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Abstract

To mine association rules efficiently, we have developed a new parallel mining algorithm FPM on a

distributed share-nothing parallel system in which data are partitioned across the processors. FPM is an

enhancement of the FDM algorithm, which we proposed previously for distributed mining of association

rules [8]. FPM requires fewer rounds of message exchanges than FDM and hence has a better response time

in a parallel environment. The algorithm has been experimentally found to outperform CD, a representative

parallel algorithm for the same goal [2]. The efficiency of FPM is attributed to the incorporation of two

powerful candidate sets pruning techniques : distributed and global prunings. The two techniques are sensitive

to two data distribution characteristics, data skewness and workload balance. Metrics based on entropy are

proposed for these two characteristics. The prunings are very effective when both the skewness and balance

are high. In order to increase the efficiency of FPM, we have developed methods to partition a database so

that the resulting partitions have high balance and skewness. Experiments have shown empirically that our

partitioning algorithms can achieve these aims very well, in particular, the results are consistently better than

a random partitioning. Moreover, the partitioning algorithms incur little overhead. So, using our partitioning

algorithms and FPM together, we can mine association rules from a database efficiently.

Keywords: Association Rules, Data Mining, Data Skewness, Workload Balance, Parallel Mining,

Partitioning.
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1 Introduction

Mining association rules in large databases is an important problem in data mining research [1, 2, 4, 6,

11, 12, 15, 17, 19, 20, 24]. It can be reduced to finding large itemsets with respect to a given support

threshold [1, 2]. The problem demands a lot of CPU resources and disk I/O to solve. It needs to scan all

the transactions in a database which introduces much I/O, and at the same time search through a large

set of candidates for large itemsets which requires a lot of CPU computation. Thus, parallel mining may

deliver an effective solution to this problem. In this paper, we study the behavior of parallel association

rule mining algorithms in parallel systems with a share-nothing memory. In this model, the database is

partitioned and distributed across the local disks of the processors. We investigate how the partitioning

method affects the performance of the algorithms, and then propose new partitioning methods to exploit

this finding to speed up the parallel mining algorithms.

The prime activity in finding large itemsets is the computation of support counts of candidate itemsets.

Two different paradigms have been proposed for parallel system with distributed memory for this purpose.

The first one is count distribution and the second one is data distribution [3]. Algorithms that use the count

distribution paradigm include CD (Count Distribution) [3] and PDM (Parallel Data Mining) [18]. Algo-

rithms which adopt the data distribution paradigm include DD (Data Distribution) [3], IDD (Intelligent

Data Distribution) [10] and HPA (Hash Based Parallel) [23].

In the count distribution paradigm, each processor is responsible for computing the local support counts

of all the candidates, which are the support counts in its partition. By exchanging the local support counts,

all processors then compute the global support counts of the candidates, which are the total support counts

of the candidates from all the partitions. Subsequently, large itemsets are computed by each processor

independently. The merit of this approach is the simple communication scheme: the processors need only

one round of communication in every iteration. This makes it very suitable for parallel system when

considering response time. CD [3] is a representative algorithm in count distribution. It was implemented

on an IBM SP2. PDM [18] is a modification of CD with the inclusion of the direct hashing technique

proposed in [17]. In the count distribution approach, every processor is required to keep the local support

counts of all the candidates at each iteration, one possible problem is the space required to maintain the

local support counts of a large number of candidate sets.

In the data distribution paradigm, to ensure enough memory for the candidates, each processor is

responsible for keeping the support counts of only a subset of the candidates. However, transactions (or

their subsets) in different partitions must then be sent to other processors for counting purpose. Comparing

with sending support counts, sending transaction data requires a lot more communication bandwidth. DD
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(Data Distribution) is the first proposed data distribution algorithm [3]. It has been implemented on an

IBM SP2. The candidates in DD are distributed equally over all the processors in a round-robin fashion.

Then every processor ships its database partition to all other processors for support counts computing.

It generates a lot of redundant computation, because every transaction is processed as many times as

the number of processors. In addition, it requires a lot of communication, and its performance is worse

than CD [3]. IDD (Intelligent Data Distribution) and its variant HD (Hybrid Distribution) are important

improvements on DD [10]. They partition the candidates across the processors based on the first item of

a candidate. Therefore, each processor only needs to handle the subsets of a transaction which begin with

the items assigned to the processor. This reduces significantly the redundant computation in DD. HPA

(Hash Based Parallel), which is very similar to IDD, uses a hashing technique to distribute the candidates

to different processors [23].

One problem of data distribution that needs to be noted: it requires at least two rounds of communica-

tion in each iteration at each processor — to send its transaction data to other processors; to broadcast the

large itemsets found subsequently to other processors for candidate sets generation of the next iteration.

This two-round communication scheme puts data distribution in an unfavorable situation when considering

response time.

In this work, we investigate parallel mining employing the count distribution approach. This approach

requires less bandwidth and has a simple one-round communication scheme. To tackle the problem of large

number of candidate sets in count distribution, we adopt two effective techniques, distributed pruning and

global pruning to prune and reduce the number of candidates in each iteration. These two techniques make

use of the local support counts of large itemsets found in an iteration to prune candidates for the next

iteration. These two pruning techniques have been adopted in a mining algorithm FDM (Fast Distributed

Mining) previously proposed by us for distributed databases [7, 8]. However, FDM is not suitable for

parallel environment, it requires at least two rounds of message exchanges in each iteration that increases

the response time significantly. We have adopted the two pruning techniques to develop a new parallel

mining algorithm FPM (Fast Parallel Mining), which requires only one round of message exchange in each

iteration. Its communication scheme is as simple as that in CD, and it has a much smaller number of

candidate sets due to the pruning. In the rare case that the set of candidates are still too large to fit

into the memory of each processor even after the pruning, we can integrate the pruning techniques with

the algorithm HD into a 2-level cluster algorithm. This approach will provide the scalability to handle

candidate sets of any size and at the same maintain the benefit of effective pruning. (For details, please

see discussion in Section 7.2).

In this paper, we focus on studying the performance behavior of FPM and CD. It depends heavily on
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the distribution of data among the partitions of the database. To study this issue, we first introduce two

metrics, skewness and balance to describe the distribution of data in the databases. Then, we analytically

study their effects on the performance of the two mining algorithms, and verify the results empirically.

Next, we propose algorithms to produce database partitions that give “good” skewness and balance values.

In other words, we propose algorithms to partition the database so that good skewness and balance values

are obtained. Finally, we do experiments to find out how effective these partitioning algorithms are.

We have captured the distribution characteristics in two factors : data skewness and workload balance.

Intuitively, a partitioned database has high data skewness if most globally large itemsets1 are locally large

only at a very few partitions. Loosely speaking, a partitioned database has a high workload balance if

all the processors have similar number of locally large itemsets.2 We have defined quantitative metrics to

measure data skewness and workload balance. We found out that both distributed and global prunings have

super performance in the best case of high data skewness and high workload balance. The combination of

high balance with moderate skewness is the second best case. Inspired by this finding, we investigate the

feasibility of planning the partitioning of the database. We want to divide the data into different partitions

so as to maximize the workload balance and yield high skewness. Mining a database by partitioning it

appropriately and then employing FPM thus gives us excellent mining performance. We have implemented

FPM on an IBM SP2 parallel machine with 32 processors. Extensive performance studies have been

carried out. The results confirm our observation on the relationship between pruning effectiveness and

data distribution.

For the purpose of partitioning, we have proposed four algorithms. We have implemented these al-

gorithms to study their effectiveness. K-means clustering, like most clustering algorithm, provides good

skewness. However, it in general would destroy the balance. Random partitioning in general can deliver

high balance, but very low skewness. We introduce an optimization constraint to control the balance

factor in the k-means clustering algorithm. This modification, called Bkµ (balanced k-means clustering),

produces results which exhibit as good a balance as the random partitioning and also high skewness. In

conclusion, we found that Bkµ is the most favorable partitioning algorithms among those we have studied.

We summarize our contributions as follows:

1. We have enhanced FDM to FPM for mining association rules on distributed share-nothing parallel

system which requires fewer rounds of message communication.

1An itemset is locally large at a processor if it is large within the partition at the processor. It is globally large if it is large

with respect to the whole database [7, 8]. Note that every globally large itemset must be locally large at some processor.

Refer to Section 3 for details.
2More precise definitions of skewness and workload balance will be given in Section 4.
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2. We have shown analytically that the performance of the pruning techniques in FPM are very sensitive

to the data distribution characteristics of skewness and balance, and proposed entropy-based metrics

to measure these two characteristics.

3. We have implemented FPM on an SP2 parallel machine and experimentally verified its performance

behavior with respect to skewness and balance.

4. We have proposed four partitioning algorithms and empirically verified that Bkµ, among the four, is

the most effective in introducing balance and skewness into database partitions.

The rest of this paper is organized as follows. Section 2 overviews the parallel mining of association

rules. The techniques of distributed and global prunings, together with the FPM algorithm are described in

Section 3. In the same section, we also investigate the relationship between the effectiveness of the prunings

and the data distribution characteristics. In Section 4, we define two metrics to measure the data skewness

and workload balance of a database partitioning and then present the results of an experimental study on

the performance behavior of FPM and CD. Basing on the results of Section 4, we introduce algorithms in

Section 5 to partition database so as to improve the performance of FPM. This is achieved by arranging

the tuples in the database carefully to increase skewness and balance. Experiments in Sections 6 evaluates

the effectiveness of the partitioning algorithms. In Section 7, we discuss a few issues including possible

extensions of FPM to enhance its scalability and we give our conclusions in Section 8.

