoadSeg [3], advantageous for this task. Therefore, we
introduce the FFA module to align the channels and resolutions
between the disparity and semantic feature maps during joint
learning.

As illustrated in Fig 2, given the left shared feature maps
FL =

{
FL

1 , . . . ,F
L
n

}
and the disparity map pyramid D =

{D1, . . . ,Dn}, we obtain the adapted fused feature sequence
FF =

{
F F

1 , . . . ,F
F
n

}
using our proposed FFA module,

which can be formulated as follows:

F F
i = Ai(FL)⊕ ED

i (Dn), (2)

where ED denotes the disparity map encoding operation, ⊕
denotes the feature fusion operation, and Ai is defined as our
feature adaptation operation, as formulated as follows:

Ai(FL) =


R(FL

2i−1), i ≤ n+ 1

2

E(F F
i−1 ⊕ ED

i−1(Dn)), i >
n+ 1

2

, (3)

where R represents the remapping operation from the shared
feature space to the semantic feature space, and E represents
the encoding operation for the semantic feature maps.

Specifically, for the remapping operation R, we employ
3×3 convolutional layers with a stride of 2 and padding of 1,
each followed by a batch normalization layer and a rectified
linear unit (ReLU) activation layer, adapting the feature map
channels to 64, 256, and 512, respectively. Regarding the
disparity encoding operation ED, we employ ResNet-152 [47]
as the backbone network to extract features from the last

disparity map Dn. In ResNet-152, the first block consists of a
convolutional layer, a batch normalization layer, and a ReLU
activation layer. Then, a max pooling layer and four residual
layers are sequentially applied to progressively increase the
number of feature map channels.

Similarly, we utilize the residual block for the encoding
operation E on the semantic feature maps, resulting in fea-
ture maps with 1024 and 2048 channels. The fused features
FF contain both texture and spatial geometric information,
thereby enhancing semantic scene understanding. We conduct
an ablation study for different feature fusion modules in Sect.
IV-F.

D. Densely-Connected Skip Connection Decoder

We employ the decoder introduced in our previous work
SNE-RoadSeg [3] to decode the fused features and generate
the semantic prediction. In this encoder, three convolutional
layers in the feature extractor and the upsampling layer share
the same parameters: a 3 × 3 kernel size, a stride of 1, and
a padding of 1. In the final layer, features are upsampled to
create the prediction map with N channels, where N denotes
the number of semantic classes.

E. Semantic Consistency-Guided Joint Learning Loss

The loss function employed in our joint learning framework
should guide the supervision of both the semantic segmenta-
tion and stereo matching tasks. Gradient smoothness between
the disparity and semantic segmentation maps typically aligns
closely, particularly at inter-class boundaries, where traditional
training strategies tend to result in more errors due to factors
such as occlusion and reflection. In light of this, we propose
an SCG loss function to supervise the entire joint learning
process, which leverages semantic consistency to optimize the
training of S3M-Net.

Given the ground-truth semantic segmentation map MG ∈
RH×W , Each pixel p of MG can be written as follows:

MG(p) ∈ {1, . . . , C}, (4)

where C refers to the number of the semantic classes. We
construct an extended 3D volume V 3D ∈ RH×W×C using
the following expression:

V 3D
c (p) = δ(MG(p), c), (5)

where c represents the c-th channel in the volume, and
δ denotes the Kronecker Delta function [48]. As a result,
each channel of the volume can be regarded as a binary
segmentation map of the c-th class. To emphasize semantic
consistency, We use an average pooling operation for each
channel to obtain the inter-class volume V I ∈ RH×W×C :

V I = P(V 3D), (6)

where P denotes the average pooling operation. Furthermore,
we apply a normalization operation:

V N (p) = e−(2V I(p)−1)2 . (7)
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to obtain a normalized volume V N ∈ RH×W×C . We then
map V N to a semantic consistency-guided weight map W ∈
RH×W through:

W (p) = max
c

{
V N

c (p)
}
. (8)

