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Abstract—We introduce a new numerical method for the transform (FFT) algorithm. All the methods are tested for
computation of the inverse nonlinear Fourier transform and the focusing NLSE in the soliton-free case (i.e., when only
compare its computational complexity and accuracy to thosef the continuous spectrum of the Zakharov-Shabat operator

other methods available in the literature. For a given accuacy, . t hich is of ticular int t for inf ai
the proposed method requires the lowest number of operation is present), which is of particular interest for informatio

Index Terms—Nonlinear Fourier transform, inverse scattering transmission based on nonlinear inverse synthesis [4alliin
transform, nonlinear Schrodinger equation, optical fiber commu- we investigate and compare the accuracy and computational

nication. complexity of all the methods.

I. INTRODUCTION II. NUMERICAL METHODS

The propagation of light in optical fibers is governed by We consider the focusing NLSE in the normalized form
the nonlinear Schrodinger equation (NLSE), which accsunt ' 1 )
for the interplay of dispersion and nonlinearity. In thesless Jus + e + ulul” =0 (1)

case, the NLSE admits an analytical solution based on w . . .
. . . . e assume to know the scattering data at a given distance
inverse scattering transform (also known as nonlineariEour : . :

z and we focus on the inverse scattering problem (or inverse

Fransform—NFT) [1] Qn this bas!s, _dun_ng the_ 805. and th‘I%IFT) to obtain the corresponding NLSE solutioft, z) 1 This
90s, research on soliton transmission in optical fibers was

. . . problem leads to the Gel'fand-Levitan-Marchenko equation
carried out extensively. However, despite a great effoiiton
systems never caught on commercially and were eventua(IFS'/LME) [10]
abandoned in favor of simpler and more effective transioissi it
techniques originally developed for linear channels. Rége K(t,y)+ F(t+y)+ / / K(t,r)F*(r+s)F(s+y)dsdr =0
an alternative approach to communication over nonlinear o
channels—originally proposed inl[2] and further generadiz (2)
in [3] and [4]—is gaining new attention from the optical fibewhere the integral kerneF(y) is a function of the scat-
community. Rather than using solitons as information easti tering data. Specifically, considering the soliton-freeseza

the idea is that of encoding information onto the discreté(y) = = e r(A\)e~7*vd\ wherer()\) is the reflection

and/or continuous spectrum of the Zakharov-Shabat operatoefficient. The solution of the NLSE is finally obtained as
(the scattering data), which evolves trivially and lingaalong u(t) = 2lim,_,,- K(t,y).

the fiber, such that the encoded information can be easily and-et F’(y) = F(y) for y > 0 and F’(y) = 0 otherwise. The
accurately recovered from the optical signal after profaga GLME can be rewritten in the form of the Marchenko integral
at any distance, without any impact from dispersion arghuations

nonlinearity. This approach requires the computation @f th Loo

inverse NFT at the transmitter to obtain the transmittedetim B (t,a) = — [ F'*(2t—a—8)Ba(t, 8)dS

domain signal from the modulated scattering data, and the +OOO

computation of the direct NFT at the receiver to extract the B, (¢, o) = [ F'(2t—a—pB)Bi(t,B)dB — F'(2t—a)
scattering data from the received time-domain signal. Both 0

operations are, in general, quite involved and research R4 the NLSE solution obtained agt) = 2B,(t,07). In
efficient numerical methods for their implementation is ifhe following we assume to know on a uniform grid in
progress([4]-[9]. _ _ the interval[0, 27 with stepd, = 2~ and we analyze three
In this work, we focus on the numerical computation Ofjifferent numerical methods to solve the syst&m (3), in orde

the inverse NFT. We consider two methods available in thg find the solution of [{1) fort € [0,7]. Specifically, we
literature [4], [5] and propose an alternative method based

on iterated convolutions evaluated through the fast Fourie Hereafter, the dependence eris inessential and will be omitted.

®3)
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consider the uniform grid ofd, T'] given byt,, = (m — 1), starting value forB; and iteratively updating the values of
for m = 1,..,N, + 1 with discretization step), = Nlu B> and B; by alternately computing the integrals [ (3), we
The complexity of the methods is measured by consideridgfine an iterative method that, under certain conditiong'on
the required number of complex products, assuming that tAed ¢, converges to the solution of the system. As a starting
FFT of a vector of N elements require% log,(IN) complex point for By att,,, we pick the solution found at the previous
products. pointt,,_1, as we are dealing with continuous functions. The
An efficient numerical way to compute the inverse NFTesulting algorithm is
assumingNg = N,, and therefore); = 57& is presented in Fork —0