2 Parallel Mining of Association Rules

2.1 Association Rules

Let I = {i1, i2, · · · , im} be a set of items and D be a database of transactions, where each transaction
T consists of a set of items such that T ⊆ I. An association rule is an implication of the form X ⇒ Y ,
where X ⊆ I, Y ⊆ I and X ∩Y = φ. An association rule X ⇒ Y has support s in D if the probability of a
transaction in D contains both X and Y is s. The association rule X ⇒ Y holds in D with confidence c if
the probability of a transaction in D which contains X also contains Y is c. The task of mining association

rules is to find all the association rules whose support is larger than a given minimum support threshold

and whose confidence is larger than a given minimum confidence threshold. For an itemset X, we use X.sup

to denote its support count in database D, which is the number of transactions in D containing X. An

itemset X ⊆ I is large if X.sup ≥ minsup × |D|, where minsup is the given minimum support threshold.
For the purpose of presentation, we sometimes just use support to stand for support count of an itemset.

It has been shown that the problem of mining association rules can be decomposed into two subproblems
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[1]: (1) find all large itemsets for a given minimum support threshold, and (2) generate the association

rules from the large itemsets found. Since (1) dominates the overall cost, research has been focused on

how to efficiently solve the first subproblem.

In the parallel environment, it is useful to distinguish between the two different notions of locally large

and global large itemsets. Suppose the entire database D is partitioned into D1,D2, · · · ,Dn and distributed
over n processors. Let X be an itemset, the global support of X is the support X.sup of X in D. When

refering to a partition Di, the local support of X at processor i, denoted by X.sup(i), is the support of

X in Di. X is globally large if X.sup ≥ minsup × |D|. Similarly X is locally large at processor i if
X.sup(i) ≥ minsup × |Di|. Note that in general, an itemset X which is locally large at some processor i
may not necessary be globally large. On the contrary, every globally large itemset X must be locally large

at some processor i. This result and its application have been discussed in details in [7].

For convenience, we use the short form k-itemset to stand for size-k itemset, which consist of exactly

k items. And use Lk to denote the set of globally large k-itemsets. We have pointed out above that there

is distinction between locally and globally large itemsets. For discussion purpose, we will call a globally

large itemset which is also locally large at processor i, gl-large at processor i. We will use GLk(i) to denote

the gl-large k-itemsets at processor i. Note that GLk(i) ⊆ Lk, ∀i, 1 ≤ i ≤ n.

2.2 Count Distribution Algorithm for Parallel Mining

Apriori is the most well known serial algorithm for mining association rules [2]. It relies on the apriori gen

function to generate the candidate sets at each iteration. CD (Count Distribution) is a parallelized version

of Apriori for parallel mining [3]. The database D is partitioned into D1,D2, · · · ,Dn and distributed across
n processors. In the first iteration of CD, every processor i scans its partition Di to compute the local

supports of all the size-1 itemsets. All processors are then engage in one round of support counts exchange.

After that, they independently find out global support counts of all the items and then the large size-1

itemsets. For the other iteration k, (k > 1), each processor i runs the program fragment in Figure 1. In

step 1, it computes the candidate set Ck by applying the aprior gen function on Lk−1, the set of large

itemsets found in the previous iteration. In step 2, local support counts of candidates in Ck are computed

by a scanning of Di. In step 3, local support counts are exchanged with all other processors to get global

support counts. In step 4, the globally large itemsets Lk are computed independently by each processor.

In the next iteration, CD increases k by one and repeats steps 1–4 until no more candidate is found.
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1. Ck = apriori gen(Lk−1);
2. scan partition Di to find the local support counts X.sup(i) for all X ∈ Ck;
3. exchange {X.sup(i) | X ∈ Ck} with all other processors to find out the global
support counts X.sup, for all X ∈ Ck;

4. Lk = {X ∈ Ck | X.sup ≥ minsup× |D|}

Figure 1: The Count Distribution Algorithm

3 Pruning Techniques and the FPM Algorithm

CD has not taken advantage of the data partitioning in the parallel setting to prune its candidate sets.

We propose a new parallel mining algorithm FPM which has adopted the distributed and global prunings

proposed first in [7].

3.1 Candidate Pruning Techniques

3.1.1 Distributed Pruning

In step 4 of CD (Figure 1), after the support counts exchange in the k-th iteration, each processor can find

out not only the large itemsets Lk, but also the processors at which an itemset X is locally large, for all

itemsets X ∈ Lk. In other words, the subsets GLk(i), 1 ≤ i ≤ n, of Lk can be identified at every processor.
These information of locally large itemsets turn out to be very valuable in developing a pruning technique

to reduce the number of candidates generated in CD.

Suppose the database is partitioned into D1 and D2 on processors 1 and 2. Further assume that both

A and B are two size-1 globally large itemsets. In addition, A is gl-large at processor 1 but not processor 2,

and B is gl-large at processor 2 but not processor 1. Then AB can never be globally large, and hence does

not need to be considered as a candidate. A simple proof of this result in the following. If AB is globally

large, it must be locally large (i.e. gl-large) at some processor. Assume that it is gl-large at processor 1,

then its subset B must also be gl-large at processor 1, which is contradictory to the assumption. Similarly,

we can prove that AB cannot be gl-large at processor 2. Hence AB cannot be globally large at all.

Following the above result, no two 1-itemsets which are not gl-large together at the same processor

can be combined to form a size-2 globally large itemset. This observation can be generalized to size-k

candidates. The subsets GLk−1(i), (1 ≤ i ≤ n), together form a partition of Lk−1, (some of them may
overlap). For i 6= j, no candidate need to be generated by joining sets from GLk−1(i) and GLk−1(j).
In other words, candidates can be generated by applying apriori gen on each GLk−1(i), (1 ≤ i ≤ n),
separately, and then take their union. The set of size-k candidates generated with this technique is equal

to CGk = ∪ni=1CGk(i) = ∪ni=1apriori gen(GLk−1(i)). Since GLk−1(i) ⊆ Lk−1, ∀i, 1 ≤ i ≤ n, the number of
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candidates in CGk could be much less than that in Ck = apriori gen(Lk−1), the candidates in the Apriori

and CD algorithms.

Based on the above result, we can prune away a size-k candidate if there is no processor at which all

its size-(k − 1) subsets are gl-large. This pruning technique is called distributed pruning [7]. The following
example taken from [7] shows that the distributed pruning is more effective in reducing the candidate sets

than the pruning in CD.

Example 1 Assuming there are 3 processors which partitions the database D into D1, D2 and D3.

Suppose the set of large 1-itemsets (computed at the first iteration) L1 = {A,B,C,D,E, F,G,H}, in
which A,B, and C are locally large at processor 1, B,C, and D are locally large at processor 2, and

E,F,G, and H are locally large at processor 3. Therefore, GL1(1) = {A,B,C}, GL1(2) = {B,C,D}, and
GL1(3) = {E,F,G,H}.

Based on the above discussion, the set of size-2 candidate sets from processor 1 is CG2(1) = apri-

ori gen(GL1(1)) = {AB,BC,AC}. Similarly, CG2(2) = {BC,CD,BD}, and CG2(3) = {EF, EG,
EH,FG,FH,GH}. Hence, the set of size-2 candidate sets is CG(2) = CG2(1) ∪ CG2(2) ∪ CG2(3),
total 11 candidates.

However, if apriori gen is applied to L1, the set of size-2 candidate sets C2 = apriori gen(L1) would have

28 candidates. This shows that it is very effective to use the distributed pruning to reduce the candidate

sets.

3.1.2 Global Pruning

As a result of count exchange at iteration k − 1, (step 3 of CD in Figure 1), the local support counts
X.sup(i), for all large (k − 1)-itemsets, for all processor i, (1 ≤ i ≤ n), are available at every processor.
Another powerful pruning technique called global pruning is developed by using this information.

Let X be a candidate k-itemset. At each processor i, X.sup(i) ≤ Y.sup(i), if Y ⊂ X. Thus, X.sup(i) will
always be smaller than min{Y.sup(i) | Y ⊂ X and |Y | = k − 1}. Hence

X.maxsup =
n
∑

i=1

min{Y.sup(i) | Y ⊂ X and |Y | = k − 1}

is an upper bound of X.sup. X can then be pruned away if X.maxsup < minsup × |D|. This technique is
called global pruning. Note that the upper bound is computed from the local support counts resulting from

the previous count exchange.

Table 1 (page 6) is an example that global pruning could be more effective than distributed pruning.

In this example, the global support count threshold is 15 and the local support count threshold at each
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processor is 5. Distributed pruning cannot prune away CD, as C and D are both gl-large at processor 2.

Whereas global pruning can prune away CD, as CD.maxsup = 1 + 12 + 1 < 15.

In fact, global pruning subsumes distributed pruning, and it is shown in the following theorem.

Theorem 1 If X is a k-itemset (k > 1) which is pruned away in the k-th iteration by distributed pruning,

then X is also pruned away by global pruning in the same iteration.

