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Abstract—Most of the previous studies on mining association rules are on mining intratransaction associations, i.e., the associations

among items within the same transaction where the notion of the transaction could be the items bought by the same customer, the

events happened on the same day, etc. In this study, we break the barrier of transactions and extend the scope of mining association

rules from traditional single-dimensional, intratransaction associations to multidimensional, intertransaction associations. An

intertransaction association describes the association relationships among different transactions. In a database of stock price

information, an example of such an association is “if (company) A’s stock goes up on day one, B’s stock will go down on day two but go

up on day four.” In this case, no matter whether we treat company or day as the unit of transaction, the associated items belong to

different transactions. Moreover, such an intertransaction association can be extended to associate multiple properties in the same

rule, so that multidimensional intertransaction associations can also be defined and discovered. Mining intertransaction associations

pose more challenges on efficient processing than mining intratransaction associations because the number of potential association

rules becomes extremely large after the boundary of transactions is broken. In this study, we introduce the notion of intertransaction

association rule, define its measurements: support and confidence, and develop an efficient algorithm, FITI (an acronym for “First Intra

Then Inter”), for mining intertransaction associations, which adopts two major ideas: 1) an intertransaction frequent itemset contains

only the frequent itemsets of its corresponding intratransaction counterpart; and 2) a special data structure is built among

intratransaction frequent itemsets for efficient mining of intertransaction frequent itemsets. We compare FITI with EH-Apriori, the best

algorithm in our previous proposal, and demonstrate a substantial performance gain of FITI over EH-Apriori. Further extensions of the

method and its implications are also discussed in the paper.

Index Terms—Data mining, association rules, temporal pattern discovery.
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1 INTRODUCTION

AS an important theme on data mining, association
rule mining research [1] has progressed in various

directions, including efficient, apriori-like mining methods
[2], [10], [23], [19], [25], mining generalized, multilevel, or
quantitative association rules [20], [8], [21], [7], [17], [14],
[9], mining sequential patterns and episodes [2], [16],
association rule mining query languages [15], constraint-
based rule mining [24], [18], [13], mining correlations, and
causal structures [4], [22], etc. However, there is an
important form of association rules which are useful but
could not be discovered with existing association rule
mining framework.

Taking stock market database as an example, association

rule mining can be used to analyze the share price move-

ments. Suppose a database registers the price of every stock at

the end of each trading day. Association mining may find
rules like

. R1: When the prices of IBM and SUN go up, at
80 percent of probability the price of Microsoft goes up
on the same day.

While R1 reflects some relationship among the prices, its
role in price prediction is limited; and traders may be
more interested in the following type of rules:

. R2 : If the prices of IBM and SUN go up, Microsoft’s will
most likely (80 percent of probability) go up the next day
and then drop four days later.

Unfortunately, current association rule miners cannot dis-

cover this type of rule as there is a fundamental difference

between the rules like R2 and those like R1. A classical

association rule like R1 expresses the associations among

items within the same transaction. On the other hand, rule R2

represents some association relationship among the field values

from different transaction records. To distinguish these two

types of transactions, we name the classical association rules

as intratransaction associations and the latter as intertransaction

associations.
It is interesting to note that, although there is a temporal

component in our example of share price movement, rule R2

is different from mining sequential patterns in transaction

data [3]. For mining sequential patterns, the transactions of

each customer along time are treated as one transaction. Rules

so discovered are intratransaction in nature because each
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sequence is in fact treated as one transaction and the mining
process is to find similarities among the sequences.

At the first glance, the work reported by Mannila et al. on
mining episodes [16] is similar to what we described in our
examples. An episode is a sequence of events and association
rules among episodes have the form P ½V � ) Q½W �, where P
and Q are event sequences and V and W are time bounds.
There is however no clear concept of transaction in a sequence
of events. Instead, subsequences are formed using the time
bounds and episodes that occurred frequently within these
subsequence are discovered using an extension of apriori
algorithm [2]. These subsequences, which can contain over-
lapping event instances are different from transactions which
share no common item instances. Even if these subsequences
are treated as transactions, the rule so discovered are
intratransaction, not intertransaction.

Another area which seems related is the work of Bettini
et al. [5], [6] which proposed the use of event structure for
the discovery of temporal relationship among events in a
time sequence. An event structure consists of a number of
variables representing events and temporary constraints
among these variables. The goal of the mining is to find
temporal patterns in the sequence that could instantiate the
event structure. Such work belongs to those of a belief
system in which the user tries to verify their belief by
providing an event structure to discover a constraint set of
rules. Again, there is no clear concept of transactions here.

There are many applications which can benefit from
intertransaction association mining. For example, one may
discover traffic jam association patterns among different
highway segments: “if highway one east bound is jammed at
section two, highway 12 south bound will be jammed at section
five 10 minutes later.” Although it is pretty challenging to
find the causal structure for a complex highway system
with dynamic traffic flow, intertransaction association
mining may help traffic jam pattern prediction. It may also
help find that the sale of a particular kind of baby toy will
boost the sales of women clothes in the following week, or
help discover if there is a drought in region A, there will be
a flood in region B two years later from a long term regional
weather database.

From the above brief description, we can identify that the
first contribution of our work reported in this paper is the
formulation of an association mining problem that is more
general than what has been discussed in the literature. The
new association relationship breaks the barriers of transac-
tions and can be used for certain applications such as
prediction. Moreover, from the discussion in the later
sections, it will be shown that our formulation can be
extended to describe multidimensional intertransaction
association rules.

Since intertransaction association breaks the boundaries
of transactions, the number of potential itemsets and the
number of rules will increase drastically. Another contribu-
tion of our work is that we have developed an efficient
algorithm for mining intertransaction association rule from
large databases. Using the property that “A frequent
intertransaction itemsets must be made up of frequent intra-
transaction itemsets,” the mining of intertransaction associa-
tion rules from large databases is achieved within a
reasonable amount of time.

The remainder of the paper is organized as follows: In
Section 2, we will define intertransaction association rules
formally. In Section 3, we will describe the principles
behind our mining methods for intertransaction association
rules. We will have a detailed look at the FITI algorithm
developed for mining intertransaction association rules in
Section 4 followed by performance studies and experiments
in Section 5. In Section 6, we will discuss further issues such
as the scalability of FITI in the real world situation and
suggest some improvements to FITI. In addition to these,
we will also discuss how intertransaction association rules
can be extended to give multidimensional prediction
capability and the implication behind our work. We will
conclude with Section 7.

2 PROBLEM DESCRIPTION

In this section, we will describe the problem of mining
intertransaction association rules. Before doing so, we will
first give some definitions.