[4]. The authors, using the Nystrom method with a rectaaigul { 0 i1

uadrature scheme to approximate the integralslin (3), fiad t B tm) = .
9 P grallin (3) 1 (o tm) Bik’"”)(a,tm_l) if m>1

solutionu(t,,) by solving a linear system characterized by a
Toeplitz matrix of sizeVg +m. The method of Trench for the Fork = 1,... kmax

inversion of non-Hermitian Toeplitz matrices [11] is used t B (@, tm) = —F(2tm—a) + (F x B'F )2t — )
recursively compute the solution for every valyg. For this ng) (a,t) = —(F* *B’gk))(%m —a)

reason, let us name this method Nystrom-Trench (NT). The (6)
resulting algorithm computes the solutiafit) in the desired

interval with complexit§] wherex denotes convolutioank) is the kth estimate of the

O~ 11N2 4 function B;, and B’gk) the corresponding auxiliary function.
- r ) We refer to this method as the iterative convolution (IC)
However, due to the recursive nature of the algorithm, tine-comethod. The number of operations required to find the saiutio
plexity remains almost unchanged if the solution is comgutén the N, points inside the intervaD, 7' is

in a lower number of pointsv,. No+1

Another technique to solve systefll (3) with = ¢ for (' ~ kmax Y 3[2¢(m—1)+1]logy[2¢(m—1)+1]+2kmaxNu N
c €N, (i.e., in N, = Np/c points in the interval0, 7)) is m=1
presented in[[5], where the Nystrom method with composite ()

Simpson’s quadrature rule is considered. For a fixed tipe AISO in this case(’ depends significantly on the number of
the resulting linear system is solved by means of the cotgugR0ints V., and can be reduced by evaluating the solution with
gradient method. Therefore, we refer to this scheme as fhdarger step size.

Nystrom conjugate gradient (NCG) method. Since we deal I1l. NUMERICAL RESULTS

ly with di | and -left tri lar Hankel mags
only wrrh dlagonat and Upper-ett frianguiar Hankel massg With the purpose of comparing the methods presented

the complexity of the method can be reduced by using th% der the sinal | ianal deredli
FFT algorithm to compute the matrix-vector products regghir above, we consider the single-pulse signal considerein [4

by the conjugate gradient method. As a result, the number £ = davo(o — 1) s
of operations required to compute the solution in the ddsire ult) = - (0 — 1)2e—20at 1 y2¢20at (®)
interval i€ , ,
wheres = 12+ 1. In this case, the scattering data are
R known and the GLME kernel i$ [4]
C ~(1 + kmax) Z 6[c(m — 1) + 1]1logy{2[c(m — 1) + 1]} + "
m=1 F(y) = ave™ Y 9)
+ NuNg (4 + 6kmax)

(5) for « > 0 and -1 < v < 1. We consider the intervdD, 3]
and show the results only far = v = 1, as similar results
where knax is the number of iterations of the conjugatgye obtained for different values of the parameters.
gradient method, which is assumed to be the same for everyn Fig.[] we compare the analytical solutidd (8) with the
t for the sake of simplicity. In this case, the solution i$,ymerical results obtained with, = 0.01 andd§, = 0.005.
independently evaluated at each timein the given interval, at this scale, all the numerical results are practically esup
such thatC' depends significantly on the number of poins.  imposed (and are, therefore, represented by a single curve
Now, let us define a new iterative method to solve the syste@ avoid cluttering the figure) and equal the exact solution.
@) for t € [0, T] with discretization step; = c%-. The main since the new IC method is an iterative method, whose
idea is that, by defining the auxiliary functions;(¢,a) = starting point at,,, depends on the previous solution found at
Bi(t,a) for a > 0 and Bj(t,a) = 0 otherwise, withi = . itis interesting to investigate its convergence propsrti
1,2, the integrals in[(3) can be seen as convolutions betwegRAen the solution is evaluated with a different resolutipn
these functions and the kerngland efficiently computed by (keeping unchanged the resolutigp for the evaluation of
means of the FFT algorithm. Therefore, considering a prop@e integrals). Figl]2 shows the modulus of the error, itee, t
) _ _ __ difference between[8) and the numerical approximation, as
The computational complexity of the methods presented jraptl [5] . . . .
is not indicated by the authors. The values reported heer tefthe most a function oft for 4, = 0.01, different iteration numbers,
efficient implementations that we were able to devise. and different resolutionsg;. In all the cases, three iterations
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Fig. 4. RMSE as a function of the resolutian, for all the numerical
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converges faster (after 3 iterations) than the NCG method
Fig. 2. IC method: modulus of the error for different itecas &, different  (after 6 iterations). The same fast convergence of the IC
resolutionsé;, and a fixed resolutioda = 0.01. method is observed also for higher valuessp{as shown in