Proof: If X can be pruned away by distributed pruning, then there does not exist a processor at which all

the size (k− 1) subsets of X are gl-large. Thus, at each processor i, there exists a size (k − 1) subset Y of
X such that Y.sup(i) < minsup×|Di|. Hence X.maxsup <

∑n
i=1(minsup×|Di|) = minsup×|D|. Therefore,

X is pruned away by global pruning.

The reverse of Theorem 1 is not necessarily true, however. From the above discussions, it can be

seen that the three pruning techniques, the one in apriori gen, the distributed and global prunings, have

increasing pruning power, and the latter ones subsume the previous ones.

Items A B C D E F

local support at processor 1 13 33 1 2 2 1

local support at processor 2 1 3 12 34 1 4

local support at processor 3 2 1 2 1 12 33

global support 16 37 15 37 15 38

gl-large at processor 1
√ √ × × × ×

gl-large at processor 2 × × √ √ × ×
gl-large at processor 3 × × × × √ √

Table 1: High data skewness and high workload balance case

3.2 Fast Parallel Mining Algorithm (FPM)

We present the FPM algorithm in this section. It improves CD by adopting the two pruning techniques.

The first iteration of FPM is the same as CD. Each processor scans its partition to find out local support

counts of all size-1 itemsets and use one round of count exchange to compute the global support counts.

At the end, in addition to L1, each processor also finds out the gl-large itemsets GL1(i), for 1 ≤ i ≤ n.
Starting from the second iteration, prunings are used to reduce the number of the candidate sets. Figure 2

is the program fragment of FPM at processor i for the k-th (k > 1) iteration. In step 1, distributed pruning

is used and apriori gen is applied to the sets GLk−1(i), ∀i = 1, · · · , n, instead of to the set Lk−1.3 In step
2, global pruning is applied to the candidates that survive the distributed pruning. The remaining steps

are the same as those in CD. As has been discussed, FPM in general enjoys a smaller candidate sets than
3Compare this step with step 1 of Figure 1 would be useful in order to see the difference between FPM and CD.
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1. compute the candidate sets CGk = ∪ni=1apriori gen(GLk−1(i)); (distributed
pruning)

2. apply global pruning to prune the candidates in CGk;
3. scan partition Di to find out the local support counts X.sup(i) for all remaining
candidates X ∈ CGk;

4. exchange {X.sup(i) | X ∈ CGk} with all other processors to find out the global
support counts X.sup, for all X ∈ CGk;

5. compute GLk(i) = {X ∈ CGk | X.sup ≥ minsup× |D| and X.sup(i) ≥ minsup×
|Di|} and exchange the result with all other processors;

6. return Lk = ∪ni=1GLk(i).

Figure 2: The FPM Algorithm

CD. Furthermore, it uses a simple one-round message exchange scheme same as CD. If we compare FPM

with the FDM algorithm proposed in [7], we will see that this simple communication scheme makes FPM

more suitable than FDM in terms of response time in a parallel system.

Note that since the number of processors n would not be very large, the cost of generating the candidates

with the distributed pruning in step 1 (Figure 2) should be on the same order as that in CD. As for global

pruning, since all local support counts are available at each processor, no additional count exchange is

required to perform the pruning. Furthermore, the pruning in step 2 (Figure 2) is performed only on the

remaining candidates after the distributed pruning. Therefore, cost for global pruning is small comparing

with database scanning and count updates.

3.3 Data Skewness and Workload Balance

In a partitioned database, two data distribution characteristics, data skewness and workload balance, af-

fect the effectiveness of the pruning and hence performance of FPM. Intuitively, the data skewness of a

partitioned database is high if most large itemsets are locally large only at a few processors. It is low if a

high percentage of the large itemsets are locally large at most of the processors. For a partitioning with

high skewness, even though it is highly likely that each large itemset will be locally large at only a small

number of partitions, the set of large itemsets together can still be distributed either evenly or extremely

skewed among the partitions. In one extreme case, most partitions can have similar number of locally large

itemsets, and the workload balance is high. In the other extreme case, the large itemsets are concentrated

at a few partitions and hence there are large differences in the number of locally large itemsets among

different partitions. In this case, the workload is unbalance. These two characteristics have important

bearing on the performance of FPM.

Example 2 Table 1 (page 6) is a case of high data skewness and high workload balance. The supports
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of the itemsets are clustered mostly in one partition, and the skewness is high. On the otherhand, every

partition has the same number (two) of locally large itemsets.4 Hence, the workload balance is also high.

CD will generate
(6
2

)

= 15 candidates in the second iteration, while distributed pruning will generate only

three candidates AB, CD and EF , which shows that the pruning has good effect.

Items A B C D E F

local support at processor 1 6 12 4 13 5 12

local support at processor 2 6 12 5 12 4 13

local support at processor 3 4 13 6 12 6 13

global support 16 37 15 37 15 38

gl-large at processor 1
√ √ × √ √ √

gl-large at processor 2
√ √ √ √ × √

gl-large at processor 3 × √ √ √ √ √

Table 2: High workload balance and low data skewness case

Table 2 is an example of high workload balance and low data skewness. The support counts of the items

A, B, C, D, E and F are almost equally distributed over the 3 processors. Hence, the data skewness is low.

However, the workload balance is high, because every partition has the same number (five) of locally large

itemsets. Both CD and distributed pruning generate the same 15 candidate sets in the second iteration.

However, global pruning can prune away the candidates AC, AE and CE. FPM still exhibits a 20% of

improvement over CD in this pathological case of high balance and low skewness.

We will define formal metrics for measuring data skewness and workload balance for partitions in

Section 4. We will also see how high values of balance and skewness can be obtained by suitably and

carefully partitioning the database in Section 5. In the following, we will show the effects of distributed

pruning analytically for some special cases.

Theorem 2 Let L1 be the set of size-1 large itemsets, C2(c) and C2(d) be the size-2 candidates generated by

CD and distributed pruning, respectively. Suppose that each size-1 large itemset is gl-large at one and only

one processor, and the size-1 large itemsets are distributed evenly among the processors, i.e., the number

of size-1 gl-large itemsets at each processor is |L1|/n, where n is the number of processors. Then
|C2(d)|

|C2(c)|
=

(|L1|/n)−1
|L1|−1

≈ 1
n .

Proof: Since CD will generate all the combinations in L1 as size-2 candidates, |C2(c)| =
(|L1|
2

)

= |L1|
2 (|L1|−1).

As for distributed pruning, each processor will generate candidates independently from the gl-large size-

1 itemsets at the processor. The total number of candidates it will generate is |C2(d)| =
(|L1|/n
2

)

× n =
4As has been mentioned above, the support threshold in Table 1 for globally large itemsets is 15, while that for locally

large itemset is 5 for all the partitions.
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|L1|
2 (|L1|/n−1). Since n is the number of processor, which is much smaller than |L1|, we have |L1| ≫ n ≥ 1.
Hence, we can take the approximations |L1|−1 ≈ |L1| and |L1|/n−1 ≈ |L1|/n. So,

|C2(d)|

|C2(c)|
= (|L1|/n)−1

|L1|−1
≈ 1
n .

Theorem 2 shows that distributed pruning can dramatically prune away almost n−1n size-2 candidates

generated by CD in the high balance and good skewness case.

We now consider a special case for the k-th iteration (k > 2) of FPM. In general, if Ak−1 is the set

of size-(k − 1) large itemsets, then the maximum number of size-k candidates that can be generated by
applying apriori gen on Ak−1 is equal to

(m
k

)

, where m is the smallest integer such that
( m
k−1

)

= |Ak−1|. In
the following, we use this maximal case to estimate the number of candidates that can be generated in the

k-th iteration. Let Ck(c) and Ck(d) be the set of size-k candidates generated by CD and distributed pruning,

respectively. Similar to Theorem 2, we investigate the case in which all gl-large (k− 1)-itemsets are locally
large at only one processor, and the number of gl-large itemsets at each processor is the same. Let m be the

smallest integer such that
( m
k−1

)

= |Lk−1|. Then, we have |Ck(c)| =
(m
k

)

. Hence |Ck(c)| = m−k+1
k × |Lk−1|.

Similarly, let m′ be the smallest integer such that
( m′

k−1

)

=
|Lk−1|
n . Then |Ck(d)| =

(m′

k

)

× n. Hence
|Ck(d)| = m′−k+1

k × |Lk−1|n × n. Therefore, |Ck(d)||Ck(c)|
= m′−k+1
m−k+1 . When k = 2, this result becomes Theorem 2.

In general, m′ ≪ m, which shows that distributed pruning has significant effect in almost all iterations.
However, the effect will decrease when m′ converges to m as k increases.

4 Metrics for Data Skewness and Workload Balance

In this section, we define metrics to measure data skewness and workload balance. Then, we present

empirical results of the effects of skewness and balance on the performance of FPM and CD.

It is important to note that the simple intuition of defining balance as a measure on the evenness

of distributing transactions among the partitions is not suitable in our studies. The performance of the

prunings is linked to the distribution of the large itemsets, not that of the transactions. Furthermore, the

metrics on skewness and balance should be consistent between themselves. In the following, we explain

our entropy-based metrics defined for these two notions.