Definition 2.1. Let
P
¼ fe1; e2; . . . ; eug be a set of literals,

called items. Let D be an attribute and DomðDÞ be the
domain of D. A transaction database is a database
containing transactions in the form of ðd;EÞ, where d 2
DomðDÞ and E �

P
.

The attribute D in the transaction database is called a
dimensional attribute. It describes the properties associated
with the items, such as time and location. It is assumed that
the domain of the dimensional attribute is ordinal and can
be divided into equal length intervals. For example, time
can be divided into day, week, month, etc., and distance
into meter, mile, etc. These intervals can be represented by
integers 0, 1, 2, etc., without loss of generality.

When there is an association between items which are
m intervals apart, we say that there is an intertransaction
association rule which spans across m intervals. While an
intertransaction association rule can theoretically span
across many intervals, discovering all such rules will take
up too much resources and users may not be interested in
the rules which span more than a certain number of
intervals. To avoid spending unnecessary resources to mine
the rules which users are not interested in, a mining
parameter called maxspan (or sliding window size) denoted
by w is introduced. When mining intertransaction associa-
tion rules, only the rules which span less than or equal to
w intervals will be mined. Users can thus use this mining
parameter to avoid mining the rules that span across too
many intervals.

Using w, a sliding window in the transaction database is
defined as follows:

Definition 2.2. A sliding window W in a transaction database
T is a block of w continuous intervals along domain D,
starting from interval d0 such that T contains a transaction at
interval d0. Each interval dj in W is called a subwindow of W
denoted as W ½j�, where j ¼ dj ÿ d0. We call j the subwindow
number of dj within W .

We will use Example 2.1 to illustrate these terms.
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Example 2.1. Fig. 1 shows a transaction database T with five
transactions located at intervals 1, 4, 6, 9, and 10.
Assuming that w has a value of 4, we will have five
sliding windows W1, W2, W3, W4, and W5, with
addresses of 1, 4, 6, 9, and 10, respectively. From the
figure, it can be seen that subwindow W1½0� contains
items a, b, e, g, and j while subwindow W1½3� contains c,
f , and j.

Every sliding window in the transaction database forms
a megatransaction defined below.

Definition 2.3. Let W be a sliding window with w intervals and
u be the number of literals in

P
. We define a megatransac-

tion M contained within W to be

M ¼ feiðjÞjei 2W ½j�; 1 � i � u; 0 � j � wÿ 1g:

As can be seen from the definition, a megatransaction
in a sliding window W is just the set of items in W , each
appended with the corresponding subwindow number of
the interval that contains the item. For example, in
Example 2.1, the megatransaction in W1 will be
fað0Þ; bð0Þ; eð0Þ; gð0Þ; jð0Þ; cð3Þ; fð3Þ; jð3Þg.

To distinguish the items in a megatransaction from the
items in a traditional transaction, the items in a
megatransaction are called extended-items. We denote
the set of all possible extended-items as

P0 . Given
P

and w, we will haveX0 ¼ fe1ð0Þ; . . . ; e1ðwÿ 1Þ; e2ð0Þ; . . . ;

e2ðwÿ 1Þ; . . . ; euð0Þ; . . . ; euðwÿ 1Þg:

Next, we will introduce two terms: intratransaction itemset
and intertransaction itemset.

Definition 2.4. An intratransaction itemset is a set of items
A �

P
. An intertransaction itemset is a set of extended

items B �
P0 such that 9eið0Þ 2 B; 1 � i � u.

Now, we are ready to define the concept of intertransac-

tion association rule.

Definition 2.5. An intertransaction association rule is an

implication of the form X ) Y , where

1. X �
P0; Y �P0 .

2. 9eið0Þ 2 X; 1 � i � u.
3. 9eiðjÞ 2 Y ; 1 � i � u; j 6¼ 0.
4. X \ Y ¼ ;.

Similar to the studies in mining intratransaction associa-

tion rules, we introduce two measures of intertransaction

association rules: support and confidence.

Definition 2.6. Let S be the number of transactions in the

transaction database. Let Txy be the set of megatransactions

that contain a set of extended-items X [ Y and Tx be the set of

megatransactions that contain X. Then, the support and

confidence of an intertransaction association rule X ) Y are

defined as1

support ¼ jTxyj
S

; confidence ¼ jTxyjjTxj
:

Given a minimum support level minsup and a
minimum confidence level minconf , our task is to mine
the complete set of intertransaction association rules from
the transaction database with support � minsup and
confidence � minconf . We illustrate the concepts with
an example.

Example 2.2. Let minsup and minconf be 40 percent and

60 percent respectively. Then, an example of an inter-

transaction association rule which will be mined from

the database in Fig. 1 will be:

að0Þ; eð0Þ ) cð3Þ:

This rule has a support of 40 percent and a confidence
of 66 percent.

3 PRINCIPLES OF INTERTRANSACTION ASSOCIATION

MINING METHODS

Like classical association rule mining, the problem of
mining intertransaction association rules can be decom-
posed into two subproblems:

1. Find all intertransaction itemsets with support
higher than minsup. We call these itemsets frequent
intertransaction itemsets.

2. For every frequent intertransaction itemset F and
for all possible combination of X � F , output a
rule X ) ðF ÿXÞ if all of the following conditions
are true:

a. 9eið0Þ 2 X; 1 � i � u.
b. 9eiðjÞ 2 ðF ÿXÞ; 1 � i � u; j 6¼ 0.
c. Confidence of X ) ðF ÿXÞ is higher than

minconf .
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1. Notice that in our definition, we also count the last several transactions
in sequence which do not cover the full sliding window, i.e., those not
containing the full maxspan of the sliding window.

Fig. 1. Transaction database and sliding windows.



Of the two subproblems, subproblem one is of major
concern as it is the bottleneck of the whole mining process.
This is mainly due to the fact that the number of extended-
items in

P0 is w times the number of items in
P

, as such
more candidate intertransaction itemsets are expected to be
generated. This will result in higher processing time being
spent on computing the support of candidate intertransac-
tion itemsets.

Compared to subproblem one, subproblem two takes up
much less processing time and could be solved easily by
making minor modifications to a fast algorithm in [2]. As
such, we will not discuss subproblem two further but
instead focus our discussion on two algorithms, EH-Apriori
and FITI, which are derived for solving subproblem one.

In this section, the general concepts of the two
algorithmsi will be provided.

