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Abstract—We introduce a new numerical method for the
computation of the inverse nonlinear Fourier transform and
compare its computational complexity and accuracy to thoseof
other methods available in the literature. For a given accuracy,
the proposed method requires the lowest number of operations.
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transform, nonlinear Schrödinger equation, optical fiber commu-
nication.

I. I NTRODUCTION

The propagation of light in optical fibers is governed by
the nonlinear Schrödinger equation (NLSE), which accounts
for the interplay of dispersion and nonlinearity. In the lossless
case, the NLSE admits an analytical solution based on the
inverse scattering transform (also known as nonlinear Fourier
transform—NFT) [1]. On this basis, during the ’80s and the
’90s, research on soliton transmission in optical fibers was
carried out extensively. However, despite a great effort, soliton
systems never caught on commercially and were eventually
abandoned in favor of simpler and more effective transmission
techniques originally developed for linear channels. Recently,
an alternative approach to communication over nonlinear
channels—originally proposed in [2] and further generalized
in [3] and [4]—is gaining new attention from the optical fiber
community. Rather than using solitons as information carriers,
the idea is that of encoding information onto the discrete
and/or continuous spectrum of the Zakharov-Shabat operator
(the scattering data), which evolves trivially and linearly along
the fiber, such that the encoded information can be easily and
accurately recovered from the optical signal after propagation
at any distance, without any impact from dispersion and
nonlinearity. This approach requires the computation of the
inverse NFT at the transmitter to obtain the transmitted time-
domain signal from the modulated scattering data, and the
computation of the direct NFT at the receiver to extract the
scattering data from the received time-domain signal. Both
operations are, in general, quite involved and research on
efficient numerical methods for their implementation is in
progress [4]–[9].

In this work, we focus on the numerical computation of
the inverse NFT. We consider two methods available in the
literature [4], [5] and propose an alternative method based
on iterated convolutions evaluated through the fast Fourier

transform (FFT) algorithm. All the methods are tested for
the focusing NLSE in the soliton-free case (i.e., when only
the continuous spectrum of the Zakharov-Shabat operator
is present), which is of particular interest for information
transmission based on nonlinear inverse synthesis [4]. Finally,
we investigate and compare the accuracy and computational
complexity of all the methods.

II. N UMERICAL METHODS

We consider the focusing NLSE in the normalized form

juz +
1

2
utt + u|u|2 = 0 (1)

We assume to know the scattering data at a given distance
z and we focus on the inverse scattering problem (or inverse
NFT) to obtain the corresponding NLSE solutionu(t, z).1 This
problem leads to the Gel’fand-Levitan-Marchenko equation
(GLME) [10]

K(t, y)+F (t+y)+

t
ˆ

−∞

t
ˆ

−∞

K(t, r)F ∗(r+s)F (s+y)dsdr = 0

(2)
where the integral kernelF (y) is a function of the scat-
tering data. Specifically, considering the soliton-free case,
F (y) = 1

2π

´ +∞

−∞
r(λ)e−jλydλ where r(λ) is the reflection

coefficient. The solution of the NLSE is finally obtained as
u(t) = 2 limy→t− K(t, y).

Let F ′(y) = F (y) for y ≥ 0 andF ′(y) = 0 otherwise. The
GLME can be rewritten in the form of the Marchenko integral
equations

B1(t, α) = −
+∞́

0

F ′∗(2t−α−β)B2(t, β)dβ

B2(t, α) =
+∞
´

0

F ′(2t−α−β)B1(t, β)dβ − F ′(2t−α)

(3)

and the NLSE solution obtained asu(t) = 2B2(t, 0
+). In

the following we assume to knowF on a uniform grid in
the interval[0, 2T ] with stepδα = 2T

NF

and we analyze three
different numerical methods to solve the system (3), in order
to find the solution of (1) fort ∈ [0, T ]. Specifically, we

1Hereafter, the dependence onz is inessential and will be omitted.
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consider the uniform grid on[0, T ] given by tm = (m− 1)δt
for m = 1, .., Nu + 1 with discretization stepδt = T

Nu

.
The complexity of the methods is measured by considering
the required number of complex products, assuming that the
FFT of a vector ofN elements requiresN2 log2(N) complex
products.

An efficient numerical way to compute the inverse NFT,
assumingNF = Nu, and thereforeδt = δα

2 , is presented in
[4]. The authors, using the Nyström method with a rectangular
quadrature scheme to approximate the integrals in (3), find the
solutionu(tm) by solving a linear system characterized by a
Toeplitz matrix of sizeNF +m. The method of Trench for the
inversion of non-Hermitian Toeplitz matrices [11] is used to
recursively compute the solution for every valuetm. For this
reason, let us name this method Nyström-Trench (NT). The
resulting algorithm computes the solutionu(t) in the desired
interval with complexity2

C ≃ 11N2
F (4)

However, due to the recursive nature of the algorithm, the com-
plexity remains almost unchanged if the solution is computed
in a lower number of pointsNu.