4.1 Data Skewness

We develop a skewness metric based on the well established notion of entropy [5]. Given a random

variable X, it’s entropy is a measurement on how even or uneven its probability distribution is over its

values. If a database is partitioned over n processors, the value pX(i) =
X.sup(i)
X.sup

can be regarded as the
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probability that a transaction containing itemset X comes from partition Di, (1 ≤ i ≤ n). The entropy
H(X) = −∑ni=1(pX(i) × log(pX(i))) is an indication of how even the supports of X are distributed over
the partitions.5 For example, if X is skewed completely into a single partition Dk, (1 ≤ k ≤ n), i.e., it
only occurs in Dk, then pX(k) = 1 and pX(i) = 0, ∀i 6= k. The value of H(X) = 0 is the minimal in this
case. On the other hand, if X is evenly distributed among all the partitions, then pX(i) =

1
n , 1 ≤ i ≤ n,

and the value of H(X) = log(n) is the maximal in this case. Therefore, the following metric can be used

to measure the skewness of a database partitioning.

Definition 1 Given a database with n partitions, the skewness S(X) of an itemset X is defined by

S(X) = Hmax−H(X)
Hmax

, where H(X) = −∑ni=1(pX(i)× log(pX(i))) and Hmax = log(n).

The skewness S(X) has the following properties:

• S(X) = 0 when all pX(i) (1 ≤ i ≤ n), are equal. So the skewness is at its lowest value when X is
distributed evenly in all partitions.

• S(X) = 1, when a pX(i) equals 1 and all the others are 0. So the skewness is at its highest value
when X occurs only in one partition.

• 0 < S(X) < 1, in all the other cases.

Following the property of entropy, higher values of S(X) corresponds to higher skewness for X. The

above definition gives a metric on the skewness of an itemset. In the following, we define the skewness of

a partitioned database as a weighted sum of the skewness of all its itemsets.

Definition 2 Given a database D with n partitions, the skewness TS(D) is defined by

TS(D) =
∑

X∈IS

S(X) ×w(X)

where IS is the set of all the itemsets, w(X) =
X.sup

∑

Y ∈IS
Y.sup

is the weight of the support of X over all the

itemsets, and S(X) is the skewness of itemset X.

TS(D) has some properties similar to those of S(X).

• TS(D) = 0, when the skewness of all the itemsets are at its minimal value.
5In the computation of H(X), some of the probability values pX(i) may be zero. In that case, we take 0 log 0 = 0, in the

sense that limh→0 h log h = 0.
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• TS(D) = 1, when the skewness of all the itemsets are at its maximal value.

• 0 < TS(D) < 1, in all the other cases.

We can compute the skewness of a partitioned database according to Definition 2. However, the

number of itemsets may be very large in general. One approximation is to compute the skewness over

the set of globally large itemsets only, and take the approximation pX(i) ≈ 0 if X is not gl-large in
Di. In the generation of candidate itemsets, only globally large itemsets will be joined together to form

new candidates. Hence, only their skewness would impact the effectiveness of pruning. Therefore, this

approximation is a reasonable and practical measure.

4.2 Workload Balance

Workload balance is a measurement on the distribution of the total weights of the locally large itemsets

among the processors. Based on the definition of w(X) in Definition 2, we defineWi =
∑

X∈IS w(X)×pX (i)
to be the itemset workload of partition Di, where IS is the set of all the itemsets. Note that

∑n
i=1Wi = 1.

A database has high workload balance if the Wi’s are the same for all partitions Di, 1 ≤ i ≤ n. On the
other hand, if the values of Wi exhibit large differences among themselves, the workload balance is low.

Thus, our definition of the workload balance metric is also based on the entropy measure.

Definition 3 For a database D with n partitions, the workload balance factor (workload balance, for short)

TB(D) is defined as TB(D) =
−
∑n

i=1
Wi log(Wi)

log(n) .

The metric TB(D) has the following properties:

• TB(D) = 1, when the workload across all processors are the same;

• TB(D) = 0, when the workload is concentrated at one processor;

• 0 < TB(D) < 1, in all the other cases.

Similar to the skewness metric, we can approximate the value of TB(D) by only considering globally

large itemsets.

The data skewness and workload balance are not independent of each other. Theoretically, each one

of them may attain values between 0 and 1, inclusively. However, some combinations of their values are

not admissible. For instance, we cannot have a database partitioning with very low balance and very low

skewness. This is because a very low skewness would accompany with a high balance while a very low

balance would accompany with a high skewness.
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Theorem 3 Let D1,D2, · · · ,Dn be the partitions of a database D.

1. If TS(D) = 1, then the admissible values of TB(D) ranges from 0 to 1. Moreover, if TS(D) = 0,

then TB(D) = 1.

2. If TB(D) = 1, then the admissible values of TS(D) ranges from 0 to 1. Moreover, if TB(D) = 0,

then TS(D) = 1.

Proof:

1. By definition 0 ≤ TB(D) ≤ 1. What we need to prove is that the boundary cases are admissible
when TS(D) = 1. TS(D) = 1 implies that S(X) = 1, for all large itemsets X. Therefore, each

large itemset is large at one and only one partition. If all the large itemsets are large at the same

partition Di, then Wi = 1 and Wk = 0, (1 ≤ k ≤ n, k 6= i). Thus TB(D) = 0 is admissible. On the
other hand, if every partition has the same number of large itemsets, then Wi =

1
n , (1 ≤ i ≤ n), and

hence TB(D) = 1. Furthermore, if TS(D) = 0, then S(X) = 0 for all large itemsets X. This implies

that Wi are the same for all 1 ≤ i ≤ n. Hence TB(D) = 1.

2. It follows from the first result of this theorem that both TS(D) = 0 and TS(D) = 1 are admissible

when TB(D) = 1. Therefore the first part is proved. Furthermore, if TB(D) = 0, there exists a

partition Di such that Wi = 1 and Wk = 0, (1 ≤ k ≤ n, k 6= i). This implies that all large itemsets
are locally large at only Di. Hence TS(D) = 1.

Even though, 0 ≤ TS(D) ≤ 1 and 0 ≤ TB(D) ≤ 1, not all possible combinations are admissible.
In general, the admissible combinations is a subset of the unit square, represented by the shaded region

in Figure 6. It always contains the two line segments TS(D) = 1 (S = 1 in Figure 6) and TB(D) = 1

(B = 1 in Figure 6), but not the origin, (S = 0, B = 0). After defining the metrics and studying their

characteristics, we can experimentally validate our analysis (see Section 3.3) on the relationship between

data skewness, workload balance and performance of FPM and CD.

We would like to note that the two metrics are based on total entropy which is a good model to measure

evenness (or unevenness) of data distribution. Also, they are consistent with each other.

4.3 Performance Behaviors of FPM and CD

We study the performance behaviors of FPM and CD in response to various skewness and balance values on

an IBM SP2 parallel processing machine with 32 nodes. Each node consists of a POWER2 processor with
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a CPU clock rate of 66.7 MHz and 64 MB of main memory. The system runs the AIX operating system.

Communication between processors are done through a high performance switch with an aggregated peak

bandwidth of 40 MBps and a latency about 40 microseconds. The appropriate database partition is

downloaded to the local disk of each processor before mining starts. The databases used for the experiments

are all synthesized according the a model which is an enhancement of the model adopted in [2]. Due to

insufficient paper space, the description is omitted.

4.3.1 Improvement of FPM over CD

In order to compare the performance of FPM and CD, we have generated a number of databases. The

size of every partition of these databases is about 100MB, and the number of partitions is 16, i.e., n =

16.6 We also set N = 1000, L = 2000, correlation level to 0.5. The name of each database is in the

form Dx.Ty.Iz.Sr.Bl, where x is the average number of transactions per partition, y is the average size of

the transactions, z is the average size of the itemsets. These three values are the control values for the

database generation. On the other hand, the two values r and l are the control values (in percentage) of

the skewness and balance, respectively. They are added to the name, in the sense that they are intrinsic

properties of the database.

We ran FPM and CD on various databases. The minimum support threshold is 0.5%. The improvement

of FPM over CD in response time on these databases are recorded in Table 3. In the table, each entry

corresponds to the results of one database, and the value of the entry is the speedup ratio of FPM to CD,

i.e. the response time of CD over that of FPM. Entries corresponding to the same skewness value are put

onto the same row, while entries under the same column correspond to databases with the same balance

value. The result is very encouraging. FPM is consistently faster than CD in all cases. Comparing the

figures for databases D2016K.T10.I4 against those of D3278K.T5.I2.S10 and comparing D1140K.T20.I6.S90

against D2016K.T10.I4.S10, we observe that the larger the transaction sizes and longer the large-itemsets,

the more significant the improvements are in general. Obviously, the local pruning and global pruning

adopted in FPM are very effective. The sizes of the candidate sets are significantly reduced, and hence

FPM outperforms CD significantly.