3.1 EH-Apriori

With the existence of a megatransaction within each sliding
window, a tempting solution for discovering frequent
intertransaction itemsets is to extend the Apriori algorithm
[2] to mine a database of megatransactions. As the Apriori
algorithm assumes the existence of lexicographic order
among the extended-items, the extended-items in the
megatransaction will be ordered using Definition 3.1.

Definition 3.1. Let eiðdiÞ and ejðdjÞ be two extended-items in a

megatransaction. We say that eiðdiÞ < ejðdjÞ if either of the

following two conditions holds:

1. di < dj.
2. di ¼ dj and ei < ej.

Otherwise, we say that ejðdjÞ < eiðdiÞ.

Using this definition, we are able to use the Apriori
algorithm to discover frequent intertransaction itemsets. To
enhance the efficiency further, a hashing technique similar
to the one in [19] is used. The general idea of the algorithm
is outlined as follows:

When the support of candidate intertransaction one-
itemsets is counted by scanning the database, information
about candidate intertransaction two-itemsets is collected in
advance in such a way that all the possible two-itemsets are
hashed to a hash table. Each bucket in the hash table
consists of a number to represent how many itemsets have
been hashed to this bucket so far. The hash table is then
used to reduce the number of candidate intertransaction
two-itemsets. This is done by removing a candidate two-
itemsets if its corresponding bucket value in the hash table
is less than minsup. We call this algorithm the Extended Hash
Apriori or EH-Apriori [11].

3.2 FITI Algorithm

Unlike EH-Apriori which is modified from the Apriori
algorithm, FITI is an algorithm designed specifically for
discovering frequent intertransaction itemsets. FITI makes
use of the following property to enhance its efficiency in
discovering frequent intertransaction itemsets.

Property 3.1. Let F be a frequent intertransaction itemset. Let

Ai ¼ fejj1 � j � u; ejðiÞ 2 Fg, where 0 � i � ðwÿ 1Þ. For

all i, 0 � i � ðwÿ 1Þ, and Ai must be a frequent intratran-

saction itemset.

Proof. We will prove this property by contradiction. Let F

be a frequent intertransaction itemset. Let

Ai ¼ fejj1 � j � u; ejðiÞ 2 Fg; 0 � i � ðwÿ 1Þ:

Assume that 9Ai, such that Ai is not a frequent

intratransaction itemset. We denote the support of F as

supportðF Þ and support of Ai as supportðAiÞ. Since F is a

frequent intertransaction itemset, supportðF Þ � minsup.

Also, since Ai is not a frequent intratransaction itemset,

then supportðAiÞ < minsup. Hence, we have

supportðF Þ > supportðAiÞ:

However, we know that for any sliding window W that

contains F , Ai will occur in W ½i� and each W ½i� refers to a

different transaction for different W . We can thus

conclude that supportðAiÞ � supportðF Þ giving a contra-

diction and thus proving that Property 3.1 holds. tu
Property 3.1 is an important property as it provides a

different view of mining frequent intertransaction itemsets.

Instead of viewing mining as an attempt to identify

frequently occurring patterns formed from the extended-

items, we can view it as an attempt to discover frequently

occurring patterns formed from frequent intratransaction

itemsets. As such in FITI, frequent intratransaction itemsets

are first discovered and then frequent intertransaction

itemsets are formed from them. This gives rise to the name

of FITI which stands for First Intra Then Inter.
In FITI, frequent intratransaction itemsets that are

discovered in the initial phase are stored in a data structure

designed to facilitate the mining of frequent intertransaction

itemsets in the later phase. Each frequent intratransaction

itemset is given a unique number called an ID. By using this

ID as an index into the data structure, FITI is able to gather

information on intratransaction itemsets quickly. To avoid

the need to regenerate frequent intratransaction itemsets

during the discovery of frequent intertransaction itemsets,

the original database is transformed into another database

that stores the IDs of frequent intratransaction itemsets

presented in each transaction of the original database.

When mining frequent intertransaction itemsets, each

intertransaction itemset is represented as a tuple of w IDs.

Using this encoding, we formulate two types of joins to

generate candidates intertransaction ðkþ 1Þ-itemsets from

two existing frequent intertransaction k-itemsets. We will

have a close look at FITI in the next section.

4 THE FITI ALGORITHM

In this section, we will first present the FITI algorithm step

by step after which we will prove its correctness by

induction. In general, FITI consists of the following three

phases.

1. Phase I: Mining and Storing Frequent IntraTransac-
tion Itemsets

2. Phase II: Database Transformation
3. Phase III: Mining Frequent InterTransaction Itemsets

The following presents the detailed method phase by phase.
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4.1 Phase I: Mining and Storing Frequent
IntratTransaction Itemsets

In this phase, frequent intratransaction itemsets are first

mined using the Apriori algorithm and then stored in a data

structure, called Frequent-Itemsets Linked Table, or simply

FILT. Note that there are many fast algorithms developed for

discovering frequent intratransaction itemsets after the initial

proposal of Apriori [2]. These algorithms can be applied in

this step as well.
Since only the frequent intratransaction itemsets are

stored in the FILT, the space needed is much smaller than

storing all the candidate itemsets. The data structure

consists of an ItemSet Hash Table, with nodes linked by

several kinds of links. To describe clearly these links in

FILT, we depict each kind of links separately in Fig. 2.
The following four kinds of links are built in FILT.

1. Lookup Links. Each frequent intratransaction item-
set is assigned a unique ID number that corresponds
to a row number in the ItemSet Hash Table. Each
itemset is stored in a node pointed to by a lookup
link from the corresponding row in the table, as
illustrated in Example 4.1.
Example 4.1. Let

fag; fbg; fcg; feg; fa; bg; fa; cg; fb; cg;

and fa; b; cg be the frequent intratransaction itemsets

derived by Apriori. Each is then inserted into FILT

with the node pointed to by a corresponding lookup

link as shown in Fig. 2a. In the figure, the ID of fag is

1 and the ID of fa; b; cg is 8.
2. Generator and Extension Links. Given a node NF

that contains an intratransaction k-itemset F , the

generator links of NF point to the two ðkÿ
1Þ-itemsets that are combined to form F in the

Apriori algorithm. For example, in Fig. 2b, the
itemset fa; b; cg has its two generator links pointing

to fa; bg and fa; cg, respectively. On the other hand,

since fa; bg and fa; cg are combined to form fa; b; cg,
both of them will have an extension link pointing to

fa; b; cg. Because of the nature of generator and

extension links, they are depicted in the same

diagram and the generator/extension relationship

is represented by a bidirectional arrow.
3. Subset Links. Given a node NF that contains an

intratransaction k-itemset F , the subset links of NF

point to all subsets of F with size kÿ 1. For example,

the subset links of fa; b; cg point to fa; bg; fa; cg, and

fb; cg in Fig. 2c.
4. Descendant Links. As mentioned earlier, FILT is

composedofanarrayandahash-tree.GivenanodeNF

that contains an intratransaction k-itemset F , the
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descendant links ofNF point to all of its descendants in

the hash-tree. If F ¼ fe1; . . . ; ekg, then its descen-
dants will be a set of ðkþ 1Þ-itemsets of the form

fe1; . . . ; ek; ekþ1g. For example, in Fig. 2d, the descen-

dants of fag will be fa; bg and fa; cg. Note that,

unlike the subset links, the descendant links of a

node points to other nodes that share a common

suffix with it.