The total loss function

Lscg = Lss + Lsm (9)

consists of an SCG semantic segmentation loss Lss and an
SCG stereo matching loss Lsm. Lss is formulated as follows:

Lss = − 1

N

N∑
i=1

C∑
c=1

[(1−α)+αW (p)]yc(p) log(ŷc(p)), (10)

where N denotes the pixel number, C represents the class
number, ŷc(p) denotes the predicted probability of p belong-
ing to class c, yc(p) represents the ground-truth label for p in
class c, and α denotes the loss weight. Based on the ablation
study detailed in Sect. IV-F, we set the value of α to 0.1.
Moreover, Lsm is formulated as follows:

Lsm =

N∑
i=1

[(1− α) + αW (p)]γN−i
∥∥∥DG −Di

∥∥∥
1
, (11)

where DG represents the ground-truth disparity map and Di

denotes the i-th disparity map in D. α is set to 0.1 and γ is
set to 0.9.

IV. EXPERIMENTS

In this article, we conduct extensive experiments to evaluate
the performance of our developed S3M-Net both quantitatively
and qualitatively. The following subsections provide details on
the used datasets, experimental set-up, evaluation metrics, and
the comprehensive evaluation of our proposed method.

A. Datasets

Since the training of our network requires both semantic
and disparity annotations, we employ two public datasets to
evaluate its performance: the vKITTI2 [27] dataset (synthetic
yet large-scale) and the KITTI 2015 [28] dataset (real-world
yet modest-scale). Their details are as follows:

• The vKITTI2 dataset contains virtual replicas of five
sequences from the KITTI dataset. It provides 15 classes
for the semantic segmentation tasks. Dense ground-truth
disparity maps are acquired through depth rendering
using a virtual engine. In our experiments, we randomly
select 700 pairs of stereo images, along with their seman-
tic and disparity annotations to evaluate the effectiveness
and robustness of our proposed S3M-Net, where 500 pairs
are used for model training and the remaining 200 pairs
are used for model validation.

• The KITTI 2015 dataset contains 400 pairs of stereo
images captured in real-world driving scenarios, with
200 pairs containing ground truth and the other 200
pairs lacking ground truth. It provides 19 classes for
the semantic segmentation tasks (in alignment with the
Cityscapes [44] dataset). Sparse disparity ground truth

is obtained using a Velodyne HDL-64E LiDAR. In our
experiments, we allocate 70% of the dataset for training,
while the remaining portion is used as the test set.

B. Experimental Setup

Our experiments are conducted on an NVIDIA RTX 3090
GPU. The batch size is set to 1. The maximum disparity search
range is set to 192 pixels. All images are cropped to 1000 ×
320 pixels before feeding into the network. We utilize the
AdamW [55] optimizer for model training, setting the epsilon
and weight decay parameters to 10−8 and 10−5, respectively.
The initial learning rate is set to 2× 10−4. Training lasts for
100K iterations on the vKITTI2 dataset and 20K iterations on
the KITTI 2015 dataset. We employ traditional data augmen-
tation techniques to enhance the robustness of the models.

C. Evaluation Metrics

Since our proposed S3M-Net simultaneously performs se-
mantic segmentation and stereo matching, we evaluate the
performance of both tasks in our experiments.

We utilize seven evaluation metrics to quantify the perfor-
mance of semantic segmentation: (1) accuracy (Acc), (2) mean
accuracy (mAcc), (3) mean intersection over union (mIoU), (4)
frequency-weighted intersection over union (fwIoU) [56], (5)
precision (Pre), (6) recall (Rec), and (7) F1-score (FSc).

Additionally, we use two evaluation metrics: (1) the average
end-point error (EPE) and (2) the percentage of error pixels
(PEP), setting the tolerance for the latter to 1.0 and 3.0 pixels,
respectively, to quantify the performance of stereo matching.