6Even though the SP2 we use has 32 nodes, because of administration policy, we can only use 16 nodes in our experiments.
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Database
Speedup (FPM/CD)

B100 B90 B70 B50 B30 B10

D3278K.T5.I2.S90 2.10 1.69 1.36 1.23 1.14 1.06
D3278K.T5.I2.S70 2.07 1.41 1.23 1.13 1.06 —
D3278K.T5.I2.S50 1.88 1.22 1.11 1.06 — —
D3278K.T5.I2.S30 1.55 1.17 1.08 — — —
D3278K.T5.I2.S10 1.36 1.09 — — — —

D2016K.T10.I4.S90 2.33 1.59 1.38 1.35 1.15 1.07
D2016K.T10.I4.S70 2.30 1.47 1.29 1.14 1.08 —
D2016K.T10.I4.S50 2.08 1.28 1.11 1.09 — —
D2016K.T10.I4.S30 1.55 1.19 1.10 — — —
D2016K.T10.I4.S10 1.27 1.10 — — — —

D1140K.T20.I6.S90 3.21 2.10 1.51 1.26 1.12 1.06
D1140K.T20.I6.S70 3.09 1.81 1.35 1.16 1.07 —
D1140K.T20.I6.S50 2.53 1.42 1.18 1.09 — —
D1140K.T20.I6.S30 1.87 1.28 1.10 — — —
D1140K.T20.I6.S10 1.50 1.12 — — — —

Table 3: Performance Improvement of FPM over CD

4.3.2 Performance of FPM with High Workload Balance

Figure 3 shows the response time of the FPM and CD algorithms for databases with various skewness

values and a high balance value of B = 100 7. FPM outperforms CD significantly even when the skewness

is in the moderate range, (0.1 ≤ s ≤ 0.5). This trend can be read also from Table 3. When B = 100,
FPM is 36% to 110% faster than CD. In the more skewed cases, i.e., 70 ≤ S ≤ 90, FPM is at least 107%
faster than CD. When skewness is moderate (S = 30), FPM is still 55% faster than CD. When B = 90,

FPM maintains the performance lead over CD. The results clearly demonstrate that given a high workload

balance, FPM outperforms CD significantly when the skewness is in the range of high to moderate.

4.3.3 Performance of FPM with High Skewness

Figure 4 plots the response time of FPM and CD for databases with various balance values. The skewness

is maintained at S = 90. In this case, FPM behaves slightly differently from the high workload balance

case presented in the previous section. FPM performs much better than CD when the workload balance is

relatively high (b > 0.5). However, its performance improvement over CD in the moderate balance range,

(0.1 ≤ b ≤ 0.5), is marginal. This implies that FPM is more sensitive to workload balance than skewness.
7We use B and S to represent the control value of the balance and skewness in the databases in Table 3. Hence their unit

is in percentage and their value is in the range of [0, 100]. On the other hand, in Figures 3 to 6, we use s and b to represent

the skewness and balance of the databases, which are values in the range of [0, 1]. In real term, both B and b, S and s have

the same value except different units.
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Figure 3: (left) Relative Performance on Databases with High Balance

Figure 4: (right) Relative Performance on Databases with High Skewness

In other words, if the workload balance has dropped to a moderate value, even a high skewness cannot

stop the degradation in performance improvement.

This trend can also be inferred from Table 3. When S = 90, FPM is 6% to 110% faster than CD

depending on the workload balance. In the more balanced databases, i.e., 90 ≤ B ≤ 100, FPM is at least
69% faster than CD. In the moderate balance case (50 ≤ B ≤ 70), the performance gain drops to the 23%
to 36% range. This result shows that a high skewness has to be accompanied by a high workload balance

in order for FPM to deliver a good improvement. The effect of a high skewness with a moderate balance

is not as good as that of a high balance with a moderate skewness.

4.3.4 Performance of FPM with Moderate Skewness and Balance

In Figure 5, we vary both the skewness and balance together from a low values combination to a high values

combination. The trend shows that the improvement of FPM over CD increases from a low percentage at

s = 0.5, b = 0.5 to a high percentage at s = 0.9, b = 0.9. Reading Table 3, we find that the performance

gain of FPM increases from around 6% (S = 50, B = 50) to 69% (S = 90, B = 90) as skewness and balance

increase simultaneously. The combination of S = 50, B = 50 in fact is a point of low performance gain of

FPM in the set of all admissible combinations in our experiments.

4.3.5 Summary of the Performance Behaviors of FPM and CD

We have done some other experiments to study the effects of skewness and balance on the performance

of FPM and CD. Combining these results with our observations in the above three cases, we can divide

the admissible area into several regions, as shown in Figure 6. Region A is the region in which FPM

outperforms CD the most. In this region, the balance is high and the skewness varies from high to
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Figure 6: Division of the admissible regions according to the performance improvement of FPM over CD
(FPM/CD)

moderate, and FPM performs 45% to 221% faster than CD. In region B, the workload balance value has

degraded moderately and the skewness remains high. The change in workload balance has brought the

performance gain in FPM down to a lower range of 35% to 45%. Region C covers combinations that have

undesirable workload balance. Even though the skewness could be rather high in this region, because of

the low balance value, the performance gain in FPM drops to a moderate range of 15% to 30%. Region

D contains those combinations on the bottom of the performance ladder in which FPM only has marginal

performance gain.

Thus, our empirical study clearly shows that high values of skewness and balance favors FPM. Fur-

thermore, between skewness and balance, workload balance is more important than skewness. The study

here not only has shown that the performance of the prunings is very sensitive to the data distribution,
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it also has demonstrated that the two metrics are useful in distinguishing ”favorable” distributions from

”unfavorable” distributions. In Figure 6, regions C & D may cover more than half of the whole admissible

area. For database partitions fall in these regions, FPM may not be much better than CD. Because of

this, it is important to partition a database in such a way that the resulted partitions would be in a more

favorable region. In Sections 5 and 6, we will show that this is in fact possible by using partitioning

algorithms we will proposed.

5 Partitioning of the Database

Suppose now that we have a centralized database and want to mine it for association rules. We have to

divide the database into partitions and then run FPM on the partitions. If we can divide the database in a

way to yield high balance and skewness across the partitions, we can have much more savings on resources

by using FPM. Even for an already partitioned database, redistributing the data among the partitions

may also increase the skewness and balance, thus benefiting FPM. So, how to divide the database into

partitions to achieve high balance and skewness becomes an interesting and important problem.

Note that not all databases can be divided into a given number of partitions to yield high skewness and

balance. If the data in the database is already highly uniform and homogeneous, with not much variations,

then any method of dividing it into the given number of partitions would produce similar skewness and

balance. However, most real-life database are not uniform, and there are many variations within them. It

is possible to find a wise way of dividing the data tuples into different partitions to give a very high balance

and skewness than an arbitrary partition. Therefore, if a database intrinsically has non-uniformness, we

may dig out such non-uniformness and exploit it to partition the database.

So, it would be beneficial to partition the database carefully. Ideally, the partitioning method should

maximize the skewness and balance metrics for any given database. However, doing such an optimization

would be no easier than finding out the association rules. The overhead of this would be too high to worth

doing. So, instead of optimizing the skewness and balance values, we would use low-cost algorithms that

produce reasonably high balance and skewness values. These algorithms should be simple enough so that

not much overhead is incurred. Such small overhead would be far compensated by the subsequent savings

in running FPM.

5.1 Framework of the Partitioning Algorithms

To make the partitioning algorithms simple, we will base on the following framework. The core part of

the framework is a clustering algorithm, for which we will plug in different clustering algorithms to give
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different partitioning algorithms. The framework can be divided into three steps.

Conceptually the first step of the framework divides the transactions in the database into equal-sized

chunks Ci. Each chunk contains the same number y of transactions. So, there will be a total of z =
⌈

|D|
y

⌉

chunks. For each chunk, we define a signature γi, which is an |I|-dimensional vector. The j-th (j =
1, 2, . . . , |I|) element of the signature, γi,j , is the support count of the 1-itemset containing item number j
in chunk Ci. Note that each signature γi is a vector. This allows us to use functions and operations on

vectors to describe our algorithms. The signatures γi are then used as representatives of their corresponding

chunks Ci. All the γi’s can be computed by scanning the database once. Moreover, we can immediately

deduce the support counts of all 1-itemsets as
∑

γi. This can indeed be exploited by FPM to avoid the

first iteration, thus saving one scan in FPM (see Section 7.1 for details). So, overall, we can obtain the

signatures without any extra database scans.

The second step is to divide the signatures γi into n groups Gk, where n is the number of partitions

to be produced. Each group corresponds to a partition in the resulting partitioning. The number of

partitions n should be equal to the number of processors to be used for running FPM. A good partitioning

algorithm should assign the signatures to the groups according to the following criteria. To increase the

resulting skewness, we should put the signatures into groups so that the distance8 between signatures in

the same group is small, but the distance between signatures in different groups is high. This would tend

to make the resulting partitions more different from one another, and make the transactions within each

partition more similar to themselves. Hence, it would have higher skewness. To increase the workload

balance, each group should have similar signature sum. One way to achieve this is to assign more or less

the same number of signatures to each group such that the total signatures in each group are very close.

The third step of the framework distributes the transactions to different partitions. For each chunk Ci,

we check which group its signature γi was assigned to in step 2. If it was assigned to group Gk, then we

send all transactions in that chunk to partition k. After sending out all the chunks, the whole database is

partitioned.

It can be easily noticed that step 2 is the core part of the partitioning algorithm framework. Steps

1 and 3 are simply the pre-processing and post-processing parts. By using a suitable chunk size, we

can reduce the total number of chunks, and hence signatures, to a suitable value, so that they can all be

processed in RAM by the clustering algorithm in step 2. This effectively reduces the amount of information

that our clustering algorithm have to handle, and hence the partitioning algorithms are very efficient.

We like to note that in our approach, we have only made use of the signatures from size-1 itemsets. We

could have used those of larger size itemsets. However, that would cost more and eventually it becomes

8Any valid distance function in the |I |-dimensional space may be used.
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the problem of finding the large itemsets. Using size-1 itemsets is a good trade-off, and the resources used

in finding them as we have noted is not wasted. Furthermore, our empirical results (in Section 6) have

shown that by just using the size-1 itemsets, we can already achieve reasonable skewness and high balance.