In the following sections, we will see how FILT is used in

the database transformation and in the mining of inter-

transaction itemsets in Phases II and III, respectively.

4.2 Phase II: Database Transformation

After forming the data structure FILT in Fig. 2, the next step

of FITI is to transform the database into a set of encoded

Frequent-Itemset Tables, (called FIT tables). We have in total

maxk FIT tables, fF1; . . . ; Fmaxkg, where maxk is the

maximum size of the intratransaction itemsets discovered

in Phase I. Each table Fk will be of the form fdi; IDsetig,
where di is the value of the dimensional attribute and

IDseti is the IDs of frequent k-itemsets that are found in the

transaction. We will show how a database is transformed in

Example 4.2.

Example 4.2. Consider a database with four transactions in

Table 1:
Assume a value of 50 percent is set for minsup. We

will discover the same frequent intratransaction itemsets
as in Example 4.1 and maxk will have a value of three
because we have a three-itemset fa; b; cg. This gives rise
to three FIT tables, F1, F2, and F3. If itemsets are assigned
the same IDs as in Example 4.1, the contents of the three
FITs will be as follows:

Algorithm 4.1 describes the step for performing database

transformation. This database transformation avoids the

reexamination of database T and recomputation of frequent

intratransaction itemsets in our future computation. By

storing these itemsets in different FIT tables according to

their sizes, we can avoid unnecessary I/Os since a table Fk
is only read if an intratransaction itemset of size k is found

in one of the candidate intertransaction itemsets.

Algorithm 4.1 Database Transformation Algorithm.

Input: A transaction database T and the frequent-itemsets
linked table (FILT) H generated from T .

Output: A set of FIT tables: F1; . . . ; Fmaxk .

Method: The transaction database T is transformed into a

set of frequent itemset files, based on the algorithm shown

in Table 2.

void Tranform() {

while (!feofðT Þ) {

read next transaction Ti;

write di to all Fj;

Subset(Ti; 1; 1; 0) }

}

void Subset(Ti, index, k, and NodeID) {
if (k ¼¼ 1) {

for each item ej in Ti {

search Itemtable for ID of fejg;
if (found) {

let nowID be ID found;

write nowID to F1;

for each item em, m > j in Ti {

search childs of nowID for an itemset I that
contains em;

if (found) {

let nextNode be the ID of I;

Subset(Ti, mþ 1, kþ 1, nextNode); }

}

}

}

return;
}

else {

write NodeID to Fk;

for each item em, m >¼ index in Ti {

search childs of NodeID for an itemset I that

contains em;

if (found) {

let nextNode be the ID of I;
Subset(Ti, mþ 1, kþ 1, nextNode); }

}

return;

}

}

4.3 Phase III: Mining Frequent Intertransaction
Itemsets

After the database transformation, we proceed to Phase III:

mining frequent intertransaction itemsets.
Intertransactions itemsets are represented by their ID

encoding defined below.

Definition 4.1. Let F be an intertransaction itemset. Let

Ai ¼ fejj1 � j � u; ejðiÞ 2 Fg, where 0 � i � ðwÿ 1Þ. The

ID encoding of F is of the form I ¼ fI0; . . . ; Iwÿ1g, where Ii
is the ID of Ai if jAij > 0, and zero otherwise.
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Example 4.3. Let F ¼ fað0Þ að1Þ bð1Þ cð3Þg be an intertran-
saction itemset and let the maxspan be four. Then, the ID
encoding of F will be I ¼ f1; 5; 0; 3g according to Fig. 2.

The mining algorithm follows the Apriori principle [2] to
perform level-wise mining, i.e., using intertransaction fre-
quent k-itemsets (for k � 2) to form candidate frequent
ðkþ 1Þ-itemsets. Moreover, if a candidate ðkþ 1Þ-itemset
does not have its corresponding intratransaction itemset in
the FIT tableFj, it will be removed automatically. The method
is presented in Algorithm 4.2. Notice that the algorithm must
run on top of an input layer which provides a “sliding
window” view to the mining algorithm.

Algorithm 4.2 Level-Wise Mining of Frequent InterTransac-

tion Itemsets.

Input: A set of FIT tables: F1; . . . ; Fmaxk , and the minimum

support threshold: minsup.

Output: The complete set of frequent intertransaction

itemsets.

Method: The method follows the Apriori principle and

performs level-wise mining of frequent intertransaction
itemsets in the FIT tables, using the slide window size w.

The outline is presented below, whereas the details are

explained in the following subsections.

Generate frequent intertransaction 2-itemsets, L2;

k=3;

while (Lkÿ1 6¼ ;) {

Generate candidate intertransaction k-itemsets, Ck;

Scan transformed database to update the count for Ck;
Let Lk ¼ fc 2 CkjsupportðcÞ � minsupg;
kþþ;

}

The discovery of frequent intertransaction itemsets is the
performance bottleneck of the whole mining process. We
will look at how we tackle this bottleneck in more detail. In
Section 4.3.1, the input layer will first be described after
which we will see how frequent intertransaction two-
itemsets are mined in Section 4.3.2. The generation of
candidate intertransaction k-itemsets (for k > 2) is discussed
in Section 4.3.3, and the counting function is explained in
Section 4.3.4.

4.3.1 The Input Layer

The input layer provides a “sliding window” view to the
mining algorithm and helps optimize the mining in two ways.

First, it limits its input to a set of essential F 0ks instead of
reading the whole set of FITs. For example, when we are
counting support for candidate intertransaction two-item-
sets, only F1 need to be accessed as no frequent intra-
transaction itemsets with size more than one will be found
in any intertransaction two-itemset. Similarly, as the size of
the candidate intertransaction itemsets grows, it may come
to a stage where no frequent intratransaction one-itemsets
are involved in any candidate intertransaction itemsets. In
such a case, the input layer will not access F1 when forming
the sliding window.