D. Semantic Segmentation Performance

The qualitative experimental results on the vKITTI2 and
KITTI datasets are presented in Figs. 3 and 4, respectively,
while the quantitative experimental results on the vKITTI2 and
KITTI datasets are given in Tables I and II, respectively. These
results suggest that S3M-Net outperforms other SoTA single-
modal and feature-fusion networks (including CNN-based and
Transformer-based methods) across all evaluation metrics on
both datasets. Specifically, it is noteworthy that when the
entire joint learning framework is trained by minimizing our
proposed SCG loss, S3M-Net achieves the best performance
on the KITTI dataset across all evaluation metrics except for
Pre. Compared with SoTA methods, it shows improvements of
5.71% in mAcc, 4.84% in mIoU, 1.35% in fwIoU, and 0.76%
in FSc, respectively. Similarly, it outperforms other networks
on the vKITTI2 dataset in most evaluation metrics, with
improvements of 1.72% in fwIoU and 1.44% in FSc. However,
for mAcc, mIoU, and Rec, its performance is comparable to
that of S3M-Net trained without using the SCG loss. Addition-
ally, it is obvious that feature-fusion networks consistently out-
perform single-modal networks, particularly under challenging
weather and lighting conditions. This observation aligns with
our expectations, as feature-fusion networks leverage both
RGB images and disparity maps, allowing them to effectively
learn informative spatial geometric representations. However,
SoTA feature-fusion networks may exhibit higher error rates
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TABLE I: Comparisons of SoTA semantic segmentation networks on the vKITTI2 [27] dataset. The symbol ↑ indicates that
a higher value corresponds to better performance. The best results are shown in bold font.

Category Networks Acc (%) ↑ mAcc (%) ↑ mIoU (%) ↑ fwIoU (%) ↑ Pre (%) ↑ Rec (%) ↑ FSc (%) ↑
Si

ng
le

-M
od

al

SegNet [13] 59.29 32.54 23.93 48.17 66.10 66.73 61.11

U-Net [14] 62.71 37.65 29.83 55.10 75.80 67.67 65.26

PSPNet [15] 76.26 53.53 44.81 69.30 81.55 79.68 75.38

DeepLabv3+ [17] 92.19 63.15 56.90 87.15 89.00 92.71 90.16

HRNet [49] 74.79 40.82 32.47 63.23 73.69 76.50 73.39

BiSeNet V2 [50] 81.77 51.07 44.45 74.71 83.23 82.19 80.67

Segmenter [32] 90.39 60.33 52.99 83.47 88.05 87.89 87.70

SegFormer [33] 94.75 70.56 64.98 90.49 93.57 93.62 93.46

Mask2Former [34] 89.29 64.58 57.14 83.84 90.75 87.23 87.19

DDRNet [51] 70.80 40.32 32.10 61.44 76.35 71.67 70.57

Fe
at

ur
e-

Fu
si

on

FuseNet [19] 49.42 31.21 22.56 41.07 79.39 50.67 47.50

MFNet [35] 76.22 51.50 43.41 68.82 82.46 78.65 73.80

RTFNet [20] 85.22 49.47 42.59 77.69 83.74 89.17 84.41

SNE-RoadSeg [3] 83.64 60.85 52.56 75.14 83.44 81.66 77.77

OFF-Net [22] 90.84 61.51 55.27 84.69 89.24 86.71 86.15

RoadFormer [24] 97.54 86.58 80.83 95.34 96.99 96.86 96.91

S3M-Net 98.27 88.28 84.25 96.92 98.29 98.32 98.28

S3M-Net w/ SCG loss 98.32 88.24 84.18 96.98 98.37 98.28 98.31

TABLE II: Comparisons of SoTA semantic segmentation networks on the KITTI 2015 [28] dataset. The symbol ↑ indicates
that a higher value corresponds to better performance. The best results are shown in bold font.