5.2 The Clustering Problem

With this framework, we have reduced the partitioning problem to a clustering algorithm. Our original

problem is to partition a given database so that the resulting partitions give high skewness and balance

values, with balance receiving more attention. Now, we have turned it into a clustering problem, which is

stated as follows.

Problem Given z I-dimensional vectors γi (i = 1, 2, . . . , z), called “signatures”, assign them to n groups

Gj (j = 1, 2, . . . , n) so as to achieve the following to criteria:

1. (Skewness)
∑z
i=1

∑n
j=1 ||γi − θj||2 · δ(i, j) is minimized, where θj = 1

σj

∑z
i=1 γi · δ(i, j) and δ(i, j) = 1

if γi is assigned to Gj and δ(i, j) = 0 otherwise and σj =
∑z
i=1 δ(i, j)

2. (Balance) σj1 = σj2 for all j1, j2 = 1, 2, . . . , n

Note that here, the vector θj is the geometric centroid of the signatures assigned to group Gj , while

σj is the number of signatures assigned to that group.
9 The notation ||x|| denotes the distance of vector x

from the origin, measured with the chosen distance function.

The first criterion above says that we want to minimize the distance between the signatures assigned

to the same group. This is to achieve high skewness. The second criterion reads that each group shall be

assigned the same number of signatures, so as to achieve high balance.

Note that it is non-trivial to meet both criteria at the same time. So, we develop algorithms that

attempt to find approximate solutions. Below, we will give several clustering algorithms, that are to be

plugged into step 2 of the framework to give various partitioning algorithms.

5.3 Some Straightforward Approaches

The simplest idea to solve the clustering problem is to assign the signatures γi to the groups Gj randomly.
10

For each signature, we choose a uniformly random integer r between 1 and n (the number of partitions) and

9In the subsequent sections, the index j will be used for the domain of groups. So, it will implicitly take values from 1 to

n.
10In the subsequent sections, the index i will be used for the domain of signatures. So, it will implicitly take values 1, 2, . . . , z.
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assign the signature to group Gr. As a result, each group would eventually receive roughly the same amount

of signatures, and hence chunks and transactions. This satisfies the balance criterion (see Section 5.2),

but leaves the skewness criterion unattacked. So, this clustering method should yield high balance, which

is close to unity. However, skewness is close to zero, because of the completely random assignment of

signatures to groups. With this clustering algorithm, we get a partitioning algorithm, which we will refer

to “random partitioning”.

To achieve good skewness, we shall assign signatures to groups such that signatures near to one another

should go to the same group. Many clustering algorithms with such a goal have been developed. Here,

we shall use one of the most famous ones: the k-means algorithm [14]. (We refer the readers to relevant

publications for a detailed description of the algorithm.) Since the k-means algorithm minimizes the sum

of the distances of the signatures to the geometric centroids of their corresponding groups, it meets the

skewness criterion (see Section 5.2). However, the balance criterion is completely ignored, since we impose

no restrictions on the size of each group Gj . Consequently some groups may get more signatures then

the others and hence the corresponding partitions will receive more chunks of transactions. Thus, this

algorithm should yield high skewness, but does not guarantee good workload balance. In the subsequent

discussions, we shall use the symbol “kµ” to denote the partitioning algorithm employing the k-means

clustering algorithm.

Note that the random partitioning algorithm yields high balance but poor skewness, while kµ yields

high skewness but low balance. They do not achieve our goal of getting high skewness as well as balance.

Nonetheless, these algorithms does give us an idea of how high a balance or skewness value can be achieved

by suitably partitioning a given database. The result of the random algorithm suggests the highest achiev-

able balance of a database, while the kµ algorithm gives the highest achievable skewness value. Thus, they

give us reference values to evaluate the effectiveness of the following two algorithms.

5.4 Sorting by the Highest-Entropy Item (SHEI)

To achieve high skewness, we may use sorting. This idea comes from the fact that sorting decreases the

degree of disorder and hence entropy. So, the skewness measure should, according to Definitions 1 and 2,

increase. If we sort the signatures γi (i = 1, 2, . . . , z) in ascending order of the k1-th coordinate value

(i.e. γi,k1), which is the support count of item number k1, and then divide the sorted list evenly into n

equal-length consecutive sublists, and then assign each sublist to a group Gj , we can obtain a partitioning

with good skewness. Since each sublist has the same length, the resulting groups have the same number

of signatures. Consequently, the partitions generated will have equal amount of transactions. This should

give a balance better then kµ.
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group signature
coordinate values

· · · k1 · · · k2 · · ·
γ1 · · · 0 · · · 1 · · ·

G1 γ6 · · · 3 · · · 1 · · ·
γ3 · · · 3 · · · 1 · · ·
γ2 · · · 3 · · · 0 · · ·

G2 γ5 · · · 5 · · · 0 · · ·
γ4 · · · 7 · · · 2 · · ·

Table 4: An example demonstrating the idea of SHEI

This idea is illustrated with the example database in Table 4. This database has only 6 signatures

and we divide it into 2 groups (z = 6, n = 2). The table shows the coordinate values of the items k1

and k2 of each signature. Using the idea mentioned above, we sort the signatures according to the k1-th

coordinate values. This gives the resulting ordering as shown in the table. Next, we divide the signatures

into two groups (since n = 2), each of size 3, with the order of the signature being preserved. So, the first 3

signatures are assigned to group G1, while the last 3 signatures are assigned to G2. This assignment is also

shown in the table. The database is subsequently partitioned by delivering the corresponding chunks Ci

to the corresponding partitions. Observe how the sorting has brought the transactions that contribute to

the support count of item k1 to the partition 2. Since the coordinate values are indeed support counts of

the corresponding 1-itemsets, we know that partition 1 has a support count of 0 + 3 + 3 = 6 for item k1,

while partition 2 has a support count of 3 + 5 + 7 = 15. Thus, the item k1 has been made to be skewed

towards partition 2.

Now, why did we choose item k1 for the sort key, but not item k2? Indeed, we should not choose

an arbitrary item for the sort key, because not all items can give good skewness after the sorting. For

example, if the item k1 occurs equally frequently in each chunk Ci, then all signatures γi will have the

same value in the coordinate corresponding to the support count of item k1. Sorting the signatures using

this key will not help increasing the skewness. On the other hand, if item k1 has very uneven distribution

among the chunks Ci, sorting would tend to deliver chunks with higher occurrence of k1 to the same or

near-by groups. In this case, skewness can be increased significantly by sorting. So, we shall choose the

items with uneven distribution among the chunks Ci for the sort key. To measure the unevenness, we use

the statistical entropy measure again. For every item X, we evaluate its statistical entropy value among

the signature coordinate values γi,X over all chunks Ci. The item with the highest entropy value is the

most unevenly distributed. Besides considering the unevenness, we have to consider the support count of

item X, too. If the support count of X is very small, then we gain little by sorting on X. So, we should

consider both the unevenness and the support count of each item X in order to determine the sort key.

We multiply the entropy value with the total support count of the item in the whole database (which can
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be computed by summing up all signature vectors). The product gives us a measure of how frequent and

how uneven an item is in the database. The item which gets the highest value for this product is chosen

for the sort key, because it is both frequent and unevenly distributed in the database. In other words, we

choose as the sort key the item X which has the largest value of πX = (entropy
z
i=1 γi,X) · (

∑z
i=1 γi,X) The

item with the second highest value for this product is used for the secondary sort key. We can similarly

determine tertiary and quaternary sort keys, etc.

Sorting the signatures according to keys so selected will yield reasonably high skewness. However, the

balance factor is not good. The balance factor is primarily guaranteed by the equal size of the groups

Gj . However, this is not sufficient. This is because the sorting will tend to move the signatures with

large coordinate values and hence the large itemsets to the same group. The “heavier” signatures will

be concentrated in a few groups, while the “lighter” signatures are concentrated in a few other groups.

Since the coordinate values are indeed support counts, the sorting would thus distribute the workloads

unevenly. To partly overcome this problem, we sort on the primary key in ascending order of coordinate

values (which is the support count of the item), the secondary key in descending order of the coordinate

values, etc. By alternating the direction of sorting in successive keys, our algorithm can distribute the

workload quite evenly, while maintaining a reasonably high skewness.

This idea of using auxiliary sort keys and alternating sort orders is illustrated in Table 4. Here, the

primary sort key is k1, while k2 is the secondary sort key. The primary sort key is processed in ascending

order, while the secondary key is processed in descending order. Note how the secondary sort key has

helped assigning γ6 and γ3 to one group and γ2 to another, when they have the same value in the primary

sort key. This has helped in increasing the skewness by gathering the support counts of k2 for those

signatures sharing the same value in the primary sort key. Note also how the alternating sort order has

slightly improved the balance, by assigning one less unit of support count, carried by C2 (corresponding

to γ2), to G2.

So, this resulting partitioning algorithm, which we shall call “Sorting by Highest Entropy Item”, ab-

breviated as “SHEI”, should thus give high balance and reasonably good skewness.