Another technique to solve system (3) withδt = c δα2 for
c ∈ N, (i.e., in Nu = NF /c points in the interval[0, T ]) is
presented in [5], where the Nyström method with composite
Simpson’s quadrature rule is considered. For a fixed timetm,
the resulting linear system is solved by means of the conjugate
gradient method. Therefore, we refer to this scheme as the
Nyström conjugate gradient (NCG) method. Since we deal
only with diagonal and upper-left triangular Hankel matrices,
the complexity of the method can be reduced by using the
FFT algorithm to compute the matrix-vector products required
by the conjugate gradient method. As a result, the number
of operations required to compute the solution in the desired
interval is2

C ≃(1 + kmax)

Nu+1
∑

m=1

6[c(m− 1) + 1] log2{2[c(m− 1) + 1]}+

+NuNF (4 + 6kmax)
(5)

where kmax is the number of iterations of the conjugate
gradient method, which is assumed to be the same for every
t for the sake of simplicity. In this case, the solution is
independently evaluated at each timetm in the given interval,
such thatC depends significantly on the number of pointsNu.

Now, let us define a new iterative method to solve the system
(3) for t ∈ [0, T ] with discretization stepδt = c δα2 . The main
idea is that, by defining the auxiliary functionsB′

i(t, α) =
Bi(t, α) for α ≥ 0 and B′

i(t, α) = 0 otherwise, withi =
1, 2, the integrals in (3) can be seen as convolutions between
these functions and the kernelF and efficiently computed by
means of the FFT algorithm. Therefore, considering a proper

2The computational complexity of the methods presented in [4] and [5]
is not indicated by the authors. The values reported here refer to the most
efficient implementations that we were able to devise.

starting value forB1 and iteratively updating the values of
B2 andB1 by alternately computing the integrals in (3), we
define an iterative method that, under certain conditions onF
and t, converges to the solution of the system. As a starting
point forB1 at tm, we pick the solution found at the previous
point tm−1, as we are dealing with continuous functions. The
resulting algorithm is

For k = 0

B
(0)
1 (α, tm) =

{

0 if m = 1

B
(kmax)
1 (α, tm−1) if m > 1

For k = 1, .., kmax
{

B
(k)
2 (α, tm) = −F (2tm− α) + (F ⋆ B′(k−1)

1 )(2tm− α)

B
(k)
1 (α, tm) = −(F ∗ ⋆ B′(k)

2 )(2tm − α)

(6)

where⋆ denotes convolution,B(k)
i is thekth estimate of the

function Bi, andB′(k)
1 the corresponding auxiliary function.

We refer to this method as the iterative convolution (IC)
method. The number of operations required to find the solution
in theNu points inside the interval[0, T ] is

C ≃ kmax

Nu+1
∑

m=1

3[2c(m−1)+1] log2[2c(m−1)+1]+2kmaxNuNF

(7)
Also in this case,C depends significantly on the number of
pointsNu and can be reduced by evaluating the solution with
a larger step size.

III. N UMERICAL RESULTS

With the purpose of comparing the methods presented
above, we consider the single-pulse signal considered in [4]

u(t) = − 4ανσ(σ − 1)

(σ − 1)2e−2σαt + ν2e2σαt
(8)

where σ =
√
ν2 + 1. In this case, the scattering data are

known and the GLME kernel is [4]

F (y) = ανe−αy (9)

for α > 0 and−1 ≤ ν ≤ 1. We consider the interval[0, 3]
and show the results only forα = ν = 1, as similar results
are obtained for different values of the parameters.

In Fig. 1 we compare the analytical solution (8) with the
numerical results obtained withδα = 0.01 and δt = 0.005.
At this scale, all the numerical results are practically super-
imposed (and are, therefore, represented by a single curve
to avoid cluttering the figure) and equal the exact solution.
Since the new IC method is an iterative method, whose
starting point attm depends on the previous solution found at
tm−1, it is interesting to investigate its convergence properties
when the solution is evaluated with a different resolutionδt
(keeping unchanged the resolutionδα for the evaluation of
the integrals). Fig. 2 shows the modulus of the error, i.e., the
difference between (8) and the numerical approximation, as
a function oft for δα = 0.01, different iteration numbersk,
and different resolutionsδt. In all the cases, three iterations
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Fig. 2. IC method: modulus of the error for different iterations k, different
resolutionsδt, and a fixed resolutionδα = 0.01.

are enough to reach the convergence. However, in the case
δt = δα, the error after the first iteration is significantly lower
than the error obtained after the convergence is reached. This
quite surprising result has been observed also for different
resolutionsδα and for different pulse shapes (not shown here
due to a lack of space). However, we have not been able to
find a good explanation for this behavior, which is still under
investigation. Given its particular properties, in the rest of the
paper we will refer to the IC method withkmax = 1 and
δt = δα as the IC1 method.