Second, as the sliding window is moved along the
dimension D, new transactions that move into the sliding
window will be filtered to remove the IDs of frequent

intratransaction itemsets that are not present in any
candidate intertransaction itemsets. This will help to reduce
the time required to process a sliding window when
counting support for candidate intertransaction itemsets.

4.3.2 Generating Frequent Intertransaction

Two-Itemsets

Like EH-Apriori, FITI makes use of the hashing approach
introduced in [19] to prune off candidate intertransaction
itemsets. FITI, however, has one major difference from the
approach in [19]. It updates the bucket values only after
mining frequent intratransaction itemsets. Because of this,
FITI will already have knowledge of what are the frequent
one-itemset. As such, it generates fewer candidate itemsets
because there are fewer false count contributed by
infrequent candidate two-itemsets.

The hash function that we used in FITI is as below.

Function 4.1. Given a candidate itemset I ¼ fI0; I1; . . . ; Iwÿ1g,
its bucket number B will be computed using the following
formula:

B ¼ ððI0 � wþmÞ �N1 þ ImÞ mod Size;

where N1 is the number of frequent one-itemsets discovered,
Size is the size of the hash-table, m 6¼ 0, and Im 6¼ 0.

The idea behind such a hash function is simple. Each
intertransaction two-itemsets can be represented by a three-
tuple, hI0; Im;mi. If we use a three-dimensional array
M½1::N1�½1::N1�½1::w� to store these tuples, then each cell in
M will contain only one tuple if we use M½I0�½Im�½m� to store
the tuple hI0; Im;mi. However, because we are using a one-
dimensional hash-table, we need to map a cell M½I0�½Im�½m�
from the three-dimensional array into the hash-table by
computing the corresponding row number of the hash table
as ðI0 � wþmÞ �N1 þ Im. To cater for the possibility that
the size of the hash table might be smaller than w�N2

1 , we
took the modulus on Size to wrap the mapping to the top of
the table.

Because of this, Function 4.1 has the desirable property

that only one candidate itemset will be hashed to one hash

basket if Size � w�N2
1 . If Size is less than ðwÿ 1Þ �N2

1 , the

maximum number of candidate two-itemsets that will hash

to the same basket will increase proportionally with respect

to
ðwÿ1Þ�N2

1

Size .

4.3.3 Generation of Candidate Frequent Intertransaction

k-Itemsets for k > 2

Now, we examine how to generate candidate frequent
intertransaction k-itemsets for k > 2. This process is similar
to its intratransaction mining counterpart, i.e., the generation
of candidate frequent intratransaction k-itemsets for k > 2 in
the Apriori algorithm [2]. First, the frequent ðkÿ 1Þ-itemsets
are joined to form a set of k-itemsets. Then, we check whether
all the subsets of every so generated k-itemset are frequent.
Those which can pass the test form the set of candidate
frequent intertransaction k-itemsets. Finally, their counts can
be collected by scanning the relevant FIT tables once.

To join two frequent intratransaction itemsets, two
kinds of joins can be performed to create new candidate
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itemsets: intratransactions join and cross-transactions join.
We will examine them in detail giving examples to
illustrate our points. In these examples, we will assume
that IDs are assigned to frequent intertransaction itemsets
as in Example 4.1.

Definition 4.2. Let I ¼ fI0; I1; . . . ; Iwÿ1g and

J ¼ fJ0; J1; . . . ; Iwÿ1g

be two frequent intratransaction itemsets. Intratransactions
join can be performed on I and J if and only if both of the
following conditions are true.

1. There exists a p such that Ip and Jp are the generators
of a frequent intratransaction itemset Kp (we can make
use of hash-tree in Fig. 1 to check for this condition).

2. For all q, q 6¼ p, Iq ¼ Jq.
If I and J can be intratransaction joined, the resulting
candidate itemset will be K ¼ fK0; . . . ; Kp; . . . ; Kwÿ1g,
where Kq ¼ Iq ¼ Jq for p 6¼ q.

Example 4.4 shows how two intertransaction itemsets are
intratransaction joined.

Example 4.4. Consider two itemsets I ¼ f1; 0; 5; 0; 2g and
J ¼ f1; 0; 6; 0; 2g. Condition 1 of the above definition
will be satisfied because I2 and J2 are the generators of
a frequent intratransaction itemset, with ID = 8
according to Example 4.1 with the itemsets shown in
Fig. 2. Condition 2 in the definition is also satisfied
because all other subwindows of I and J are
equivalent. As such, I and J can be intratransaction
joined to produce f1; 0; 8; 0; 2g.

Definition 4.3. Let I ¼ fI0; I1; . . . ; Iwÿ1g and

J ¼ fJ0; J1; . . . ; Jwÿ1g

be two frequent intratransaction itemsets. Cross-transaction

join can be performed for I and J if and only if all of the
following conditions are true:

1. There exists a p such that Ip 6¼ 0 and Jp ¼ 0.
2. There exists a q, q 6¼ p such that Iq ¼ 0 and Jq 6¼ 0.
3. For all r, r 6¼ p, r 6¼ q, Ir ¼ Jr.
4. Ip and Jq are the last nonzero subwindows in I and J ,

respectively.
5. All subwindows of I and J either contain no itemset or

only frequent intratransaction one-itemsets.

If the above conditions are satisfied, the resulting candidate
itemsets will be K ¼ fK0; . . . ; Kp; . . . ; Kq; . . . ; Kwÿ1g, where
Kp ¼ Ip, Kq ¼ Jq, and for all r, r 6¼ p, r 6¼ q, and
Kr ¼ Ir ¼ Jr.

The following example illustrates a cross-transaction join.

Example 4.5. Consider two itemsets I ¼ f1; 0; 2; 1; 0g and
J ¼ f1; 0; 2; 0; 4g. Condition 1 is satisfied because we
have I3 6¼ 0 and J3 ¼ 0. The fact that I4 ¼ 0 and J4 6¼ 0
satisfies Condition 2. As all other subwindows are
equivalent, Condition 3 is satisfied. Condition 4 is met
because I3 and J4 are the last nonzero subwindows in I
and J , respectively. Since each subwindow either
contains one or no items, Condition 5 is also satisfied

and, thus, we can cross join I and J to produce
f1; 0; 2; 1; 4g.

Condition 4 for cross-transaction join ensures that the
same candidate itemset will not be generated twice by two
different intertransaction joins while Condition 5 for cross-
transaction join ensures that the same candidate set will not
be generated twice by both intratransaction and cross-
transaction join. We will illustrate the need for the two
conditions in Example 4.6.