Category Networks Acc (%) ↑ mAcc (%) ↑ mIoU (%) ↑ fwIoU (%) ↑ Pre (%) ↑ Rec (%) ↑ FSc (%) ↑

Si
ng

le
-M

od
al

SegNet [13] 59.63 31.98 22.61 43.98 55.25 67.49 57.29

U-Net [14] 69.02 41.15 30.64 55.65 69.11 77.65 71.04

PSPNet [15] 80.03 44.97 38.15 68.62 79.29 82.66 79.59

DeepLabv3+ [17] 82.33 50.15 42.79 72.43 83.85 87.18 84.59

HRNet [49] 63.42 31.68 22.78 49.40 55.10 67.71 57.21

BiSeNet V2 [50] 73.68 41.66 32.71 60.55 68.35 81.79 72.37

Segmenter [32] 84.53 50.77 43.63 74.72 82.99 87.15 84.41

SegFormer [33] 88.28 59.23 51.39 80.53 87.15 90.85 88.46

Mask2Former [34] 84.35 54.33 45.87 75.56 84.74 89.12 85.92

DDRNet [51] 62.12 31.61 22.63 48.15 57.09 68.98 59.07

Fe
at

ur
e-

Fu
si

on

FuseNet [19] 41.79 19.05 11.38 27.53 44.14 44.35 37.68

MFNet [35] 81.02 48.13 40.70 70.42 82.85 85.73 82.36

RTFNet [20] 71.61 39.26 30.35 57.98 69.52 85.16 74.28

SNE-RoadSeg [3] 79.46 51.91 41.56 69.22 81.45 87.05 82.91

OFF-Net [22] 75.84 40.13 33.13 64.02 77.48 72.19 70.62

RoadFormer [24] 90.05 62.34 55.13 83.40 91.65 91.39 91.11

S3M-Net 90.01 62.48 54.33 83.44 88.96 93.52 90.65

S3M-Net w/ SCG loss 90.66 65.90 57.80 84.53 90.85 93.55 91.80

in distant regions. For instance, FuseNet and SNE-RoadSeg
demonstrate poor performance in the sky. We attribute this
phenomenon to the deep structure of the encoders, where
distinguishing distant objects using disparity features becomes
challenging, and the feature fusion process amplifies the influ-
ence of the disparity feature. In contrast, within our proposed
joint learning framework, we can extract more informative
features benefiting from both tasks, irrespective of dataset
size. This improvement is likely due to the fact that joint
learning of multiple interconnected tasks introduces a form of
regularization, which has shown its superiority over uniform
complexity penalization in reducing over-fitting.

E. Stereo Matching Performance

The qualitative experimental results on the vKITTI2 and
KITTI datasets are given in Figs. 5 and 6, respectively, while
the quantitative experimental results on the vKITTI2 and
KITTI datasets are presented in Tables III and IV, respectively.
These results suggest that S3M-Net outperforms other SoTA
stereo matching networks across all evaluation metrics on both
datasets. Specifically, S3M-Net trained with and without using
the SCG loss achieves the top and second-best overall perfor-
mances, respectively. S3M-Net, when trained without using
the SCG loss, demonstrates improvements of 2.50%-71.32%
in EPE, 4.17%-64.19% in PEP 1.0, and 4.49%-67.97% in
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Fig. 3: Qualitative experimental results of semantic segmentation on the vKITTI2 [27] dataset: (a) RGB images; (b)-(k) semantic
segmentation results achieved by SegNet [13], U-Net [14], PSPNet [15], DeepLabv3+ [17], HRNet [49], BiSeNet V2 [50],
Segmenter [32], SegFormer [33], Mask2Former [34], and DDRNet [51], respectively; (l)-(q) semantic segmentation results
achieved by FuseNet [19], MFNet [35], RTFNet [20], SNE-RoadSeg [3], OFF-Net [22], and RoadFormer [24], respectively;
(r)-(s) semantic segmentation results achieved by our proposed S3M-Net w/o and w/ the use of the SCG loss, respectively; (t)
ground truth annotations.