Fig. [2). However, in the special case = ., as observed

before, the IC method achieves an even lower RMSE at
are enough to reach the convergence. However, in the c#se first iteration (IC1 method). Such a fast convergence is
0: = 04, the error after the first iteration is significantly lowebtained thanks to the good starting value #y indicated
than the error obtained after the convergence is reaches. Tih (6). A convergence of the iterative method is observed in
quite surprising result has been observed also for diftereadl the considered cases. This is, however, not guaranteed i
resolutions,, and for different pulse shapes (not shown hergeneral, as the convergence depends on specific conditions o
due to a lack of space). However, we have not been able Hoandt that are currently being investigated.
find a good explanation for this behavior, which is still unde For all the methods, both the accuracy and the complexity
investigation. Given its particular properties, in thetreSthe depend on the resolutiai, employed for the quadrature rules.
paper we will refer to the IC method with,,.. = 1 and Fig.[4 shows the RMSE as a function &f for all the con-
0y = do as the IC1 method. sidered methods. In the NT and IC1 methods, the resolution

Fig. 3 compares the convergence properties of the K is set tod,/2 andd, by construction, respectively. On the

method (ford; = 6, = 0.01) to those of the NCG method other hand, in the NCG and IC methods,can be selected
(for 6, = 0.01 and anyé;, as they are independent 6f), as an integer multiple of, /2 without affecting the accuracy.
showing how the root-mean-square error (RMSE) evaluatéie RMSE values obtained with the NT and IC methods are
over the whole interval0, 3] evolves with the number of practically the same, as they are both based on a rectangular
iterations. Thanks to the composite Simpson’s quadratiee rquadrature rule for the computation of the integrals[ih (3).
employed by the NCG method (which is more accurate thdiie NCG method, thanks to the more accurate composite
the rectangular quadrature rule implicitly employed by e Simpson’s quadrature rule, achieves a lower RMSE for the
method when using the FFT to compute the convolutions), te@me resolutiod,,. Finally, the IC1 method achieves an even
final RMSE reached by the NCG method is lower than tHewer RMSE.
RMSE reached by the IC method. However, the IC methodFig.[4 can be used to determine, for each method, what is
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Fig. 5. Number of operations required by the four methodsffixed RMSE
of 2 x 10~3 and a variable desired resolutiép.

of the IC1 method is still under investigation and its sugperi
performance, though observed also in other cases (nottezpor
in this paper for a lack of space), has not been fully expthine
nor demonstrated for a generic signal.

IV. CONCLUSIONS

A new numerical method for the computation of the inverse
nonlinear Fourier transform has been proposed. The salutio
is obtained after iterated convolutions with the GLME kérne
which are efficiently computed trough the FFT algorithm.
The accuracy and computational complexity of the proposed
method have been investigated and compared to those of two
other methods available in the literature, both exploiting
Nystrom method in combination with either the conjugate
gradient algorithm[[5] or the Trench algorithm| [4]. The ob-

the resolutions,, (and, correspondingly, the number of pointéained results show that, for a desired accuracy, the pezpos
Np = 2T/5,) required for the computation of the integralgnethod requires the lowest number of operations. The oglati

in order to find the solutiom(t) with a given accuracy. This, Petween the discretization step with which the integralthef

in turn, will affect the complexity of the method accordingG‘LME are approximated and the time resolution with which
to @), [B), or [7). Another relevant parameter that affehts the solution is computed (which need not be the same) is
computational complexity of the NCG and IC methods (but néfso discussed for all the methods, and the dependence of

that of the NT and IC1 methods) is the resolutijn= ¢j, /2

accuracy and complexity on those two parameters is inves-

with which the solutionu(t) is needed (or, equivalently, thetigated. When the two parameters are equal, the proposed

number of pointsN,, = Np/c in which the solution must

method shows a very good but peculiar behavior which is still

be computed). Fid.]5 compares the computational complexitpder investigation. Further investigation is also reegito
required by the various methods, computed accordinglto (pmpare the algorithms in different scenarios, such ashier t
(), and [[7), to obtain the solution(t) with a desired RMSE defocusing NLSE or in the presence of discrete eigenvalues
of 2 x 10~3 (about2~? in Fig.[), as a function of the desiredin the nonlinear spectrum of the signal.

resolution §;. According to Fig.[#, the required resolution

is 0o ~ 0.0086 for the NT and IC methodsj, ~ 0.014
for the NCG method, and, ~ 0.033 for the IC1 method.

The number of iterations required to reach the convergentgg

IS kmax = 6 for the NCG method and,,., = 3 for the
IC method. By construction, the minimum resolutién is
do/2 for the NT, NCG, and IC methods, and}, for the
IC1 method. However, if desired, the resolution can be
increased by computing the solutieit) in a lower number
of points N, in the given interval0, T']. This will significantly
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