Example 4.6. Let I ¼ f1; 0; 4; 0; 1g and

J ¼ f1; 0; 0; 2; 1g:

If we had no Condition 4, then I and J could be
cross-transaction joined to formed f1; 0; 4; 2; 1g. How-
ever, the intertransaction itemset f1; 0; 4; 2; 1g can also be
obtained by cross-transaction joining f1; 0; 4; 0; 1g and
f1; 0; 4; 2; 0g.

Similarly, if we let I ¼ f1; 0; 5; 0; 1g and

J ¼ f1; 0; 5; 2; 0g;

then I and J can be cross-transaction joined to form
f1; 0; 5; 2; 1g if we have no Condition 5. However, the
intertransaction itemset f1; 0; 5; 2; 1g can also be obtained
by joining f1; 0; 1; 0; 1g and f1; 0; 2; 0; 1g. To avoid this
redundancy, we introduce Conditions 4 and 5.

To implement the defined joins, we first observe the
following property:

Property 4.1. If two itemsets I and J can be intratransaction or
cross-transaction joined, then they will become an equivalent
itemset if each of them has a relevant subwindow set to zero.

We will use Example 4.7 to illustrate Property 4.1.

Example 4.7. We go back to Example 4.5 where I ¼
f1; 0; 5; 0; 1g and J ¼ f1; 0; 6; 0; 1g can be intratransaction
joined. If we set the third subwindow of I and third
subwindow of J to zero, then both I and J will be
equivalent to f1; 0; 0; 0; 1g. As another example, we
consider Example 4.6 in which I ¼ f1; 0; 2; 1; 0g and J ¼
f1; 0; 2; 0; 4g can be cross-transaction joined. If we set the
fourth subwindow of I to zero and the fifth subwindow
of J to zero, then both I and J will be equivalent to
f1; 0; 2; 0; 0g.

With this observation, we came up with the hash-table
method for generating candidate ðkþ 1Þ-itemsets from
frequent intertransaction k-itemsets. Each hash bucket in
the table points to a linked list of pointers and each of the
pointers points to a frequent intertransaction k-itemset that
is hashed to the hash bucket. A k-itemsets will be hashed
multiple times, each time with one of its subwindow being
set to zero. To avoid unnecessary processing, subwindows
that originally have a value of zero will not be hashed. This
is because no new candidate will be generated by going
through the linked list in such a case.

Function 4.2. Given a frequent intertransaction itemset I ¼
fI0; I1; . . . ; Iwÿ1g (one subwindow is already set to zero), our
hash function hðIÞ is computed as
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hðIÞ ¼
Xwÿ1

p¼0

Ip � TotalItemwÿp mod Hsize;

where TotalItem is the total number of frequent intraitemset
mined, and Hsize is the size of the hash-table.

This hash function essentially treats I as a number in
base TotalItem, converts it into its decimal form, and then
finds the remainder when it is divided by Hsize.

When a k-itemset is hashed to a particular linked list,
FITI will go through the linked list to check for valid
conditions for intratransaction join or cross-transaction join.
If the conditions are valid, a join will take place to produce a
new candidate itemset. When the end of the list is reached,
a pointer to the itemset that is being hashed will be inserted.
To enhance efficiency, we do not check for cross-transaction
join for k > w. This is because Condition 4 for cross-
transaction join will definitely not be satisfied for k > w.

To further prune off candidate itemsets, we delete all the
candidate ðkþ 1Þ-itemsets which have some k-subsets that
are not frequent k-itemsets. The generations of the k-subsets
are done using the data structure shown in Fig. 1, by using
the following algorithm.

Algorithm 4.3 Generation of all the (k-itemset) subsets of an

intertransaction ðkþ 1Þ-itemset.

Input: An intertransaction ðkþ 1Þ-itemset I ¼ fI0; . . . ; Iwÿ1g.
Output: All of the (k-itemset) subsets of I.

Method: Notice that the FILT structure is used in the generation

although the general idea is similar to [2].

let S be the set of k-subsets of I;
S ¼ fg;
for (p ¼ 0; p < w; pþþ) {

if (Ip! ¼ 0) {

if (Ip is an intratransaction one-itemsets) {

if (p!=0)

add fI0; . . . ; Ipÿ1; 0; ::Iwÿ1g to S

else

add fI1; ::; Iwÿ1; 0g to S

} else

{ let Ip be an intratransaction h-itemsets, h > 1

// Note: Hash-tree in Fig. 1 is used here

for each (h-1)-subset of Ip
{ let t be the ID of the (h-1)-subset

add fI0; . . . ; Ipÿ1; t; ::Iwÿ1g to S

}

}
}

}

return S;

4.3.4 The Counting Function

Having generated the candidate itemsets, the next step is to
access the FIT tables to determine the number of occur-
rences of each candidate itemset in the database. To
facilitate efficient counting, candidate itemsets are first
inserted into a hash-tree. A node of the hash-tree is either an
interior node or a leaf node. The internal node consists of
branches that point to other nodes, whereas the leaf nodes
consist of pointers to candidate intertransaction itemsets.

The hash-tree has a depth of exactly w levels and the root
node is defined to be at level 1. When an intertransaction
itemset I ¼ fI0; . . . ; Iwÿ1g is hashed, we start from the root
and go down the tree until the leaf is reached. At an interior
node at depth d, we will use binary search to look for a
branch for Idþ1. If it is not found, a branch will be created
and inserted at the appropriate position such that the
branches in the node are kept in sorted order of the IDs.
When a leaf node is reached, a pointer to the itemset will be
inserted while keeping the pointers in sorted order of Iwÿ1.

Starting from the root node, the counting function
increases the count for all the candidates contained in a
sliding window W as follows: If we are at an interior node
of depth d and there exists a branch corresponding to ID = 0,
move down that branch. For the remaining branches, we
move down the branch only if the corresponding ID of a
branch can be found in W ½d� of the sliding window. This
procedure is done recursively to the nodes which the
branches point to. When we reach a leaf node, we will check
for pointers such that their corresponding IDs are found in
W ½wÿ 1�. The count of candidate itemsets which are point
to by these pointers will then be increased.

After the FIT tables are scanned, candidate itemsets that
have a lower support level than minsup will be pruned off.
The remaining candidates are frequent itemsets and they
will be used to generate the next batch of candidate
itemsets. This process repeats until all the candidate
itemsets are pruned off at the end of the counting function.

4.4 Correctness of FITI

To prove the correctness of FITI, we need to prove the
following lemma.