5.5 Balanced k-means Clustering (Bkµ)

The balanced k-means clustering algorithm, which we will abbreviate as “Bkµ”, is a modification of the

k-means algorithm. The kµ algorithm achieves the skewness criterion. However, it does not pay any effort

to achieve to the balance criterion. In Bkµ, we remedy this by assigning the signatures γi to the groups Gj

while minimizing the value of the following expression. We also add the constraint that each group receives
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the same number of signatures. The problem is stated as follows.

Minimize F = 1
λ+µ

(

λ
∑z
i=1

∑n
j=1 ||γi − αj||2 · δ(i, j) + µ

∑n
j=1 σj · ||αj − E||2

)

subject to

{

σj1 = σj2 (j1, j2 = 1, 2, . . . , n)

δ(i, j) = 0 or 1 (i = 1, 2, . . . , z; j = 1, 2, . . . , n)

where E = 1
z

∑n
j=1 σjθj is constant (which depends on the whole database) and λ, µ are constant control

parameters. Actually, E is the arithmetic mean of all the signatures. (Note that σj and θj, j = 1, . . . , n,

have been defined in Section 5.2.) All αj ’s and δ(i, j)’s are variables in the above problem. Each αj

represents the geometric centroid of each group Gj , while each δ(i, j) takes the value of 1 or 0 accordingly

as whether the signature γi is currently assigned to group Gj or not.

Note that the first term inside parenthesis is exactly the skewness criterion when we set αj = θj. Thus,

minimizing this term brings about high skewness. The second term inside parenthesis is introduced so

as to achieve balance. Since the vector E is the average of all signatures, it gives the ideal value of θj

(the position of the geometric centroids of each group of signatures) for high balance. The second term

measures how far away the actual values of αj are from this ideal value. Minimizing this term would bring

us balance. Therefore, minimizing the above expression would achieve both high balance and skewness.

The values of λ and µ let us control the weight of each criterion. A higher value of λ gives more emphasis

on the skewness criterion, while a higher value of µ would make the algorithm focus on achieving high

balance. In our experiments (see Section 6), we set λ = µ = 1.0. In addition, we use the Euclidean distance

function in the calculations.

This minimization problem is not trivial. Therefore, we take an iterative approach, based on the

framework of the kµ algorithm. We first make an arbitrary initial assignment of the signatures to the

groups, thus giving an initial value for each δ(i, j). Then, we iteratively improve this assignment to lower

the value of the objective function.

Each iteration is divided into two steps. In the first step, we treat the values of δ(i, j) as constants and

try to minimize F by assigning suitable values to each αj. In the next step, we treat all αj as constants

and adjust the values of δ(i, j) to minimize F . Thus, the values of αj and δ(i, j) are adjusted alternatively

to reduce minimize value of F . The details are as follows. In each iteration we first use the same approach

as kµ to calculate the geometric centroids θj for each group. To reduce the value of the second term

(balance consideration) in the objective function F , we treat temporarily the values of δ(i, j) as constants

and find out the partial derivatives of the object function w.r.t. each αj. Solving
∂F
∂αj
= 0 (j = 1, 2, . . . , n),

we find that we shall make the assignments αj =
λθj+µE
λ+µ where j = 1, 2, . . . , n in order to minimize the

objective function F . After determining αj, we next adjust the values of δ(i, j), treating the values of αj

as constants. Since the second term inside parenthesis now does not involve any variable δ(i, j), we may
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reduce the minimization problem to the following problem:

Minimize
∑z
i=1

∑n
j=1 ||γi − αj ||2 · δ(i, j)

subject to

{

σj1 = σj2 (j1, j2 = 1, 2, . . . , n)

δ(i, j) = 0 or 1 (i = 1, 2, . . . , z; j = 1, 2, . . . , n)

where δ(i, j) are the variables. Note that this is a linear programming problem. We shall call it the “gener-

alized assignment problem”. It is indeed a generalization of the Assignment Problem and a specialization of

the Transportation Problem in the literature of linear programming. There are many efficient algorithms

for solving such problems. The Hungarian algorithm [9], which is designed for solving the Assignment

Problem, has been extended to solve the generalized assignment problem. This extended Hungarian al-

gorithm is incorporated as a part of the Bkµ clustering algorithm. Like kµ, Bkµ iteratively improves its

solution. The iterations are stopped when the assignment becomes stable.

Since the Bkµ algorithm imposes the constraint that each group gets assigned the same number11 of

signatures, workload balanced is guaranteed in the final partitioning. Under this constraint, it strives to

maximize the skewness (by minimizing signature-centroid distance) like the kµ algorithm does. So, the

skewness is in a reasonably high level. The Bkµ algorithm actually produces very high balance, and while

maintaining such high balance workload, it attempts to maximize skewness. So, essentially the balance

factor is given primary consideration. This should suit FPM well.

6 Experimental Evaluation of the Partitioning Algorithms

To find out whether the partitioning algorithms introduced in Section 5 are effective, we have done two sets

of experiments. In these experiments, we first generate synthetic databases. The generated databases are

already partitioned, with the desired skewness and workload balance. So, the databases are intrinsically

non-uniform. This is, however, not suitable for the experiments for evaluating whether our partitioning

algorithms can dig out the skewness and workload balance from a database. So, we “destroy” the apparent

skewness and workload balance that already exist among the partitions, by concatenating the partitions to

form a centralized database and then shuffling the transactions in the concatenated database. The shuffling

would destroy the orderness of the transaction, so that arbitrary partitioning of the resulting database would

give a partitioning with low balance and skewness. We can then test whether our partitioning algorithms

can produce partitions that give higher workload balance and skewness than an arbitrary partitioning.

The databases used here are similar to those generated in Section 4.3. The number of partitions in

the databases is 16. Each partition has 100,000 transactions. Chunk size is set to 1000 transactions;

11Practically, the constraint is relaxed to allow up to a difference of 1 between the σj ’s, due to the remainder when the

number of signatures is divided by the number of groups
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hence each partition has 100 chunks, and the total number of chunks is 1600. In order to evaluate the

effectiveness of the partitioning algorithms, we have to compare the skewness and workload balance of

the resulting partitions against the skewness and balance intrinsic in the database. For this purpose, we

take the skewness and workload balance before concatenation as the intrinsic values. All the skewness and

balance values reported below are obtained by measurement on the partitions before the concatenation as

well as after the partitioning, not the corresponding control values for the data generation. So, they reflect

the actual values for those metrics.

For each generated database, we run all the four partitioning algorithms given in Section 5. The

skewness and workload balance of the resulting partitions are noted and compared with one another

together with the intrinsic values. As discussed in Section 5.3, the result of the random algorithm suggests

the highest achievable balance value, while the result of kµ gives the highest achievable skewness value.

We did two series of experiments : (1) the first series varied the intrinsic skewness while keeping the

intrinsic balance at a high level; (2) the second series varied the intrinsic balance value while keeping the

intrinsic skewness almost constant.

6.1 Effects of High Intrinsic Balance and Varied Intrinsic Skewness

The first series of experiments we did was to find out how the intrinsic balance and skewness values would

affect the effectiveness of SHEI and Bkµ given that the intrinsic balance is in a high value and the skewness

changes from high to low. Figure 7 shows the results for the skewness of the resulting partitionings. The

vertical axis gives the skewness values of the resulting databases. Every four points on the same vertical

line represent the results of partitioning the same initial database. The intrinsic skewness of the database

is given on the horizontal axis. For your reference, the intrinsic balance values are given in parenthesis

directly under the skewness value of the database. Different curves in the figure show the results of different

partitioning algorithms.

The kµ algorithm, as explained before gives the highest skewness achievable by a suitable partitioning.

Indeed, the resulting skewness values of kµ are very close to the intrinsic values. Both SHEI and Bkµ do not

achieve this skewness value. This is primarily because they put more emphasis on balance than skewness.

Yet, the results show that some of the intrinsic skewness can be recovered. According to the figure, the

resulting skewness of Bkµ is almost always twice of that of SHEI. So, the Bkµ algorithm performs better

than SHEI in terms of resulting skewness. This is due to the fact that Bkµ uses a more sophisticated

method of achieving high skewness. Most importantly, the skewness achieved by Bkµ is between 50% to

60% of that of the benchmark algorithm kµ, which indicates that Bkµ can maintain a significant degree

of the intrinsic skewness.
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Figure 7: (left) High intrinsic balance and varied intrinsic skewness – resulting skewness

Figure 8: (right) High intrinsic balance and varied intrinsic skewness – resulting balance

Figure 8 shows the workload balance values for the same partitioned databases. This time, the vertical

axis shows the resulting balance. Again, every four points on the same vertical line represent the partition-

ing of the same original database. The horizontal axis gives the intrinsic balance values of the databases,

with the intrinsic skewness values of the corresponding databases given in parenthesis.

The generated databases all have an intrinsic balance very close to 0.90. Random partitioning of course

yields a high balance value very close to 1.0, which can be taken as the highest achievable balance value.

It is encouraging to discover that SHEI and Bkµ also give good balance values which are very close to that

of the random partitioning.

From this series of experiments, we can conclude that: given a database with good intrinsic balance,

even if the intrinsic skewness is not high, both Bkµ and SHEI can increase the balance to a level as good

as that in a random partitioning; in addition, Bkµ can at the same time deliver a good level of skewness,

much better than that from the random partitioning, the skewness achieved by Bkµ is also better than

SHEI and is in an order comparable to what can be achieved by the benchmark algorithm kµ.