PEP 3.0. On the other hand, S3M-Net, when trained with
the SCG loss, shows improvements of 5.00%-72.06% in EPE,
5.44%-64.38% in PEP 1.0, and 4.49%-69.83% in PEP 3.0. We
attribute these improvements to the feature sharing and fusion

strategies applied in S3M-Net. First, sharing features with the
semantic segmentation task allows S3M-Net to learn stereo
matching effectively even with limited training data. Second,
as discussed above, stereo matching can sometimes produce
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Fig. 4: Qualitative experimental results of semantic segmentation on the KITTI 2015 [28] dataset: (a) RGB images; (b)-(k)
semantic segmentation results achieved by SegNet [13], U-Net [14], PSPNet [15], DeepLabv3+ [17], HRNet [49], BiSeNet V2
[50], Segmenter [32], SegFormer [33], Mask2Former [34], and DDRNet [51], respectively; (l)-(q) semantic segmentation results
achieved by FuseNet [19], MFNet [35], RTFNet [20], SNE-RoadSeg [3], OFF-Net [22], and RoadFormer [24], respectively;
(r)-(s) semantic segmentation results achieved by our proposed S3M-Net w/o and w/ the use of the SCG loss, respectively; (t)
ground truth annotations.

ambiguous disparity estimations, especially in occluded or
texture-less areas. The pursuit of semantic consistency helps
resolve such ambiguities, leading to more reliable disparity
estimation results. In Fig. 6, it is evident that regions lacking

disparity ground truth frequently have substantial errors. Previ-
ous stereo matching algorithms have endeavored to tackle this
issue through knowledge distillation with pre-trained models
[38]. Nevertheless, our S3M-Net successfully overcomes this
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Fig. 5: Qualitative experimental results of stereo matching on the vKITTI2 [27] dataset: (a) left RGB images; (b)-(j) disparity
maps estimated using PSMNet [36], GwcNet [37], AANet [38], LEA-Stereo [39], RAFT-Stereo [40], CRE-Stereo [41], ACVNet
[52], PCWNet [53], and IGEV-Stereo [54], respectively; (k)-(l) disparity maps estimated using our proposed S3M-Net w/o and
w/ the use of the SCG loss, respectively.

TABLE III: Comparisons of SoTA stereo matching network on
the vKITTI2 [27] dataset. The symbol ↓ indicates that a lower
value corresponds to better performance. The best results are
shown in bold font.

Networks EPE (pixels) ↓
PEP (%) ↓

> 1 pixel > 3 pixels

PSMNet [36] 0.68 10.31 3.77

GwcNet [37] 0.65 9.72 3.69

AANet [38] 1.36 15.61 6.98

LEA-Stereo [39] 0.83 13.33 4.84

RAFT-Stereo [40] 0.40 5.88 2.67

CRE-Stereo [41] 0.63 10.35 3.90

ACVNet [52] 0.61 9.41 3.45

PCW-Net [53] 0.63 9.45 3.49

IGEV-Stereo [54] 0.47 7.15 3.09

S3M-Net 0.39 5.59 2.55

S3M-Net w/ SCG loss 0.38 5.56 2.55

challenge by leveraging semantic information.

TABLE IV: Comparisons of SoTA stereo matching network
on the KITTI 2015 [28] dataset. The symbol ↓ indicates that a
lower value corresponds to better performance. The best results
are shown in bold font.

Networks EPE (pixels) ↓
PEP (%) ↓

> 1 pixel > 3 pixels

PSMNet [36] 0.74 16.12 2.61

GwcNet [37] 0.68 14.21 2.01

AANet [38] 1.10 22.67 5.37

LEA-Stereo [39] 0.83 18.67 3.22

RAFT-Stereo [40] 0.60 10.78 1.96

CRE-Stereo [41] 0.92 19.68 3.35

ACVNet [52] 0.68 13.93 2.10

PCW-Net [53] 0.70 14.81 2.43

IGEV-Stereo [54] 0.62 12.15 1.99

S3M-Net 0.56 10.33 1.72

S3M-Net w/ SCG loss 0.55 10.02 1.62

F. Ablation studies

In this subsection, we first conduct an ablation study on the
selection of loss weight α in (11). Fig. 7 shows the quantitative
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Fig. 6: Qualitative experimental results of stereo matching on the KITTI 2015 [28] dataset: (a) left RGB images; (b)-(j)
disparity maps estimated using PSMNet [36], GwcNet [37], AANet [38], LEA-Stereo [39], RAFT-Stereo [40], CRE-Stereo
[41], ACVNet [52], PCWNet [53], and IGEV-Stereo [54], respectively; (k)-(l) disparity maps estimated using our proposed
S3M-Net w/o and w/ the use of the SCG loss, respectively.