Lemma 4.1. Let minsup and w denote the minimum support
level and maxspan for mining frequent intertransaction
itemsets in a transaction database T , respectively. If Ln is
the set of frequent intertransaction k-itemsets that exists in T
and L0n is the set of intertransaction k-itemsets discovered by
FITI, we claim that L0n ¼ Ln for n � 1.

Proof. We will prove this claim by induction. Let Pn be the
statement that “L0n ¼ Ln for all n � 1.” We know that P1

is true since L01 is generated by the Apriori algorithm
which counts the support of all items in T . We also know
that P2 is true as L02 is generated from L01 by generating
all the combinations of intertransaction 2-itemsets from
items in L01 and counting support for these combinations.

Let us assume that Pk is true. When n ¼ kþ 1, let C0kþ1

be the set of candidate intertransaction itemsets gener-
ated from Lk by either cross-transaction join or inter-
transaction join. We first prove Lkþ1 � C0kþ1 by
contradiction.

Let us first assume that Lkþ1 6� Ckþ1. This will imply
that 9K 2 Lkþ1; whereK 62 Ckþ1. Let the ID encoding of K
be fK0; . . . ; Kwÿ1g. We consider the following two cases:

Case 1: There exists a Ki in K which corresponds to an
frequent intratransaction itemset of size greater than two.
Let Ii and Ij be the two generators of Ki and let the two
intertransaction itemsets I and J be fK0; :::; Ii; ::; Iwÿ1g
and fK0; :::; Jj; ::;Kwÿ1g, respectively.

Case 2: The subwindows of K either contain intratran-
saction one-itemsets or no items.
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Let Ki and Kj be the last two nonzero subwindows in
K and let the two intertransaction k-itemsets I and J be
fK0; :::;Ki; 0; 0; ::g and fK0; :::;Kj; 0; 0:::g, respectively.

For both cases, I and J are subsets of K and are of
size k. As such, it must be that I 2 Lk and J 2 Lk. Hence,
we can conclude that I 2 L0k and J 2 L0k since we assume
Pk is true. For Case 1, K 2 C0kþ1 because we can perform
an intratransaction join on I and J . By performing a
cross-transaction join on I and J in Case 2, we will also
have K 2 C0kþ1. We thus have a contradiction to the
original assumption that Lkþ1 6� C0kþ1 and thus conclude
that Lkþ1 � C0kþ1.

Since Lkþ1 � C0kþ1 and L0k¼1 is obtained by pruning off
members of C0kþ1 with support less than minsup. We can
conclude that Pkþ1 is true. Since P1, P2 are true and Pk )
Pkþ1 is true, Pn is true by induction. tu
Since L0n ¼ Ln for all n and FITI outputs [L0n for all n as

the set of frequent intertransaction itemsets, we can
conclude that FITI outputs the correct set of frequent
intertransaction itemsets in a transaction database.

5 PERFORMANCE STUDY

To assess the performance of the proposed algorithms,
experiments were conducted using synthetic data.

5.1 Generation of Synthetic Data

The method used by this study to generate synthetic
transactions is similar to the one used in [2] with some
modifications noted below. Table 3 summarizes the para-
meters used.

Transaction sizes are typically clustered around a mean,
with a small portion of transactions having many items.
Typical sizes of intertransaction itemsets are also clustered
around a mean, with a small portion of frequent inter-
transaction itemsets having a large number of items across
different transactions.

We first generate a set L of the potentially frequent
intertransaction itemsets, which may span across different
transactions, e.g., fað0Þ; bð1Þ; cð2Þg, and then assign a
frequent intertransaction itemset from L to corresponding
transactions.

The number of potentially frequent intertransaction
itemsets is set to jLj. A potentially frequent intertransaction
itemset is generated by first picking the size of the itemset
from a Poisson distribution with mean equal to jIj. The
maximum size of potentially frequent intertransaction

itemsets is jmaxðjIjÞj. Items and their intervals in the first
frequent intertransaction itemset are chosen randomly,
where item is picked up from one to j

P
j, and its interval

is picked up from zero to Rÿ 1. To model the phenomenon
that frequent intertransaction itemsets often have common
items and intervals, some fraction of items and their
intervals in subsequent itemsets are chosen from the
previous itemsets generated. We use an exponentially
distributed random variable with mean equal to the
correlation level to decide this fraction for each itemset. The
remaining items and their intervals are picked at random.
In the data sets used in the experiments, the correlation
level is set to 0.5. After generating all the items and intervals
for a frequent intertransaction itemset, we revise each of its
intervals by subtracting the minimum interval value of this
frequent itemset. In this way, the minimum interval of each
potentially frequent intertransaction itemset is always 0.

After generating the set L of potentially frequent
intertransaction itemsets, we generate transactions in the
database. Each transaction is assigned a series of potentially
frequent intertransaction itemsets. However, upon the
generation of one transaction, we actually need to consider
a list of consecutive ones starting from this transaction, as
items in a frequent itemset may span across different
transactions. For example, after selecting the frequent
intertransaction itemset fað0Þ; bð1Þ; cð2Þg for current transac-
tion Tc, we should assign item a to Tc, item b to its next
transaction Tcþ1, and item c to Tcþ2.

Before assigning items to a list of consecutive transac-
tions, we should also determine the sizes of these transac-
tions first. The size of each transaction is picked from a
Poisson distribution with mean equal to jT j. The maximum
size of transactions is maxðjT jÞ. Each potentially frequent
intertransaction itemset has a weight associated with it,
which corresponds to the probability that this itemset will
be picked. This weight is picked from an exponential
distribution with unit mean, and is then normalized so that
the sum of the weights for all the itemsets in L is one. The
next itemset to be put in the transaction is chosen from L by
tossing an jLj-sided weighted coin, where the weight for a
side is the probability of picking the associated itemset.

If the frequent intertransaction itemset picked on hand
does not fit in the current or any one of its successive
transactions, this itemset is put in these transactions
anyway in half the cases, and the itemset enters an unfit
queue for the next transaction in the rest of the cases. Each
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time, we pick itemsets from this queue first, according to
the first-in-first-out principle. Only when the queue is
empty do we perform random selection from the set L.
Similar to [2], we also use a corruption level during the
transaction generation to model the phenomenon that all
the items in a frequent itemset do not always occur
together. This corruption level for an itemset is fixed and
is obtained from a normal distribution with mean 0.5 and
variance 0.1.

Using the method above, we generated two sets of
synthetic data using the parameters shown in Table 4. The
first data set has more transactions but less items in each
transaction. Data set two, on the other hand, has only
1,000 transactions but each transaction contains 100 items
on average. Later in this section, we will study the
performance of our algorithms by varying one parameter
of these data sets while keeping other parameters at the
default values shown in the table.