Another way to look at the result of these experiments is to fit the intrinsic skewness and balance value

pairs (those on the horizontal axis of Figure 7) into the regions in Figure 6. These pairs, which represent

the intrinsic skewness and balance of the initial partitions, all fall into region C. Combining the results

from Figures 7 and 8, among the resulting partitions from Bkµ, five of them have moved to region A, the

most favorable region. For the other three, even though their workload balance have been increased, their

skewness have not been increased enough to move them out of region C. In summary, a high percentage

of the resulting partitions have been benefited substantially from using Bkµ.

29



6.2 Effects of Reducing Intrinsic Balance

Our second series of experiments attempted to find out how SHEI and Bkµ would be affected when the

intrinsic balance is reduced to a lower level.

Figure 9 presents the resulting skewness values against the intrinsic skewness. The numbers in paren-

thesis show the intrinsic balance values for the corresponding databases. Figure 10 shows the resulting

balance values of the four algorithms on the same partitioning results.

Again, the random algorithm suggests the highest achievable balance value, which is close to 1.0 in all

cases. Both SHEI and Bkµ are able to achieve the same high balance value which is the most important

requirement (Figure 10). Thus, they are very good at yielding a good balance even if the intrinsic balance

is low. As for the resulting skewness, the results of the kµ algorithm gives the highest achievable skewness

values, which are very close to the intrinsic values (Figure 9). Both SHEI and Bkµ can recover parts of

the intrinsic skewness. However, the skewness is reduced more when the intrinsic balance is in the less

favorable range (< 0.7). These results are consistent with our understanding. When the intrinsic balance

is low, spending effort in re-arranging the transactions in the partitions to achieve high balance would tend

to reduce the skewness.

Both Bkµ and SHEI are low-cost algorithms, they spend more effort in achieving a better balance

while at the same time trying to maintain certain level of skewness. Between Bkµ and SHEI, the resulting

skewness of Bkµ is at least twice of that of SHEI in all cases. This shows that Bkµ is better than SHEI

in both cases of high and low intrinsic balance. It is also important to note that the skewness achieved by

Bkµ is always better than that of the random partitioning.

Again, we can fit the skewness and balance values of the initial databases and their resulting partitions

(Figures 9 and 10) into the regions in Figure 6. What we have found out is that: after the partitioning

performed by Bkµ, four partitionings have moved from region C to A, two from region D to C, two others

remain unchanged. This again is very encouraging and shows the effectiveness of Bkµ — more than 70%

of the databases would have their performance improved substantially by using Bkµ and FPM together.

6.3 Summary of the Experimental Results

The above results show that our clustering algorithms SHEI and Bkµ are very good preprocessors, which

prepare a partitioned database that can be mined by FPM efficiently. It is encouraging to note that both

Bkµ and SHEI can achieve a balance as good as random partitioning and also a much better skewness.

Between themselves, Bkµ in general gives much better skewness values than SHEI. Also, the results are

true for a wide range of intrinsic balance and skewness values. Referring back to Section 4.3, what we
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Figure 9: (left) Reducing intrinsic balance – resulting skewness

Figure 10: (right) Reducing intrinsic balance – resulting balance

have achieved is being able to partition a database such that the workload balance would fall into the ideal

high level range while at the same time maintaining certain level of skewness. Therefore, the resulting

partitioning would fall into the favorable regions in Figure 6. Given this result, we recommend using Bkµ

for the partitioning (or repartitioning) of the database before running FPM.

Note that we did no study on the time performance of the partitioning algorithms. This is primarily

because the algorithms are so simple that they consume negligible amounts of CPU time. In our exper-

iments, the amount of CPU time is no more than 5% of the time spent by the subsequent running of

FPM. As for I/O overhead, the general framework of the partitioning algorithms (see Section 5.1) require

only one extra scan of the database, whose purpose is to calculate the signatures γi. This cost can be

compensated by the saving of the first database scan of FPM (see Section 7.1). After that, no more extra

I/O is required. We assume that the chunk size y, specified by the user, is large enough so that the total

number of chunks z is small enough to allow all the signatures γi be handled in main memory. In this case,

the total overhead of the partitioning algorithms is far compensated by the subsequent resource savings.

For a more detailed discussion on the overhead of these partitioning algorithms, please refer to Section 7.1.

7 Discussion

To restrict the search of large itemset in a small set of candidates is very essential to the performance of

mining association rules. After a database is partitioned over a number of processors, we have information

on the support counts of the itemsets at a finer granularity. This enables us to use distributed and global

prunings discussed in Section 3. However, the effectiveness of these pruning techniques are very dependent

on the distribution of transactions among the partitions. We discuss two issues here related to the database

partitioning and performance of FPM.
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7.1 Overhead of Using the Partitioning Algorithms

We have already shown that FPM benefits over CD the most when the database is partitioned in a way such

that the skewness and workload balance measures are high. Consequently, we suggest that partitioning

algorithms such as Bkµ and SHEI be used before FPM, so as to increase the skewness and workload balance

for FPM to work faster. But this suggestion is good only if the overhead of the partitioning is not high.

We will make this claim by dividing the overhead of the partitioning algorithms into two parts for analysis.

The first part is CPU cost. First, the partitioning algorithms calculate the signatures of the data

chunks. This involves only simple arithmetic operations. Next, the algorithms call a clustering algorithm

to divide the signatures into groups. Since the amount of signatures is much smaller than the number of

transactions in the whole database, the algorithms process much less information than a mining algorithm.

Moreover, the clustering algorithms are designed to be simple, so that they are computationally not costly.

Finally, the program delivers transaction in the database to different partitions. This involves little CPU

cost. So, overall, the CPU overhead of the partitioning algorithms is very low. Experimental results show

that it is no more than 5% of the CPU cost of the subsequent run of FPM.

The second part is the I/O cost. The partitioning algorithms in Section 5 all read the original database

twice and write the partitioned database to disk once. In order to enjoy the power of parallel machines for

mining, we have to partition the database anyway. Comparing with the simplest partitioning algorithm,

which must inevitably read the original database once and write the partitioned database to disk once, our

partitioning algorithms only does one extra database scan. But it shall be remarked that in our clustering

algorithm, this extra scan is for computing the signatures of the chunks. Once the signatures are found,

the support counts of all 1-itemsets can be deduced by summation, which involves no extra I/O overhead.

So, we can indeed find out the support counts of all 1-itemsets essentially for free. This can be exploited

to eliminate the first iteration of FPM, so that FPM can start straight into the second iteration to find

large 2-itemsets. This saves one database scan from FPM, and hence as a whole, the 1-scan overhead of

the partitioning algorithm is compensated.

Thus, the partitioning algorithms essentially introduce negligible CPU and I/O overhead to the whole

mining activity. It is therefore worthwhile to employ our partitioning algorithms to partition the database

before running FPM. The great savings by running FPM on a carefully partitioned database far compen-

sates the overhead of our partitioning algorithms.
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7.2 Scalability in FPM

Our performance studies of FPM were carried out on a 32-processor SP2 (section 4.3). If the number of

processors n is very large, global pruning may need a large memory to store the local support counts from

all the partitions for all the large itemsets found in an iteration. Also, there could be cases that candidates

generated after pruning is still too large to fit into the memory. We suggest to use a cluster approach to

solve this problem. The n processors can be grouped into p clusters, (p ≪ n), so that each cluster would
have np processors. In the top level, support counts will be exchanged between the p clusters instead of

the n processors. The counts exchanged in this level will be the sum of the supports from the processors

within each cluster. Both distributed and global prunings can be applied by treating the data in a cluster

together as a partition. Within a cluster, the candidates are distributed across the processors, and the

support counts in this second level can be computed by count exchange among the processors inside the

cluster. In this approach, we only need to ensure that the total distributed memory of the processors in

each cluster is large enough to hold the candidates. From the setting, this approach is highly scalable. In

fact, we can regard this approach as an integration of our pruning techniques into the parallel algorithm

HD (section 1). Our pruning techniques is orthogonal to the parallelization technique in HD and can be

used to enhance its performance.

8 Conclusions

A parallel algorithm FPM for mining association rules has been proposed. FPM is a modification of FDM

and it requires fewer rounds of message exchanges. Performance studies carried out on an IBM SP2 shared-

nothing memory parallel system show that FPM consistently outperforms CD. The gain in performance

in FPM is due mainly to the pruning techniques incorporated.

It has been found that the effectiveness of the pruning techniques depend highly on two data distribution

characteristics: data skewness and workload balance. An entropy-based metric has been proposed to

measure these two characteristics. Our analysis and experiment results show that the pruning techniques

are very sensitive to workload balance, though good skewness will also have important positive effects. The

techniques are very effective in the best case of high balance and high skewness. The combination of high

balance and moderate skewness is the second best case.

This is our motivation to introduce algorithms to partition database in a wise way, so as to get higher

balance and skewness values. We have compared four partitioning algorithms. With the balanced k-

means (Bkµ) clustering algorithm, we can achieve a very high workload balance, while at the same time a

reasonably good skewness. Our experiments have demonstrated that many unfavorable partitions can be
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repartitioned by Bkµ into partitions that allow FPM to perform more efficiently.

Moreover, the overhead of the partitioning algorithms is negligible, and can be compensated by saving

one database scan in the mining process. Therefore, we can obtain very high association rule mining

efficiency by partitioning a database with Bkµ, and then mining it with FPM. We have also discussed a

cluster approach which can bring scalability to FPM.
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