TABLE V: Ablation study on feature fusion strategy in our FFA module on the KITTI [28] 2015 dataset.

Fusion Strategy Acc (%) ↑ mAcc (%) ↑ mIoU (%) ↑ fwIoU (%) ↑ Pre (%) ↑ Rec (%) ↑ FSc (%) ↑

Addition 90.01 62.48 54.33 83.44 88.96 93.52 90.65

Concatenation 86.88 57.43 48.40 78.50 85.96 93.71 88.92

CFM [57] 86.87 57.41 48.77 79.13 85.41 92.05 87.63

DDPM [58] 86.52 58.65 49.51 78.14 85.56 93.34 88.44

SA Gate [59] 87.62 61.77 52.10 80.55 86.74 92.31 88.52

SWS [60]–[62] 87.94 58.11 49.64 80.25 86.63 93.34 89.20

experimental results with respect to different α in the range of
0.0 to 0.4 for both semantic segmentation and stereo matching.
It can be obvious that when α = 0.1, S3M-Net achieves the
best overall performance for both tasks. Further weight tuning
is possible, but it should be approached cautiously, especially
when dealing with limited data to avoid over-fitting.

Furthermore, we conduct an additional ablation study on the
feature fusion strategy in our proposed FFA module. As shown
in Table V, when using the addition operation to fuse hetero-
geneous features, the FFA module consistently achieves the
best performance across all evaluation metrics, compared to
other feature fusion strategies, including concatenation, cross

feature module (CFM) [57], dynamic dilated pyramid module
(DDPM) [58], separation-and-aggregation gate (SA Gate) [59],
and softmax weighted sum (SWS) used in AysmFusion [60],
CEN [61], and TokenFusion [62].

V. DISCUSSION

The experimental results shown in Sect. IV provide strong
support for the claims made in Sect. I. First, the joint learning
of semantic segmentation and stereo matching, two intercon-
nected environmental perception tasks, using our proposed
S3M-Net introduces a form of regularization that has shown its
effectiveness in reducing overfitting, particularly in scenarios
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Fig. 7: Ablation study on the selection of α in the SCG joint
learning loss function on the KITTI 2015 [28] dataset.

where training data are limited. Secondly, this end-to-end
joint learning framework yields improved performance when
compared to the models trained separately for each task.
Finally, the pursuit of semantic consistency in joint learning
helps reduce ambiguous disparity estimations in texture-less or
occluded regions. We believe that our proposed S3M-Net can
be readily deployed in autonomous vehicles after addressing
the following limitations:

• S3M-Net requires both semantic and disparity annota-
tions, and collecting data with such ground truth remains
a labor-intensive process. Therefore, the exploration of
potential solutions such as semi-supervised or low/few-
shot semantic segmentation and un/self-supervised stereo
matching is a promising avenue for future research.

• S3M-Net achieves a processing speed of 0.66 fps when
processing input RGB images with a resolution of 1248
× 384 pixels. We believe that further computational
efficiency optimizations are necessary before deploying
S3M-Net in autonomous vehicles.

VI. CONCLUSION

This article introduced S3M-Net, an effective solution for
joint learning of semantic segmentation and stereo matching.
We have made three significant contributions in this work: (1)
the development of an entire joint learning framework that
shares features between both tasks and fuses heterogeneous
features to improve semantic segmentation, (2) a feature fusion
adaption module designed to enable effective feature sharing
between the two tasks, and (3) a semantic consistency-guided
joint learning loss that emphasizes structural consistency
in both tasks. We conducted extensive experiments on the
vKITTI2 (synthetic and large) and KITTI (real-world and
small) datasets to validate the effectiveness of our framework,
the FFA module, and the training loss. Our results demonstrate
the superior performance of our approach compared to all
other existing methods.
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