5.2 Relative Performance

To compare the performance of EH-Apriori and FITI, we
vary the support level and run the two algorithms on data
sets one and two with maxspan equal to four and six
intervals, respectively. In general, Phase I and II of the FITI
algorithm account for five percent to 10 percent of the
running time for FITI. The results are shown in Table 5. We
plot the running time of EH-Apriori and FITI against the
support level and the graphs are shown in Fig. 3a and
Fig. 3b for data set 1 and 2, respectively.

As clearly shown in the graphs, FITI outperforms EH-
Apriori by a large margin for both data sets. This is not
surprising because FITI avoids a large amount of recompu-
tation by making use of FILT and the FIT tables.

We also observed that the running time of both the

algorithm is much higher for data set two. This is due to the

large number of items in each transaction of data set two

and this causes a large number of combinations to be

generated when we try to mine patterns across a few

transactions.
As for the memory requirement of the algorithms, FITI

takes up a memory size of 20K and 8K for data set one and

two, respectively, when the lowest support levels of

0.1 percent and 11 percent are used. Note that we use the

lowest support levels here since they result in the maximum

memory requirement. For the same support levels, EH-

Apriori require 17K and 7K on data set one and two. EH-

Apriori has a lower memory requirement because it does not

stored a FILT structure which take up 8K and 3K in FITI. Since

FITI is substantially faster than EH-Apriori as a result a small

increase in memory usage, we feel that FITI is still the better

algorithm for mining intertransaction association rules. The

remaining experiments are performed only on FITI due to the

high running time of EH-Apriori.

5.3 Effect of Increasing Maxspan

To investigate the effect of increasing maxspan, we vary

maxspan from two to eight for both data sets. The minimum

support level for data set one is 0.1 percent, whereas the

minimum support level for data set two is 15 percent. The

results are shown in Fig. 4. Both the graphs can be separated

into two regions, maxspan � R, and maxspan > R. For

maxspan � R, the graphs curve upwards because the

number of frequent intertransaction itemsets increases

exponentially as maxspan increases. There are, however,

no frequent intertransaction itemsets that span across more

than R intervals. As such when maxspan is greater than R,

the graph grows linearly reflecting the fact that additional

time is needed to process the extra subwindows.

5.4 Effect of Increasing the Number of Transactions

We shall now investigate how FITI performs when the

number of transactions in the database increases. We vary

the number of transactions in dataset one from 10k to 1,000k

with support = 0.1 percent and maxspan = 4. The result

Fig. 5a shows that the running time of FITI increases

linearly with the number of transactions in the database. We

again confirm this in Fig. 5b where we increase the number

of transactions in data set two from 0.5k to 8k and mine it

with a support level of 15 percent and a maxspan of six.
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5.5 Effect of Increasing the Average
Transaction Size

We will next examine the effect of increasing the average
transaction size on the running time of FITI. We increase the
average transaction size of data set one from five to 20 and

mine the data set with a support level of 0.5 percent and a
maxspan of four intervals. We leave out data set two in this
experiment because the running time will be too long if we
increase the transaction size of data set two further. The
result of the experiment is shown in Fig. 6. As can be seen
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Fig. 4. Effect of increasing maxspan. (a) Data set 1 with support = 0.1 percent and (b) data set 2 with support = 15 percent.

Fig. 5. Effect of increasing the number of transactions. (a) Data set 1: support = 0.1 percent, maxspan = 4 and (b) Data set 2: support = 15 percent,
maxspan = 6.

Fig. 3. Comparing performance of EH-Apriori and FITI. (a) Data set 1 with maxspan = 4 and (b) data set 2 with maxspan = 6.



from the graph, the running time of FITI increases
drastically when the average transaction size increases.
This is due to the large number of frequent intertransaction
itemsets which are generated in each pass when the average
transaction size increases. This large number of frequent
intertransaction itemsets results in a large number of
candidate itemsets to be counted. For example, when the
average size of the transaction is 20, we have one million
candidate intertransaction three-itemsets which require
949 seconds for counting.

5.6 Experiment on Real-Life Data

To assess the usefulness of intertransaction association
rules, we apply FITI to a data set comprising of 10 stock
exchange indices for 98 trading days from 3 July 1998 to
17 November 1998. These 10 stock exchange indices are
ASX All Ordinaries Index (ASX), CAC40 Index (CAC), DAX
Index (DAX), Dow Jones Index (DOW), FT-SE 100 Index
(FTS), Hang Seng Index (HSI), NASDAQ Index (NDQ),
Nikkei 225 Index (NKY), Swiss Market Index (SMI), and
Singapore ST Index (STI). This data set is separated into two
portions. The first portion, called WINNER, consists of
stock indices which rises for the day, while the other
portion called LOSER consists of those which fall. By
mining the WINNER portion with maxspan ¼ 5, we
obtained some rules. One of them that involved STI is
“NDQ(0), CAC(3)) STI(4)” with support = 18 percent and
confidence = 81 percent. This rule mean the following: “If
NDQ rise on the first day follow by CAC on the fourth day,
then STI rise at the fifth day with support = 18 percent and
confidence = 80 percent.” The same is done to the LOSER
portion and a rule that involved STI is “NKY(0), CAC(1))
STI(2)” with support = 25 percent and confidence = 80
percent.

Using thses two rules, we adopted a simple stragety of
buying when the precedent of the first rule occurred and
selling when the precedant of the second rule occurred.
This stragety is applied on the same data set to assess the
profitability of adopting it. The profit at the time of
selling is computed by subtracting the STI index at the
time of buying from the STI index at the time of selling.
This profit is accumulated and it is found that the
accumulated profit is always postive at any one time.
From this result, we can see that intertransaction
association rules are in fact quite useful for the purpose
of stock prediction. Note that, in general, stock prediction
is a form of classification task and association rules have
been found to be useful in such a task [12].

6 CONCLUSION

We introduced a new problem of mining intertransaction
association rules and provided an extensive study of it. Two
algorithms, EH-Apriori and FITI were implemented for

mining intertransaction association rules. FITI proves to be
much faster than EH-Apriori and its performance was
found to be acceptable for real life application. To improve
FITI further, we suggest various ways of reducing its
execution time and memory requirement. While we believe
that the present form of intertransaction association rules
will prove to be useful in providing prediction capability
along a single dimension, we feel that this usefulness can be

further enhanced if prediction along multiple dimensions is
possible. As such, we extend our definition of intertransac-
tion association rules to n-dimensional intertransaction
association rules. The success of FITI provides us with the
necessary ground work for mining this new form of
association rules.
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