Fig. 3 compares the convergence properties of the IC
method (forδt = δα = 0.01) to those of the NCG method
(for δα = 0.01 and anyδt, as they are independent ofδt),
showing how the root-mean-square error (RMSE) evaluated
over the whole interval[0, 3] evolves with the number of
iterations. Thanks to the composite Simpson’s quadrature rule
employed by the NCG method (which is more accurate than
the rectangular quadrature rule implicitly employed by theIC
method when using the FFT to compute the convolutions), the
final RMSE reached by the NCG method is lower than the
RMSE reached by the IC method. However, the IC method
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Fig. 4. RMSE as a function of the resolutionδα for all the numerical
methods (δt = δα/2 for NT andδt = δα for IC1).

converges faster (after 3 iterations) than the NCG method
(after 6 iterations). The same fast convergence of the IC
method is observed also for higher values ofδt (as shown in
Fig. 2). However, in the special caseδt = δα, as observed
before, the IC method achieves an even lower RMSE at
the first iteration (IC1 method). Such a fast convergence is
obtained thanks to the good starting value forB1 indicated
in (6). A convergence of the iterative method is observed in
all the considered cases. This is, however, not guaranteed in
general, as the convergence depends on specific conditions on
F and t that are currently being investigated.

For all the methods, both the accuracy and the complexity
depend on the resolutionδα employed for the quadrature rules.
Fig. 4 shows the RMSE as a function ofδα for all the con-
sidered methods. In the NT and IC1 methods, the resolution
δt is set toδα/2 andδα by construction, respectively. On the
other hand, in the NCG and IC methods,δt can be selected
as an integer multiple ofδα/2 without affecting the accuracy.
The RMSE values obtained with the NT and IC methods are
practically the same, as they are both based on a rectangular
quadrature rule for the computation of the integrals in (3).
The NCG method, thanks to the more accurate composite
Simpson’s quadrature rule, achieves a lower RMSE for the
same resolutionδα. Finally, the IC1 method achieves an even
lower RMSE.

Fig. 4 can be used to determine, for each method, what is
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the resolutionδα (and, correspondingly, the number of points
NF = 2T/δα) required for the computation of the integrals
in order to find the solutionu(t) with a given accuracy. This,
in turn, will affect the complexity of the method according
to (4), (5), or (7). Another relevant parameter that affectsthe
computational complexity of the NCG and IC methods (but not
that of the NT and IC1 methods) is the resolutionδt = cδα/2
with which the solutionu(t) is needed (or, equivalently, the
number of pointsNu = NF /c in which the solution must
be computed). Fig. 5 compares the computational complexity
required by the various methods, computed according to (4),
(5), and (7), to obtain the solutionu(t) with a desired RMSE
of 2×10−3 (about2−9 in Fig. 4), as a function of the desired
resolution δt. According to Fig. 4, the required resolution
is δα ≃ 0.0086 for the NT and IC methods,δα ≃ 0.014
for the NCG method, andδα ≃ 0.033 for the IC1 method.
The number of iterations required to reach the convergence
is kmax = 6 for the NCG method andkmax = 3 for the
IC method. By construction, the minimum resolutionδt is
δα/2 for the NT, NCG, and IC methods, andδα for the
IC1 method. However, if desired, the resolutionδt can be
increased by computing the solutionu(t) in a lower number
of pointsNu in the given interval[0, T ]. This will significantly
reduce the computational complexity of the NCG and IC
methods, but will leave the complexity of the NT and IC1
methods almost unaffected.3 For any resolutionδt, the NCG
and IC methods have a similar complexity. In particular, the
latter is slightly more convenient, though the former couldbe
probably improved by using a more accurate quadrature rule or
employing preconditioning. Both methods are more complex
than the NT method when employed at full resolution, but
become less complex when the solution is required in a lower
number of points (the IC method forδt > 0.05 and the
NCG method forδt > 0.075). Finally, the IC1 method is
significantly less complex than the NT method (by about one
order of magnitude) and less complex than the NCG and IC
methods even at high resolutionsδt. However, the behavior

3Even if the solution is needed in a lower number of pointsNu < NF ,
the NT and IC1 algorithms must be anyway executed forNF points. In
the NT case, however, some operations can be saved, slightlyreducing the
computational complexity with respect to what is reported in (4).

of the IC1 method is still under investigation and its superior
performance, though observed also in other cases (not reported
in this paper for a lack of space), has not been fully explained
nor demonstrated for a generic signal.

IV. CONCLUSIONS

A new numerical method for the computation of the inverse
nonlinear Fourier transform has been proposed. The solution
is obtained after iterated convolutions with the GLME kernel,
which are efficiently computed trough the FFT algorithm.
The accuracy and computational complexity of the proposed
method have been investigated and compared to those of two
other methods available in the literature, both exploitingthe
Nyström method in combination with either the conjugate
gradient algorithm [5] or the Trench algorithm [4]. The ob-
tained results show that, for a desired accuracy, the proposed
method requires the lowest number of operations. The relation
between the discretization step with which the integrals ofthe
GLME are approximated and the time resolution with which
the solution is computed (which need not be the same) is
also discussed for all the methods, and the dependence of
accuracy and complexity on those two parameters is inves-
tigated. When the two parameters are equal, the proposed
method shows a very good but peculiar behavior which is still
under investigation. Further investigation is also required to
compare the algorithms in different scenarios, such as for the
defocusing NLSE or in the presence of discrete eigenvalues
in the nonlinear spectrum of the signal.
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